Recent References: July 1, 2011 to September 30, 2011

National Nuclear Data Center, Brookhaven National Laboratory

Document generated: October 3, 2011

This document lists experimental references added to Nuclear Science References (NSR) during the period July 1, 2011 to September 30, 2011. The first section lists keynumbers and keywords sorted by mass and nuclide. The second section lists all references, ordered by keynumber.

For more information, and access to the most recent NSR updates, please visit the NSR web site at http://www.nndc.bnl.gov/nsr/.

Contents

Keynumbers and Keywords		
References	119	

Keynumbers and Keywords

^{1}n	2010AC02	NUCLEAR REACTIONS $^{1}H(e, e'K^{+})$, E=1507 MeV; measured
		electron and kaon spectra; deduced missing mass spectrum, Λ -,
		Σ -hyperons. JOUR NUPAB 835 313c
	2010AH04	NUCLEAR REACTIONS ¹ H(γ , K ⁺), (γ , K ⁺ π^+), (γ , K ⁺ π^-), (γ ,
		$K^{-}\pi^{+}$), $(\gamma, \Sigma^{+}\pi^{-})$, $(\gamma, \Sigma^{-}\pi^{+})$, E ≈ 1.5 -2.4 GeV; measured missing
		mass spectra; deduced $\Lambda(1405)$ photoproduction σ . JOUR NUPAB 835
		329c
	2010LIZW	NUCLEAR REACTIONS ² H(⁸ Li, ⁹ Li), E(cm)=7.8 MeV; ² H(⁸ Li, ⁹ Be),
		E(cm)=8.0 MeV; ¹ H(⁸ Li, ⁷ Li), E(cm)=4.0 MeV; measured E(particle),
		I(particle, θ): deduced single-particle spectroscopic factors using
		DWBA, S-factors, ⁶ Li(n, γ), E=0.01-0.10 MeV σ , ¹ H(¹⁷ F, ¹⁸ Ne),
		$E(cm)=0.3-1.6$ MeV: measured $E(particle)$ I(particle θ): calculated σ
		using B matrix: deduced $\sigma(\theta)$ proton widths of ¹⁸ Ne levels ¹ H(¹² N
		γ) E(cm)=9.4 MeV: deduced ¹³ O to ¹² N+p single particle
		spectroscopic factor. S factor. CONF Tsukuba(Nuclear Physics
		Trends) Proc.P322.Liu
	2010SHZW	NUCLEAR REACTIONS ² H(γ , p), E=15-37 MeV; ⁴ He(γ , p), (γ , n),
		Enullo-45 MeV: measured reaction products: deduced σ . Comparison
		with ENDE / B-VIL other data, momentum-space approach
		calculations CONF Tsukuba(Nuclear Physics Trends)
		Proc P315 Shima
	2011AR77	BADIOACTIVITY ${}^{1}n(\beta^{-})$: measured In(t): deduced T _{1/2} .
	2011111022	Comparison with PDG data and Serebrov experiment. CONF
		Dubna(ISINN-18) P11 Arzumanov
	2011BE27	NUCLEAR REACTIONS ${}^{3}H(d, 2d) = -36.0 \text{ MeV}$: measured
	ZUIIDLZI	deuteron spectra: deduced $\sigma(\theta)$ $\sigma(\theta, E)$ IOUR BRSPE 75.025
	2011KH7V	BADIOACTIVITY ${}^{1}n(\beta^{-})$: measured In(t) Io(t) Io(t) on coin
	2011/11/21	apc coin: deduced radiative peak energy width branching ratio
		CONF Dubna(ISINN-18) P73 Khafizov
	2011LIZZ	NUCLEAR REACTIONS ${}^{2}H({}^{12}N, {}^{13}O)$. E=70 MeV; measured
		E(particle), I(particle, θ); deduced $\sigma(\theta)$, S-factors; calculated $\sigma(\theta)$
		using FRESCO, REPT CNS-REP-86,P15,Liu
$^{1}\mathrm{H}$	2010AH04	NUCLEAR REACTIONS ¹ H(γ , K ⁺), (γ , K ⁺ π^+), (γ , K ⁺ π^-), (γ ,
		$K^{-}\pi^{+}$). (γ , $\Sigma^{+}\pi^{-}$). (γ , $\Sigma^{-}\pi^{+}$). E \approx 1.5-2.4 GeV: measured missing
		mass spectra: deduced $\Lambda(1405)$ photoproduction σ JOUR NUPAB 835
		329c
	2010B47V	NUCLEAB BEACTIONS ${}^{1}H({}^{17}F {}^{17}F')$ E(cm)=600 keV: measured
	LOIODHLI	reaction products: deduced 3 ⁺ resonance strength reaction rate
		${}^{1}\text{H}({}^{7}\text{Li}, \gamma)$ E=12 MeV: measured reaction products: deduced σ at
		E(cm) = 1.5 MeV S-factor Daresbury Recoil Separator CONF
		Heidelberg (NIC XI) Proc P202 Bardavan
	20100477	NUCLEAR REACTIONS ${}^{4}\text{He}({}^{19}\text{F}){}^{22}\text{Ne})$ E=6-12.3 MeV massured
	201001121	En In: deduced vields CONF Heidelberg (NIC XI) Proc P217 Chao
	20104170	NUCLEAR REACTIONS $^{2}H(\gamma, n)$ E=0.20 MeV: massured Eq. 16
	ZOIOUNZŃ	En $In(A, t)$ To E measurement at FIRE Dreaden Bessenderf CONE
		En, $m(v, t)$. FOF measurement at ELDE, Dresden-Rossendorf. CONF Heidelberg (NIC XI) Dress D00 Herroelee
		neidenberg (NIC AI) Froc, F90, nannaske

A=1 (continued)

2010HAZR	NUCLEAR REACTIONS 4 He(11 C, 14 N), E(cm)=0-4.5 MeV; measured
	thick target Ep, Ip, $E\alpha$, $I\alpha$, E(particle), I(particle); deduced σ to
	individual low-lying states, reaction rates; calculated reaction rates
	using NON-SMOKER. CONF Heidelberg (NIC XI)
	Proc,P62,Hayakawa
2010IWZX	NUCLEAR REACTIONS ² H(polarized γ , n), E=2.2-3.7 MeV;
	measured En, $In(\theta)$; deduced $\sigma(\theta)$, $\sigma(M1, \theta)$, $\sigma(E1, \theta)$. Comparison
	with other data, JENDL3.3. CONF Kobe(Tours Nuc.Phys.and
	Astroph.VII) Proc.P301,Iwamoto
2010LIZW	NUCLEAR REACTIONS ² H(⁸ Li, ⁹ Li), E(cm)=7.8 MeV; ² H(⁸ Li, ⁹ Be),
	E(cm)=8.0 MeV; ¹ H(⁸ Li, ⁷ Li), E(cm)=4.0 MeV; measured E(particle),
	I(particle, θ); deduced single-particle spectroscopic factors using
	DWBA, S-factors, ${}^{6}\text{Li}(n, \gamma)$, E=0.01-0.10 MeV σ . ${}^{1}\text{H}({}^{17}\text{F}, {}^{18}\text{Ne})$,
	$E(cm)=0.3-1.6$ MeV; measured $E(particle)$, $I(particle, \theta)$; calculated σ
	using R matrix; deduced $\sigma(\theta)$, proton widths of ¹⁸ Ne levels. ¹ H(¹² N,
	γ), E(cm)=9.4 MeV; deduced ¹³ O to ¹² N+p single particle
	spectroscopic factor, S factor. CONF Tsukuba(Nuclear Physics
	Trends) Proc.P322,Liu
2010PIZW	NUCLEAR REACTIONS ⁶ Li(³ He, 2α), E=17.5 MeV; measured E α ,
	$I\alpha(\theta)$; deduced spectator momentum distribution, $\sigma(\theta, E(cm)=2.94)$
	MeV), ⁶ Li(d, α) σ . Trojan horse method. CONF Sinaia (Exotic Nucei
	and Nuc.Part.Astroph.III)Proc.P202,Pizzone
2010SPZY	NUCLEAR REACTIONS ${}^{2}H({}^{3}He, pt)$, E=17 MeV; measured Ep, Ip,
	E(particle), I(particle), (particle)p-coin; deduced ${}^{2}H(d, p) \sigma$, S-factors,
	reaction rate for low energy using Trojan horse method. CONF Sinaia
	(Exotic Nucei and Nuc.Part.Astroph.III)Proc.P420,Sparta
2011ARZZ	RADIOACTIVITY ${}^{1}n(\beta^{-})$; measured In(t); deduced T _{1/2} .
	Comparison with PDG data and Serebrov experiment. CONF
	Dubna(ISINN-18),P11,Arzumanov
2011AT02	NUCLEAR REACTIONS ^{1,2} H, C, O(n, n'), $E < 0.0253 \text{ eV}$; measured
	En, In, TOF; deduced yields, production rates of ultracold neutrons.
	Comparison with GEANT4 UCN-Monte Carlo code. JOUR EULEE 95
	12001
2011HAZY	NUCLEAR REACTIONS ${}^{4}\text{He}({}^{11}\text{C}, {}^{14}\text{N}), ({}^{11}\text{B}, {}^{14}\text{C})(\text{cm})=1-4.5 \text{ MeV};$
	measured thick target $E\alpha$, $I\alpha$, Ep , Ip , $E(particle)$, $I(particle)$; deduced
	σ to individual states; calculated σ to individual states using
	NON-SMOKER code. REPT CNS-REP-86,P7,Hayakawa
2011KHZY	RADIOACTIVITY ${}^{1}n(\beta^{-})$; measured Ip(t), Ie(t), I γ (t), ep-coin,
	$ep\gamma$ -coin; deduced radiative peak energy, width, branching ratio.
	CONF Dubna(ISINN-18),P73,Khafizov
2011SE06	NUCLEAR REACTIONS 1 H(polarized d, d), E=250 MeV / nucleon;
	measured deuteron and proton spectra, dp-coin, deuteron analyzing
	powers. ¹ H(polarized d, d), $E=70$, 100, 135, 200 MeV / nucleon;
	analyzed previous analyzing powers data. Comparison with
	three-nucleon Faddeev calculations based on nucleon-nucleon (NN)
	potentials alone or combined with two models of three nucleon forces:
	the Tucson-Melbourne 99 (TM99) and Urbana IX. JOUR PRVCA 83
	061001

A=1 (continued)

2011TEZZ NUCLEAR REACTIONS ¹H(¹⁷Ne, ¹⁷Ne), E=0-4.9 MeV / nucleon;¹H(¹⁴O, ¹⁴O), E(cm)=0.5-4.5 MeV; measured Ep, Ip, E(particle), I(particle); deduced σ , resonance energy. REPT CNS-REP-86,P17,Teranishi

A=2

² H	2010AG13	NUCLEAR REACTIONS ² H, ⁷ Li, ⁹ Be, ¹³ C(K ⁻ , π^-), E at rest; measured Λ hypernucleus binding energy, formation probability. JOUR NUPAB 835 414c
	2010AG14	RADIOACTIVITY ⁴ He(p), (d), ⁵ He(d); measured d momentum distribution from non-mesonic two-body hypernuclei decay; deduced decay branching ratios. FINUDA facility. JOUR NUPAB 835 439c
	2010KA38	NUCLEAR REACTIONS ² H, ¹² C(γ , $\pi^+\pi^-$), E=0.8-1.1 GeV; measured pion spectra; deduced K ⁰ photoproduction. JOUR NUPAB 835 317c
	2010LIZW	NUCLEAR REACTIONS ² H(⁸ Li, ⁹ Li), E(cm)=7.8 MeV; ² H(⁸ Li, ⁹ Be), E(cm)=8.0 MeV; ¹ H(⁸ Li, ⁷ Li), E(cm)=4.0 MeV; measured E(particle), I(particle, θ); deduced single-particle spectroscopic factors using DWBA, S-factors, ⁶ Li(n, γ), E=0.01-0.10 MeV σ . ¹ H(¹⁷ F, ¹⁸ Ne), E(cm)=0.3-1.6 MeV; measured E(particle), I(particle, θ); calculated σ using R matrix; deduced $\sigma(\theta)$, proton widths of ¹⁸ Ne levels. ¹ H(¹² N, γ), E(cm)=9.4 MeV; deduced ¹³ O to ¹² N+p single particle spectroscopic factor, S factor. CONF Tsukuba(Nuclear Physics Trends) Proc.P322,Liu
	2011AT02	NUCLEAR REACTIONS ^{1,2} H, C, O(n, n'), E<0.0253 eV; measured En, In, TOF; deduced yields, production rates of ultracold neutrons. Comparison with GEANT4 UCN-Monte Carlo code. JOUR EULEE 95 12001
	2011FR11	NUCLEAR REACTIONS ^{2,3} H(n, n), E=14.1 MeV; measured reaction products En, In; deduced $\sigma(\theta)$. An internal confinement fusion facility. JOUR PRLTA 107 122502
	2011T006	NUCLEAR REACTIONS ³ He(γ , p), E=7-16 MeV; measured reaction products, Ep, Ip; deduced σ . Comparison with theoretical calculations and experimental data. JOUR PYLBB 702 121

$^{3}\mathrm{H}$	2010AG14	RADIOACTIVITY ⁴ He(p), (d), ⁵ He(d); measured d momentum
		distribution from non-mesonic two-body hypernuclei decay; deduced
		decay branching ratios. FINUDA facility. JOUR NUPAB 835 439c
	2010KAZL	NUCLEAR REACTIONS ⁶ Li(d, α), E=25-70 keV; measured liquid,
		solid thick target reaction products; deduced yield, S-factor, screening
		potential. ${}^{2}H(d, p)$, E=30-70 keV; measured reaction products;
		deduced ultrasonic cavitation influence. CONF Kobe(Tours
		Nuc.Phys.and Astroph.VII) Proc.P151,Kasagi

A=3 (continued)

	2010SHZW	NUCLEAR REACTIONS ² H(γ , p), E=15-37 MeV; ⁴ He(γ , p), (γ , n), Enullo-45 MeV; measured reaction products; deduced σ . Comparison
		with ENDF / B-VII, other data, momentum-space approach
		calculations. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P315,Shima
	2011FR11	NUCLEAR REACTIONS 2,3 H(n, n), E=14.1 MeV; measured reaction
		products En, In; deduced $\sigma(\theta)$. An internal confinement fusion facility.
0		JOUR PRETA 107 122502
зНе	2010SHZW	NUCLEAR REACTIONS ${}^{2}\text{H}(\gamma, p)$, E=15-37 MeV; ${}^{4}\text{He}(\gamma, p)$, (γ, n) ,
		Enullo-45 MeV; measured reaction products; deduced σ . Comparison
		with ENDF / B-VII, other data, momentum-space approach
		calculations. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P315,Shima
	2011FR10	NUCLEAR MOMENTS ^{3,4} He; measured microwave spectra; deduced
		spin magnetic moment of antiproton. Comparison with previous
		measurements. JOUR HYIND 199 337
	2011P010	NUCLEAR REACTIONS ${}^{3}H(\alpha, nt){}^{3}He$, E=67.2 MeV; measured
		reaction products, $E\alpha$, $I\alpha$. ⁶ Li; deduced higher lying states in ⁶ Li,
		resonances. Comparison with experimental data. JOUR JUPSA 80
		094204

⁴ H	2010NAZW	NUCLEAR REACTIONS ⁴ He(⁷ Li, ⁷ Be), E=455 MeV; measured E(particle), I(particle), $E\gamma$, $I\gamma$, (particle) γ -coin; deduced GDR, SDR $d\sigma(E)$; calculated GDR, SDR $d\sigma(E)$, $d\sigma(E)$ for ⁴ He excited by neutrinos. Comparison with other calculations. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P280.Nakayama
⁴ He	2010AG14	RADIOACTIVITY ⁴ He(p), (d), ⁵ He(d); measured d momentum distribution from non-mesonic two-body hypernuclei decay; deduced decay branching ratios EINUDA facility JOUR NUPAB 835 439c
	2010DEZV	NUCLEAR REACTIONS ² H(²⁸ Si, n), (³² S, n), (³⁶ Ar, n), E \approx 320-325 MeV; measured reaction products. ¹ H(²⁹ P, ²⁶ Si), E \approx 230 MeV; ¹ H(³³ Cl, ³⁰ S), E=208, 229, 250 MeV; ¹ H(³⁷ K, ³⁴ Ar), E=235, 255, 275 MeV; measured E α , I $\alpha(\theta)$, E(particle), I(particle); deduced σ ; calculated σ using NON-SMOKER. Heavy ions from reactions on deuterium used as beams for reactions on hydrogen. Cross sections not presented in the paper. CONF Heidelberg (NIC XI) Proc.P56,Deibel
	2010KAZL	NUCLEAR REACTIONS ⁶ Li(d, α), E=25-70 keV; measured liquid, solid thick target reaction products; deduced yield, S-factor, screening potential. ² H(d, p), E=30-70 keV; measured reaction products; deduced ultrasonic cavitation influence. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P151,Kasagi
	2010YAZX	NUCLEAR REACTIONS ⁴ He(⁷ Li, x), E=13.7 MeV; ⁴ He(⁷ Li, ⁷ Li), E(cm)=1.0-4.5 MeV; measured thick target E α , I α , E β , I β , E γ , I γ , E(particle), I(particle); deduced d σ (E), $\sigma(\theta)$. CONF Heidelberg (NIC XI) Proc,P214,Yamaguchi

A=4 (continued)

2011BA30	NUCLEAR REACTIONS ${}^{2}H(d, \gamma)$, E not given; measured $E\gamma$, $I\gamma$, $E\beta$,
	I β ; deduced upper limit on the relative yield from the J=1 state.
	JOUR JTPHE 113 68
2011BIZZ	NUCLEAR REACTIONS ⁴ He(²¹ Na, ²¹ Na'), E(cm)=1.6-6.2 MeV;
	measured E α , I $\alpha(\theta)$, Ep, Ip; deduced $\sigma(\theta)$, resonance parameters;
	calculated $\sigma(\theta)$ using multichannel R-matrix theory. REPT
	CNS-REP-86,P5,Binh
2011FR10	NUCLEAR MOMENTS ^{3,4} He; measured microwave spectra; deduced
	spin magnetic moment of antiproton. Comparison with previous
	measurements. JOUR HYIND 199 337
2011NO12	NUCLEAR REACTIONS 4 He(36 Ar, 36 Ar), E=150 MeV; measured
	thick target $E\alpha$, $I\alpha(\theta)$. ⁴⁰ Ca deduced resonance parameters, moments
	of inertia. JOUR ZAANE 47 96
2011SU16	RADIOACTIVITY ⁸ Li(β^-), ($\beta^-\alpha$)[from ⁷ Li(d, p), E=3.5 MeV]; ⁸ B
	$(\beta^+), (\beta^+\alpha)$ [from ⁶ Li(³ He, n), E=4.7 MeV]; measured E $\beta, I\beta, \beta(\theta)$
	from spin polarized ⁸ Li and ⁸ B; deduced alignment and $\beta\alpha$ angular
	correlation terms and contributing matrix elements, weak magnetism
	term. β -NMR technique. Comparison with conserved vector current
	(CVC) predictions. JOUR PRVCA 83 065501

A=5

^{5}n	2011BE31	NUCLEAR REACTIONS ⁴ He(p-bar, π^+), (p-bar, π^-), E at rest;
		measured reaction products; deduced pion $\sigma(E)$, multiplicity. JOUR
		ZAANE 47 82
$^{5}\mathrm{He}$	2010AG14	RADIOACTIVITY 4 He(p), (d), 5 He(d); measured d momentum
		distribution from non-mesonic two-body hypernuclei decay; deduced
		decay branching ratios. FINUDA facility. JOUR NUPAB 835 439c
	2011BE31	NUCLEAR REACTIONS ⁴ He(p-bar, π^+), (p-bar, π^-), E at rest;
		measured reaction products; deduced pion $\sigma(E)$, multiplicity. JOUR
		ZAANE 47 82

⁶ He	2011VE07	RADIOACTIVITY ⁶ He(β^-); measured recoil ions, E β , I β ; deduced β - ν angular correlation coefficients. GEANT4 simulation. JOUR HYIND 199 29
⁶ Li	2011DU19	NUCLEAR REACTIONS ⁶ Li, ¹² C, ¹⁹ F, ²⁷ Al(p, γ), (p, p), E=590-1150 keV; measured reaction products, proton spectra; deduced $\sigma(\theta)$, S-factors. Optical model calculations, comparison with experimental data. JOUR PANUE 74 984
	2011P010	NUCLEAR REACTIONS ${}^{3}\text{H}(\alpha, \text{ nt}){}^{3}\text{He}$, E=67.2 MeV; measured reaction products, E α , I α . ${}^{6}\text{Li}$; deduced higher lying states in ${}^{6}\text{Li}$, resonances. Comparison with experimental data. JOUR JUPSA 80 094204

A=6 (continued)

	2011VE07	RADIOACTIVITY ⁶ He(β^{-}); measured recoil ions, E β , I β ; deduced
		β - ν angular correlation coefficients. GEANT4 simulation. JOUR
		HYIND 199 29
$^{6}\mathrm{Be}$	2011COZZ	NUCLEAR REACTIONS ${}^{3}\text{He}({}^{7}\text{Be}, \alpha)$, E=53.4 MeV; measured
		reaction products; deduced $\sigma(E)$. ¹⁹⁷ Au(⁷ Be, ⁷ Be), E=53.4 MeV;
		measured reaction products; deduced $\sigma(\theta)$. REPT
		CNS-REP-86,P19,Condori

⁷ Li	2010AG13	NUCLEAR REACTIONS ² H, ⁷ Li, ⁹ Be, ¹³ C(K ⁻ , π^-), E at rest; measured Λ hypernucleus binding energy, formation probability. JOUR NUPAB 835 414c
	2010YAZY	NUCLEAR REACTIONS ⁷ Be(p, γ), (p, p), E(cm)=0.3-6.5 MeV; measured reaction products; calculated R-matrix fit; deduced
		$\sigma(\theta=0-8^0)$, new 1 ⁻ resonance. ⁷ Li(α, α), E=0-8 MeV; measured E α ,
		I α . CONF Tsukuba(Nuclear Physics Trends) Proc.P247, Yamaguchi
	2011VEZY	NUCLEAR REACTIONS ¹⁰ B(polarized n, α), E=cold; measured E γ ,
		$I\gamma(\theta)$; deduced γ asymmetry, weak neutral current constant. CONF
	004451107	Dubna(ISINN-18), P235, Vesna NUCLEAD DEACTIONS 10 D() E 4 5 M M
	2011ZH27	NUCLEAR REACTIONS $^{10}B(n, \alpha)$, $E=4$, 5 MeV; measured reaction
		products, E α , I α ; deduced σ . Comparison with experimental data and ENDE / B VILO. IFFE 3.1 and IENDI. 4.0 evoluted nuclear libraries
		IOUR CPLEE 28 082801
⁷ Be	20108478	NUCLEAR REACTIONS ⁷ Be(p, γ), (p, p), E(cm)=0.3-6.5 MeV:
		measured reaction products; calculated R-matrix fit; deduced
		$\sigma(\theta=0-8^{\circ})$, new 1 ⁻ resonance. ⁷ Li(α, α), E=0-8 MeV; measured E α ,
		Iα. CONF Tsukuba(Nuclear Physics Trends) Proc.P247,Yamaguchi
	2011DU19	NUCLEAR REACTIONS ⁶ Li, ¹² C, ¹⁹ F, ²⁷ Al(p, γ), (p, p), E=590-1150
		keV; measured reaction products, proton spectra; deduced $\sigma(\theta)$,
		S-factors. Optical model calculations, comparison with experimental
		data. JOUR PANUE 74 984
	2011WA20	NUCLEAR MOMENTS ^{7,9,10,11} Be; measured microwave resonance
		and transition spectra; deduced the ground state hyperfine constants. JOUR HYIND 199 269
$^{7}\mathrm{B}$	2011CH32	NUCLEAR REACTIONS ${}^{9}\text{Be}({}^{9}\text{C}, X)$, E=70 MeV / nucleon,
		[secondary ${}^{9}C$ beam from ${}^{9}Be({}^{16}O, X)$, E=150 MeV / nucleon primary
		beam]; measured particle spectra using HiRA array, angular
		correlations between the particles in particle-decay channels. ⁸ Be,
		7,8,9 B, 8,10 C; deduced levels, width, J, π , isospin, branching ratios,
		excitation spectra of outgoing particles from many-particle decays of
		ground and excited states. JOUK PKVGA 84 014320

⁸ Li	2011SU16	RADIOACTIVITY ⁸ Li(β^-), ($\beta^-\alpha$)[from ⁷ Li(d, p), E=3.5 MeV]; ⁸ B (β^+), ($\beta^+\alpha$)[from ⁶ Li(³ He, n), E=4.7 MeV]; measured E β , I β , $\beta(\theta)$ from spin polarized ⁸ Li and ⁸ B; deduced alignment and $\beta\alpha$ angular correlation terms and contributing matrix elements, weak magnetism term. β -NMR technique. Comparison with conserved vector current
⁸ Be	2010BAZV	(CVC) predictions. JOUR PRVCA 83 065501 NUCLEAR REACTIONS ¹ H(¹⁷ F, ¹⁷ F'), E(cm)=600 keV; measured reaction products; deduced 3 ⁺ resonance strength, reaction rate. ¹ H(⁷ Li, γ), E=12 MeV; measured reaction products; deduced σ at E(cm)=1.5 MeV, S-factor. Daresbury Recoil Separator. CONF Heidelberg (NIC XI) Proc.P202.Bardavan
	2010KIZU	RADIOACTIVITY ⁸ B(β^+); measured E α , E α , $\alpha\alpha$ -coin; deduced relative <i>null</i> σ (E). CONF Heidelberg (NIC XI) Proc.P16.Kirsebom
	2011CH32	NUCLEAR REACTIONS ⁹ Be(⁹ C, X), E=70 MeV / nucleon, [secondary ⁹ C beam from ⁹ Be(¹⁶ O, X), E=150 MeV / nucleon primary beam]; measured particle spectra using HiRA array, angular correlations between the particles in particle-decay channels. ⁸ Be, ^{7,8,9} B, ^{8,10} C; deduced levels, width, J, π , isospin, branching ratios, excitation spectra of outgoing particles from many-particle decays of ground and excited states. JOUR PRVCA 84 014320
	2011KI14	RADIOACTIVITY ⁸ B(β^+)[from ⁶ Li(³ He, n), E=7.0 MeV]; measured β spectra, β -delayed α spectra, E α , $\alpha\alpha$ -coin. ⁸ Be; deduced excitation distribution. Discussed implication of ⁸ B neutrino spectrum. ²⁰ Na(β^+); measured β -delayed α spectrum and used for calibration. Monte-Carlo simulations of β decay of ⁸ B. R-matrix parameterization. JOUR PRVCA 83 065802
	2011SU16	RADIOACTIVITY ⁸ Li(β^-), ($\beta^-\alpha$)[from ⁷ Li(d, p), E=3.5 MeV]; ⁸ B (β^+), ($\beta^+\alpha$)[from ⁶ Li(³ He, n), E=4.7 MeV]; measured E β , I β , $\beta(\theta)$ from spin polarized ⁸ Li and ⁸ B; deduced alignment and $\beta\alpha$ angular correlation terms and contributing matrix elements, weak magnetism term. β -NMR technique. Comparison with conserved vector current (CVC) predictions. JOUR PRVCA 83 065501
⁸ B	2010KIZU	RADIOACTIVITY ⁸ B(β^+); measured E α , E α , $\alpha\alpha$ -coin; deduced relative null σ (E). CONF Heidelberg (NIC XI) Proc,P16,Kirsebom
	2010YAZY	NUCLEAR REACTIONS ⁷ Be(p, γ), (p, p), E(cm)=0.3-6.5 MeV; measured reaction products; calculated R-matrix fit; deduced $\sigma(\theta=0-8^0)$, new 1 ⁻ resonance. ⁷ Li(α, α), E=0-8 MeV; measured E α , I α CONF Tsukuba(Nuclear Physics Trends) Proc P247 Yamaguchi
	2011CH32	NUCLEAR REACTIONS ⁹ Be(⁹ C, X), E=70 MeV / nucleon, [secondary ⁹ C beam from ⁹ Be(¹⁶ O, X), E=150 MeV / nucleon primary beam]; measured particle spectra using HiRA array, angular correlations between the particles in particle-decay channels. ⁸ Be, ^{7,8,9} B, ^{8,10} C; deduced levels, width, J, π , isospin, branching ratios, excitation spectra of outgoing particles from many-particle decays of ground and excited states. JOUR PRVCA 84 014320

A=8 (continued)

2011KI14	RADIOACTIVITY ⁸ B(β^+)[from ⁶ Li(³ He, n), E=7.0 MeV]; measured β
	spectra, β -delayed α spectra, $\mathbf{E}\alpha$, $\alpha\alpha$ -coin. ⁸ Be; deduced excitation
	distribution. Discussed implication of ⁸ B neutrino spectrum.
	²⁰ Na(β^+); measured β -delayed α spectrum and used for calibration.
	Monte-Carlo simulations of β decay of ⁸ B. R-matrix parameterization.
	JOUR PRVCA 83 065802
2011CH32	NUCLEAR REACTIONS ${}^{9}Be({}^{9}C, X)$, E=70 MeV / nucleon,
	[secondary ⁹ C beam from ⁹ Be(¹⁶ O, X), E=150 MeV / nucleon primary
	beam]; measured particle spectra using HiRA array, angular
	correlations between the particles in particle-decay channels. ⁸ Be,
	^{7,8,9} B, ^{8,10} C; deduced levels, width, J, π , isospin, branching ratios,
	excitation spectra of outgoing particles from many-particle decays of
	ground and excited states. JOUR PRVCA 84 014320

A=9

⁹ Be	2010AG13	NUCLEAR REACTIONS ² H, ⁷ Li, ⁹ Be, ¹³ C(K ⁻ , π^-), E at rest; measured Λ hypernucleus binding energy, formation probability. JOUR
	2011AR10	NUCLEAR REACTIONS ¹⁰ B(d, t), (d, ³ He), E=25 MeV; measured reaction products; deduced $\sigma(\theta)$, asymptotic normalization coefficients.
	2011PI08	DWBA, optical model. JOUR BRSPE 75 920 NUCLEAR REACTIONS ⁹ Be, ¹⁹⁷ Au(⁶ He, ⁶ He), E=16.2, 21.3 MeV, [⁶ He secondary beam from ⁹ Be(⁷ Li, ⁶ He), E=22.18, 26.10 MeV primary beam]; measured ⁶ He spectra, cross sections, $\sigma(\theta)$, biparametric
		spectrum. Effect of the collective couplings to the excited states. Coupled channels calculations, using a double-folding potential, and three- and four-body continuum-discretized coupled-channels (CDCC) calculations. JOUR PRVCA 83 064603
	2011WA20	NUCLEAR MOMENTS ^{7,9,10,11} Be; measured microwave resonance and transition spectra; deduced the ground state hyperfine constants. IOUB HVIND 199 269
⁹ B	2011AR10	NUCLEAR REACTIONS ¹⁰ B(d, t), (d, ³ He), E=25 MeV; measured reaction products; deduced $\sigma(\theta)$, asymptotic normalization coefficients. DWBA, optical model, JOUR BRSPE 75 920
	2011CH32	NUCLEAR REACTIONS ⁹ Be(⁹ C, X), E=70 MeV / nucleon, [secondary ⁹ C beam from ⁹ Be(¹⁶ O, X), E=150 MeV / nucleon primary beam]; measured particle spectra using HiRA array, angular correlations between the particles in particle-decay channels. ⁸ Be, ^{7,8,9} B, ^{8,10} C; deduced levels, width, J, π , isospin, branching ratios, excitation spectra of outgoing particles from many-particle decays of ground and excited states. JOUR PRVCA 84 014320
	2011SC18	NUCLEAR REACTIONS ⁹ Be(³ He, t), E=140 MeV / nucleon; measured E(t), I(t), $\sigma(\theta)$. ⁹ B; deduced levels, J, π , L-transfer, widths, Gamow-Teller transition strengths, DWBA analysis of $\sigma(\theta)$ data. Comparison with data from (p, n) reaction. Systematics of level energies, GT strengths and shapes of A=9 nuclei: ⁹ Li, ⁹ Be, ⁹ B and ⁹ C. JOUR PRVCA 84 014308

 $^{8}\mathrm{C}$

$^{10}\mathrm{Be}$	2011WA20	NUCLEAR MOMENTS ^{7,9,10,11} Be; measured microwave resonance
		and transition spectra; deduced the ground state hyperfine constants.
		JOUR HYIND 199 269
$^{10}\mathrm{C}$	2010LI49	NUCLEAR REACTIONS ${}^{1}H({}^{10}B, n){}^{10}C$, E=95 MeV; measured
		reaction products, $E\gamma$, $I\gamma$; deduced excited state lifetime, B(E2).
		Doppler Shift Attenuation Method (DSAM). JOUR BAPSA 55 MG5
	2011CH32	NUCLEAR REACTIONS ⁹ Be(⁹ C, X), E=70 MeV / nucleon,
		[secondary ⁹ C beam from ⁹ Be(¹⁶ O, X), E=150 MeV / nucleon primary
		beam]; measured particle spectra using HiRA array, angular
		correlations between the particles in particle-decay channels. ⁸ Be,
		7,8,9 B, 8,10 C; deduced levels, width, J, π , isospin, branching ratios,
		excitation spectra of outgoing particles from many-particle decays of
		ground and excited states. JOUR PRVCA 84 014320

A=11

$^{11}\mathrm{Be}$	2011WA20	NUCLEAR MOMENTS ^{7,9,10,11} Be; measured microwave resonance and transition spectra; deduced the ground state hyperfine constants.
¹¹ B	2010KAZO	NUCLEAR REACTIONS ¹¹ B, ¹³ C(α , α '), E=388 MeV; measured E α , $I\alpha(\theta)$; deduced $\sigma(\theta)$; calculated $\sigma(\theta)$ using DWBA with α -cluster structure. CONF Tsukuba(Nuclear Physics Trends) Proc P207 Kawabata
	2010KI15	RADIOACTIVITY ¹² C(p), (n); measured hypernucleus decay particle spectra, Ep, Ip, En, In, pn-coin, pp-coin, nn-coin, pion spectra; deduced hypernucleus nucleon decay width. Non-mesonic weak decay. JOUR NUPAB 835 434c
	2010MA72	NUCLEAR REACTIONS ¹² C(π^+ , K ⁺), (π^+ , K ⁺ p), E at 1.05 GeV / c; measured hypernuclei E γ , I γ ; deduced levels, J, π , γ -multipolarity, Λ binding energy, JOUR NUPAB 835 422c
	2011KHZW	NUCLEAR REACTIONS ¹⁴ N, ¹⁶ O(n, α), E=1.7-7 MeV; ²⁰ Ne(n, α), E=4-7 MeV; ^{36,40} Ar(n, α), E=1.5-7 MeV; measured E α , I α using digital spectrometer; deduced σ to low-lying states. Comparison with other data, O and N reactions also to ENDF / B-VII. CONF
¹¹ C	2010KI15	Dubna (ISINN-18), P153, Knryachkov RADIOACTIVITY ${}^{12}C(p)$, (n); measured hypernucleus decay particle spectra, Ep, Ip, En, In, pn-coin, pp-coin, nn-coin, pion spectra; deduced hypernucleus nucleon decay width. Non-mesonic weak decay. JOUR NUPAB 835 434c
	2011YAZZ	NUCLEAR REACTIONS ⁴ He(⁷ Be, γ), E=14.7 MeV; measured E γ , I γ . REPT CNS-REP-86,P1,Yamaguchi

A=12

¹²C 2010KA38 NUCLEAR REACTIONS ²H, ¹²C(γ , $\pi^+\pi^-$), E=0.8-1.1 GeV; measured pion spectra; deduced K⁰ photoproduction. JOUR NUPAB 835 317c

A=12 (continued)

2010KI15	RADIOACTIVITY ¹² C(p), (n); measured hypernucleus decay particle
	spectra, Ep, Ip, En, In, pn-coin, pp-coin, nn-coin, pion spectra;
	deduced hypernucleus nucleon decay width. Non-mesonic weak decay.
	JOUR NUPAB 835 434c
2010MA72	NUCLEAR REACTIONS ${}^{12}C(\pi^+, K^+)$, (π^+, K^+p) , E at 1.05 GeV / c:
	measured hypernuclei $E\gamma$, $I\gamma$; deduced levels, J, π , γ -multipolarity, Λ
	binding energy. JOUR NUPAB 835 422c
2011AB05	NUCLEAR REACTIONS $^{12}C(p, p)$, E<2.7-7 MeV: measured reaction
	products. Ep. Ip: deduced $\sigma(\theta)$. IBANDL library, comparison with
	theoretical calculations. JOUR NIMBE 269 2011
2011BA25	NUCLEAR REACTIONS ${}^{12}C({}^{8}B, {}^{8}B)$, E=25.8 MeV: ${}^{12}C({}^{7}Be, {}^{7}Be)$.
	E = 18.8 MeV: ¹² C(⁶ Li, ⁶ Li), $E = 12.3 MeV$: measured particle spectra.
	tof. $\sigma(\theta)$. Optical model analysis of $\sigma(\theta)$ data using Woods-Saxon and
	double-folding type potentials. ${}^{12}C(^{8}B, {}^{8}B)$: deduced effect of breakup
	by coupled-channels calculations using continuum discretized
	coupled-channel method and cluster-model folding potentials.
	Experimental data for ${}^{12}C(\alpha, \alpha)$, (⁶ He, ⁶ He), (⁷ Li, ⁷ Li), (⁹ Be, ⁹ Be).
	$(^{11}B, ^{11}B), (^{16}O, ^{16}O), E(cm) = 2.8-22.8 \text{ MeV}$ used to extract reduced
	reaction σ . JOUR PRVCA 84 014603
2011DU19	NUCLEAR REACTIONS ⁶ Li, ¹² C, ¹⁹ F, ²⁷ Al(p, γ), (p, p), E=590-1150
	keV: measured reaction products, proton spectra; deduced $\sigma(\theta)$,
	S-factors. Optical model calculations, comparison with experimental
	data. JOUR PANUE 74 984
2011GI03	NUCLEAR REACTIONS ${}^{9}\text{Be}({}^{9}\text{Be}, X){}^{15}\text{N}$ / ${}^{16}\text{N}$ / ${}^{12}\text{C}$ / ${}^{13}\text{C}$ / ${}^{15}\text{C}$ /
	16 C, E=30, 35, 40 MeV; 12 C(18 O, X) 27 Mg / 28 Mg, E=50, 60 MeV; 11 B,
	$^{12}C(^{18}O, X)^{26}Mg / {}^{27}Mg / {}^{25}Mg / {}^{24}Na$, E not given; measured
	reaction products, $E\gamma$, $I\gamma$; deduced production yields. Comparison with
	PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
2011GI05	NUCLEAR REACTIONS ${}^{9}\text{Be}(\alpha, n\gamma)$, E=0.3-7.9 MeV; measured
	reaction products; deduced σ , reaction rate, analytical representation
	parameters. JOUR BRSPE 75 931
2011GR11	NUCLEAR REACTIONS ${}^{12}C({}^{16}O, {}^{16}O), ({}^{16}O, {}^{12}C), E=28 \text{ MeV};$
	measured reaction products; deduced $\sigma(\theta)$. α -cluster transfer, DWBA
	model, DWUCK5 program. JOUR BRSPE 75 961
2011WA15	NUCLEAR REACTIONS ${}^{12}C({}^{112}Sn, {}^{112}Sn'), ({}^{114}Sn, {}^{114}Sn'), ({}^{116}Sn, {}^{116}Sn, {}^{116}Sn')$
	¹¹⁶ Sn'), E=4 MeV / nucleon; ${}^{12}C({}^{122}Sn, {}^{122}Sn')$, (${}^{124}Sn, {}^{124}Sn'$), E=3.8
	MeV / nucleon; measured $E\gamma$, $I\gamma$, $(^{12}C)\gamma$ -coin, $(^{12}C)\gamma\gamma(\theta)$, precession
	angles. ^{112,114,116,122,124} Sn; deduced g-factors, configurations.
	Comparison with RQRPA, QRPA, and shell-model calculations.
	$^{12}\mathrm{C}(^{124}\mathrm{Sn},\mathrm{X})^{130}\mathrm{Xe}$ / $^{126}\mathrm{Te}$ / $^{128}\mathrm{Te},\mathrm{E}{=}3.8~\mathrm{MeV}$ / nucleon; measured
	$E\gamma$, $I\gamma$. JOUR PRVCA 84 014319
2011ZHZY	NUCLEAR REACTIONS ${}^{12}C({}^{17}F, {}^{17}F)$, E=60 MeV; measured
	E(particle), I(particle, θ); deduced $\sigma(\theta)$. REPT
	CNS-REP-86,P21,Zhang

2010AG13	NUCLEAR REACTIONS ² H, ⁷ Li, ⁹ Be, ¹³ C(K ⁻ , π^-), E at rest; measured Λ hypernucleus binding energy, formation probability. JOUR
2010KAZO	NUPAB 835 414c NUCLEAR REACTIONS ¹¹ B, ¹³ C(α , α '), E=388 MeV; measured E α , I $\alpha(\theta)$; deduced $\sigma(\theta)$; calculated $\sigma(\theta)$ using DWBA with α -cluster
	structure. CONF Tsukuba(Nuclear Physics Trends) Proc P207 Kawabata
2010ZIZZ	NUCLEAR REACTIONS ${}^{2}H({}^{12}C, p)$, E(cm)=2, 3, 4, 5 MeV; measured Ep, Ip; deduced σ . ${}^{12}C({}^{12}C, p)$, E(cm)=2-8 MeV; measured reaction products; deduced C yields and the influence of deuterium
2011GI03	impurity on yields. CONF Heidelberg (NIC XI) Proc,P19,Zickefoose NUCLEAR REACTIONS ${}^{9}Be({}^{9}Be, X)^{15}N / {}^{16}N / {}^{12}C / {}^{13}C / {}^{15}C / {}^{16}C, E=30, 35, 40 \text{ MeV}; {}^{12}C({}^{18}O, X)^{27}Mg / {}^{28}Mg, E=50, 60 \text{ MeV}; {}^{11}B, {}^{12}C({}^{18}O, X)^{26}Mg / {}^{27}Mg / {}^{25}Mg / {}^{24}Na, E \text{ not given; measured}$
	reaction products, $E\gamma$, $I\gamma$; deduced production yields. Comparison with PACE, LisFus and GEMINI calculations, JOUR NIMAE 648 109
2011KHZW	NUCLEAR REACTIONS ¹⁴ N, ¹⁶ O(n, α), E=1.7-7 MeV; ²⁰ Ne(n, α), E=4-7 MeV; ^{36,40} Ar(n, α), E=1.5-7 MeV; measured E α , I α using digital spectrometer; deduced σ to low-lying states. Comparison with other data, O and N reactions also to ENDE / B-VIL CONE
	Dubna (ISINN-18),P153,Khryachkov
2011BA27	NUCLEAR REACTIONS 12 C(23 Al, 22 Mg), [13 Al secondary beam from C(32 S, X)E=95 MeV / nucleon primary reaction], E=57 MeV / nucleon: measured fragment spectra, inclusive and exclusive
	longitudinal momentum distributions, and widths, $E\gamma$,
	(fragment) γ -coin. ²² Mg; deduced levels, J, π , σ , spectroscopic factors,
	asymptotic normalization coefficients. ~ Al; deduced g.s. $J\pi$, configuration mixing. Comparison with Glauber and large-scale shell
	model calculations. ²² Mg(p, γ) ²³ Al, E<1 MeV; deduced stellar
	reaction rates; discussed astrophysical significance of 22 Na
20110110	nucleosynthesis in ONe novae. JOUR PRVCA 84 015803 NUCLEAD DEACTIONS ⁶ I; ${}^{12}C$ ${}^{19}E$ ${}^{27}Al(p, r)$ (p, p) E=500 1150
2011D019	keV: measured reaction products, proton spectra; deduced $\sigma(\theta)$.
	S-factors. Optical model calculations, comparison with experimental
	data. JOUR PANUE 74 984
2010LIZW	NUCLEAR REACTIONS ² H(°Li, ⁹ Li), $E(cm)=7.8$ MeV; ² H(°Li, ⁹ Be), E(cm)=8.0 MeV; ¹ H(⁸ Li, ⁷ Li), $E(cm)=4.0$ MeV; measured $E(particle)$
	$I(\text{particle}, \theta);$ deduced single-particle spectroscopic factors using DWBA S-factors ⁶ Li(n α) E=0.01-0.10 MeV σ ¹ H(¹⁷ F ¹⁸ Ne)
	$E(cm)=0.3-1.6$ MeV; measured $E(particle)$, $I(particle, \theta)$; calculated σ
	using R matrix; deduced $\sigma(\theta)$, proton widths of ¹⁸ Ne levels. ¹ H(¹² N,
	γ), E(cm)=9.4 MeV; deduced ¹³ O to ¹² N+p single particle
	Trends) Proc.P322,Liu
	2010AG13 2010KAZO 2010ZIZZ 2011GI03 2011KHZW 2011BA27 2011DU19 2010LIZW

A=14

No references found

$^{15}\mathrm{C}$	2011GI03	NUCLEAR REACTIONS ${}^{9}\text{Be}({}^{9}\text{Be}, X){}^{15}\text{N}$ / ${}^{16}\text{N}$ / ${}^{12}\text{C}$ / ${}^{13}\text{C}$ / ${}^{15}\text{C}$ /
		16 C, E=30, 35, 40 MeV; 12 C(18 O, X) 27 Mg / 28 Mg, E=50, 60 MeV; 11 B,
		${ m ^{12}C(^{18}O, X)^{26}Mg} / { m ^{27}Mg} / { m ^{25}Mg} / { m ^{24}Na}$, E not given; measured
		reaction products, $E\gamma$, $I\gamma$; deduced production yields. Comparison with
		PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
$^{15}\mathrm{N}$	2011GI03	NUCLEAR REACTIONS $^9\mathrm{Be}(^9\mathrm{Be},\mathrm{X})^{15}\mathrm{N}$ / $^{16}\mathrm{N}$ / $^{12}\mathrm{C}$ / $^{13}\mathrm{C}$ / $^{15}\mathrm{C}$ /
		16 C, E=30, 35, 40 MeV; 12 C(18 O, X) 27 Mg / 28 Mg, E=50, 60 MeV; 11 B,
		${ m ^{12}C(^{18}O, X)^{26}Mg} / { m ^{27}Mg} / { m ^{25}Mg} / { m ^{24}Na}$, E not given; measured
		reaction products, $E\gamma$, $I\gamma$; deduced production yields. Comparison with
		PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109

¹⁶ C	2011GI03	NUCLEAR REACTIONS ⁹ Be(⁹ Be, X) ¹⁵ N / ¹⁶ N / ¹² C / ¹³ C / ¹⁵ C / ¹⁶ C, E=30, 35, 40 MeV; ¹² C(¹⁸ O, X) ²⁷ Mg / ²⁸ Mg, E=50, 60 MeV; ¹¹ B, ¹² C(¹⁸ O, X) ²⁶ Mg / ²⁷ Mg / ²⁵ Mg / ²⁴ Na, E not given; measured reaction products, $E\gamma$, $I\gamma$; deduced production yields. Comparison with PACE LieFus and CEMINI calculations. JOUR NIMAE 648, 100
¹⁶ N	2011GI03	NUCLEAR REACTIONS ${}^{9}Be({}^{9}Be, X){}^{15}N / {}^{16}N / {}^{12}C / {}^{13}C / {}^{15}C / {}^{16}C, E=30, 35, 40 \text{ MeV}; {}^{12}C({}^{18}O, X){}^{27}Mg / {}^{28}Mg, E=50, 60 \text{ MeV}; {}^{11}B, {}^{12}C({}^{18}O, X){}^{26}Mg / {}^{27}Mg / {}^{25}Mg / {}^{24}Na, E \text{ not given; measured}$ reaction products, E γ , I γ ; deduced production yields. Comparison with PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
	2011K029	NUCLEAR REACTIONS ¹⁹ F(n, xp), (n, d), (n, x α), (n, t), (n, p), (n, α), E=14.2 MeV; measured reaction products, Ep, Ip, α -spectra; deduced $\sigma(\theta, E)$. Comparison with JENDL-3.3 and ENDF / B-VII.0 evaluated nuclear reaction libraries. JOUR JNSTA 48 1146
¹⁶ O	2010CAZL	NUCLEAR REACTIONS ¹⁵ N(p, γ), E=400 keV; measured E γ , I γ ; deduced σ , yields, S-factor. Results still under evaluation and not reported. CONE Heidelberg (NIC XI) Proc P117 Caciolli
	2010CAZM	NUCLEAR REACTIONS ${}^{15}N(p, \gamma)$, E(cm)=80-230 keV; measured E γ , I γ ; deduced S-factor; calculated R-matrix fit. Comparison with other data. LUNA experiment. CONF Frascati(Nuclear Physics in Astrophysics IV 2009), P012036
	20100UZZ	NUCLEAR REACTIONS ¹² C(⁷ Li, t), E=28, 34 MeV; measured E(particle), I(particle, θ); deduced $\sigma(\theta)$ to individual states, S-factor; calculated $\sigma(\theta)$ to individual states using finite-range DWBA FRESCO code. ¹² C(α, γ), E(cm)=0.5-3.5 MeV; deduced E1, E2 S-factor; calculated S-factor using R-matrix. CONF Heidelberg (NIC XI) Proc.P129,Oulebsir
	2011GR11	NUCLEAR REACTIONS ¹² C(¹⁶ O, ¹⁶ O), (¹⁶ O, ¹² C), E=28 MeV; measured reaction products; deduced $\sigma(\theta)$. α -cluster transfer, DWBA model, DWUCK5 program, JOUR BRSPE 75 961
	2011LA13	NUCLEAR REACTIONS ² H(¹⁹ F, n α), E=50 MeV; ¹⁹ F(³ He, α d), E=18.2 MeV; measured reaction products, ¹⁶ O recoils; deduced σ (E, θ), S-factors, reaction rates. Comparison with previous results. JOUR ASJOA 739 L54

A=16 (continued)

2011SC23	NUCLEAR REACTIONS ${}^{4}\text{He}({}^{12}\text{C}, \gamma)$, E=3.3-4.5 MeV; measured
	reaction products, $E\gamma$, $I\gamma$; deduced S-factors. R-matrix analysis. JOUR
	PYLBB 703 557
2011WH01	NUCLEAR REACTIONS ¹² C(⁶ Li, d) ¹⁶ O, E=42 MeV; measured
	deuteron and α spectra, (⁴ He+ ¹² C)d-coin. ¹⁶ O; deduced levels, α
	decay widths. Cluster structures in ¹⁶ O. JOUR PRVCA 83 064324
2011WA17	NUCLEAR REACTIONS ${}^{16}O(\text{polarized p, n}){}^{16}F, E=296 \text{ MeV};$
	measured E(n), I(n), polarized neutrons, TOF, cross section spectrum,
	analyzing powers, polarized σ . Comparison with DWIA calculations.
	16 F; deduced levels, J, π , Gamow-Teller and spin-dipole states. JOUR
	PRVCA 84 014614

A=17

^{17}O	2011KHZW	NUCLEAR REACTIONS ¹⁴ N, ¹⁶ O(n, α), E=1.7-7 MeV; ²⁰ Ne(n, α),
		E=4-7 MeV; 36,40 Ar(n, α), E=1.5-7 MeV; measured E α , I α using
		digital spectrometer; deduced σ to low-lying states. Comparison with
		other data, O and N reactions also to ENDF / B-VII. CONF
		Dubna(ISINN-18),P153,Khryachkov
	2011KO29	NUCLEAR REACTIONS 19 F(n, xp), (n, d), (n, x α), (n, t), (n, p), (n,
		α), E=14.2 MeV; measured reaction products, Ep, Ip, α -spectra;
		deduced $\sigma(\theta, E)$. Comparison with JENDL-3.3 and ENDF / B-VII.0
		evaluated nuclear reaction libraries. JOUR JNSTA 48 1146

A=18

¹⁸ O	2011KO29	NUCLEAR REACTIONS $^{19}F(n, xp)$, (n, d) , $(n, x\alpha)$, (n, t) , (n, p) , (n, p) , (n, p)
		α), E=14.2 MeV; measured reaction products, Ep, Ip, α -spectra;
		deduced $\sigma(\theta, E)$. Comparison with JENDL-3.3 and ENDF / B-VII.0
		evaluated nuclear reaction libraries. JOUR JNSTA 48 1146
	2011T007	RADIOACTIVITY ²² Ne(α) [from ¹⁴ C(¹² C, α), E=44 MeV]; measured
		decay products, $E\alpha$, $I\alpha$. ²² Ne; deduced excited states in ²² Ne, energies,
		J, π , angular correlations for α -decay, α -clusters. Comparison with
		shell model. JOUR JTPLA 94 6
¹⁸ Ne	2010ALZZ	NUCLEAR REACTIONS ${}^{16}O({}^{3}He, n)$, E=15 MeV; measured
		E(particle), I(particle, θ), En, In(θ), (particle)n-coin. ¹⁸ Ne deduced
		states, resonances. CONF Heidelberg (NIC XI)
		Proc,P215,Almaraz-Calderon

 $^{16}\mathrm{F}$

$^{19}\mathrm{C}$	2011YA13	NUCLEAR REACTIONS ${}^{1}H({}^{9}Be, X)$, $({}^{18}C, X)$, $({}^{19}C, X)$, $({}^{20}C, X)$,
		E=40 MeV / nucleon; measured reaction products on thick target
		using superconducting TOF spectrometer. ¹⁹ C deduced neutron halo.
		^{19,20} C deduced density distribution, fragmentation σ , charge-pickup σ ,
		neutron removal σ , total σ ; calculated ^{19,20} C density distribution using
		finite-range optical limit, Glauber model. JOUR NUPAB 864 1
^{19}O	2011KO29	NUCLEAR REACTIONS ${}^{19}F(n, xp)$, (n, d) , $(n, x\alpha)$, (n, t) , (n, p)
		α), E=14.2 MeV; measured reaction products, Ep, Ip, α -spectra;
		deduced $\sigma(\theta, E)$. Comparison with JENDL-3.3 and ENDF / B-VII.0
		evaluated nuclear reaction libraries. JOUR JNSTA 48 1146
^{19}F	2011DU19	NUCLEAR REACTIONS ⁶ Li, ¹² C, ¹⁹ F, ²⁷ Al(p, γ), (p, p), E=590-1150
		keV; measured reaction products, proton spectra; deduced $\sigma(\theta)$,
		S-factors. Optical model calculations, comparison with experimental
		data. JOUR PANUE 74 984
19 Na	2010SIZW	RADIOACTIVITY ²⁰ Mg, ²³ Al, ³¹ Cl(p)[from ¹ H(²⁴ Mg, γ), E=48 M eV
		/ nucleon; ${}^{1}H({}^{32}S, \gamma)$, E=40 MeV / nucleon; ${}^{3}He({}^{20}Ne, 3n)$, E=25
		MeV / nucleon on thick target]; measured β -delayed Ep, Ip. CONF
		Sinaia (Exotic Nucei and Nuc.Part.Astroph.III)Proc.P415,Simmons

$^{20}\mathrm{C}$	2011PE21	NUCLEAR REACTIONS ⁹ Be, ¹⁸⁴ W(²² O, X) ²⁰ C, E=101 MeV /
		Comparison with systematics, shell model calculations. JOUR PRLTA
		107 102501
	2011YA13	NUCLEAR REACTIONS ${}^{1}H({}^{9}Be, X)$, $({}^{18}C, X)$, $({}^{19}C, X)$, $({}^{20}C, X)$,
		E=40 MeV / nucleon; measured reaction products on thick target
		using superconducting TOF spectrometer. ¹⁹ C deduced neutron halo.
		^{19,20} C deduced density distribution, fragmentation σ , charge-pickup σ ,
		neutron removal σ , total σ ; calculated ^{19,20} C density distribution using
20		finite-range optical limit, Glauber model. JOUR NUPAB 864 1
²⁰ Ne	2010BEZK	NUCLEAR REACTIONS ¹⁷ O(α , n), E=800-2300 keV; measured En,
		In, $E\gamma$, $I\gamma$; deduced yield, reaction rate; calculated yield using R-matrix
		AZURE code. CONF Heidelberg (NIC XI) Proc, P183, Best
	2011DU19	NUCLEAR REACTIONS ⁶ Li, ¹² C, ¹⁹ F, ²⁷ Al(p, γ), (p, p), E=590-1150
		keV; measured reaction products, proton spectra; deduced $\sigma(\theta)$,
		S-factors. Optical model calculations, comparison with experimental
		data. JOUR PANUE 74 984
	2011KI14	RADIOACTIVITY $^{\circ}B(\beta^+)$ [from $^{\circ}Li(^{\circ}He, n)$, E=7.0 MeV]; measured β
		spectra, β -delayed α spectra, $E\alpha$, $\alpha\alpha$ -coin. °Be; deduced excitation
		distribution. Discussed implication of ⁸ B neutrino spectrum.
		²⁰ Na(β^+); measured β -delayed α spectrum and used for calibration.
		Monte-Carlo simulations of β decay of ⁸ B. R-matrix parameterization.
20.5.7		JOUR PRVCA 83 065802
²⁰ Na	2010WRZZ	NUCLEAR REACTIONS ²⁰ Ne, ²⁴ Mg, ²⁸ Si, ³² S, ³⁶ Ar(³ He, t), $E=32$
		MeV; measured E(particle), I(particle, θ); deduced reaction rates of
		35 Ar(p, γ). Compared to those by Iliadis et al. CONF Heidelberg (NIC
		XI) Proc,P55,Wrede

A=20 (continued)

	2011KI14	RADIOACTIVITY ⁸ B(β^+)[from ⁶ Li(³ He, n), E=7.0 MeV]; measured β
		spectra, β -delayed α spectra, $\mathbf{E}\alpha$, $\alpha\alpha$ -coin. ⁸ Be; deduced excitation
		distribution. Discussed implication of ⁸ B neutrino spectrum.
		²⁰ Na(β^+); measured β -delayed α spectrum and used for calibration.
		Monte-Carlo simulations of β decay of ⁸ B. R-matrix parameterization.
		JOUR PRVCA 83 065802
^{20}Mg	2010SIZW	RADIOACTIVITY ²⁰ Mg, ²³ Al, ³¹ Cl(p)[from ¹ H(²⁴ Mg, γ), E=48 M eV
		/ nucleon; ${}^{1}H({}^{32}S, \gamma)$, E=40 MeV / nucleon; ${}^{3}He({}^{20}Ne, 3n)$, E=25
		MeV / nucleon on thick target]; measured β -delayed Ep, Ip. CONF
		Sinaia (Exotic Nucei and Nuc.Part.Astroph.III)Proc.P415,Simmons

A=21

^{21}O	2011FE06	NUCLEAR REACTIONS ${}^{2}H({}^{20}O, p)$, E=10.5 MeV / nucleon;
		measured E(p), I(p), E γ , I γ , $\sigma(\theta)$, p ²⁰ O-, p ²⁰ O γ -coin. ²¹ O; deduced
		levels, J, $\pi,$ L-transfer, spectroscopic factors, configurations. Adiabatic
		distorted-wave approximation analysis of $\sigma(\theta)$ data. Comparison with
		shell-model calculations. JOUR PRVCA 84 011301
$^{21}\mathrm{Ne}$	2010TAZU	NUCLEAR REACTIONS 4 He(17 O, γ), E(cm)=0.621-1.597 MeV;
		measured E(particle), I(particle), $E\gamma$, $I\gamma$ using DRAGON recoil
		separator at TRIUMF; deduced (α , γ) yields, new resonance in ¹⁷ O+ α
		system. CONF Heidelberg (NIC XI) Proc,P45,Taggart

A=22

$^{22}\mathrm{Ne}$	2011T007	RADIOACTIVITY ²² Ne(α) [from ¹⁴ C(¹² C, α), E=44 MeV]; measured
		decay products, $E\alpha$, $I\alpha$. ²² Ne; deduced excited states in ²² Ne, energies,
		J, π , angular correlations for α -decay, α -clusters. Comparison with
		shell model. JOUR JTPLA 94 6
22 Na	2010SAZK	RADIOACTIVITY ²³ Al(β^+), (EC)[from ¹ H(²⁴ Mg, ²³ Al), E=48 MeV /
		nucleon]; $^{23}Mg(p)$ [from ^{23}Al]; measured β -delayed Ep, Ip; evaluated
		7786 keV resonance strength in 22 Na(p, γ) taking place in ONe novae.
		CONF Sinaia (Exotic Nucei and
		Nuc.Part.Astroph.III)Proc.P411,Saastamoi
	2010SAZN	RADIOACTIVITY ²³ Mg(p)[from ²³ Al(β^+)[from ¹ H(²⁴ Mg, ²³ Al), E=48
		MeV / nucleon]]; measured E β , I β , β -delayed Ep, Ip; deduced E, J, π
		for state corresponding to the lowest-energy proton group, resonance
		strength. CONF Heidelberg (NIC XI) Proc, P211, Saastamoinen
	2011DI09	NUCLEAR REACTIONS Ti(d, X) ⁴⁸ V, 27 Al(d, X) ²² Na / 24 Na,
		${}^{55}Mn(d, p), {}^{55}Mn(d, X){}^{54}Mn / {}^{52}Mn / {}^{51}Cr, E{<}40 MeV; measured$
		reaction products, $E\gamma$, $I\gamma$; deduced production σ , thick target yields.
		Comparison with ALICE-IPPE and EMPIRE-II calculations. JOUR
		NIMBE 269 1878
^{22}Mg	2010SIZW	RADIOACTIVITY ²⁰ Mg, ²³ Al, ³¹ Cl(p)[from ¹ H(²⁴ Mg, γ), E=48 M eV
		/ nucleon; ${}^{1}H({}^{32}S, \gamma)$, E=40 MeV / nucleon; ${}^{3}He({}^{20}Ne, 3n)$, E=25
		MeV / nucleon on thick target]; measured β -delayed Ep, Ip. CONF
		Sinaia (Exotic Nucei and Nuc.Part.Astroph.III)Proc.P415,Simmons

Page 16

A=22 (continued)

2011BA27 NUCLEAR REACTIONS ¹²C(²³Al, ²²Mg), [²³Al secondary beam from C(³²S, X)E=95 MeV / nucleon primary reaction], E=57 MeV / nucleon; measured fragment spectra, inclusive and exclusive longitudinal momentum distributions, and widths, E γ , (fragment) γ -coin. ²²Mg; deduced levels, J, π , σ , spectroscopic factors, asymptotic normalization coefficients. ²³Al; deduced g.s. J π , configuration mixing. Comparison with Glauber and large-scale shell model calculations. ²²Mg(p, γ)²³Al, E<1 MeV; deduced stellar reaction rates; discussed astrophysical significance of ²²Na nucleosynthesis in ONe novae. JOUR PRVCA 84 015803

²³ Na	2010ZIZZ	NUCLEAR REACTIONS ${}^{2}H({}^{12}C, p)$, $E(cm)=2, 3, 4, 5$ MeV; measured Ep, Ip; deduced σ . ${}^{12}C({}^{12}C, p)$, $E(cm)=2-8$ MeV; measured reaction products; deduced C yields and the influence of deuterium
²³ Mg	2010SAZK	RADIOACTIVITY ²³ Al(β^+), (EC)[from ¹ H(²⁴ Mg, ²³ Al), E=48 MeV / nucleon]; ²³ Mg(p)[from ²³ Al]; measured β -delayed Ep, Ip; evaluated 7786 keV resonance strength in ²² Na(p, γ) taking place in ONe novae. CONF Sinaia (Exotic Nucei and
	2010SAZN	Nuc.Part.Astroph.III)Proc.P411,Saastamoi RADIOACTIVITY ²³ Mg(p)[from ²³ Al(β^+)[from ¹ H(²⁴ Mg, ²³ Al), E=48 MeV / nucleon]]; measured E β , I β , β -delayed Ep, Ip; deduced E, J, π for state corresponding to the lowest-energy proton group, resonance
	2010SAZO	strength. CONF Heidelberg (NIC XI) Proc,P211,Saastamoinen NUCLEAR REACTIONS ²² Na(p, γ), E=198, 213, 232, 288, 454, 610 keV; measured E γ , I γ ; deduced yields, reaction rates, resonance
²³ Al	2010SAZK	RADIOACTIVITY ²³ Al(β^+), (EC)[from ¹ H(²⁴ Mg, ²³ Al), E=48 MeV / nucleon]; ²³ Mg(p)[from ²³ Al]; measured β -delayed Ep, Ip; evaluated 7786 keV resonance strength in ²² Na(p, γ) taking place in ONe novae. CONF Sinaia (Exotic Nucei and
	2010SIZW	Nuc.Part.Astroph.III)Proc.P411,Saastamoi RADIOACTIVITY $^{20}\text{Mg},^{23}\text{Al},^{31}\text{Cl}(p)[\text{from }^{1}\text{H}(^{24}\text{Mg},\gamma), E=48 \text{ M eV} / \text{nucleon; }^{1}\text{H}(^{32}\text{S},\gamma), E=40 \text{ MeV} / \text{nucleon; }^{3}\text{He}(^{20}\text{Ne}, 3n), E=25 \text{ MeV} / \text{nucleon on thick target}]; measured \beta-delayed Ep, Ip. CONF$
	2011BA27	Sinaia (Exotic Nucei and Nuc.Part.Astroph.III)Proc.P415,Simmons NUCLEAR REACTIONS ¹² C(²³ Al, ²² Mg), [²³ Al secondary beam from C(³² S, X)E=95 MeV / nucleon primary reaction], E=57 MeV / nucleon; measured fragment spectra, inclusive and exclusive longitudinal momentum distributions, and widths, E γ , (fragment) γ -coin. ²² Mg; deduced levels, J, π , σ , spectroscopic factors, asymptotic normalization coefficients. ²³ Al; deduced g.s. J π , configuration mixing. Comparison with Glauber and large-scale shell model calculations. ²² Mg(p, γ) ²³ Al, E<1 MeV; deduced stellar reaction rates; discussed astrophysical significance of ²² Na
		reaction rates; discussed astrophysical significance of ²² Na nucleosynthesis in ONe novae, JOUR PRVCA 84 015803

²⁴ Na	2011DI09	NUCLEAR REACTIONS Ti(d, X) ⁴⁸ V, ²⁷ Al(d, X) ²² Na / ²⁴ Na, ⁵⁵ Mn(d, p), ⁵⁵ Mn(d, X) ⁵⁴ Mn / ⁵² Mn / ⁵¹ Cr, E<40 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced production σ , thick target yields. Comparison with ALICE-IPPE and EMPIRE-II calculations. JOUR NIMBE 269 1878
	2011GI03	NUCLEAR REACTIONS ${}^{9}Be({}^{9}Be, X)^{15}N / {}^{16}N / {}^{12}C / {}^{13}C / {}^{15}C / {}^{16}C, E=30, 35, 40 \text{ MeV}; {}^{12}C({}^{18}O, X)^{27}Mg / {}^{28}Mg, E=50, 60 \text{ MeV}; {}^{11}B, {}^{12}C({}^{18}O, X)^{26}Mg / {}^{27}Mg / {}^{25}Mg / {}^{24}Na, E \text{ not given; measured}$ reaction products, E γ , I γ ; deduced production yields. Comparison with PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
²⁴ Mg	2011KAZU	NUCLEAR REACTIONS ²⁴ Mg(α , α '), E=400 MeV; measured E α , I $\alpha(\theta)$; deduced $\sigma(\theta)$ to individual states, strength distribution (EWSR); calculated $\sigma(\theta)$ using DWBA. CONF Okinawa(New Faces of Atomic Nuclei) Proc.P194,Kawabata
	2011ZH22	NUCLEAR REACTIONS ^{28,29,30} Si(n, $x\gamma$), (n, $n^2\gamma$), (n, $2n\gamma$), (n, $np\gamma$), (n, $d\gamma$), (n, $p\gamma$), (n, $\alpha\gamma$), (n, $n\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
²⁴ Al	2010ICZX	RADIOACTIVITY ²⁴ Si(β^+)[from ²⁸ Si fragmentation on Ni target at 100 MeV / nucleon]; measured β -delayed E γ , I γ (t). ²⁴ Al deduced isomeric transition, T _{1/2} , levels, J, π , branching ratio, B(GT); calculated B(GT). CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P290,Ichikawa
	2010ICZY	RADIOACTIVITY ²⁴ Si(β^+), (EC)[from ²⁸ Si fragmentation on ⁹ Be]; measured β -delayed proton, β -delayed γ ; deduced decay scheme, log ft, B(GT). CONF Tsukuba(Nuclear Physics Trends) Proc.P265,Ichikawa
	2010WRZZ	NUCLEAR REACTIONS ²⁰ Ne, ²⁴ Mg, ²⁸ Si, ³² S, ³⁶ Ar(³ He, t), E=32 MeV; measured E(particle), I(particle, θ); deduced reaction rates of ³⁵ Ar(p, γ). Compared to those by Iliadis et al. CONF Heidelberg (NIC XI) Proc,P55,Wrede
²⁴ Si	2010ICZX	RADIOACTIVITY ²⁴ Si(β^+)[from ²⁸ Si fragmentation on Ni target at 100 MeV / nucleon]; measured β -delayed E γ , I γ (t). ²⁴ Al deduced isomeric transition, T _{1/2} , levels, J, π , branching ratio, B(GT); calculated B(GT). CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P290,Ichikawa
	2010ICZY	RADIOACTIVITY ²⁴ Si(β^+), (EC)[from ²⁸ Si fragmentation on ⁹ Be]; measured β -delayed proton, β -delayed γ ; deduced decay scheme, log ft, B(GT). CONF Tsukuba(Nuclear Physics Trends) Proc.P265,Ichikawa
	2011F008	RADIOACTIVITY ²⁵ P(p), ²⁶ S(2p) [from Be(³² S, X) ²⁶ S / ²⁵ P, E=50.3 MeV / nucleon]; measured reaction products, TOF, Ep, Ip; deduced yields, $T_{1/2}$ limits. Comparison with other data. JOUR IMPEE 20 1491
²⁴ S	2011F008	RADIOACTIVITY ²⁵ P(p), ²⁶ S(2p) [from Be(³² S, X) ²⁶ S / ²⁵ P, E=50.3 MeV / nucleon]; measured reaction products, TOF, Ep, Ip; deduced yields, $T_{1/2}$ limits. Comparison with other data. JOUR IMPEE 20 1491

^{25}Mg	2010MAZG	NUCLEAR REACTIONS $^{24,25,26}Mg(n, \gamma)$, E=1 eV-1 MeV; measured
0		$E\gamma$, $I\gamma$ using PHWT (Pulse Height Weighting Technique); deduced
		yields, resonance shape at 20 keV. n_TOF at CERN. CONF Heidelberg
		(NIC XI) Proc,P194,Massimi
	2011GI03	NUCLEAR REACTIONS ${}^{9}\text{Be}({}^{9}\text{Be}, X){}^{15}\text{N}$ / ${}^{16}\text{N}$ / ${}^{12}\text{C}$ / ${}^{13}\text{C}$ / ${}^{15}\text{C}$ /
		16 C, E=30, 35, 40 MeV; 12 C(18 O, X) 27 Mg / 28 Mg, E=50, 60 MeV; 11 B,
		$^{12}\mathrm{C}(^{18}\mathrm{O},\mathrm{X})^{26}\mathrm{Mg}$ / $^{27}\mathrm{Mg}$ / $^{25}\mathrm{Mg}$ / $^{24}\mathrm{Na},\mathrm{E}$ not given; measured
		reaction products, $\mathbf{E}\gamma$, $\mathbf{I}\gamma$; deduced production yields. Comparison with
		PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
	2011ZH22	NUCLEAR REACTIONS 28,29,30 Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ),
		(n, d γ), (n, p γ), (n, $\alpha\gamma$), (n, n $\alpha\gamma$), E=14.9 MeV; measured reaction
		products, $E\gamma$, $I\gamma$; deduced energies, M1 and E2 transition types.
		Comparison with GNASH nuclear reaction code calculations. JOUR
		NIMAE 648 192
²⁵ P	2011F008	RADIOACTIVITY ${}^{25}P(p)$, ${}^{26}S(2p)$ [from Be(${}^{32}S, X$) ${}^{26}S / {}^{25}P, E=50.3$
		MeV / nucleon]; measured reaction products, TOF, Ep, Ip; deduced
		yields, $\mathrm{T}_{1/2}$ limits. Comparison with other data. JOUR IMPEE 20
		1491

2010MAZG	NUCLEAR REACTIONS $^{24,25,26}Mg(n, \gamma)$, E=1 eV-1 MeV; measured
	$E\gamma$, $I\gamma$ using PHWT (Pulse Height Weighting Technique); deduced
	yields, resonance shape at 20 keV. n_TOF at CERN. CONF Heidelberg
	(NIC XI) Proc.P194.Massimi
2011GI03	NUCLEAR REACTIONS ${}^{9}\text{Be}({}^{9}\text{Be}, X){}^{15}\text{N}$ / ${}^{16}\text{N}$ / ${}^{12}\text{C}$ / ${}^{13}\text{C}$ / ${}^{15}\text{C}$ /
	16 C, E=30, 35, 40 MeV; 12 C(18 O, X) 27 Mg / 28 Mg, E=50, 60 MeV; 11 B,
	$^{12}C(^{18}O, X)^{26}Mg / ^{27}Mg / ^{25}Mg / ^{24}Na$. E not given; measured
	reaction products. $E\gamma$. $I\gamma$: deduced production yields. Comparison with
	PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
2011ZH22	NUCLEAR REACTIONS 28,29,30 Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ),
	(n, d γ), (n, p γ), (n, a γ), (n, na γ), E=14.9 MeV; measured reaction
	products, $E\gamma$, $I\gamma$; deduced energies, M1 and E2 transition types.
	Comparison with GNASH nuclear reaction code calculations. JOUR
	NIMAE 648 192
2010CHZU	NUCLEAR REACTIONS ²⁸ Si(p, t), E=40 MeV; measured Ep, Ip(θ),
	pp-coin using Oak Ridge ORRUBA detectors, E(triton), I(triton, θ)
	using SIDAR detector at HRIBF, P(triton)-coin; deduced $d\sigma(E)$,
	resonances, ²⁶ P p-decay branching ratios; calculated proton angular
	correlations using FRESCO, CONF Heidelberg (NIC XI)
	Proc.P205.Chipps
2010DEZU	NUCLEAR REACTIONS 24 Mg(3 He, n), E=7.9 MeV; measured En, In
	using EDEN neutron array, $E\gamma$, $I\gamma$, $n\gamma$ -coin, ²⁶ Si deduced resonances.
	CONF Heidelberg (NIC XI) Proc.P212.de Sereville
2011F008	RADIOACTIVITY ²⁵ P(p), ²⁶ S(2p) [from Be(³² S, X) ²⁶ S / ²⁵ P, E=50.3
	MeV / nucleon]; measured reaction products, TOF, Ep, Ip; deduced
	vields, $T_{1/2}$ limits. Comparison with other data. JOUR IMPEE 20
	1491
	2010MAZG 2011GI03 2011ZH22 2010CHZU 2010DEZU 2011F008

$^{27}\mathrm{Mg}$	2010MAZG	NUCLEAR REACTIONS 24,25,26 Mg(n, γ), E=1 eV-1 MeV; measured E γ , I γ using PHWT (Pulse Height Weighting Technique); deduced yields, resonance shape at 20 keV. n_TOF at CERN. CONF Heidelberg (NIC XI) Proc,P194,Massimi
	2011GI03	NUCLEAR REACTIONS ${}^{9}Be({}^{9}Be, X){}^{15}N / {}^{16}N / {}^{12}C / {}^{13}C / {}^{15}C / {}^{16}C, E=30, 35, 40 \text{ MeV}; {}^{12}C({}^{18}O, X){}^{27}Mg / {}^{28}Mg, E=50, 60 \text{ MeV}; {}^{11}B, {}^{12}C({}^{18}O, X){}^{26}Mg / {}^{27}Mg / {}^{25}Mg / {}^{24}Na, E \text{ not given; measured}$ reaction products, E γ , I γ ; deduced production yields. Comparison with PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
	2011ZH22	NUCLEAR REACTIONS 28,29,30 Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ), (n, d γ), (n, p γ), (n, $\alpha\gamma$), (n, n $\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
²⁷ Al	2011CA20	NUCLEAR REACTIONS ²⁷ Al(¹⁶ O, ¹⁶ O), (¹⁶ O, ¹⁶ O'), E=100 MeV; measured reaction products; deduced $\sigma(\theta)$. MAGNEX quadrupole-dipole magnetic spectrometer. JOUR NIMAE 648 46
	2011DU19	NUCLEAR REACTIONS ⁶ Li, ¹² C, ¹⁹ F, ²⁷ Al(p, γ), (p, p), E=590-1150 keV; measured reaction products, proton spectra; deduced $\sigma(\theta)$, S-factors. Optical model calculations, comparison with experimental data. JOUR PANUE 74 984
	2011ZH22	NUCLEAR REACTIONS 28,29,30 Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ), (n, d γ), (n, p γ), (n, $\alpha\gamma$), (n, n $\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
²⁷ Si	2011ZH22	NUCLEAR REACTIONS ^{28,29,30} Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ), (n, d γ), (n, p γ), (n, $\alpha\gamma$), (n, n $\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192

^{28}Mg	2011GI03	NUCLEAR REACTIONS $^9\mathrm{Be}(^9\mathrm{Be},\mathrm{X})^{15}\mathrm{N}$ / $^{16}\mathrm{N}$ / $^{12}\mathrm{C}$ / $^{13}\mathrm{C}$ / $^{15}\mathrm{C}$ /
		16 C, E=30, 35, 40 MeV; 12 C(18 O, X) 27 Mg / 28 Mg, E=50, 60 MeV; 11 B,
		$^{12}\mathrm{C}(^{18}\mathrm{O},\mathrm{X})^{26}\mathrm{Mg}$ / $^{27}\mathrm{Mg}$ / $^{25}\mathrm{Mg}$ / $^{24}\mathrm{Na},\mathrm{E}$ not given; measured
		reaction products, $\mathrm{E}\gamma,\mathrm{I}\gamma;$ deduced production yields. Comparison with
		PACE, LisFus and GEMINI calculations. JOUR NIMAE 648 109
^{28}Al	2010MAZJ	RADIOACTIVITY ²⁸ P(β^+)[polarized from ⁹ Be(²⁸ Si, ²⁸ P), E=100
		MeV / nucleon charge exchange]; measured polarized target Ee+,
		Ie ⁺ (θ , t) uing β -NMR technique. ²⁸ Al, ²⁸ P deduced magnetic moment,
		quadrupole coupling constant. CONF Tsukuba(Nuclear Physics
		Trends) Proc.P260,Matsuta

A=28 (continued)

	2011ZH22	NUCLEAR REACTIONS ^{28,29,30} Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ), (n, d γ), (n, p γ), (n, $\alpha\gamma$), (n, n $\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
	20112H22	RADIOACTIVITY 25 Al(β) [from 26 Si(n, p), E=14.9 MeV]; measured decay products, E β , I β ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
²⁸ Si	2010MAZJ	RADIOACTIVITY ²⁸ P(β^+)[polarized from ⁹ Be(²⁸ Si, ²⁸ P), E=100 MeV / nucleon charge exchange]; measured polarized target Ee ⁺ , Ie ⁺ (θ , t) uing β -NMR technique. ²⁸ Al, ²⁸ P deduced magnetic moment, quadrupole coupling constant. CONF Tsukuba(Nuclear Physics Trends) Proc.P260,Matsuta
	2011DU19	NUCLEAR REACTIONS ⁶ Li, ¹² C, ¹⁹ F, ²⁷ Al(p, γ), (p, p), E=590-1150 keV; measured reaction products, proton spectra; deduced $\sigma(\theta)$, S-factors. Optical model calculations, comparison with experimental data. JOUR PANUE 74 984
	2011ZH22	NUCLEAR REACTIONS ^{28,29,30} Si(n, $x\gamma$), (n, $n'\gamma$), (n, $2n\gamma$), (n, $np\gamma$), (n, $d\gamma$), (n, $p\gamma$), (n, $\alpha\gamma$), (n, $n\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
	2011ZH22	RADIOACTIVITY ²⁸ Al(β^-) [from ²⁸ Si(n, p), E=14.9 MeV]; measured decay products, E β , I β ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
²⁸ P	2010MAZJ	RADIOACTIVITY ²⁸ P(β^+)[polarized from ⁹ Be(²⁸ Si, ²⁸ P), E=100 MeV / nucleon charge exchange]; measured polarized target Ee ⁺ , Ie ⁺ (θ , t) uing β -NMR technique. ²⁸ Al, ²⁸ P deduced magnetic moment, quadrupole coupling constant. CONF Tsukuba(Nuclear Physics Trends) Proc.P260,Matsuta
	2010WRZZ	NUCLEAR REACTIONS ²⁰ Ne, ²⁴ Mg, ²⁸ Si, ³² S, ³⁶ Ar(³ He, t), E=32 MeV; measured E(particle), I(particle, θ); deduced reaction rates of ³⁵ Ar(p, γ). Compared to those by Iliadis et al. CONF Heidelberg (NIC XI) Proc,P55,Wrede

A=29

²⁹Al 2011ZH22 NUCLEAR REACTIONS ^{28,29,30}Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ), (n, d γ), (n, p γ), (n, n γ), (n, n $\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192

A=29 (continued)

$^{29}\mathrm{Si}$	2011ZH22	NUCLEAR REACTIONS 28,29,30 Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ), (n, d γ), (n, p γ), (n, n γ), (n, np γ), $\Sigma = 14.9$ MeV: measured reaction
		products, $E\gamma$, $I\gamma$; deduced energies, M1 and E2 transition types.
		Comparison with GNASH nuclear reaction code calculations. JOUR
		NIMAE 648 192
$^{29}\mathrm{P}$	2010DEZV	NUCLEAR REACTIONS ${}^{2}H({}^{28}Si, n), ({}^{32}S, n), ({}^{36}Ar, n), E \approx 320-325$
		MeV; measured reaction products. ${}^{1}H({}^{29}P, {}^{26}Si)$, E \approx 230 MeV; ${}^{1}H({}^{33}Cl,$
		30 S), E=208, 229, 250 MeV; 1 H(37 K, 34 Ar), E=235, 255, 275 MeV;
		measured E α , I $\alpha(\theta)$, E(particle), I(particle); deduced σ ; calculated σ
		using NON-SMOKER. Heavy ions from reactions on deuterium used as
		beams for reactions on hydrogen. Cross sections not presented in the
		paper. CONF Heidelberg (NIC XI) Proc, P56, Deibel

A=30

³⁰ Al	2011ZH22	NUCLEAR REACTIONS ^{28,29,30} Si(n, $x\gamma$), (n, $n'\gamma$), (n, $2n\gamma$), (n, $np\gamma$), (n, $d\gamma$), (n, $p\gamma$), (n, $\alpha\gamma$), (n, $n\alpha\gamma$), E=14.9 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
³⁰ Si	2011ZH22	NUCLEAR REACTIONS ^{28,29,30} Si(n, x γ), (n, n' γ), (n, 2n γ), (n, np γ), (n, d γ), (n, p γ), (n, $\alpha\gamma$), (n, n $\alpha\gamma$), E=14.9 MeV; measured reaction products, E γ , I γ ; deduced energies, M1 and E2 transition types. Comparison with GNASH nuclear reaction code calculations. JOUR NIMAE 648 192
³⁰ S	2010SEZU	NUCLEAR REACTIONS ²⁸ Si(³ He, n), E=9 MeV; measured $E\gamma$, $I\gamma(\theta)$, $\gamma\gamma$ -coin, In, En, $n\gamma$ -coin. Analysis of data in progress. CONF Heidelberg (NIC XI) Proc, P213, Setoodehnia
	2010SEZV	NUCLEAR REACTIONS ${}^{32}S(p, t)$, E=33.5, 34.5 MeV; measured E(particle), I(particle, θ). ${}^{30}S$ deduced 3^+ , 2^+ levels. CONF Frascati(Nuclear Physics in Astrophysics IV 2009), P012042
	2010SIZW	RADIOACTIVITY ²⁰ Mg, ²³ Al, ³¹ Cl(p)[from ¹ H(²⁴ Mg, γ), E=48 M eV / nucleon; ¹ H(³² S, γ), E=40 MeV / nucleon; ³ He(²⁰ Ne, 3n), E=25 MeV / nucleon on thick target]; measured β -delayed Ep, Ip. CONF Sinaia (Exotic Nucei and Nuc.Part.Astroph.III)Proc.P415,Simmons

^{31}Cl	2010SIZW	RADIOACTIVITY ²⁰ Mg, ²³ Al, ³¹ Cl(p)[from ¹ H(²⁴ Mg, γ), E=48 M eV
		/ nucleon; ${}^{1}H({}^{32}S, \gamma)$, E=40 MeV / nucleon; ${}^{3}He({}^{20}Ne, 3n)$, E=25
		MeV / nucleon on thick target]; measured β -delayed Ep, Ip. CONF
		Sinaia (Exotic Nucei and Nuc.Part.Astroph.III)Proc.P415,Simmons

^{32}Cl	2010MAZH	NUCLEAR REACTIONS ${}^{32}S({}^{3}He, t)$, E=30 MeV; measured
		$E(particle)$, $I(particle, \theta)$ using Enge split-pole spectrograph; deduced
		energy of states relevant for novae, new excited state, proton branching
		ratio for resonances. CONF Heidelberg (NIC XI) Proc, P53, Matos
	2010WRZZ	NUCLEAR REACTIONS ²⁰ Ne, ²⁴ Mg, ²⁸ Si, ³² S, ³⁶ Ar(³ He, t), E=32
		MeV; measured E(particle), I(particle, θ); deduced reaction rates of
		35 Ar(p, γ). Compared to those by Iliadis et al. CONF Heidelberg (NIC
		XI) Proc,P55,Wrede

A=33

^{33}S	2011KHZW	NUCLEAR REACTIONS ¹⁴ N, ¹⁶ O(n, α), E=1.7-7 MeV; ²⁰ Ne(n, α),
		E=4-7 MeV; 36,40 Ar(n, α), E=1.5-7 MeV; measured E α , I α using
		digital spectrometer; deduced σ to low-lying states. Comparison with
		other data, O and N reactions also to ENDF / B-VII. CONF
		Dubna(ISINN-18),P153,Khryachkov
^{33}Cl	2010DEZV	NUCLEAR REACTIONS ${}^{2}H({}^{28}Si, n), ({}^{32}S, n), ({}^{36}Ar, n), E \approx 320-325$
		MeV; measured reaction products. ${}^{1}H({}^{29}P, {}^{26}Si), E\approx 230 \text{ MeV}; {}^{1}H({}^{33}Cl,$
		30 S), E=208, 229, 250 MeV; 1 H(37 K, 34 Ar), E=235, 255, 275 MeV;
		measured E α , I $\alpha(\theta)$, E(particle), I(particle); deduced σ ; calculated σ
		using NON-SMOKER. Heavy ions from reactions on deuterium used as
		beams for reactions on hydrogen. Cross sections not presented in the
		paper. CONF Heidelberg (NIC XI) Proc, P56, Deibel
	2010MAZI	NUCLEAR REACTIONS ${}^{12}C({}^{23}Al, 2p)$, E ≈ 65 MeV / nucleon;
		measured E(particle), I(particle, θ), Ep, Ip(θ), pp-coin, E γ , I γ ; deduced
		relative proton momenta, excitation energy spectra. CONF
		Tsukuba(Nuclear Physics Trends) Proc.P377,Ma

A=34

³⁴Cl 2010PAZT NUCLEAR REACTIONS ³⁴S(³He, t), ³³S(³He, d), E=25 MeV; measured reaction products; deduced new states; ³³S(p, γ), E*=5572 keV, E* \approx 5350-5850 keV; measured E γ , I γ at CENPA; ¹H(³³S, γ), E* \approx 5300-5650 keV; measured E(particle), I(particle), E γ , I γ , (particle) γ -coin using DRAGON. CONF Heidelberg (NIC XI) Proc,P52,Parikh

A=35

No references found

³⁶K **2010WRZZ** NUCLEAR REACTIONS ²⁰Ne, ²⁴Mg, ²⁸Si, ³²S, ³⁶Ar(³He, t), E=32 MeV; measured E(particle), I(particle, θ); deduced reaction rates of ³⁵Ar(p, γ). Compared to those by Iliadis et al. CONF Heidelberg (NIC XI) Proc,P55,Wrede

A=37

 ^{37}S NUCLEAR REACTIONS ¹⁴N, ¹⁶O(n, α), E=1.7-7 MeV;²⁰Ne(n, α), 2011KHZW E=4-7 MeV; 36,40 Ar(n, α), E=1.5-7 MeV; measured E α , I α using digital spectrometer; deduced σ to low-lying states. Comparison with other data, O and N reactions also to ENDF / B-VII. CONF Dubna(ISINN-18),P153,Khryachkov $^{37}\mathrm{K}$ NUCLEAR REACTIONS $^2\mathrm{H}(^{28}\mathrm{Si},\,\mathrm{n}),\,(^{32}\mathrm{S},\,\mathrm{n}),\,(^{36}\mathrm{Ar},\,\mathrm{n}),\,\mathrm{E}{\approx}320\text{-}325$ 2010DEZV MeV; measured reaction products. ${}^{1}H({}^{29}P, {}^{26}Si), E\approx 230 \text{ MeV}; {}^{1}H({}^{33}Cl,$ 30 S), E=208, 229, 250 MeV; 1 H(37 K, 34 Ar), E=235, 255, 275 MeV; measured $E\alpha$, $I\alpha(\theta)$, E(particle), I(particle); deduced σ ; calculated σ using NON-SMOKER. Heavy ions from reactions on deuterium used as beams for reactions on hydrogen. Cross sections not presented in the paper. CONF Heidelberg (NIC XI) Proc, P56, Deibel

A=38

³⁸Ar 2010WAZV NUCLEAR REACTIONS ⁴¹Ca(n, α), E=3-100 keV; measured E α , I α ; deduced σ , MACS, resonances. GELINA facility; σ compared with De Smet data. CONF Heidelberg (NIC XI) Proc,P199,Wagemans

A=39

³⁹Si **2011S022** NUCLEAR REACTIONS Be(⁴⁰P, p), (⁴¹P, np), (⁴²S, n2p), (⁴³S, 2n2p), (⁴²P, p), (⁴³S, np), (⁴⁴S, 2np), E=41.5 MeV / nucleon; measured reaction products, $E\gamma$, $I\gamma$. ^{39,41}Si; deduced level scheme, J, π , low-lying intruder and deformed states. ⁴⁸Ca secondary beams. JOUR PYLBB 703 417

A=40

^{40}Ar	2011IDZZ	NUCLEAR REACTIONS ${}^{26}Mg({}^{18}O, 2n2p)$, E=70 MeV; measured E γ ,
		$I\gamma(\theta)$, E(particle), I(particle), (particle) γ -coin, $\gamma\gamma$ -coin; deduced levels,
		J, π . Only levels presented in the paper; detailed analysis in progress.
		REPT CNS-REP-86, P23, Ideguchi
	2011SZ02	NUCLEAR REACTIONS 208 Pb(40 Ar, X), E=255 MeV; measured E γ ,
		I γ , $\gamma\gamma$ -, (particle) γ -coin using Prisa-Clara system. ^{40,41,42,43} Ar;
		deduced levels, J, π . Comparison with shell model calculations, and
		with energy level systematics of N=20-28 argon nuclei. JOUR PRVCA
		84 014325

Page 24

$A{=}40$ (continued)

40 0	001100000	NUCLEAD DEACTIONS 40.48 () E 11.0.16.0 M M
¹⁰ Ca	2011M010	NUCLEAR REACTIONS $10, 10$ Ca(n, n), E=11.9, 10.9 MeV; measured
		$E(n), I(n), \sigma, \sigma(E, \theta), time-of-flight spectra. 40Ca(n, n), E=9.9-85.0;$
		$^{48}Ca(n, n), E=7.97-16.9 \text{ MeV}; {}^{54}Ca(n, n), E=5.5-26.0 \text{ MeV}; {}^{58,60}Ni(n, n)$
		n), E=4.5-24.0 MeV; 92 Mo(n, n), E=7.0-30.4 MeV; 116,118 Sn(n, n),
		$E=9.95-24.0 \text{ MeV}; {}^{120}Sn(n, n), E=9.94-16.91 \text{ MeV}; {}^{124}Sn(n, n),$
		$E=11.0-24.0 \text{ MeV}; {}^{208}Pb(n, n), E=4.0-185.0 \text{ MeV}; {}^{50}Ti(p, p),$
		$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
		$E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
		$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
		$E=5.57-185.0 \text{ MeV}; {}^{92}Mo(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}Sn(p, p),$
		$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
		$E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$
		E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		levels, spectroscopic factors, occupation probabilities, mass dependence
		on cross section. Dispersal optical model (DOM) analysis. JOUR
		PRVCA 83 064605
	2011N012	NUCLEAR REACTIONS ⁴ He(³⁶ Ar, ³⁶ Ar), E=150 MeV; measured
		thick target E α , I $\alpha(\theta)$. ⁴⁰ Ca deduced resonance parameters, moments
		of inertia. JOUR ZAANE 47.96

⁴¹ Si	2011S022	NUCLEAR REACTIONS Be(⁴⁰ P, p), (⁴¹ P, np), (⁴² S, n2p), (⁴³ S, 2n2p), (⁴² P, p), (⁴³ S, np), (⁴⁴ S, 2np), E=41.5 MeV / nucleon; measured reaction products, $E\gamma$, $I\gamma$. ^{39,41} Si; deduced level scheme, J, π ,
41 g	001411440	low-lying intruder and deformed states. ⁴⁸ Ca secondary beams. JOUR PYLBB 703 417 NUCLEAD DEACTIONS ²⁰⁸ DI (36C, X) E, 215 M V
5	2011WA13	NUCLEAR REACTIONS $2^{\circ\circ}$ Pb($^{\circ\circ}$ S, X), E=215 MeV; measured E γ , I γ , (particle) γ -coin using PRISMA spectrometer and CLARA array.
		⁴⁴ S; deduced levels, J, π , multipolarity, configurations. Comparison with previous Coulomb excitation study and large-scale shell-model calculations using SDPF-U effective interaction. JOUR PRVCA 83 061304
$^{41}\mathrm{Ar}$	2011SZ02	NUCLEAR REACTIONS ²⁰⁸ Pb(⁴⁰ Ar, X), E=255 MeV; measured E γ , I γ , $\gamma\gamma$ -, (particle) γ -coin using Prisa-Clara system. ^{40,41,42,43} Ar; deduced levels, J. π . Comparison with shell model calculations, and
		with energy level systematics of $N=20-28$ argon nuclei. JOUR PRVCA 84 014325
⁴¹ K	2011KA24	NUCLEAR REACTIONS 40 Ar(p, γ), E=1-3 MeV; measured E γ , I γ ; deduced excitation function, resonance states, resonance strengths. JOUR BRSPE 75 917

⁴²Ar 2011SZ02 NUCLEAR REACTIONS ²⁰⁸Pb(⁴⁰Ar, X), E=255 MeV; measured E γ , I γ , $\gamma\gamma$ -, (particle) γ -coin using Prisa-Clara system. ^{40,41,42,43}Ar; deduced levels, J, π . Comparison with shell model calculations, and with energy level systematics of N=20-28 argon nuclei. JOUR PRVCA 84 014325

A=43

⁴³Ar 2011SZ02 NUCLEAR REACTIONS ²⁰⁸Pb(⁴⁰Ar, X), E=255 MeV; measured E γ , I γ , $\gamma\gamma$ -, (particle) γ -coin using Prisa-Clara system. ^{40,41,42,43}Ar; deduced levels, J, π . Comparison with shell model calculations, and with energy level systematics of N=20-28 argon nuclei. JOUR PRVCA 84 014325

A=44

^{44}S	2011SA25	NUCLEAR REACTIONS ${}^{9}\text{Be}({}^{46}\text{Ar}, 2\text{p}), [{}^{46}\text{Ar secondary beam}$
		produced in $Be(^{48}Ca, X)$, $E=140 \text{ MeV} / \text{nucleon primary reaction}]$,
		E=99.9 MeV / nucleon; measured E γ , I γ , $\gamma\gamma$ -, (fragment) γ -coin using
		SeGA array, cross sections. ⁴⁴ S; deduced levels, J, π , longitudinal
		momentum distributions, and configurations. Two-proton knockout
		reaction. Comparison with shell-model calculations using the SDPF-U
		interaction. JOUR PRVCA 83 061305
^{44}Sc	2011KIZY	NUCLEAR REACTIONS ${}^{45}Sc(\gamma, n)$, E=50, 60, 70 MeV; measured E γ ,
		I _{γ} ; deduced isomeric σ ratio. Comparison with other data. CONF
		Dubna(ISINN-18),P257,Kim

A=45

⁴⁵Cr 2011P009 RADIOACTIVITY ⁴⁸Ni(2p), (β^+p) [from Ni(⁵⁸Ni, X), E=160 MeV / nucleon]; measured E(p), I(p), time-of-flight using optical time-projection chamber (OPTC), half-life; deduced branching ratios for the two-proton and delayed-proton decay modes. ⁴⁶Fe(β^+p); measured E(p), I(p). JOUR PRVCA 83 061303

^{46}V	2011WAZY	RADIOACTIVITY 46 Cr (β^+) [from 36 Ar $+{}^{12}$ C]; measured E(nucleus),
		I(nucleus, t), E β , I β (t), β -delayed E γ , I γ , $\beta\gamma$ -coin. ⁴⁶ Cr, ⁴⁶ V deduced
		$T_{1/2}$, γ branching ratio. REPT CNS-REP-86,P13,Wakabayashi
$^{46}\mathrm{Cr}$	2011WAZY	RÁDIOACTIVITY 46 Cr(β^+)[from 36 Ar+ 12 C]; measured E(nucleus),
		I(nucleus, t), E β , I β (t), β -delayed E γ , I γ , $\beta\gamma$ -coin. ⁴⁶ Cr, ⁴⁶ V deduced
		$\mathrm{T}_{1/2},\gamma$ branching ratio. REPT CNS-REP-86,P13,Wakabayashi

A=46 (continued)

RADIOACTIVITY ⁴⁸Ni(2p), $(\beta^+ p)$ [from Ni(⁵⁸Ni, X), E=160 MeV / $^{46}\mathrm{Fe}$ 2011P009 nucleon]; measured E(p), I(p), time-of-flight using optical time-projection chamber (OPTC), half-life; deduced branching ratios for the two-proton and delayed-proton decay modes. ${}^{46}\text{Fe}(\beta^+\text{p});$ measured E(p), I(p). JOUR PRVCA 83 061303

A = 47

${ m ^{47}V}$	2011ZHZZ	NUCLEAR REACTIONS 47,48,49 Ti, 53,54 Cr(p, n), E=7-11 MeV;
		measured En, In; calculated $\sigma(E)$; deduced $\sigma(E)$, residual nuclear level
		density. CONF Dubna(ISINN-18),P225,Zhuravlev
$^{47}\mathrm{Fe}$	2011P009	RADIOACTIVITY ⁴⁸ Ni(2p), $(\beta^+ p)$ [from Ni(⁵⁸ Ni, X), E=160 MeV /
		nucleon]; measured $E(p)$, $I(p)$, time-of-flight using optical
		time-projection chamber (OPTC), half-life; deduced branching ratios
		for the two-proton and delayed-proton decay modes. 46 Fe $(\beta^+ p)$;
		measured E(p), I(p). JOUR PRVCA 83 061303

A = 48

⁴⁸ Ca	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0; ⁴⁸ Ca(n, n), E=7.97-16.9 MeV; ⁵⁴ Ca(n, n), E=5.5-26.0 MeV; ^{58,60} Ni(n, n), E=4.5-24.0 MeV; ⁹² Mo(n, n), E=7.0-30.4 MeV; ^{116,118} Sn(n, n), E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), E=9.94-16.91 MeV; ¹²⁴ Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), E=4.0-185.0 MeV; ⁵⁰ Ti(p, p), E=6.0-65.0 MeV; ⁵² Cr(p, p), E=10.77-39.9 MeV; ⁵⁴ Fe, ⁶⁴ Ni(p, p), E=9.69-65.0 MeV; ⁵⁸ Ni(p, p), E=7.0-192.0 MeV; ⁶⁰ Ni(p, p), E=7.0-178.0 MeV; ⁶² Ni(p, p), E=8.02-156.0 MeV; ⁹⁰ Zr(p, p), E=5.57-185.0 MeV; ⁹² Mo(p, p), E=12.5-49.45 MeV; ¹¹⁴ Sn(p, p), E=30.4 MeV; ¹¹⁶ Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124} Sn(p, p), E=16.0-49.35 MeV; ¹²⁰ Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸ Pb(p, p),
	2011S022	on cross section. Dispersal optical model (DOM) analysis. JOUR PRVCA 83 064605 NUCLEAR REACTIONS Be(⁴⁰ P, p), (⁴¹ P, np), (⁴² S, n2p), (⁴³ S, 2n2p), (⁴² P, p), (⁴³ S, np), (⁴⁴ S, 2np), E=41.5 MeV / nucleon; measured reaction products, $E\gamma$, $I\gamma$. ^{39,41} Si; deduced level scheme, J, π ,
⁴⁸ Ti	2011AD14	low-lying intruder and deformed states. ⁴⁸ Ca secondary beams. JOUR PYLBB 703 417 NUCLEAR REACTIONS ⁴⁸ Ti, ⁵² Cr, ⁸⁰ Se(n, n γ), E=thermal; measured E γ , I γ . ⁴⁸ Ti, ⁵² Cr, ⁸⁰ Se; deduced level energies, lifetime, T _{1/2} . Doppler Shift Attenuation method (DSA). JOUR BRSPE 75 914

A=48 (continued)

$^{48}\mathrm{V}$	2011DI09	NUCLEAR REACTIONS Ti(d, X) ⁴⁸ V, ²⁷ Al(d, X) ²² Na / ²⁴ Na, ⁵⁵ Mn(d, p), ⁵⁵ Mn(d, X) ⁵⁴ Mn / ⁵² Mn / ⁵¹ Cr, E<40 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced production σ , thick target yields. Comparison with ALICE-IPPE and EMPIRE-II calculations. JOUR NIMBE 269 1878		
	2011ZHZZ	NUCLEAR REACTIONS ^{47,48,49} Ti, ^{53,54} Cr(p, n), E=7-11 MeV; measured En, In; calculated $\sigma(E)$; deduced $\sigma(E)$, residual nuclear level density. CONE Dubne (ISINN 18) B225 Zhumaulau		
⁴⁸ Ni	2011P009	RADIOACTIVITY ⁴⁸ Ni(2p), $(\beta^+ p)$ [from Ni(⁵⁸ Ni, X), E=160 MeV / nucleon]; measured E(p), I(p), time-of-flight using optical time-projection chamber (OPTC), half-life; deduced branching ratios for the two-proton and delayed-proton decay modes. ⁴⁶ Fe($\beta^+ p$); measured E(p), I(p). JOUR PRVCA 83 061303		
	$A{=}49$			
$^{49}\mathrm{V}$	2011ZHZZ	NUCLEAR REACTIONS ^{47,48,49} Ti, ^{53,54} Cr(p, n), E=7-11 MeV; measured En, In; calculated $\sigma(E)$; deduced $\sigma(E)$, residual nuclear level density. CONF Dubna(ISINN-18),P225,Zhuravlev		
		$A{=}50$		
⁵⁰ Ti	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0; ⁴⁸ Ca(n, n), E=7.97-16.9 MeV; ⁵⁴ Ca(n, n), E=5.5-26.0 MeV; ^{58,60} Ni(n, n), E=4.5-24.0 MeV; ⁹² Mo(n, n), E=7.0-30.4 MeV; ^{116,118} Sn(n, n), E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), E=9.94-16.91 MeV; ¹²⁴ Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), E=4.0-185.0 MeV; ⁵⁰ Ti(p, p), E=6.0-65.0 MeV; ⁵² Cr(p, p), E=10.77-39.9 MeV; ⁵⁴ Fe, ⁶⁴ Ni(p, p), E=9.69-65.0 MeV; ⁵⁸ Ni(p, p), E=7.0-192.0 MeV; ⁶⁰ Ni(p, p), E=7.0-178.0 MeV; ⁶² Ni(p, p), E=8.02-156.0 MeV; ⁹⁰ Zr(p, p), E=5.57-185.0 MeV; ⁹² Mo(p, p), E=12.5-49.45 MeV; ¹¹⁴ Sn(p, p), E=30.4 MeV; ¹¹⁶ Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124} Sn(p, p), E=16.0-49.35 MeV; ¹²⁰ Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸ Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR PRVCA 83 064605		

A=51

⁵¹Cr 2011DI09 NUCLEAR REACTIONS Ti(d, X)⁴⁸V, ²⁷Al(d, X)²²Na / ²⁴Na, ⁵⁵Mn(d, p), ⁵⁵Mn(d, X)⁵⁴Mn / ⁵²Mn / ⁵¹Cr, E<40 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced production σ , thick target yields. Comparison with ALICE-IPPE and EMPIRE-II calculations. JOUR NIMBE 269 1878

A=51 (continued)

2011FI06 NUCLEAR REACTIONS ¹¹⁵Sn $(\alpha, \gamma)^{119}$ Te, ¹¹⁵Sn $(\alpha, n)^{118}$ Te, ¹¹⁶Sn $(\alpha, n)^{119}$ Te, E(cm)=9.3-14.8 MeV; ⁴⁸Ti $(\alpha, n)^{51}$ Cr, E not given; measured E γ , I γ , cross sections. Comparison with previous data and predictions of statistical model calculations. JOUR PRVCA 83 064609

$^{52}\mathrm{Cr}$	2011AD14	NUCLEAR REACTIONS ⁴⁸ Ti, ⁵² Cr, ⁸⁰ Se(n, $n\gamma$), E=thermal;
		measured $E\gamma$, $I\gamma$. $11, 2Cr$, $2Se$; deduced level energies, lifetime,
	00110	$T_{1/2}$. Doppler Shift Attenuation method (DSA). JOUR BRSPE 75 914
	2011MU10	NUCLEAR REACTIONS $40,40$ (a, n), E=11.9, 16.9 MeV; measured
		$E(n), I(n), \sigma, \sigma(E, \theta), time-of-flight spectra. 40Ca(n, n), E=9.9-85.0;$
		46 Ca(n, n), E=7.97-16.9 MeV; 54 Ca(n, n), E=5.5-26.0 MeV; 58,00 Ni(n,
		n), E=4.5-24.0 MeV; ${}^{92}Mo(n, n)$, E=7.0-30.4 MeV; ${}^{110,118}Sn(n, n)$,
		$E=9.95-24.0 \text{ MeV}; {}^{120}Sn(n, n), E=9.94-16.91 \text{ MeV}; {}^{124}Sn(n, n),$
		E=11.0-24.0 MeV; 208 Pb(n, n), E=4.0-185.0 MeV; 50 Ti(p, p),
		$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
		$E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
		$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
		$E=5.57-185.0 \text{ MeV}; {}^{92}Mo(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}Sn(p, p),$
		$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
		$E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$
		E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		levels, spectroscopic factors, occupation probabilities, mass dependence
		on cross section. Dispersal optical model (DOM) analysis. JOUR
		PRVCA 83 064605
^{52}Mn	2010FUZQ	NUCLEAR REACTIONS 52 Cr(3 He, t), E=140 MeV / nucleon;
		measured E(particle), I(particle); calculated ⁵² Ni β -decay f-factor,
		$T_{1/2}$, GT transition strengths. CONF Kobe(Tours Nuc.Phys.and
		Astroph.VII) Proc.P297,Fujita
	2011DI09	NUCLEAR REACTIONS Ti(d, X) ⁴⁸ V, 27 Al(d, X) ²² Na / 24 Na,
		${}^{55}Mn(d, p), {}^{55}Mn(d, X){}^{54}Mn / {}^{52}Mn / {}^{51}Cr, E{<}40 MeV; measured$
		reaction products, $E\gamma$, $I\gamma$; deduced production σ , thick target yields.
		Comparison with ALICE-IPPE and EMPIRE-II calculations. JOUR
		NIMBE 269 1878
52 Ni	2011AS08	RADIOACTIVITY 54 Zn(2p) [from Ni(58 Ni, X), E=75.5 MeV /
		nucleon]; measured decay products, proton spectra; deduced branching
		ratio, total decay energy, angular and energy correlations, $T_{1/2}$.
		Comparison with theoretical calculations. JOUR PRLTA $107^{\prime}\ 102502$

53 Ca	2011SA25	NUCLEAR REACTIONS ⁹ Be(⁴⁶ Ar, 2p), [⁴⁶ Ar secondary beam
		produced in $Be(^{48}Ca, X)$, $E=140 \text{ MeV} / \text{nucleon primary reaction}]$,
		E=99.9 MeV / nucleon; measured E γ , I γ , $\gamma\gamma$ -, (fragment) γ -coin using
		SeGA array, cross sections. ⁴⁴ S; deduced levels, J, π , longitudinal
		momentum distributions, and configurations. Two-proton knockout
		reaction. Comparison with shell-model calculations using the SDPF-U
		interaction. JOUR PRVCA 83 061305
^{53}Mn	2011ZHZZ	NUCLEAR REACTIONS 47,48,49 Ti, 53,54 Cr(p, n), E=7-11 MeV;
		measured En, In; calculated $\sigma(E)$; deduced $\sigma(E)$, residual nuclear level
		density. CONF Dubna(ISINN-18),P225,Zhuravlev

⁵⁴ Ar	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-); measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Mn, ^{54,60,66,68,870,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni, ^{66,68,70,74} Cu, ^{66,68,70,74} Zn, ^{68,70,74} Ga, ^{70,74} Ge, ⁷⁴ As(β^-); calculated EC O are large from any properties of the term of the DDM and the CONF
		Q-values from experimental data, FRDM and FFD-14 models. CONF Heidelberg (NIC XI) Proc D221 Estrado
$^{54}\mathrm{K}$	2010ESZY	RADIOACTIVITY ${}^{54}Sc$, ${}^{54}Ti$, ${}^{66}Mn$, ${}^{66}Fe$, ${}^{70,74}Ni$, ${}^{70,74}Cu(\beta^{-})$;
		measured mass using 1OF-B ρ ; deduced EC Q-values. 5'Ar, 5'A, 5'A, 5'A, 6'Ca, 54, 60 Sc, 5'A, 60, 66, 68 Ti, 5'A, 60, 66, 68, 70 V, 5'A, 60, 66, 68, 70, 7'A Cr,
		^{54,60,66,68,70,74} Mn, ^{54,60,66,68,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
54 Ca	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Ca, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^{-}); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

A=54 (continued)

	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , σ (E, θ), time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0; ⁴⁸ Ca(n, n), E=7.97-16.9 MeV; ⁵⁴ Ca(n, n), E=5.5-26.0 MeV; ^{58,60} Ni(n, n), E=4.5-24.0 MeV; ⁹² Mo(n, n), E=7.0-30.4 MeV; ^{116,118} Sn(n, n), E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), E=9.94-16.91 MeV; ¹²⁴ Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), E=4.0-185.0 MeV; ⁵⁰ Ti(p, p), E=6.0-65.0 MeV; ⁵² Cr(p, p), E=10.77-39.9 MeV; ⁵⁴ Fe, ⁶⁴ Ni(p, p), E=9.69-65.0 MeV; ⁵² Ni(p, p), E=7.0-192.0 MeV; ⁶⁰ Ni(p, p), E=7.0-178.0 MeV; ⁶² Ni(p, p), E=8.02-156.0 MeV; ⁹⁰ Zr(p, p), E=30.4 MeV; ¹¹⁶ Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124} Sn(p, p), E=16.0-49.35 MeV; ¹²⁰ Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸ Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, σ (E, θ), single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR
$^{54}\mathrm{Sc}$	2010ESZY	PRVCA 83 064605 RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-); measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60} Sc, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Ma, ^{54,60,66,68,70,74} Cr, ^{60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Cr, ^{54,60,66,70} C
		^{66,68,70,74} Cu, ^{66,68,70,74} Zn, ^{68,70,74} Ga, ^{70,74} Ge, ⁷⁴ As(β^-); calculated EC Q-values from experimental data, FRDM and HFB-14 models. CONF Heidelberg (NIC XI) Proc.P221.Estrade
⁵⁴ Ti	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-); measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60} , ^{66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Mn, ^{54,60,66,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni, ^{66,68,70,74} Cu, ^{66,68,70,74} Ca, ^{70,74} Ga, ^{70,74} Ge, ⁷⁴ As(β^-); calculated EC Q-values from experimental data, FRDM and HFB-14 models. CONF
$^{54}\mathrm{V}$	2010ESZY	Heidelberg (NIC XI) Proc,P221,Estrade RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-); measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Mn, ^{54,60,66,68,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni, ^{66,68,70,74} Cu, ^{66,68,70,74} Zn, ^{68,70,74} Ga, ^{70,74} Ge, ⁷⁴ As(β^-); calculated EC Q-values from experimental data, FRDM and HFB-14 models. CONF Haidelberg (NIC XI) Proc P221 Fatada
⁵⁴ Cr	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-); measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60} Ge, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Mn, ^{54,60,66,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni, ^{66,68,70,74} Cu, ^{66,68,70,74} Ca, ^{68,70,74} Ga, ^{70,74} Ge, ⁷⁴ As(β^-); calculated EC Q-values from experimental data, FRDM and HFB-14 models. CONF Heidelberg (NIC XI) Proc,P221,Estrade

KEYNUMBERS AND KEYWORDS

A=54 (continued)

$^{54}\mathrm{Mn}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
	2011D109	NUCLEAR REACTIONS TI(d, X) ⁴⁰ V, ²¹ Al(d, X) ²² Na / ²⁴ Na, 55M (1 X) ⁵⁴ M (52M (51C) F (40 M X)
		min(d, p), ^{co} Min(d, X) ^{co} Min / ^{co} Min / ^{co} Cr, E<40 MeV; measured
		reaction products, $E\gamma$, $I\gamma$; deduced production δ , thick target yields.
		NIMBE 260 1878
	20117H77	NICLEAR BEACTIONS 47,48,49 Ti 53,54 Cr(n n) E=7-11 MeV:
	201101100	measured En. In: calculated $\sigma(E)$: deduced $\sigma(E)$, residual nuclear level
		density. CONF Dubna(ISINN-18),P225.Zhuravlev
$^{54}\mathrm{Fe}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
	001111110	Heidelberg (NIC XI) Proc, P221, Estrade
	2011M010	NUCLEAR REACTIONS ¹⁰ , ¹⁰ Ca(n, n), E=11.9, 10.9 MeV; measured $F(n)$ $I(n) = \sigma (F, \theta)$ time of flight spectra $\frac{40}{2}C_{2}(n, n)$ $E=0.0.85.0$
		$^{48}C_{2}(n, n) = -7.07_{-16.0} M_{eV} \cdot {}^{54}C_{2}(n, n) = -5.26_{-0.0} M_{eV} \cdot {}^{58,60}N_{i}(n, n)$
		n) $E=45-240 \text{ MeV}$; $9^{2}M_{0}(n n) E=70-304 \text{ MeV}$; $116,118 \text{ Sn}(n n)$
		E = 9.95-24.0 MeV; ¹²⁰ Sn(n, n), $E = 9.94-16.91 MeV;$ ¹²⁴ Sn(n, n),
		$E=11.0-24.0 \text{ MeV}; {}^{208}Pb(n, n), E=4.0-185.0 \text{ MeV}; {}^{50}Ti(p, p),$
		$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
		$E=9.69-65.0 \text{ MeV}; {}^{58}Ni(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}Ni(p, p),$
		$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
		$E=5.57-185.0 \text{ MeV}; {}^{92}\text{Mo}(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}\text{Sn}(p, p), $
		$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
		$E=16.0-49.35 \text{ MeV}; {}^{120}\text{Sn}(p, p), E=9.8-156.0 \text{ MeV}; {}^{200}\text{Pb}(p, p),$
		E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		evens, spectroscopic factors, occupation probabilities, mass dependence
		PRVCA 83 064605
^{54}Co	2010ESZY	BADIOACTIVITY ⁵⁴ Sc ⁵⁴ Ti ⁶⁶ Mn ⁶⁶ Fe ^{70,74} Ni ^{70,74} Cu(β^{-}).
00	20102021	measured mass using TOF-B ρ : deduced EC Q-values. ⁵⁴ Ar. ⁵⁴ K.
		^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
F 4		Heidelberg (NIC XI) Proc, P221, Estrade
^{ə4} Zn	2011AS08	RADIOACTIVITY ³⁴ Zn(2p) [from Ni(⁵⁸ Ni, X), E=75.5 MeV /
		nucleon]; measured decay products, proton spectra; deduced branching
		ratio, total decay energy, angular and energy correlations, $T_{1/2}$.
		Comparison with theoretical calculations. JOUK PKLIA 107 102502

$^{55}\mathrm{V}$	2011DE20	NUCLEAR REACTIONS ${}^{9}Be({}^{48}Ca, np){}^{55}V, ({}^{48}Ca, 2n){}^{55}Cr, E=172$
		MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, $\gamma(\theta)$, DCO using Gammasphere Array.
		55 V, 55 Cr; deduced levels, J, π , high-spin levels, configurations,
		multipolarities, alignments. Comparison with shell-model, and the
		projected shell model calculations. JOUR PRVCA 83 064305
$^{55}\mathrm{Cr}$	2011DE20	NUCLEAR REACTIONS ${}^{9}Be({}^{48}Ca, np){}^{55}V, ({}^{48}Ca, 2n){}^{55}Cr, E=172$
		MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, $\gamma(\theta)$, DCO using Gammasphere Array.
		⁵⁵ V, ⁵⁵ Cr; deduced levels, J, π , high-spin levels, configurations,
		multipolarities, alignments. Comparison with shell-model, and the
		projected shell model calculations. JOUR PRVCA 83 064305
		$A{=}56$

^{56}Mn	2011DI09	NUCLEAR REACTIONS Ti(d, X) ⁴⁸ V, ²⁷ Al(d, X) ²² Na / ²⁴ Na,
		$^{55}Mn(d, p)$, $^{55}Mn(d, X)^{54}Mn / {}^{52}Mn / {}^{51}Cr$, E<40 MeV; measured
		reaction products, $E\gamma$, $I\gamma$; deduced production σ , thick target yields.
		Comparison with ALICE-IPPE and EMPIRE-II calculations. JOUR
		NIMBE 269 1878
$^{56}\mathrm{Fe}$	2011WAZZ	NUCLEAR REACTIONS 56 Fe(n, n'), E \approx 1000-6000 keV; measured En,
		In, $E\gamma$, $n\gamma$ -coin; deduced σ gated by 847 keV state in ⁵⁶ Fe. Compared
		with ENDFB-VII and Perey data. CONF
		Dubna(ISINN-18),P127,Wagner

A=57

No references found

A=58

⁵⁸ Ni	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , σ (E, θ), time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0; ⁴⁸ Ca(n, n), E=7.97-16.9 MeV; ⁵⁴ Ca(n, n), E=5.5-26.0 MeV; ^{58,60} Ni(n, n), E=4.5-24.0 MeV; ⁹² Mo(n, n), E=7.0-30.4 MeV; ^{116,118} Sn(n, n), E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), E=9.94-16.91 MeV; ¹²⁴ Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), E=4.0-185.0 MeV; ⁵⁰ Ti(p, p), E=6.0-65.0 MeV; ⁵² Cr(p, p), E=10.77-39.9 MeV; ⁵⁴ Fe, ⁶⁴ Ni(p, p), E=9.69-65.0 MeV; ⁵⁸ Ni(p, p), E=7.0-192.0 MeV; ⁶⁰ Ni(p, p), E=7.0-178.0 MeV; ⁶² Ni(p, p), E=8.02-156.0 MeV; ⁹⁰ Zr(p, p), E=5.57-185.0 MeV; ⁹² Mo(p, p), E=12.5-49.45 MeV; ¹¹⁴ Sn(p, p), E=30.4 MeV; ¹¹⁶ Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124} Sn(p, p), E=16.0-49.35 MeV; ¹²⁰ Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸ Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, σ (E, θ), single-particle levels, spectroscopic factors, occupation probabilities, mass dependence
		on cross section. Dispersal optical model (DOM) analysis. JOUR PRVCA 83 064605

Page 33

A=58 (continued)

⁵⁸Cu 2011VI03 NUCLEAR MOMENTS ^{58,59,60,61,62}Cu; measured hyperfine spectrum; deduced ground state nuclear moments, g factors, quadrupole moments, ground-state hyperfine parameters. Comparison with large-scale shell model calculations, GXPF1A effective interaction. JOUR PYLBB 703 34

A=59

⁵⁹Cu 2011VI03 NUCLEAR MOMENTS ^{58,59,60,61,62}Cu; measured hyperfine spectrum; deduced ground state nuclear moments, g factors, quadrupole moments, ground-state hyperfine parameters. Comparison with large-scale shell model calculations, GXPF1A effective interaction. JOUR PYLBB 703 34

A = 60

60 Ca	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		^{54,60,66,68,70,74} Mn, ^{54,60,66,68,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
$^{60}\mathrm{Sc}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		^{54,60,66,68,70,74} Mn, ^{54,60,66,68,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
$^{60}\mathrm{Ti}$	2010ESZY	RADIOACTIVITY 54 Sc, 54 Ti, 66 Mn, 66 Fe, 70,74 Ni, 70,74 Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
^{60}V	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		^{54,60,66,68,70,74} Mn, ^{54,60,66,68,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

KEYNUMBERS AND KEYWORDS

A=60 (continued)

$^{60}\mathrm{Cr}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
^{60}Mn	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr.
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
$^{60}\mathrm{Fe}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^{-}); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
60 Co	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68,71} , ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr.
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
⁶⁰ Ni	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr.
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

A=60 (continued)

	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured
		$E(n)$, $I(n)$, σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0;
		48 Ca(n, n), E=7.97-16.9 MeV; 54 Ca(n, n), E=5.5-26.0 MeV; 58,60 Ni(n,
		n), E=4.5-24.0 MeV; 92 Mo(n, n), E=7.0-30.4 MeV; 116,118 Sn(n, n),
		$E=9.95-24.0 \text{ MeV}; {}^{120}Sn(n, n), E=9.94-16.91 \text{ MeV}; {}^{124}Sn(n, n),$
		$E=11.0-24.0 \text{ MeV}; {}^{208}Pb(n, n), E=4.0-185.0 \text{ MeV}; {}^{50}Ti(p, p),$
		$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
		$E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
		$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
		$E=5.57-185.0 \text{ MeV}; {}^{92}Mo(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}Sn(p, p),$
		$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
		$E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$
		E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		levels, spectroscopic factors, occupation probabilities, mass dependence
		on cross section. Dispersal optical model (DOM) analysis. JOUR
		PRVCA 83 064605
$^{60}\mathrm{Cu}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca ^{54,60} Sc ^{54,60} Sc ^{54,60,66,68} Ti ^{54,60,66,68,70} V ^{54,60,66,68,70,74} Cr
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
	2011VI03	NUCLEAR MOMENTS ^{58,59,60,61,62} Cu; measured hyperfine spectrum;
		deduced ground state nuclear moments, g factors, quadrupole
		moments, ground-state hyperfine parameters. Comparison with
		large-scale shell model calculations, GXPF1A effective interaction.
		JOUR PYLBB 703 34

2010GIZY	NUCLEAR REACTIONS $^2\mathrm{H}(^{60}\mathrm{Fe},\mathrm{p}),$ E=27 MeV / nucleon; measured	
	$E(particle), I(particle), E\gamma, I\gamma$. ⁶¹ Fe deduced resonances. CONF	
	Heidelberg (NIC XI) Proc, P190, Giron	
2011GLZZ	NUCLEAR REACTIONS 64 Zn(n, α), E=2.5, 4.0, 5.0, 5.5, 6.0 MeV;	
	67 Zn(n, α), E=4.0, 5.0, 6.0 MeV; measured E α , I $\alpha(\theta)$; deduced σ , $\sigma(\theta)$	
	to specified group of states. Comparison with JEF-2.2, JEFF-3.1 / A,	
	ROSFOND, TENDL-2009, JENDL / HE-2007and other data. CONF	
	Dubna(ISINN-18),P143,Gledenov	
2011TH03	NUCLEAR REACTIONS 64 Zn(p, α), E=13-16 MeV; measured	
	reaction products; deduced possibility for production of 61 Cu. JOUR	
	JLCRD 54 S237	
2011VI03	NUCLEAR MOMENTS ^{58,59,60,61,62} Cu; measured hyperfine spectrum;	
	deduced ground state nuclear moments, g factors, quadrupole	
	moments, ground-state hyperfine parameters. Comparison with	
	large-scale shell model calculations, GXPF1A effective interaction.	
	JOUR PYLBB 703 34	
	2010GIZY 2011GLZZ 2011TH03 2011VI03	
⁶² Ni	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , σ (E, θ), time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0; ⁴⁸ Ca(n, n), E=7.97-16.9 MeV; ⁵⁴ Ca(n, n), E=5.5-26.0 MeV; ^{58,60} Ni(n, n), E=4.5-24.0 MeV; ⁹² Mo(n, n), E=7.0-30.4 MeV; ^{116,118} Sn(n, n), E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), E=9.94-16.91 MeV; ¹²⁴ Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), E=4.0-185.0 MeV; ⁵⁰ Ti(p, p), E=6.0-65.0 MeV; ⁵² Cr(p, p), E=10.77-39.9 MeV; ⁵⁴ Fe, ⁶⁴ Ni(p, p), E=9.69-65.0 MeV; ⁵⁸ Ni(p, p), E=7.0-192.0 MeV; ⁶⁰ Ni(p, p), E=7.0-178.0 MeV; ⁶² Ni(p, p), E=8.02-156.0 MeV; ⁹⁰ Zr(p, p), E=5.57-185.0 MeV; ⁹² Mo(p, p), E=12.5-49.45 MeV; ¹¹⁴ Sn(p, p), E=30.4 MeV; ¹¹⁶ Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124} Sn(p, p), E=16 0-49.35 MeV; ¹²⁰ Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸ Pb(p, p)
------------------	----------	--
		E=10.049.05 MeV, σ Sh(p, p), E=3.0490.0 MeV, σ B(p, p), E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR PPVCA 83.064605
⁶² Cu	2011VI03	NUCLEAR MOMENTS ^{58,59,60,61,62} Cu; measured hyperfine spectrum; deduced ground state nuclear moments, g factors, quadrupole moments, ground-state hyperfine parameters. Comparison with large-scale shell model calculations, GXPF1A effective interaction. JOUR PYLBB 703 34
⁶² Zn	2011CH33	NUCLEAR REACTIONS Mo(d, X) ⁹⁹ Mo, ¹⁰⁰ Mo(p, X) ⁹⁹ Mo, Cu(p, X) ⁶² Zn / ⁶⁵ Zn E=9.7-58.5 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced σ , thick target yields. JOUR ARISE 69 1447
	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88 MeV; ⁶⁵ Cu(d, 2p) ⁶⁵ Ni, E=11.36-19.88 MeV; measured E γ , I γ , σ (E), activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; ^{63,65} Cu(d, d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism, and direct reaction stripping discussed. JOUR PRVCA 84 014605

63 Co	2011DI08	NUCLEAR REACTIONS 64 Ni(238 U, X), E=6.5 MeV / nucleon;
		measured particle spectra, $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, half-lives by recoil distance
		Doppler shift and the differential decay curve methods with a plunger
		device EXOGAM array. 63,65 Co; deduced levels, J, π , B(E2).
		Systematics of excitation energies and $B(E2)$ values in the even-N Fe,
		Co, and Ni nuclides. Comparison with large-scale shell model
		calculations in the pf and $pfg_{9/2}$ valence space. JOUR PRVCA 83
		064321

KEYNUMBERS AND KEYWORDS

A=63 (continued)

⁶³ Ni	2010DIZW	NUCLEAR REACTIONS ⁶⁴ Ni(γ , n), E=10.3, 11.5, 13.4 MeV (bremsstrahlung endpoint energy); measured reaction products using AMS (Accelarator Mass Spectrometry); deduced yields; calculated yields using TALYS 1.2, NON-SMOKER. Results not given for E=10.3 MeV. CONF Heidelberg (NIC XI) Proc.P49.Dillmann
	2010LEZW	NUCLEAR REACTIONS 62 Ni(n, γ), E=1-10000 eV; measured En, In, E γ , Ig using n_TOF; deduced yield. Comparison with JENDL-4.0, ENDF / B-VII. CONF Heidelberg (NIC XI) Proc.P48.Lederer
⁶³ Cu	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88 MeV; ⁶⁵ Cu(d, 2p) ⁶⁵ Ni, E=11.36-19.88 MeV; measured E γ , I γ , σ (E), activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; ^{63,65} Cu(d, d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism, and direct reaction stripping discussed _IOUR_PRVCA_84_014605
⁶³ Zn	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88 MeV; ⁶⁵ Cu(d, 2p) ⁶⁵ Ni, E=11.36-19.88 MeV; measured E γ , I γ , σ (E), activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; ^{63,65} Cu(d, d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism, and direct reaction stripping discussed. JOUR PRVCA 84 014605

A=64

⁶⁴Ni 2011GLZZ NUCLEAR REACTIONS ⁶⁴Zn(n, α), E=2.5, 4.0, 5.0, 5.5, 6.0 MeV; ⁶⁷Zn(n, α), E=4.0, 5.0, 6.0 MeV; measured E α , I $\alpha(\theta)$; deduced σ , $\sigma(\theta)$ to specified group of states. Comparison with JEF-2.2, JEFF-3.1 / A, ROSFOND, TENDL-2009, JENDL / HE-2007and other data. CONF Dubna(ISINN-18),P143,Gledenov

A=64 (continued)

	2011MU10	NUCLEAR REACTIONS 40,48 Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , $\sigma(E, \theta)$, time-of-flight spectra. 40 Ca(n, n), E=9.9-85.0; 48 Ca(n, n), E=7.97-16.9 MeV; 54 Ca(n, n), E=5.5-26.0 MeV; 58,60 Ni(n, n), E=4.5-24.0 MeV; 92 Mo(n, n), E=7.0-30.4 MeV; 116,118 Sn(n, n), E=9.95-24.0 MeV; 120 Sn(n, n), E=9.94-16.91 MeV; 124 Sn(n, n), E=11.0-24.0 MeV; 208 Pb(n, n), E=4.0-185.0 MeV; 50 Ti(p, p), E=6.0-65.0 MeV; 52 Cr(p, p), E=10.77-39.9 MeV; 54 Fe, 64 Ni(p, p), E=9.69-65.0 MeV; 58 Ni(p, p), E=7.0-192.0 MeV; 60 Ni(p, p), E=7.0-178.0 MeV; 62 Ni(p, p), E=8.02-156.0 MeV; 90 Zr(p, p), E=30.4 MeV; 116 Sn(p, p), E=16.0-61.4 MeV; 118,122,124 Sn(p, p), E=16.0-49.35 MeV; 120 Sn(p, p), E=9.8-156.0 MeV; 208 Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR PRVCA 83 064605
⁶⁴ Cu	2011EL06	NUCLEAR REACTIONS ⁶⁴ Ni(p, n), E not given; measured reaction products; deduced effective method for production of ⁶⁴ Cu. JOUR JLCRD 54 S244
	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88 MeV; ⁶⁵ Cu(d, 2p) ⁶⁵ Ni, E=11.36-19.88 MeV; measured $E\gamma$, $I\gamma$, $\sigma(E)$, activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; ^{63,65} Cu(d, d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism, and direct reaction stripping discussed _IOUR_PRVCA_84_014605
⁶⁴ Zn	2010BEZ0	RADIOACTIVITY 64,70 Zn, 180,186 W(2 β); measured E γ , I γ ; deduced T _{1/2} limits. ZnWO ₄ samples, Gran Sasso. CONF Frascati(Nuclear Physics in Astrophysics IV 2009). P012038
⁶⁴ Ge	2011ROZZ	RADIOACTIVITY ⁶⁹ Br, ⁶⁵ As(p) [from ⁶⁹ Kr, ⁶⁵ As(β^+)]; measured decay products, E γ , I γ ; deduced T _{1/2} , isobar analogue states. PC A M Rogers,7/29/2011

⁶⁵ Co	2011DI08	NUCLEAR REACTIONS ⁶⁴ Ni(²³⁸ U, X), E=6.5 MeV / nucleon; measured particle spectra, $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, half-lives by recoil distance Doppler shift and the differential decay curve methods with a plunger device EXOGAM array. ^{63,65} Co; deduced levels, J, π , B(E2). Systematics of excitation energies and B(E2) values in the even-N Fe, Co, and Ni nuclides. Comparison with large-scale shell model
		Co, and Ni nuclides. Comparison with large-scale shell model calculations in the pf and $\rm pfg_{9/2}$ valence space. JOUR PRVCA 83 064321

KEYNUMBERS AND KEYWORDS

$A{=}65$ (continued)

⁶⁵ Ni	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88 MeV; ⁶⁵ Cu(d, 2p) ⁶⁵ Ni, E=11.36-19.88 MeV; measured $E\gamma$, $I\gamma$, σ (E), activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; ^{63,65} Cu(d, d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism, and direct reaction stripping discussed. JOUR PRVCA 84 014605
⁶⁵ Cu	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88 MeV; ⁶⁵ Cu(d, 2p) ⁶⁵ Ni, E=11.36-19.88 MeV; measured $E\gamma$, $I\gamma$, σ (E), activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; ^{63,65} Cu(d, d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism, and direct reaction stripping discussed. JOUR PRVCA 84 014605
⁶⁵ Zn	2011CH33	NUCLEAR REACTIONS Mo(d, X) ⁹⁹ Mo, ¹⁰⁰ Mo(p, X) ⁹⁹ Mo, Cu(p, X) ⁶² Zn / ⁶⁵ Zn E=9.7-58.5 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced σ , thick target yields. JOUR ARISE 69 1447
	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88 MeV; ⁶⁵ Cu(d, 2p) ⁶⁵ Ni, E=11.36-19.88 MeV; measured $E\gamma$, $I\gamma$, $\sigma(E)$, activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; ^{63,65} Cu(d, d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism, and direct reaction stripping discussed JOUR PRVCA 84 014605
^{65}As	2011ROZZ	RADIOACTIVITY ⁶⁹ Br, ⁶⁵ As(p) [from ⁶⁹ Kr, ⁶⁵ As(β^+)]; measured decay products, E γ , I γ ; deduced T _{1/2} , isobar analogue states. PC A M Rogers,7/29/2011

66 Ti	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B _{ρ} ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^{-}); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

A=66 (continued)

$^{66}\mathrm{V}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
66 C	00105077	Heidelberg (NIC XI) Proc, P221, Estrade DADIOACTIVITY 548, 54T; 66M; 66E, 70.74N; 70.74C; $(2-)$.
Or	20102521	RADIOACTIVITT Sc, TI, Mill, Te, Mill, Mill, Te, Mill, Mill, Mill, Sc, Ti, Mill, Te, Mill, Mill, Mill, Sc, Ti, Mill, Te, Mill, Mill, Mill, Sc, Ti, Mill, Mil
		54,60 Ca. 54,60 Sc. 54,60,66,68 Ti. 54,60,66,68,70 V. 54,60,66,68,70,74 Cr.
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
00		Heidelberg (NIC XI) Proc,P221,Estrade
⁶⁶ Mn	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-);
		measured mass using TOF-B ρ ; deduced EC Q-values. ³⁴ Ar, ³⁴ K, ^{54,60} Ca ^{54,60} Sc ^{54,60,66,68} Ti ^{54,60,66,68,70} V ^{54,60,66,68,70,74} Cr
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
66 -		Heidelberg (NIC XI) Proc, P221, Estrade
^{oo} Fe	2010ESZY	RADIOACTIVITY ³⁴ Sc, ³⁴ Ti, ⁶⁰ Mn, ⁶⁰ Fe, ⁷⁶ , ⁷⁴ Ni, ⁷⁶ , ⁴ Cu(β^{-});
		measured mass using 1 OF-B ρ ; deduced EC Q-values. ⁵⁴ AF, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
66.0	00405357	Heidelberg (NIC XI) Proc, P221, Estrade DADLOA CHUUTX 54C, 54T; 66A, 66D, 70, 74N; 70, 74C, $(2-)$
⁰⁰ Co	2010ESZY	RADIOACTIVITY Sc. 511, com, core, 10, 10, 10, 10, 10, (β);
		54,60Ca $54,60$ Sc $54,60,66,68$ Ti $54,60,66,68,70$ V $54,60,66,68,70,74$ Cr
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
⁶⁶ Ni	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ³⁴ Ar, ³⁴ K, ^{54,60} C _a , ^{54,60} C _b , ^{54,60} C _b , ^{54,60,66,68} T _i , ^{54,60,66,68,70} V ^{54,60,66,68,70,74} C _r
		54,60,66,68,70,74 Mn. $54,60,66,68,68,70,74$ Fe. $60,66,68,70,74$ Co. $60,66,68,70,74$ Ni.
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
⁶⁶ Cu	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ³⁴ Ar, ³⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr.
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		^{66,68,70,74} Cu, ^{66,68,70,74} Zn, ^{68,70,74} Ga, ^{70,74} Ge, ⁷⁴ As(β^{-}); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

A=66 (continued)

	2011SI17	NUCLEAR REACTIONS Cu(d, X) ⁶⁴ Cu, E=1.5-19.88 MeV; ⁶³ Cu(d, 2n) ⁶³ Zn, E=4.56-19.49 MeV; ⁶³ Cu(d, 3n) ⁶² Zn, E=16.44-19.88 MeV; ⁶⁵ Cu(d, p) ⁶⁶ Cu, E=4.56-19.49 MeV; ⁶⁵ Cu(d, 2n) ⁶⁵ Zn, E=4.25-19.88
		MeV; 65 Cu(d, 2p) 65 Ni, E=11.36-19.88 MeV; measured E γ , I γ , σ (E), activation method. Comparison with previous experimental data, and with evaluated data files. Cu(d, d), E=11.8, 15, 21.6 MeV; 63,65 Cu(d,
		d), E=12, 34.4 MeV; analyzed $\sigma(\theta)$ data; Cu(d, d), ^{63,65} Cu(d, d), E<60 MeV; analyzed $\sigma(E)$ data; deduced optical potential model parameters for reaction cross sections. Deuteron breakup mechanism,
⁶⁶ Zn	2010ESZY	and direct reaction stripping discussed. JOUR PRVCA 84 014605 RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-);
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Mn ^{54,60,66,68,70,74} Fe ^{60,66,68,70,74} Co ^{60,66,68,70,74} Ni
		^{66,68,70,74} Cu, ^{66,68,70,74} Zn, ^{68,70,74} Ga, ^{70,74} Ge, ⁷⁴ As(β^-); calculated EC Q-values from experimental data, FRDM and HFB-14 models. CONF
⁶⁶ Ga	2010ESZY	Heidelberg (NIC XI) Proc,P221,Estrade RADIOACTIVITY ⁵⁴ Sc. ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-):
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr, ^{54,60,66,68,70,74} Mr, ^{54,60,66,68,70,74} Tr, ^{60,66,68,70,74} Mr, ^{54,60,66,68,70,74} Tr, ^{60,66,68,70,74} Mr, ^{54,60,66,68,70,74} Mr, ^{54,60,66,68,70,74} Tr, ^{60,66,68,70,74} Tr, ^{60,66,6}
		$_{66,68,70,74}$ Cu, $_{66,68,70,74}$ Zn, $_{68,70,74}$ Ga, $_{70,74}$ Ge, $_{74}$ As(β^{-}); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF Heidelberg (NIC XI) Proc.P221.Estrade
^{66}As	2011AG15	NUCLEAR REACTIONS ⁵⁸ Ni(^{8}B , X) ⁶⁶ As, E=22.4-26.9 MeV;
		measured reaction products, proton spectra; deduced fusion σ , fusion and breakup yields. JOUR PRLTA 107 092701

A=67

No references found

⁶⁸ Ti	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-); measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} G = ^{54,60} G = ^{54,60} G = ^{65,75} F, ⁵⁴ K = ^{66,65} G = ^{70,74} Cu(β^-);
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni, 66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC Q-values from experimental data, FRDM and HFB-14 models. CONF Heidelberg (NIC XI) Proc,P221,Estrade

A=68 (continued)

$^{68}\mathrm{V}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
68Cr	2010E97V	Heidelderg (NIC AI) Proc, P221, Estrade PADIOACTIVITY 54Se 54T; 66Mp 66Ee 70, 74N; 70, 74Cu(2-).
01	2010£521	measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54.60.66.68.70.74 M ₂ 54.60.66.68.68.70.74 T ₂ 60.66.68.70.74 Cr,
		66.68.70.74 Cu $66.68.70.74$ Cu $66.68.70.74$ Cu $68.70.74$ Cu 70.74 Cu
		$\Omega_{\rm rel}$ Ω_{\rm
		Heidelberg (NIC XI) Proc.P221.Estrade
$^{68}{ m Mn}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca ^{54,60} Sc ^{54,60,66,68,70} V ^{54,60,66,68,70} V ^{54,60,66,68,70,74} Cr
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni.
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
68 Fe	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
68 0	00405357	Heidelberg (NIC XI) Proc, P221, Estrade DADIOA CHUUTIN 54G, 54T; 66M, 66D, 70, 74M; 70, 74G, $(2-)$
00°C0	2010ESZY	RADIOACTIVITY S_{c} , S_{1} , S_{m} , S_{e} , S_{c} , S_{1} , S_{m} , S_{e}
		measured mass using 1 OF-D ρ ; deduced EC Q-valuesAr, -K, 54,60 $_{\rm Co}$ 54,60 $_{\rm Co}$ 54,60,66,68 $_{\rm Ti}$; 54,60,66,68,70 V 54,60,66,68,70,74 $_{\rm Cr}$
		$54,60,66,68,70,74_{Mn}$, $54,60,66,68,68,70,74_{Fe}$, $60,66,68,70,74_{Co}$, $60,66,68,70,74_{Ni}$
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
⁶⁸ Ni	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V,
		$^{54,60,66,68,70,74}Mn, {}^{54,60,66,68,68,70,74}Fe, {}^{60,66,68,70,74}Co, {}^{60,66,68,70,74}Ni,$
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
68 0		Heidelberg (NIC XI) Proc, P221, Estrade
⁰⁰ Cu	2010ESZY	RADIOACTIVITY 34 Sc, 34 Ti, 30 Mn, 30 Fe, $10, 14$ Ni, $10, 14$ Cu(β);
		measured mass using 1 OF-B ρ ; deduced EC Q-values. * Ar, * K, 54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70 Cr,
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni,
		00,00,10,14 Cu, 00,08,10,14 Zn, 08,10,14 Ga, 10,14 Ge, 14 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF Heidelberg (NIC XI) Proc,P221,Estrade

KEYNUMBERS AND KEYWORDS

A=68 (continued)

$^{68}\mathrm{Zn}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc,P221,Estrade
68 Ga	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr.
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni.
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
	2011FL05	NUCLEAR REACTIONS 68 Zn(p, n), E=7 MeV; measured reaction
		products; deduced target yields, method feasibility. JOUR JLCRD 54
		S249
$^{68}\mathrm{Ge}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr.
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
68 Se	2011ROZZ	RADIOACTIVITY ⁶⁹ Br, ⁶⁵ As(p) [from ⁶⁹ Kr, ⁶⁵ As(β^+)]; measured
		decay products, E $\gamma,$ I $\gamma;$ deduced $T_{1/2},$ isobar analogue states. PC A M Rogers,7/29/2011

A=69

 ^{69}Br 2011R0ZZ RADIOACTIVITY $^{69}\text{Br},\,^{65}\text{As}(p)$ [from $^{69}\text{Kr},\,^{65}\text{As}(\beta^+)$]; measured decay products, E γ , I γ ; deduced T_{1/2}, isobar analogue states. PC A M Rogers,7/29/2011

A=70

 $\begin{array}{lll} ^{70}\mathrm{V} & \mbox{2010ESZY} & \mbox{RADIOACTIVITY $^{54}\mathrm{Sc}, $^{54}\mathrm{Ti}, $^{66}\mathrm{Mn}, $^{66}\mathrm{Fe}, $^{70,74}\mathrm{Ni}, $^{70,74}\mathrm{Cu}(\beta^-)$; \\ & \mbox{measured mass using TOF-B}\rho$; deduced EC Q-values. $^{54}\mathrm{Ar}, $^{54}\mathrm{K}, $^{54,60}\mathrm{Ca}, $^{54,60}\mathrm{Sc}, $^{54,60,66,68}\mathrm{Ti}, $^{54,60}\mathrm{C6}, $^{68,70}\mathrm{V}, $^{54,60,66,68,70,74}\mathrm{Cr}, $^{54,60,66,68,70,74}\mathrm{Mn}, $^{54,60,66,68,70,74}\mathrm{Fe}, $^{60,66,68,70,74}\mathrm{Co}, $^{60,66,68,70,74}\mathrm{Cr}, $^{54,60,66,68,70,74}\mathrm{Cu}, $^{66,68,70,74}\mathrm{Cn}, $^{67,74}\mathrm{Ga}, $^{70,74}\mathrm{Ge}, $^{74}\mathrm{As}(\beta^-)$; calculated EC Q-values from experimental data, FRDM and HFB-14 models. CONF Heidelberg (NIC XI) Proc,P221,Estrade \\ \end{array}$

A=70 (continued)

$^{70}\mathrm{Cr}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
-		Heidelberg (NIC XI) Proc, P221, Estrade
^{70}Mn	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		^{54,60,66,68,70,74} Mn, ^{54,60,66,68,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^{-}); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
70 Fe	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
70 Co	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
⁷⁰ Ni	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
70 Cu	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
⁷⁰ Zn	2010BEZ0	RADIOACTIVITY ^{64,70} Zn, ^{180,186} W(2β); measured E γ , I γ ; deduced
		$\mathrm{T}_{1/2}$ limits. ZnWO_4 samples, Gran Sasso. CONF Frascati (Nuclear
		Physics in Astrophysics IV 2009), P012038

A=70 (continued)

	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		^{54,60,66,68,70,74} Mn, ^{54,60,66,68,68,70,74} Fe, ^{60,66,68,70,74} Co, ^{60,66,68,70,74} Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
70 Ga	2010ESZY	RADIOACTIVITY 54 Sc, 54 Ti, 66 Mn, 66 Fe, 70,74 Ni, 70,74 Cu(β^-);
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V,
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
$^{70}\mathrm{Ge}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
^{70}As	2010ESZY	RADIOACTIVITY 54 Sc, 54 Ti, 66 Mn, 66 Fe, 70,74 Ni, 70,74 Cu(β^-);
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		54,60,66,68,70,74Mn, 54,60,66,68,68,70,74Fe, 60,66,68,70,74Co, 60,66,68,70,74Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

A=71

⁷¹Zn 2011UN01 NUCLEAR REACTIONS ¹⁸¹Ta(¹⁶O, X)^{71m}Zn / ⁷⁵Ge / ⁷⁷Kr / ^{85m}Y / 86 Y / ⁸⁸Kr / ^{90m}Y / ^{91m}Y / ⁹³Y / ¹⁰⁵Ru / ¹⁰⁵In / ¹¹⁰In / ^{110m}In / ^{111m}In / ^{111m}In / ^{113m}In / ¹¹⁷Cd / ¹¹⁷Sb / ¹²¹Xe / ¹²⁹Sb / ¹³²La / ¹³²Ce / ^{132mI} / ¹³⁷Nd / ^{141m}Sm / ¹⁹²Tl / ^{192m}Tl / ^{193m}Tl / ^{194m}Tl / ^{194m}Tl / ¹⁹¹Hg / ^{191m}Hg / ¹⁹²Hg / ¹⁹³Hg / ^{193m}Hg / ¹⁹⁰Au / ¹⁹¹Au / ¹⁹²Au / , E=97, 100; measured E γ , I γ , recoil-catcher activation method, production σ , isotopic yields with data for ¹⁵⁹Tb+¹⁶O, ¹⁵⁹Tm+¹⁶O, ²⁰⁸Pb+²⁰Ne, ²³²Th+⁷Li, ²³²Th+¹¹B, ²³⁸U+¹¹B, ²³⁸U+²²Ne systems. JOUR PRVCA 84 014612

A=72

No references found

No references found

A = 74

$^{74}\mathrm{Cr}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54.60} C ₀ , ^{54.60} C ₀ , ^{54.60} C ₀ , ^{54.60.66.68} T; ^{54.60.66.68.70} V, ^{54.60.66.68.70.74} C ₂
		$54,60,66,68,70,74_{Mn}$ $54,60,66,68,68,70,74_{Fe}$ $60,66,68,70,74_{Co}$ $60,66,68,70,74_{Ni}$
		$_{66,68,70,74}C_{\rm III}$ $_{66,68,70,74}C_{\rm III}$ $_{66,68,70,74}C_{\rm III}$ $_{66,68,70,74}C_{\rm IIII}$ $_{66,68,70,74}C_{\rm IIII}$ $_{66,68,70,74}C_{\rm IIIII}$ $_{66,68,70,74}C_{\rm IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$
		Q-values from experimental data. FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc.P221.Estrade
^{74}Mn	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca ^{54,60} Sc ^{54,60,66,68,70} V ^{54,60,66,68,70} V ^{54,60,66,68,70,74} Cr
		54,60,66,68,70,74 Mn. $54,60,66,68,68,70,74$ Fe. $60,66,68,70,74$ Co. $60,66,68,70,74$ Ni.
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
74 🗗		Heidelberg (NIC XI) Proc, P221, Estrade
′ ⁴ Fe	2010ESZY	RADIOACTIVITY ³⁴ Sc, ³⁴ Ti, ⁶⁰ Mn, ⁶⁰ Fe, ⁷⁰ , ¹⁴ Ni, ⁷⁰ , ¹⁴ Cu(β^-);
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵¹ Ar, ⁵¹ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70} V, ^{54,60,66,68,70} Cr,
		$^{54,60,66,68,70,74}Mn, {}^{54,60,66,68,68,70,74}Fe, {}^{60,66,68,70,74}Co, {}^{60,66,68,70,74}Ni,$
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
-		Heidelberg (NIC XI) Proc,P221,Estrade
⁷⁴ Co	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-);
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^{-}); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
⁷⁴ Ni	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68} Ti, ^{54,60,66,68,70} V, ^{54,60,66,68,70,74} Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
$^{74}\mathrm{Cu}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca, ^{54,60} Sc, ^{54,60,66,68,70} V ^{54,60,66,68,70} V ^{54,60,66,68,70,74} Cr
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni.
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

A=74 (continued)

$^{74}\mathrm{Zn}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, 54,60,66,68,68,70,74 Fe, 60,66,68,70,74 Co, 60,66,68,70,74 Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
74 Ga	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} C ₀ , ^{54,60} C ₀ , ^{54,60} C ₀ , ^{54,60,66,68} T; ^{54,60,66,68,70} V ^{54,60,66,68,70} V
		$54,60,66,68,70,74_{Mn}$ $54,60,66,68,68,70,74_{Fe}$ $60,66,68,70,74_{Co}$ $60,66,68,70,74_{Ni}$
		66,68,70,74 Cu, 66,68,70,74 Zu, 68,70,74 Ga, 70,74 Ge, 74 As(β^-): calculated EC
		Q-values from experimental data, FRDM and HFB-14 models, CONF
		Heidelberg (NIC XI) Proc.P221.Estrade
$^{74}\mathrm{Ge}$	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K, ^{54,60} Ca ^{54,60} Ca ^{54,60} Sc ^{54,60,66,68} Ti ^{54,60,66,68,70} V ^{54,60,66,68,70,74} Cr
		54,60,66,68,70,74 Mn $54,60,66,68,68,70,74$ Fe $60,66,68,70,74$ Co $60,66,68,70,74$ Ni
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As(β^-): calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade
^{74}As	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^{-});
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, 54,60 Sc, 54,60,66,68 Ti, 54,60,66,68,70 V, 54,60,66,68,70,74 Cr,
		54,60,66,68,70,74 Mn, $54,60,66,68,68,70,74$ Fe, $60,66,68,70,74$ Co, $60,66,68,70,74$ Ni,
		66,68,70,74 Cu, 66,68,70,74 Zn, 68,70,74 Ga, 70,74 Ge, 74 As (β^{-}) ; calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
-		Heidelberg (NIC XI) Proc, P221, Estrade
⁷⁴ Se	2010ESZY	RADIOACTIVITY ⁵⁴ Sc, ⁵⁴ Ti, ⁶⁶ Mn, ⁶⁶ Fe, ^{70,74} Ni, ^{70,74} Cu(β^-);
		measured mass using TOF-B ρ ; deduced EC Q-values. ⁵⁴ Ar, ⁵⁴ K,
		54,60 Ca, $54,60$ Sc, $54,00,00,00$ Ti, $54,00,00,00$ Ti, $54,00,00,00$ C, 70 V, $54,00,00,00$ Cr, $54,60,66,68,70,74$ Cr, $54,60,68,70,74$ Cr, $54,60,60,70,74$ Cr, $54,60,60,70,74$ Cr, $54,60,$
		54,00,00,00,10,14 Mn, $54,00,00,00,00,00,00,10,14$ Fe, $00,00,00,10,14$ Co, $00,00,00,10,14$ Ni,
		00,00,10,14 Cu, 00,00,10,14 Zn, 00,10,14 Ga, 10,14 Ge, 14 As(β^-); calculated EC
		Q-values from experimental data, FRDM and HFB-14 models. CONF
		Heidelberg (NIC XI) Proc, P221, Estrade

75 Ge	2011UN01	NUCLEAR REACTIONS 181 Ta $(^{16}$ O, X) 71m Zn / 75 Ge / 77 Kr / 85m Y /
		, ${}^{86}\text{Y} / {}^{88}\text{Kr} / {}^{90m}\text{Y} / {}^{91m}\text{Y} / {}^{93}\text{Y} / {}^{105}\text{Ru} / {}^{105}\text{In} / {}^{110}\text{In} / {}^{110m}\text{In} /$
		111m In / 113m In / 117 Cd / 117 Sb / 121 Xe / 129 Sb / 132 La / 132 Ce /
		132m I / 137 Nd / 141m Sm / 192 Tl / 192m Tl / 193 Tl / 193m Tl / 194 Tl /
		194m Tl / 191 Hg / 191m Hg / 192 Hg / 193 Hg / 193m Hg / 190 Au / 191 Au /
		192 Au / , E=97, 100; measured E γ , I γ , recoil-catcher activation
		method, production σ , isotopic yields, mass distribution of fission
		fragments. Comparison of isotopic yields with data for ¹⁵⁹ Tb+ ¹⁶ O,
		159 Tm+ 16 O, 208 Pb+ 20 Ne, 232 Th+ 7 Li, 232 Th+ 11 B, 238 U+ 11 B,
		$^{238}\mathrm{U}{+}^{22}\mathrm{Ne}$ systems. JOUR PRVCA 84 014612

No references found

A=77

⁷⁷Kr 2011UN01 NUCLEAR REACTIONS ¹⁸¹Ta(¹⁶O, X)^{71m}Zn / ⁷⁵Ge / ⁷⁷Kr / ^{85m}Y / 86 Y / ⁸⁸Kr / ^{90m}Y / ^{91m}Y / ⁹³Y / ¹⁰⁵Ru / ¹⁰⁵In / ¹¹⁰In / ^{110m}In / ^{111m}In / ^{113m}In / ¹¹⁷Cd / ¹¹⁷Sb / ¹²¹Xe / ¹²⁹Sb / ¹³²La / ¹³²Ce / ^{132mI} / ¹³⁷Nd / ^{141m}Sm / ¹⁹²Tl / ^{192m}Tl / ^{193m}Tl / ¹⁹⁴Tl / ^{194m}Tl / ¹⁹¹Hg / ^{191m}Hg / ¹⁹²Hg / ¹⁹³Hg / ^{193m}Hg / ¹⁹⁰Au / ¹⁹¹Au / ¹⁹²Au / , E=97, 100; measured E γ , I γ , recoil-catcher activation method, production σ , isotopic yields, mass distribution of fission fragments. Comparison of isotopic yields with data for ¹⁵⁹Tb+¹⁶O, ¹⁵⁹Tm+¹⁶O, ²⁰⁸Pb+²⁰Ne, ²³²Th+⁷Li, ²³²Th+¹¹B, ²³⁸U+¹¹B, ²³⁸U+²²Ne systems. JOUR PRVCA 84 014612

A=78

No references found

A = 79

⁷⁹Se **2010JIZZ** RADIOACTIVITY ⁷⁹Se(β^-); measured T_{1/2} using AMS (Accelerator Mass Spectrometry) and LSC (Liquid Scintillation Counting). CONF Tsukuba(Nuclear Physics Trends) Proc.P144,Jiang RADIOACTIVITY ⁷⁹Se(β^-); measured T_{1/2} using AMS (Accelerator Mass Spectrometry) and LSC (Liquid Scintillation Counting). CONF Tsukuba(Nuclear Physics Trends) Proc.P144,Jiang

A = 80

80 Se	2011AD14	NUCLEAR REACTIONS ⁴⁸ Ti, ⁵² Cr, ⁸⁰ Se(n, $n\gamma$), E=thermal;
		measured $\mathrm{E}\gamma$, $\mathrm{I}\gamma$. ⁴⁸ Ti, ⁵² Cr, ⁸⁰ Se; deduced level energies, lifetime,
		$T_{1/2}$. Doppler Shift Attenuation method (DSA). JOUR BRSPE 75 914
$^{80}\mathrm{Br}$	2011WA21	NÚCLEAR REACTIONS 76 Ge(¹¹ B, 3n α), (⁷ Li, 3n), E=54 MeV;
		measured reaction products, $E\gamma$, $I\gamma$, γ - γ -coin.; deduced new band on
		the top of yrast, $B(M1) / B(E2)$, quadrupole deformation parameters,
		angular momentum. JOUR PYLBB 703 40

A=81

No references found

No references found

A = 83

No references found

A = 84

⁸⁴Rb **2011ZH26** NUCLEAR REACTIONS ^{85,87}Rb, ⁸⁹Y, ^{140,142}Ce, ¹⁶⁹Tm, ¹⁷⁵Lu, ¹⁸¹Ta, ¹⁸⁵Re, ²³⁸U(n, 2n), E=14 MeV; measured reaction products, E γ , I γ ; deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data library. JOUR NSENA 169 188

A = 85

$^{85}\mathrm{Kr}$	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		97 Zr, 99 Mo, 103 Ru, 105 Rh, 132 Te, 131,133 I, 133,135 Xe, 140 Ba, 141,143 Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85
85 Sr	2010KUZS	NUCLEAR REACTIONS 76 Ge(13 C, 4n), E=52 MeV; measured E γ ,
		I γ , $\gamma\gamma$ -coin; deduced levels, J, π , γ -transitions, high-spin states, DCO
		ratios, angular momentum of individual states. CONF Sinaia (Exotic
		Nucei and Nuc.Part.Astroph.III)Proc.P374,Kumar
^{85}Y	2011UN01	NUCLEAR REACTIONS $^{181}\mathrm{Ta}(^{16}\mathrm{O},\mathrm{X})^{71m}\mathrm{Zn}$ / $^{75}\mathrm{Ge}$ / $^{77}\mathrm{Kr}$ / $^{85m}\mathrm{Y}$ /
		, 86 Y / 88 Kr / 90m Y / 91m Y / 93 Y / 105 Ru / 105 In / 110 In / 110m In /
		111m In / 113m In / 117 Cd / 117 Sb / 121 Xe / 129 Sb / 132 La / 132 Ce /
		132m I / 137 Nd / 141m Sm / 192 Tl / 192m Tl / 193 Tl / 193m Tl / 194 Tl /
		194m Tl / 191 Hg / 191m Hg / 192 Hg / 193 Hg / 193m Hg / 190 Au / 191 Au /
		192 Au / , E=97, 100; measured E γ , I γ , recoil-catcher activation
		method, production σ , isotopic yields, mass distribution of fission
		fragments. Comparison of isotopic yields with data for $^{159}\text{Tb}+^{16}\text{O}$,
		159 Tm+ 16 O, 208 Pb+ 20 Ne, 232 Th+ 7 Li, 232 Th+ 11 B, 238 U+ 11 B,
		$^{238}\mathrm{U}{+}^{22}\mathrm{Ne}$ systems. JOUR PRVCA 84 014612

A = 86

⁸⁶Se **2011LI34** RADIOACTIVITY ²⁵²Cf(SF); measured decay products, $E\gamma$, $I\gamma$, γ - γ - γ -coin. ^{88,90,92}Kr, ⁸⁶Se; deduced level schemes, energies, J, π . Comparison with nuclear systematics and angular correlation measurements. JOUR IMPEE 20 1825

A=86 (continued)

⁸⁶ Rb	2011ZH26	NUCLEAR REACTIONS ^{85,87} Rb, ⁸⁹ Y, ^{140,142} Ce, ¹⁶⁹ Tm, ¹⁷⁵ Lu, ¹⁸¹ Ta, ¹⁸⁵ Re, ²³⁸ U(n, 2n), E=14 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data library. JOUR NSENA 160 188
⁸⁶ Y	2011BE28	NUCLEAR REACTIONS 90 Zr(γ , 2np), (γ , 3np), 91 Zr(γ , 3np), (γ , 4np), E<84 MeV; measured E γ , I γ ; deduced yields, isomeric ratios. Comparison with TALYS code calculations. JOUR BRSPE 75 937
	2011ME10	NUCLEAR REACTIONS $^{88}{\rm Sr}({\rm p,\ 2n}),^{86}{\rm Sr}({\rm p,\ n}),E{=}16.6{-}45.5$ MeV; measured reaction products, E $\gamma,I\gamma;$ deduced yields. JOUR JLCRD 54 S236
		A=87
⁸⁷ Y	2011BE28	NUCLEAR REACTIONS 90 Zr(γ , 2np), (γ , 3np), 91 Zr(γ , 3np), (γ , 4np), E<84 MeV; measured E γ , I γ ; deduced yields, isomeric ratios. Comparison with TALYS code calculations. JOUR BRSPE 75 937
	2011ME10	NUCLEAR REACTIONS $^{88}Sr(p, 2n), ^{86}Sr(p, n), E=16.6-45.5 MeV;$ measured reaction products, E γ , I γ ; deduced yields. JOUR JLCRD 54 S236
		A=88
⁸⁸ Kr	2011LI34	RADIOACTIVITY ²⁵² Cf(SF); measured decay products, $E\gamma$, $I\gamma$, γ - γ - γ -coin. ^{88,90,92} Kr, ⁸⁶ Se; deduced level schemes, energies, J, π . Comparison with nuclear systematics and angular correlation measurements. JOUR IMPEE 20 1825
⁸⁸ Y	2011ZH26	NUCLEAR REACTIONS ^{85,87} Rb, ⁸⁹ Y, ^{140,142} Ce, ¹⁶⁹ Tm, ¹⁷⁵ Lu, ¹⁸¹ Ta, ¹⁸⁵ Re, ²³⁸ U(n, 2n), E=14 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced σ . Comparison with ENDF / B-VIL0 evaluated nuclear data
		library. JOUR NSENA 169 188
		A=89
89 Zr	2011CI05	NUCLEAR REACTIONS ⁸⁹ Y(p, n), E=16.5 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced yield. Chemical separation and purification studies_JOUR_RAACA 99.631
	2011DE25	NUCLEAR REACTIONS 89 Y(p, n), E=13 MeV; measured reaction products; deduced yields, feasibility for 89 Zr production. JOUR JLCRD 54 S248

$^{90}\mathrm{Kr}$	2011LI34	RADIOACTIVITY ²⁵² Cf(SF); measured decay products, $E\gamma$, $I\gamma$, γ - γ - γ -coin. ^{88,90,92} Kr, ⁸⁶ Se; deduced level schemes, energies, J, π .
		Comparison with nuclear systematics and angular correlation
		measurements. JOUR IMPEE 20 1825
$^{90}\mathrm{Zr}$	2011MU10	NUCLEAR REACTIONS 40,48 Ca(n, n), E=11.9, 16.9 MeV; measured
		$E(n)$, $I(n)$, σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0;
		${}^{48}Ca(n, n), E=7.97-16.9 \text{ MeV}; {}^{54}Ca(n, n), E=5.5-26.0 \text{ MeV}; {}^{58,60}Ni(n, n)$
		n), E=4.5-24.0 MeV; 92 Mo(n, n), E=7.0-30.4 MeV; 116,118 Sn(n, n),
		E=9.95-24.0 MeV; 120 Sn(n, n), E=9.94-16.91 MeV; 124 Sn(n, n),
		$E=11.0-24.0 \text{ MeV}; {}^{208}Pb(n, n), E=4.0-185.0 \text{ MeV}; {}^{50}Ti(p, p),$
		$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
		$E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
		$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
		$E=5.57-185.0 \text{ MeV}; {}^{92}Mo(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}Sn(p, p),$
		$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
		$E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$
		E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		levels, spectroscopic factors, occupation probabilities, mass dependence
		on cross section. Dispersal optical model (DOM) analysis. JOUR
		PRVCA 83 064605

A=91

No references found

$^{92}\mathrm{Kr}$	2011LI34	RADIOACTIVITY ²⁵² Cf(SF); measured decay products, $E\gamma$, $I\gamma$,
		γ - γ -coin. ^{88,90,92} Kr, ⁸⁶ Se; deduced level schemes, energies, J, π .
		Comparison with nuclear systematics and angular correlation
		measurements. JOUR IMPEE 20 1825
92 Zr	2011LE23	RADIOACTIVITY ⁹² Mo(β^+ EC); measured decay products, E β , I β ;
		deduced $T_{1/2}$ limit. CaMoO ₄ scintillator. JOUR NIMAE 654 157
$^{92}\mathrm{Nb}$	2010JIZZ	NUCLEAR REACTIONS 93 Nb(n, 2n), 238 U(n, 3n), E=14 MeV;
		measured σ using AMS (Accelerator Mass Spectrometry). CONF
		Tsukuba(Nuclear Physics Trends) Proc.P144, Jiang
^{92}Mo	2011LE23	RADIOACTIVITY 92 Mo(β^+ EC); measured decay products, E β , I β ;
		deduced $\mathrm{T}_{1/2}$ limit. CaMoO_4 scintillator. JOUR NIMAE 654 157

A=92 (continued)

2011MU10 NUCLEAR REACTIONS ^{40,48}Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , σ (E, θ), time-of-flight spectra. ⁴⁰Ca(n, n), E=9.9-85.0; ⁴⁸Ca(n, n), E=7.97-16.9 MeV; ⁵⁴Ca(n, n), E=5.5-26.0 MeV; ^{58,60}Ni(n, n), E=4.5-24.0 MeV; ⁹²Mo(n, n), E=7.0-30.4 MeV; ^{116,118}Sn(n, n), E=9.95-24.0 MeV; ¹²⁰Sn(n, n), E=9.94-16.91 MeV; ¹²⁴Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸Pb(n, n), E=4.0-185.0 MeV; ⁵⁰Ti(p, p), E=6.0-65.0 MeV; ⁵²Cr(p, p), E=10.77-39.9 MeV; ⁵⁴Fe, ⁶⁴Ni(p, p), E=9.69-65.0 MeV; ⁵⁸Ni(p, p), E=7.0-192.0 MeV; ⁶⁰Ni(p, p), E=7.0-178.0 MeV; ⁶²Ni(p, p), E=8.02-156.0 MeV; ⁹⁰Zr(p, p), E=5.57-185.0 MeV; ⁹²Mo(p, p), E=12.5-49.45 MeV; ¹¹⁴Sn(p, p), E=30.4 MeV; ¹¹⁶Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124}Sn(p, p), E=16.0-49.35 MeV; ¹²⁰Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, σ (E, θ), single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR PRVCA 83 064605

A=93

⁹³ Y	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, E γ , I γ . ^{85m} Kr, ⁹³ Y, ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies using TALYS. Neutron flux calculated using MCNPX with LA150 cross section library. JOUR ZAANE 47 85
⁹³ Tc	2010SAZM	NUCLEAR REACTIONS ⁹² Mo(p, γ), E=2450-3500 keV; measured prompt E γ , I γ , $\gamma\gamma$ -coin, activation I β ; deduced σ using both methods; calculated σ using TALYS, NON-SMOKER. CONF Heidelberg (NIC XI) Proc,P244,Sauerwein

$^{94}\mathrm{Tc}$	2011LE22	NUCLEAR REACTIONS 95,96,97,98,100 Mo(p, 2n), E=16-24 MeV;
		measured reaction products, $E\gamma$, $I\gamma$; deduced production rates, yields.
		JOUR JLCRD 54 S243
	2011MO21	NUCLEAR REACTIONS ⁹⁴ Mo(p, n), E=13 MeV; measured reaction
		products; deduced yields and activities. JOUR JLCRD 54 S245 $$

95 Zr	2011TA17	NUCLEAR REACTIONS 94 Zr(n, γ), E=0.001-60 keV; measured E(n),
		I(n), capture yield using CERN n_TOF neutron source; deduced
		resonance parameters E_R , gamma and neutron widths, capture kernels;
		calculated Maxwellian-averaged capture cross sections. ⁹⁵ Zr; deduced
		resonances, J, l-values, R-matrix analysis. Comparison with previous
		studies. Discussed astrophysical implications. JOUR PRVCA 84
		015801
$^{95}\mathrm{Tc}$	2011LE22	NUCLEAR REACTIONS 95,96,97,98,100 Mo(p, 2n), E=16-24 MeV;
		measured reaction products, $E\gamma$, $I\gamma$; deduced production rates, yields.
		JOUR JLCRD 54 S243

A=96

 $^{96}\mathrm{Tc}$ 2011LE22 NUCLEAR REACTIONS $^{95,96,97,98,100}\mathrm{Mo}(\mathrm{p},\,2\mathrm{n}),$ E=16-24 MeV; measured reaction products, E γ , I γ ; deduced production rates, yields. JOUR JLCRD 54 S243

A=97

$^{97}\mathrm{Zr}$	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85
$^{97}\mathrm{Tc}$	2011LE22	NUCLEAR REACTIONS 95,96,97,98,100 Mo(p, 2n), E=16-24 MeV;
		measured reaction products, $E\gamma$, $I\gamma$; deduced production rates, yields.
		JOUR JLCRD 54 S243

A=98

No references found

A=99

⁹⁹Nb **2011EJ01** NUCLEAR REACTIONS ¹⁰⁰Mo, ¹⁹⁷Au(γ , n), ¹⁰⁰Mo(γ , p), E=12-16 MeV; measured reaction products, E γ , I γ ; deduced relative yields, effective σ . JOUR JUPSA 80 094202

KEYNUMBERS AND KEYWORDS

A=99 (continued)

⁹⁹ Mo	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, E γ , I γ . ^{85m} Kr, ⁹³ Y, ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced mass distribution; calculated mass distribution at two lowest energies using TALYS. Neutron flux calculated using MCNPX with LA150 cross contion library IOUR 74 ANE 47.85
	2011CH33	Section horary. SOUR ZAANE 47 85 NUCLEAR REACTIONS Mo(d, X) ⁹⁹ Mo, ¹⁰⁰ Mo(p, X) ⁹⁹ Mo, Cu(p, X) ⁶² Zn / ⁶⁵ Zn E=9.7-58.5 MeV; measured reaction products, $E\gamma$, $I\gamma$;
	2011EJ01	NUCLEAR REACTIONS ¹⁰⁰ Mo, ¹⁹⁷ Au(γ , n), ¹⁰⁰ Mo(γ , p), E=12-16 MeV; measured reaction products, E γ , I γ ; deduced relative yields,
⁹⁹ Tc	2011LE22	effective σ . JOUR JUPSA 80 094202 NUCLEAR REACTIONS ^{95,96,97,98,100} Mo(p, 2n), E=16-24 MeV; measured reaction products, E γ , I γ ; deduced production rates, yields.
	2011SC21	JOUR JLCRD 54 S243 NUCLEAR REACTIONS ¹⁰⁰ Mo(p, 2n), E=8-18 MeV; measured reaction products; deduced σ . JOUR JLCRD 54 S247

A=100

$^{100}\mathrm{Mo}$	2011FL06	RADIOACTIVITY ¹⁰⁰ Mo($2\beta^{-}$); measured $E\gamma$, $I\gamma$, $E\beta$, $I\beta$; deduced
		$T_{1/2}$, nuclear matrix elements. JOUR NPBSE 217 53
100 Ru	2011FL06	RÁDIOACTIVITY ¹⁰⁰ Mo $(2\beta^{-})$; measured $E\gamma$, $I\gamma$, $E\beta$, $I\beta$; deduced
		$T_{1/2}$, nuclear matrix elements. JOUR NPBSE 217 53
$^{100}\mathrm{Rh}$	2011DI10	NÚCLEAR REACTIONS ¹⁰³ Rh(d, X) ¹⁰⁰ Pd / ¹⁰¹ Pd / ¹⁰³ Pd / ¹⁰⁰ Rh /
		$^{101}\mathrm{Rh}$ / $^{102}\mathrm{Rh}$ / $^{103}\mathrm{Ru},$ E<40 MeV; measured reaction products, E $\gamma,$
		I γ ; deduced σ , yields. Comparison with ALICE-IPPE, EMPIRE-II,
		Talys calculations and experimental data. JOUR NIMBE 269 1963
$^{100}\mathrm{Pd}$	2011DI10	NUCLEAR REACTIONS $^{103}\rm{Rh}(d,X)^{100}\rm{Pd}$ / $^{101}\rm{Pd}$ / $^{103}\rm{Pd}$ / $^{100}\rm{Rh}$ /
		101 Rh / 102 Rh / 103 Ru, E<40 MeV; measured reaction products, E γ ,
		I γ ; deduced σ , yields. Comparison with ALICE-IPPE, EMPIRE-II,
		Talys calculations and experimental data. JOUR NIMBE 269 1963

A = 101

$^{101}\mathrm{Rh}$	2011DI10	NUCLEAR REACTIONS ¹⁰³ Rh(d, X) ¹⁰⁰ Pd / ¹⁰¹ Pd / ¹⁰³ Pd / ¹⁰⁰ Rh /
		101 Rh / 102 Rh / 103 Ru, E<40 MeV; measured reaction products, E γ ,
		I γ ; deduced σ , yields. Comparison with ALICE-IPPE, EMPIRE-II,
		Talys calculations and experimental data. JOUR NIMBE 269 1963
$^{101}\mathrm{Pd}$	2011DI10	NUCLEAR REACTIONS 103 Rh(d, X) 100 Pd / 101 Pd / 103 Pd / 100 Rh /
		101 Rh / 102 Rh / 103 Ru, E<40 MeV; measured reaction products, E γ ,
		I γ ; deduced σ , yields. Comparison with ALICE-IPPE, EMPIRE-II,
		Talys calculations and experimental data. JOUR NIMBE 269 1963

¹⁰²Rh **2011DI10** NUCLEAR REACTIONS ¹⁰³Rh(d, X)¹⁰⁰Pd / ¹⁰¹Pd / ¹⁰³Pd / ¹⁰⁰Rh / ¹⁰¹Rh / ¹⁰²Rh / ¹⁰³Ru, E<40 MeV; measured reaction products, E γ , I γ ; deduced σ , yields. Comparison with ALICE-IPPE, EMPIRE-II, Talys calculations and experimental data. JOUR NIMBE 269 1963

A=103

¹⁰³ Ru 2011AD18 vibrational, rotational bands. CONF Tsukuba(Nuclear Physics Trends Proc.P253,Zhu NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 heV. 14, 25, 50, 100, 200 MeV; measured fiscien products adduced	
¹⁰³ Ru 2011AD18 Proc.P253,Zhu NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 heV. 14, 25, 50, 100, 200 MeV; measured figure products, deduced	3)
¹⁰³ Ru 2011AD18 NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, E γ , I γ . ^{85m} Kr, ⁹³ Y ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 heV. 14, 25, 50, 100, 200 MeV; measured fastion products, deduced	/
E=1.E-10-1.E3 MeV; measured reaction products, Eγ, Iγ. ^{85m} Kr, ⁹³ Y ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 heV, 14, 25, 50, 100, 200 MeV; measured fastion products, deduced	
²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, $T_{1/2}$. ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 heV. 14, 25, 50, 100, 200 MeV; measured fastion products deduced	,
2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 heV. 14, 25, 50, 100, 200 MeV; measured figure products deduced	
LAV 14 25 50 100 200 MaV, measured faster products deduced	
KEV. 14. ZO. OU. TUU, ZUU MEV. IDEASUTED INSSION DIOUNCIS, DECIDEED	
mass distribution: calculated mass distribution at two lowest energies	
using TALYS. Neutron flux calculated using MCNPX with LA150 cross	35
section library. JOUR ZAANE 47 85	
2011DI10 NUCLEAR REACTIONS ¹⁰³ Rh(d, X) ¹⁰⁰ Pd / ¹⁰¹ Pd / ¹⁰³ Pd / ¹⁰⁰ Rh	/
101 Rh / 102 Rh / 103 Ru, E<40 MeV; measured reaction products, E γ ,	'
$I\gamma$; deduced σ , yields. Comparison with ALICE-IPPE, EMPIRE-II,	
Talys calculations and experimental data. JOUR NIMBE 269 1963	
¹⁰³ Pd 2011DI10 NUCLEAR REACTIONS ¹⁰³ Rh(d, X) ¹⁰⁰ Pd / ¹⁰¹ Pd / ¹⁰³ Pd / ¹⁰⁰ Rh	/
101 Rh / 102 Rh / 103 Ru, E<40 MeV; measured reaction products, E γ ,	
I γ ; deduced σ , yields. Comparison with ALICE-IPPE, EMPIRE-II,	
Talys calculations and experimental data. JOUR NIMBE 269 1963	
¹⁰³ Ag 2011DI11 NUCLEAR REACTIONS ^{102,104} Pd(p, γ), ¹⁰⁵ Pd(p, n), E=2.75-9 MeV	;
measured E γ , I γ , total cross sections. ¹⁰⁴ Pd(p, n), ¹⁰⁵ Pd(p, γ) ^{106m} Ag	,
100 Pd(p, n) 100m Ag, 110 Pd(p, n) 110m Ag, E=2.75-9 MeV; measured E γ ,	
1γ , partial cross sections; deduced S factors. Activation method.	
Relevant cross sections measured close to the astrophysical Gamow	,
window of the γ process. Comparison with previous measurements and	đ
theoretical predictions from Hauser-Feshbach model	
103Cd = 00147747 = NUCLEAD DEACTIONS 94.96.98Mc(12C, 2n) = 50 MeV measured	
Ev. Let $\alpha(t)$ half lives $103.105.107$ Cd; deduced levels I π	
B(M1) $B(F2)$ Comparison with systematics of $B(M1)$ and $B(F2)$	
D(M1), $D(D2)$. Comparison with systematics of $D(M1)$ and $D(D2)values for \Delta -102.112 Cd and for Z -40.50 N=54.74 nuclei IOUR$	
PRVCA 84 014324	

A = 104

¹⁰⁴Pd **2010WEZZ** NUCLEAR REACTIONS ¹⁰³Rh(p, γ), E=2.0, 3.0 MeV; measured E γ , I γ , $\gamma\gamma$ -coin, En, In, I α . Cross section to be extracted. CONF Heidelberg (NIC XI) Proc, P248, Weigand

KEYNUMBERS AND KEYWORDS

A=104 (continued)

	2011DI11	RADIOACTIVITY 104 Ag(EC); measured precise I γ . JOUR PRVCA
		84 015802
^{104}Ag	2011BE29	NUCLEAR REACTIONS 107 Ag(γ , 3n), 109 Ag(γ , 5n), 113 In(γ , 3n),
		¹¹⁵ In(γ , 5n), (γ , 7n), E=32-84 MeV; measured E γ , I γ ; deduced yields,
		isomeric ratios. Comparison with TALYS code calculations. JOUR
		BRSPE 75 941
	2011DI11	NUCLEAR REACTIONS 102,104 Pd(p, γ), 105 Pd(p, n), E=2.75-9 MeV;
		measured $E\gamma$, $I\gamma$, total cross sections. ¹⁰⁴ Pd(p, n), ¹⁰⁵ Pd(p, γ) ^{106m} Ag,
		106 Pd(p, n) 106m Ag, 110 Pd(p, n) 110m Ag, E=2.75-9 MeV; measured E γ ,
		$I\gamma$, partial cross sections; deduced S factors. Activation method.
		Relevant cross sections measured close to the astrophysical Gamow
		window of the γ process. Comparison with previous measurements and
		theoretical predictions from Hauser-Feshbach model
		"NON-SMOKER". JOUR PRVCA 84 015802
	2011DI11	RADIOACTIVITY 104 Ag(EC); measured precise I γ . JOUR PRVCA
		84 015802

$^{105}\mathrm{Mo}$	2010ZHZT	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹⁰³ Nb, ^{105,106} Mo, ^{107,108} Tc, ^{110,112} Ru deduced levels, J, π , collective
		vibrational, rotational bands. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P253,Zhu
105 Rh	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. 85m Kr, 93 Y,
		⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce,
		²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, $T_{1/2}$. ²³² Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
105 .		section library. JOUR ZAANE 47 85
^{105}Ag	2011DI11	NUCLEAR REACTIONS 102,104 Pd(p, γ), 105 Pd(p, n), E=2.75-9 MeV; measured E γ , I γ , total cross sections. 104 Pd(p, n), 105 Pd(p, γ) 106m Ag,
		$^{106}Pd(p, n)^{106m}Ag$, $^{110}Pd(p, n)^{110m}Ag$, E=2.75-9 MeV; measured E γ ,
		$I\gamma$, partial cross sections; deduced S factors. Activation method.
		Relevant cross sections measured close to the astrophysical Gamow
		window of the γ process. Comparison with previous measurements and
		theoretical predictions from Hauser-Feshbach model
		"NON-SMOKER". JOUR PRVCA 84 015802
$^{105}\mathrm{Cd}$	2011KI17	NUCLEAR REACTIONS 94,96,98 Mo(12 C, 3n), E=50 MeV; measured
		$E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, $\gamma\gamma(t)$, half-lives. ^{103,105,107} Cd; deduced levels, J, π ,
		B(M1), $B(E2)$. Comparison with systematics of $B(M1)$ and $B(E2)$
		values for A=102-112 Cd, and for Z=40-50, N=54-74 nuclei. JOUR
		PRVCA 84 014324

$^{106}\mathrm{Mo}$	2010ZHZT	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹⁰³ Nb, ^{105,106} Mo, ^{107,108} Tc, ^{110,112} Ru deduced levels, J, π , collective
		vibrational, rotational bands. CONF Tsukuba(Nuclear Physics Trends) Proc.P253,Zhu
¹⁰⁶ Pd	2011RU10	RADIOACTIVITY ¹⁰⁶ Cd($2\beta^+$), (β^+ EC), (2EC); measured decay products, E γ , I γ , X-rays; deduced T _{1/2} limits. TGV-2 multidetector germanium spectrometer _IOUB_BRSPE 75 879
¹⁰⁶ Ag	2010ZHZR	NUCLEAR REACTIONS ¹⁰⁰ Mo(¹¹ B, 5n), E=60 MeV; measured E γ , I γ , $\gamma\gamma$ -coin. ¹⁰⁶ Ag deduced levels, J, π , positive parity bands, rotational band, yrast, yrare, B(M1) / B(E2). ¹²⁴ Sn(¹¹ B, 5n), E=65 MeV; measured E γ , I γ , $\gamma\gamma$ -coin. ¹³⁰ Cs deduced levels, J, π , T _{1/2} , yrast, B(E2), B(M1). ¹⁵² Sm(²⁸ Si, 4n), E=140 MeV; measured E γ , I γ , $\gamma\gamma$ -coin. ¹⁷⁶ Os deduced levels, J, π , T _{1/2} , quadrupole moment, deformation, B(E2); calculated quadrupole moment using U(5), X(5), SU(3). CONF Tsukuba(Nuclear Physics Trends) Proc.P363,Zhu
	2011DI11	NUCLEAR REACTIONS ^{102,104} Pd(p, γ), ¹⁰⁵ Pd(p, n), E=2.75-9 MeV; measured E γ , I γ , total cross sections. ¹⁰⁴ Pd(p, n), ¹⁰⁵ Pd(p, γ) ^{106m} Ag, ¹⁰⁶ Pd(p, n), ^{106m} Ag, ¹⁰⁶ Pd(p, n), ^{106m} Ag, E=2.75-9 MeV; measured E γ , I γ , partial cross sections; deduced S factors. Activation method. Relevant cross sections measured close to the astrophysical Gamow window of the γ process. Comparison with previous measurements and theoretical predictions from Hauser-Feshbach model "NON-SMOKER". JOUR PRVCA 84 015802
¹⁰⁶ Cd	2010BEZI	RADIOACTIVITY ¹⁰⁶ Cd(2 β); measured E β , I β , E γ , I γ ; deduced T _{1/2} limits for (0 ν 2EC), (2 $\nu\beta^+$ EC), (2 $\nu2\beta^+$), (0 $\nu2$ K), (0 ν LK); calculated possible resonant enhancement of (0 ν 2EC) within QRPA. Gran Sasso Natl Lab. CONF Sinaia (Exotic Nucei and Nuc.Part.Astroph.III)Proc.P354,Belli
	2011KI15	NUCLEAR REACTIONS ^{110,116} Cd(α , α'), E=16.4, 19.46 MeV; measured E α , yields and $\sigma(\theta)$. ¹⁰⁶ Cd, ¹¹² Sn(α , α'), E(cm)=15.6, 18.9 MeV; analyzed $\sigma(\theta)$ data. ^{110,116} Cd(α , α), E=8-20 MeV; analyzed $\sigma(E)$ data. Optical model analysis and predictions. Global parameterization of the α -nucleus potential used in astrophysical p-process calculations. JOUR PRVCA 83 065807
	2011RU10	RADIOACTIVITY ¹⁰⁶ Cd($2\beta^+$), (β^+ EC), (2EC); measured decay products, E γ , I γ , X-rays; deduced T _{1/2} limits. TGV-2 multidetector germanium spectrometer. JOUR BRSPE 75 879

A = 107

$^{107}\mathrm{Tc}$	2010ZHZT	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹⁰³ Nb,
		105,106 Mo, 107,108 Tc, 110,112 Ru deduced levels, J, π , collective
		vibrational, rotational bands. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P253,Zhu

A=107 (continued)

¹⁰⁷Cd **2011KI17** NUCLEAR REACTIONS 94,96,98 Mo(12 C, 3n), E=50 MeV; measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(t)$, half-lives. 103,105,107 Cd; deduced levels, J, π , B(M1), B(E2). Comparison with systematics of B(M1) and B(E2) values for A=102-112 Cd, and for Z=40-50, N=54-74 nuclei. JOUR PRVCA 84 014324

A = 108

$^{108}\mathrm{Tc}$	2010ZHZT	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹⁰³ Nb, ^{105,106} Mo, ^{107,108} Tc, ^{110,112} Ru deduced levels, J, π , collective
		vibrational, rotational bands. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P253,Zhu
108 In	2011BE29	NUCLEAR REACTIONS $^{107}Ag(\gamma, 3n)$, $^{109}Ag(\gamma, 5n)$, $^{113}In(\gamma, 3n)$,
		¹¹⁵ In(γ , 5n), (γ , 7n), E=32-84 MeV; measured E γ , I γ ; deduced yields,
		isomeric ratios. Comparison with TALYS code calculations. JOUR
		BRSPE 75 941

A = 109

¹⁰⁹I **2011PR12** NUCLEAR REACTIONS ⁵⁸Ni(⁵⁴Fe, 2np)¹⁰⁹I, E=206 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced σ , lifetime or $T_{1/2}$ for the first excited state. Comparison with theoretical calculations, Recoil distance Doppler-shift method. JOUR PYLBB 704 118

$^{110}\mathrm{Ru}$	2010ZHZT	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹⁰³ Nb, ^{105,106} Mo, ^{107,108} Tc, ^{110,112} Ru deduced levels, J, π , collective
		vibrational, rotational bands. CONF Tsukuba (Nuclear Physics Trends) $$
		Proc.P253,Zhu
^{110}Ag	2011DI11	NUCLEAR REACTIONS 102,104 Pd(p, γ), 105 Pd(p, n), E=2.75-9 MeV;
		measured $E\gamma$, $I\gamma$, total cross sections. ¹⁰⁴ Pd(p, n), ¹⁰⁵ Pd(p, γ) ^{106m} Ag,
		106 Pd(p, n) 106m Ag, 110 Pd(p, n) 110m Ag, E=2.75-9 MeV; measured E γ ,
		$I\gamma$, partial cross sections; deduced S factors. Activation method.
		Relevant cross sections measured close to the astrophysical Gamow
		window of the γ process. Comparison with previous measurements and
		theoretical predictions from Hauser-Feshbach model
		"NON-SMOKER". JOUR PRVCA 84 015802
$^{110}\mathrm{Cd}$	2011KI15	NUCLEAR REACTIONS ^{110,116} Cd(α , α '), E=16.4, 19.46 MeV;
		measured E α , yields and $\sigma(\theta)$. ¹⁰⁶ Cd, ¹¹² Sn(α, α'), E(cm)=15.6, 18.9
		MeV; analyzed $\sigma(\theta)$ data. ^{110,116} Cd(α, α), E=8-20 MeV; analyzed
		$\sigma(E)$ data. Optical model analysis and predictions. Global
		parameterization of the α -nucleus potential used in astrophysical
		p-process calculations. JOUR PRVCA 83 065807

A=110 (continued)

¹¹⁰In 2011BE29 NUCLEAR REACTIONS ¹⁰⁷Ag(γ , 3n), ¹⁰⁹Ag(γ , 5n), ¹¹³In(γ , 3n), ¹¹⁵In(γ , 5n), (γ , 7n), E=32-84 MeV; measured E γ , I γ ; deduced yields, isomeric ratios. Comparison with TALYS code calculations. JOUR BRSPE 75 941

A = 111

No references found

A = 112

$^{112}\mathrm{Ru}$	2010ZHZT	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹⁰³ Nb, ^{105,106} Mo, ^{107,108} Tc, ^{110,112} Ru deduced levels, J, π , collective vibrational, rotational bands. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P253,Zhu
^{112}Sn	2010FUZR	NUCLEAR REACTIONS ^{112,114,116,118,120,122,124} Sn(α, α'), E=400
		MeV; measured reaction products; deduced GM resonance strength
		distributions, GM resonance parameters, asymmetry term of nuclear
		compressibility. CONF Kobe(Tours Nuc.Phys.and Astroph.VII)
		Proc.P274,Fujiwara
	2011KI15	NUCLEAR REACTIONS ^{110,116} Cd(α, α'), E=16.4, 19.46 MeV;
		measured E α , yields and $\sigma(\theta)$. ¹⁰⁶ Cd, ¹¹² Sn(α , α'), E(cm)=15.6, 18.9
		MeV; analyzed $\sigma(\theta)$ data. ^{110,116} Cd(α, α), E=8-20 MeV; analyzed
		$\sigma(E)$ data. Optical model analysis and predictions. Global
		parameterization of the α -nucleus potential used in astrophysical
		p-process calculations. JOUR PRVCA 83 065807
	2011WA15	NUCLEAR MOMENTS ^{112,114,116,122,124} Sn; measured g factors of the
		first $2+$, $4+$ and $3-$ states by transient field technique in Coulomb
		excitation in inverse kinematics. Comparisons with shell-model and
		other theoretical calculations. JOUR PRVCA 84 014319
	2011WA15	NUCLEAR REACTIONS ${}^{12}C({}^{112}Sn, {}^{112}Sn'), ({}^{114}Sn, {}^{114}Sn'), ({}^{116}Sn, {}^{116}Sn, {}^{116}Sn')$
		1 Sil, $E=4 MeV / nucleon; C(Sil, Sil), (Sil, Sil), E=3.8$
		angles. 112,114,116,122,124 Sn; deduced g-factors, configurations.
		Comparison with RQRPA, QRPA, and shell-model calculations.
		$^{12}C(^{124}Sn, X)^{130}Xe / ^{120}Te / ^{128}Te, E=3.8 \text{ MeV} / \text{nucleon; measured}$
		$E\gamma$, $I\gamma$. JOUR PRVCA 84 014319

A=113

¹¹³Cd **2010HAZO** NUCLEAR REACTIONS ¹¹²Cd(n, γ), E=thermal, reactor; measured E γ , I γ , σ using Cd-difference method. ¹¹³Cd deduced isomeric transition, resonance integral; calculated σ , isomer σ using Hauser-Feshbach. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P225,Hayakawa

A = 114

¹¹⁴ Rh	2011LI25	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, fission yields ratios using the Gammasphere array. ¹¹⁴ Rh; deduced levels, J, π , rotational bands, signature inversion, configurations. Comparison with Triaxial Projected Shell Model calculations. Systematics of negative-parity yrast bands of odd-odd Rh nuclei with A=104-114. IOUR PRVCA 83.064310
¹¹⁴ Sn	2010FUZR	NUCLEAR REACTIONS ^{112,114,116,118,120,122,124} Sn(α , α '), E=400 MeV; measured reaction products; deduced GM resonance strength distributions, GM resonance parameters, asymmetry term of nuclear compressibility. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P274.Fuijwara
	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ, σ(E, θ), time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0; ⁴⁸ Ca(n, n), E=7.97-16.9 MeV; ⁵⁴ Ca(n, n), E=5.5-26.0 MeV; ^{58,60} Ni(n, n), E=4.5-24.0 MeV; ⁹² Mo(n, n), E=7.0-30.4 MeV; ^{116,118} Sn(n, n), E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), E=9.94-16.91 MeV; ¹²⁴ Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), E=4.0-185.0 MeV; ⁵⁰ Ti(p, p), E=6.0-65.0 MeV; ⁵² Cr(p, p), E=10.77-39.9 MeV; ⁵⁴ Fe, ⁶⁴ Ni(p, p), E=9.69-65.0 MeV; ⁵² Ni(p, p), E=7.0-192.0 MeV; ⁶⁰ Ni(p, p), E=7.0-178.0 MeV; ⁶² Ni(p, p), E=8.02-156.0 MeV; ⁹⁰ Zr(p, p), E=5.57-185.0 MeV; ⁹² Mo(p, p), E=12.5-49.45 MeV; ¹¹⁴ Sn(p, p), E=30.4 MeV; ¹¹⁶ Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124} Sn(p, p), E=16.0-49.35 MeV; ¹²⁰ Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸ Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, σ (E, θ), single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR PRVCA 83 064605
	2011WA15	NUCLEAR MOMENTS ^{112,114,116,122,124} Sn; measured g factors of the first 2+, 4+ and 3- states by transient field technique in Coulomb excitation in inverse kinematics. Comparisons with shell-model and other theoretical calculations. JOUR PRVCA 84 014319
	2011WA15	NUCLEAR REACTIONS ¹² C(¹¹² Sn, ¹¹² Sn'), (¹¹⁴ Sn, ¹¹⁴ Sn'), (¹¹⁶ Sn, ¹¹⁶ Sn'), E=4 MeV / nucleon; ¹² C(¹²² Sn, ¹²² Sn'), (¹²⁴ Sn, ¹²⁴ Sn'), E=3.8 MeV / nucleon; measured $E\gamma$, $I\gamma$, (¹² C) γ -coin, (¹² C) $\gamma\gamma(\theta)$, precession angles. ^{112,114,116,122,124} Sn; deduced g-factors, configurations. Comparison with RQRPA, QRPA, and shell-model calculations. ¹² C(¹²⁴ Sn, X) ¹³⁰ Xe / ¹²⁶ Te / ¹²⁸ Te, E=3.8 MeV / nucleon; measured $E\gamma$, $I\gamma$. JOUR PRVCA 84 014319

A = 115

115 Ru	2011RI07	RADIOACTIVITY ¹¹⁵ Ru(β^{-})[from U(p, f), E=25 MeV, selected by
		JYFLTRAP]; measured $E\gamma$, $I\gamma$, $E\beta$, $I\beta$, X-rays, $\beta\gamma$ -coin. ¹¹⁵ Rh
		deduced levels, J, π , level log ft, level β -feeding, ICC(K) for 80.1 keV
		transition, rotational constants for the K=1 / 2 intruder band. $^{115}\mathrm{Ru}$
		deduced ground state J, π , β -strength distribution.
		Penning-trap-assisted β and γ spectroscopy, IGISOL facility.
		Comparison with near-by isotopes of Ru and Rh. JOUR ZAANE 47 97

KEYNUMBERS AND KEYWORDS

A=115 (continued)

¹¹⁵ Rh	2011LI29	RADIOACTIVITY ²⁵² Cf(SF); measured E γ , I γ , $\gamma\gamma$ -coin using Gammasphere array. ¹¹⁵ Rh; deduced levels, J, π , bands, moment of inertia, signature splitting, fission yield ratios. Comparison with Rotor plus particle model calculations. Systematics of level energies, signature splittings and moments of inertia plots of ^{107,109,111,113,115} Rh nuclei. JOUR PRVCA 84 014304
	2011RI07	RADIOACTIVITY ¹¹⁵ Ru(β^{-})[from U(p, f), E=25 MeV, selected by JYFLTRAP]; measured E γ , I γ , E β , I β , X-rays, $\beta\gamma$ -coin. ¹¹⁵ Rh deduced levels, J, π , level log ft, level β -feeding, ICC(K) for 80.1 keV transition, rotational constants for the K=1 / 2 intruder band. ¹¹⁵ Ru deduced ground state J, π , β -strength distribution.
¹¹⁵ Sn	2010KAZJ	Penning-trap-assisted β and γ spectroscopy, IGISOL facility. Comparison with near-by isotopes of Ru and Rh. JOUR ZAANE 47 97 NUCLEAR REACTIONS ^{116,117} Sn(γ , n), E=7-12.5 MeV; measured En, In; calculated σ using statistical model and different γ -ray E1 strength functions; deduced σ using Taylor expansion method, E1 γ strength, radiative neutron capture σ . Comparison with other data. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P234,Kamata

A = 116

$^{116}\mathrm{Cd}$	2011JA07	RADIOACTIVITY ¹¹⁶ Cd, ¹³⁰ Te($2\beta^{-}$); measured E γ , I γ , E β , I β ; deduced transitions to quotied states T — limits – IOUP NPRSE 217.47
	2011KI15	NUCLEAR REACTIONS ^{110,116} Cd(α, α'), E=16.4, 19.46 MeV;
		measured E α , yields and $\sigma(\theta)$. ¹⁰⁶ Cd, ¹¹² Sn(α, α'), E(cm)=15.6, 18.9
		MeV; analyzed $\sigma(\theta)$ data. ^{110,116} Cd(α, α), E=8-20 MeV; analyzed
		$\sigma(E)$ data. Optical model analysis and predictions. Global
		parameterization of the α -nucleus potential used in astrophysical
		p-process calculations. JOUR PRVCA 83 065807
	2011RA24	ATOMIC MASSES ¹¹⁶ Cd, ¹³⁰ Te; measured cyclotron frequencies;
		deduced double beta decay Q-values, mass differences. JOUR PYLBB
		703 412
	2011RA24	RADIOACTIVITY ¹¹⁶ Cd, ¹³⁰ Te($2\beta^{-}$); calculated nuclear matrix
110		elements. JOUR PYLBB 703 412
^{116}Sn	2010FUZR	NUCLEAR REACTIONS ^{112,114,116,118,120,122,124} Sn(α, α'), E=400
		MeV; measured reaction products; deduced GM resonance strength
		distributions, GM resonance parameters, asymmetry term of nuclear
		compressibility. CONF Kobe(Tours Nuc.Phys.and Astroph.VII)
		Proc.P274,Fujiwara
	2010KAZJ	NUCLEAR REACTIONS 116,117 Sn(γ , n), E=7-12.5 MeV; measured
		En, In; calculated σ using statistical model and different γ -ray E1
		strength functions; deduced σ using Taylor expansion method, E1 γ
		strength, radiative neutron capture σ . Comparison with other data.
		CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P234.Kamata
	2011JA07	RADIOACTIVITY ¹¹⁶ Cd, ¹³⁰ Te($2\beta^{-}$); measured E γ , I γ , E β , I β ;
		deduced transitions to excited states $T_{1/2}$ limits. JOUR NPBSE 217 47

A=116 (continued)

	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , σ (E, θ), time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0; ⁴⁸ Ca(n, n), E=7.97-16.9 MeV; ⁵⁴ Ca(n, n), E=5.5-26.0 MeV; ^{58,60} Ni(n, n), E=4.5-24.0 MeV; ⁹² Mo(n, n), E=7.0-30.4 MeV; ^{116,118} Sn(n, n), E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), E=9.94-16.91 MeV; ¹²⁴ Sn(n, n), E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), E=4.0-185.0 MeV; ⁵⁰ Ti(p, p), E=6.0-65.0 MeV; ⁵² Cr(p, p), E=10.77-39.9 MeV; ⁵⁴ Fe, ⁶⁴ Ni(p, p), E=9.69-65.0 MeV; ⁵⁸ Ni(p, p), E=7.0-192.0 MeV; ⁶⁰ Ni(p, p), E=7.0-178.0 MeV; ⁶² Ni(p, p), E=12.5-49.45 MeV; ¹¹⁴ Sn(p, p),
		E=30.4 MeV; ¹¹⁶ Sn(p, p), E=16.0-61.4 MeV; ^{118,122,124} Sn(p, p), E=16.0-49.35 MeV; ¹²⁰ Sn(p, p), E=9.8-156.0 MeV; ²⁰⁸ Pb(p, p), E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR
		PRVCA 83 064605
	2011RA24	RADIOACTIVITY ¹¹⁶ Cd, ¹³⁰ Te($2\beta^{-}$); calculated nuclear matrix elements IOUR PVLBB 703 412
	2011WA15	NUCLEAR MOMENTS 112,114,116,122,124 Sn; measured g factors of the first 2+, 4+ and 3- states by transient field technique in Coulomb excitation in inverse kinematics. Comparisons with shell-model and other theoretical calculations. JOUR PRVCA 84 014310
	2011WA15	NUCLEAR REACTIONS ¹² C(¹¹² Sn, ¹¹² Sn'), (¹¹⁴ Sn, ¹¹⁴ Sn'), (¹¹⁶ Sn, ¹¹⁶ Sn'), E=4 MeV / nucleon; ¹² C(¹²² Sn, ¹²² Sn'), (¹²⁴ Sn, ¹²⁴ Sn'), E=3.8 MeV / nucleon; measured E γ , I γ , (¹² C) γ -coin, (¹² C) $\gamma\gamma(\theta)$, precession angles. ^{112,114,116,122,124} Sn; deduced g-factors, configurations. Comparison with RQRPA, QRPA, and shell-model calculations.
¹¹⁶ Ba	2011LI28	¹² C(¹²⁴ Sn, X) ¹³⁰ Xe / ¹²⁶ Te / ¹²⁸ Te, E=3.8 MeV / nucleon; measured $E\gamma$, $I\gamma$. JOUR PRVCA 84 014319 RADIOACTIVITY ¹¹⁷ La(p) [from ⁶⁴ Zn(⁵⁸ Ni, 4np), E=305 MeV]; measured reaction products, $E\gamma$, $I\gamma$; deduced ground-state proton decay, Q-value, $T_{1/2}$, prompt γ -rays, no evidence of isomeric state.
		Comparison with theoretical predictions. JOUR PYLBB 702 24 $$

A = 117

¹¹⁷La **2011LI28** RADIOACTIVITY ¹¹⁷La(p) [from ⁶⁴Zn(⁵⁸Ni, 4np), E=305 MeV]; measured reaction products, $E\gamma$, $I\gamma$; deduced ground-state proton decay, Q-value, $T_{1/2}$, prompt γ -rays, no evidence of isomeric state. Comparison with theoretical predictions. JOUR PYLBB 702 24

A = 118

$^{118}\mathrm{Sn}$	2010FUZR	NUCLEAR REACTIONS 112,114,116,118,120,122,124 Sn(α, α'), E=400
		MeV; measured reaction products; deduced GM resonance strength
		distributions, GM resonance parameters, asymmetry term of nuclear
		compressibility. CONF Kobe(Tours Nuc.Phys.and Astroph.VII)
		Proc.P274,Fujiwara
	2011MU10	NUCLEAR REACTIONS 40,48 Ca(n, n), E=11.9, 16.9 MeV; measured
		$E(n)$, $I(n)$, σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0;
		48 Ca(n, n), E=7.97-16.9 MeV; 54 Ca(n, n), E=5.5-26.0 MeV; 58,60 Ni(n,
		n), E=4.5-24.0 MeV; 92 Mo(n, n), E=7.0-30.4 MeV; 116,118 Sn(n, n),
		$E=9.95-24.0 \text{ MeV}; {}^{120}Sn(n, n), E=9.94-16.91 \text{ MeV}; {}^{124}Sn(n, n),$
		$E=11.0-24.0 \text{ MeV}; {}^{208}Pb(n, n), E=4.0-185.0 \text{ MeV}; {}^{50}Ti(p, p),$
		$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
		$E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
		$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
		$E=5.57-185.0 \text{ MeV}; {}^{92}Mo(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}Sn(p, p),$
		$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
		$E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$
		E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		levels, spectroscopic factors, occupation probabilities, mass dependence
		on cross section. Dispersal optical model (DOM) analysis. JOUR
		PRVCA 83 064605
$^{118}\mathrm{Te}$	2011FI06	NUCLEAR REACTIONS ¹¹⁵ Sn(α , γ) ¹¹⁹ Te, ¹¹⁵ Sn(α , n) ¹¹⁸ Te, ¹¹⁶ Sn(α ,
		n) ¹¹⁹ Te, E(cm)=9.3-14.8 MeV; 48 Ti(α , n) ⁵¹ Cr, E not given; measured
		$E\gamma$, $I\gamma$, cross sections. Comparison with previous data and predictions
		of statistical model calculations. JOUR PRVCA 83 064609

A = 119

¹¹⁹Te **2011FI06** NUCLEAR REACTIONS ¹¹⁵Sn $(\alpha, \gamma)^{119}$ Te, ¹¹⁵Sn $(\alpha, n)^{118}$ Te, ¹¹⁶Sn $(\alpha, n)^{119}$ Te, ¹¹⁶Sn

A=120

¹²⁰Sn **2010FUZR** NUCLEAR REACTIONS ^{112,114,116,118,120,122,124}Sn(α , α '), E=400 MeV; measured reaction products; deduced GM resonance strength distributions, GM resonance parameters, asymmetry term of nuclear compressibility. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P274,Fujiwara

A=120 (continued)

2011MU10 NUCLEAR REACTIONS ^{40,48}Ca(n, n), E=11.9, 16.9 MeV; measured E(n), I(n), σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰Ca(n, n), E=9.9-85.0; ⁴⁸Ca(n, n), E=7.97-16.9 MeV; ⁵⁴Ca(n, n), E=5.5-26.0 MeV; ^{58,60}Ni(n, n), E=4.5-24.0 MeV; ${}^{92}Mo(n, n)$, E=7.0-30.4 MeV; ${}^{116,118}Sn(n, n)$, $E=9.95-24.0 \text{ MeV}; {}^{120}Sn(n, n), E=9.94-16.91 \text{ MeV}; {}^{124}Sn(n, n),$ E=11.0-24.0 MeV; ²⁰⁸Pb(n, n), E=4.0-185.0 MeV; ⁵⁰Ti(p, p), $E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$ $E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$ $E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$ $E=5.57-185.0 \text{ MeV}; {}^{92}\text{Mo}(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}\text{Sn}(p, p),$ $E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$ $E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$ E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR PRVCA 83 064605

A = 121

$^{121}\mathrm{Sb}$	2010WAZX	NUCLEAR REACTIONS Yb, Lu, W, $Os(^{136}Xe, X)$, $E\approx 6.0-6.2 \text{ MeV} / $
		nucleon; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using GAMMASPHERE. ¹²⁰ Sn(⁷ Li,
		$2n\alpha$), E=58 MeV; ¹²² Sn(⁷ Li, 2n α), E=54 MeV; measured E γ , I $\gamma(\theta)$,
		$\gamma\gamma$ -coin using CAESAR and LEPS. ^{121,123} Sb deduced energy, J, π ,
		isomeric transition $T_{1/2}$. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P84,Watanabe
¹²¹ I	2011AL17	NUCLEAR REACTIONS Te(p, xn) ¹²¹ I / 123 I / 124 I / 126 I / 130 I,
		E=18 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced yields,
		activities, method feasibility, JOUR JLCRD 54 S250

A = 122

¹²²Sn 2010FUZR NUCLEAR REACTIONS ^{112,114,116,118,120,122,124}Sn(α , α '), E=400 MeV; measured reaction products; deduced GM resonance strength distributions, GM resonance parameters, asymmetry term of nuclear compressibility. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P274,Fujiwara

$A{=}122$ (continued)

2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured
	$E(n)$, $I(n)$, σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0;
	48 Ca(n, n), E=7.97-16.9 MeV; 54 Ca(n, n), E=5.5-26.0 MeV; 58,60 Ni(n,
	n), E=4.5-24.0 MeV: 92 Mo(n, n), E=7.0-30.4 MeV: 116,118 Sn(n, n),
	E=9.95-24.0 MeV; ¹²⁰ Sn(n, n), $E=9.94-16.91 MeV$; ¹²⁴ Sn(n, n),
	E=11.0-24.0 MeV; ²⁰⁸ Pb(n, n), $E=4.0-185.0 MeV$; ⁵⁰ Ti(p, p),
	$E = 6.0-65.0 \text{ MeV}$; ${}^{52}Cr(p, p)$, $E = 10.77-39.9 \text{ MeV}$; ${}^{54}Fe$, ${}^{64}Ni(p, p)$.
	$E = 9.69.65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E = 7.0.192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
	$E = 7.0-178.0 \text{ MeV} \cdot {}^{62}\text{Ni}(p, p), E = 8.02-156.0 \text{ MeV} \cdot {}^{90}\text{Zr}(p, p),$
	$E = 5.57-185.0 \text{ MeV} \cdot {}^{92}\text{Mo(p, p)}, E = 12.5-49.45 \text{ MeV} \cdot {}^{114}\text{Sn(p, p)}, E = 12.5-49.45 \text{ MeV} \cdot {}^{114}\text{Sn(p, p)}$
	$E = 30.4 \text{ MeV} \cdot \frac{116}{2} \text{Sn}(p, p), E = 16.0-61.4 \text{ MeV} \cdot \frac{118,122,124}{2} \text{Sn}(p, p), E = 16.0-61.4 \text{ MeV} \cdot \frac{118,122,124}{2} \text{Sn}(p, p)$
	E=30.1 MeV, $Si(p, p), E=10.0 OI.1 MeV$, $Si(p, p), E=16.0 OI.1 MeV$, $Si(p, p), E=0.0 OI.1 MeV$, $Si(p, p)$
	$E=0.0.2000 \text{ MeV}$; analyzed total cross sections $\sigma(E, \theta)$ single-particle
	levels spectroscopic factors occupation probabilities mass dependence
	on cross section Dispersal optical model (DOM) analysis IOUR
	PRVCA 83 064605
2011WA15	NUCLEAR MOMENTS ^{112,114,116,122,124} Sn measured a factors of the
ZOIIWAID	first $2 \pm 4 \pm$ and $3 \pm$ states by transient field technique in Coulomb
	avaitation in inverse kinematics. Comparisons with shell model and
	other theoretical calculations IOUR PRVCA 84 014210
201111115	NILCI EAD DEACTIONS $12C(112c_n) \cdot (114c_n) \cdot (114c_n)$
2011WA15	$116\text{Sp}'$ $E=4 \text{ MeV} / \text{pueloon} \cdot 12C(122\text{Sp} \cdot 122\text{Sp}') (124\text{Sp} \cdot 124\text{Sp}') E=3.8$
	$M_{0}V$ / nucleon, maggined Fe. In $(12C)$ as $(12C)$ as $(12C)$ as $(12C)$
	112.114.116.122.124 Sn deduced a feators configurations
	Comparison with DODDA ODDA and shall model coloulations.
	Comparison with RQRPA, QRPA, and shell-model calculations. 12 Comparison = 12
	U($$ Sn, A) $$ Xe / $$ Ye / $$ Ye / $$ Ye = 3.8 MeV / nucleon; measured
	$E\gamma$, $I\gamma$. JOUR PRVUA 84 014319

A=123

$^{123}\mathrm{Sb}$	2010WAZX	NUCLEAR REACTIONS Yb, Lu, W, Os(136 Xe, X), E \approx 6.0-6.2 MeV /
		nucleon; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using GAMMASPHERE. ¹²⁰ Sn(⁷ Li,
		$2n\alpha$), E=58 MeV; ¹²² Sn(⁷ Li, 2n α), E=54 MeV; measured E γ , I $\gamma(\theta)$,
		$\gamma\gamma$ -coin using CAESAR and LEPS. ^{121,123} Sb deduced energy, J, π ,
		isomeric transition $T_{1/2}$. CONF Tsukuba(Nuclear Physics Trends)
		Proc.P84,Watanabe
^{123}I	2011AL17	NUCLEAR REACTIONS Te(p, xn) ¹²¹ I / 123 I / 124 I / 126 I / 130 I,
		E=18 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced yields,
		activities, method feasibility. JOUR JLCRD 54 S250

A = 124

¹²⁴Sn **2010FUZR** NUCLEAR REACTIONS ^{112,114,116,118,120,122,124}Sn(α , α '), E=400 MeV; measured reaction products; deduced GM resonance strength distributions, GM resonance parameters, asymmetry term of nuclear compressibility. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P274,Fujiwara

A=124 (continued)

	2011MU10	NUCLEAR REACTIONS ^{40,48} Ca(n, n), E=11.9, 16.9 MeV; measured
		$E(n)$, $I(n)$, σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0;
		48 Ca(n, n), E=7.97-16.9 MeV; 54 Ca(n, n), E=5.5-26.0 MeV; 58,60 Ni(n,
		n), E=4.5-24.0 MeV; 92 Mo(n, n), E=7.0-30.4 MeV; 116,118 Sn(n, n),
		$E=9.95-24.0 \text{ MeV}; {}^{120}Sn(n, n), E=9.94-16.91 \text{ MeV}; {}^{124}Sn(n, n),$
		$E=11.0-24.0 \text{ MeV}; {}^{208}Pb(n, n), E=4.0-185.0 \text{ MeV}; {}^{50}Ti(p, p),$
		$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
		$E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
		$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
		$E=5.57-185.0 \text{ MeV}; {}^{92}Mo(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}Sn(p, p),$
		$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
		$E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$
		E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
		levels, spectroscopic factors, occupation probabilities, mass dependence
		on cross section. Dispersal optical model (DOM) analysis. JOUR
		PRVCA 83 064605
	2011WA15	NUCLEAR MOMENTS ^{112,114,116,122,124} Sn; measured g factors of the
		first 2+, 4+ and 3- states by transient field technique in Coulomb
		excitation in inverse kinematics. Comparisons with shell-model and
		other theoretical calculations. JOUR PRVCA 84 014319
	2011WA15	NUCLEAR REACTIONS ${}^{12}C({}^{112}Sn, {}^{112}Sn')$, $({}^{114}Sn, {}^{114}Sn')$, $({}^{116}Sn, {}^{116}Sn, {}^{116}Sn')$
		¹¹⁶ Sn'), E=4 MeV / nucleon; ${}^{12}C({}^{122}Sn, {}^{122}Sn'), ({}^{124}Sn, {}^{124}Sn'), E=3.8$
		MeV / nucleon; measured $E\gamma$, $I\gamma$, $(^{12}C)\gamma$ -coin, $(^{12}C)\gamma\gamma(\theta)$, precession
		angles. ^{112,114,116,122,124} Sn; deduced g-factors, configurations.
		Comparison with RQRPA, QRPA, and shell-model calculations.
		${}^{12}C({}^{124}Sn, X){}^{130}Xe / {}^{126}Te / {}^{128}Te, E=3.8 MeV / nucleon; measured$
		$E\gamma$, $I\gamma$. JOUR PRVCA 84 014319
124 I	2011AL17	NUCLEAR REACTIONS $Te(p, xn)^{121}I / {}^{123}I / {}^{124}I / {}^{126}I / {}^{130}I$,
		E=18 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced yields,
		activities, method feasibility. JOUR JLCRD 54 S250
124 Xe	2011BR13	RADIOACTIVITY ^{124,126} Cs(EC); measured $E\gamma$, $I\gamma$, X-rays, $E\beta$, $I\beta$;
		deduced possibility of electron capture branching ratio measurement of
101		¹⁰⁰ Tc. Penning trap. JOUR HYIND 199 191
^{124}Cs	2011BR13	RADIOACTIVITY ^{124,126} Cs(EC); measured $E\gamma$, $I\gamma$, X-rays, $E\beta$, $I\beta$;
		deduced possibility of electron capture branching ratio measurement of
		¹⁰⁰ Tc. Penning trap. JOUR HYIND 199 191

A = 125

No references found

A = 126

$^{126}\mathrm{Te}$	2011WA15	NUCLEAR REACTIONS ${}^{12}C({}^{112}Sn, {}^{112}Sn'), ({}^{114}Sn, {}^{114}Sn'), ({}^{116}Sn, {}^{116}Sn, {}^{116$
		¹¹⁶ Sn'), $E=4$ MeV / nucleon; ¹² C(¹²² Sn, ¹²² Sn'), (¹²⁴ Sn, ¹²⁴ Sn'), $E=3.8$
		MeV / nucleon; measured $E\gamma$, $I\gamma$, $(^{12}C)\gamma$ -coin, $(^{12}C)\gamma\gamma(\theta)$, precession
		angles. ^{112,114,116,122,124} Sn; deduced g-factors, configurations.
		Comparison with RQRPA, QRPA, and shell-model calculations.
		$^{12}C(^{124}Sn, X)^{130}Xe / ^{126}Te / ^{128}Te, E=3.8 MeV / nucleon; measured$
		$E\gamma$, $I\gamma$. JOUR PRVCA 84 014319
^{126}I	2011AL17	NUCLEAR REACTIONS Te(p, xn) ¹²¹ I / 123 I / 124 I / 126 I / 130 I,
		E=18 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced yields,
		activities, method feasibility. JOUR JLCRD 54 S250
126 Xe	2011BR13	RADIOACTIVITY ^{124,126} Cs(EC); measured $E\gamma$, $I\gamma$, X-rays, $E\beta$, $I\beta$;
		deduced possibility of electron capture branching ratio measurement of
		¹⁰⁰ Tc. Penning trap. JOUR HYIND 199 191
^{126}Cs	2011BR13	RADIOACTIVITY ^{124,126} Cs(EC); measured $E\gamma$, $I\gamma$, X-rays, $E\beta$, $I\beta$;
		deduced possibility of electron capture branching ratio measurement of
		¹⁰⁰ Tc. Penning trap. JOUR HYIND 199 191
	2011GR12	NUCLEAR REACTIONS 120 Sn $(^{10}$ B, X $)^{126}$ Cs, E=55 MeV; measured
		reaction products, $E\gamma$, $I\gamma$; deduced lifetimes of excited states, $B(M1)$,
		$\mathrm{T}_{1/2}.$ Doppler Shift Attenuation method (DSM). JOUR PYLBB 703 46

A=127

No references found

A=128

$^{128}\mathrm{Te}$	2011WA15	NUCLEAR REACTIONS ${}^{12}C({}^{112}Sn, {}^{112}Sn'), ({}^{114}Sn, {}^{114}Sn'), ({}^{116}Sn, {}^{116}Sn, {}^{116$
		116 Sn'), E=4 MeV / nucleon; 12 C(122 Sn, 122 Sn'), (124 Sn, 124 Sn'), E=3.8
		MeV / nucleon; measured E γ , I γ , (¹² C) γ -coin, (¹² C) $\gamma\gamma(\theta)$, precession
		angles. ^{112,114,116,122,124} Sn; deduced g-factors, configurations.
		Comparison with RQRPA, QRPA, and shell-model calculations.
		$^{12}C(^{124}Sn, X)^{130}Xe / ^{126}Te / ^{128}Te, E=3.8 MeV / nucleon; measured$
		$E\gamma$, $I\gamma$. JOUR PRVCA 84 014319

A = 129

No references found

A = 130

¹³⁰Te 2011AR09 RADIOACTIVITY ¹³⁰Te($2\beta^{-}$); measured decay products, E β , I β ; deduced T_{1/2}, nuclear matrix elements. JOUR PRLTA 107 062504 2011BU07 RADIOACTIVITY ¹³⁰Te($2\beta^{-}$); measured E γ , I γ , E β , I β ; deduced neutrinoless mode T_{1/2} limit. JOUR NPBSE 217 41

A=130 (continued)

	2011JA07	RADIOACTIVITY ¹¹⁶ Cd, ¹³⁰ Te($2\beta^{-}$); measured E γ , I γ , E β , I β ;
		deduced transitions to excited states ${\rm T}_{1/2}$ limits. JOUR NPBSE 217 47
	2011RA24	ATOMIC MASSES ¹¹⁶ Cd, ¹³⁰ Te; measured cyclotron frequencies;
		deduced double beta decay Q-values, mass differences. JOUR PYLBB
	2011RA24	RADIOACTIVITY ¹¹⁰ Cd, ¹³⁰ Te($2\beta^-$); calculated nuclear matrix elements IOUR PYLBB 703 412
^{130}I	2011AL17	NUCLEAR REACTIONS Te(p, xn) ¹²¹ I / 123 I / 124 I / 126 I / 130 I,
		E=18 MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced yields,
		activities, method feasibility. JOUR JLCRD 54 S250
$^{130}\mathrm{Xe}$	2011AR09	RADIOACTIVITY ¹³⁰ Te($2\beta^{-}$); measured decay products, E β , I β ;
		deduced $T_{1/2}$, nuclear matrix elements. JOUR PRLTA 107 062504
	2011BU07	RADIOACTIVITY ¹³⁰ Te($2\beta^{-}$); measured $E\gamma$, $I\gamma$, $E\beta$, $I\beta$; deduced
		neutrinoless mode $T_{1/2}$ limit. JOUR NPBSE 217 41
	2011JA07	RADIOACTIVITY ¹¹⁶ Cd, ¹³⁰ Te($2\beta^{-}$); measured E γ , I γ , E β , I β ;
		deduced transitions to excited states $T_{1/2}$ limits. JOUR NPBSE 217 47
	2011RA24	RADIOACTIVITY ¹¹⁶ Cd, ¹³⁰ Te $(2\beta^{-})$; calculated nuclear matrix
		elements. JOUR PYLBB 703 412
	2011WA15	NUCLEAR REACTIONS ${}^{12}C({}^{112}Sn, {}^{112}Sn'), ({}^{114}Sn, {}^{114}Sn'), ({}^{116}Sn, {}^{116}Sn, {}^{116}Sn')$
		$M_{\rm eV}$ / mucleon; C(Sn, Sn), (Sn, Sn), E=3.8
		$(-C)\gamma\gamma(\theta)$, precession angles. 112,114,116,122,124 Sn: deduced g-factors, configurations.
		Comparison with RORPA, ORPA, and shell-model calculations.
		$^{12}C(^{124}Sn, X)^{130}Xe / ^{126}Te / ^{128}Te, E=3.8 \text{ MeV} / \text{nucleon; measured}$
		$E\gamma$, $I\gamma$. JOUR PRVCA 84 014319
^{130}Cs	2010ZHZR	NUCLEAR REACTIONS ¹⁰⁰ Mo(¹¹ B, 5n), E=60 MeV; measured $E\gamma$,
		I γ , $\gamma\gamma$ -coin. ¹⁰⁶ Ag deduced levels, J, π , positive parity bands,
		rotational band, yrast, yrare, $B(M1) / B(E2)$. ¹²⁴ Sn(¹¹ B, 5n), E=65
		MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹³⁰ Cs deduced levels, J, π , $T_{1/2}$,
		yrast, B(E2), B(M1). 152 Sm(28 Si, 4n), E=140 MeV; measured E γ , I γ ,
		$\gamma\gamma$ -coin. ¹⁷⁶ Os deduced levels, J, π , T _{1/2} , quadrupole moment,
		deformation, $B(E2)$; calculated quadrupole moment using $U(5)$, $X(5)$,
		SU(3). CONF Tsukuba(Nuclear Physics Trends) Proc.P363,Zhu

A = 131

^{131}I	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		97 Zr, 99 Mo, 103 Ru, 105 Rh, 132 Te, 131,133 I, 133,135 Xe, 140 Ba, 141,143 Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85

A = 132

132 Sn	2011PE20	NUCLEAR REACTIONS $Pb(^{238}U, X)^{132}Sn$, E=950 MeV / nucleon;
		$Be(^{132}Sn, X)$, E not given; measured reaction products; deduced σ .
		Comparison with code COFRA results. JOUR PYLBB 703 552
$^{132}\mathrm{Te}$	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		97 Zr, 99 Mo, 103 Ru, 105 Rh, 132 Te, 131,133 I, 133,135 Xe, 140 Ba, 141,143 Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T $_{1/2}$. 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85

A = 133

¹³³ I	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, E γ , I γ . ^{85m} Kr, ⁹³ Y, ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced mass distribution; calculated mass distribution at two lowest energies using TALYS. Neutron flux calculated using MCNPX with LA150 cross
¹³³ Xe	2011AD18	section horary. JOUR ZAANE 47.85 NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y, ⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce, ²³¹ Th, ²³³ Pa, ²³⁷ U, ²³⁹ Np deduced reaction rates, T _{1/2} . ²³² Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400 keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced mass distribution; calculated mass distribution at two lowest energies using TALYS. Neutron flux calculated using MCNPX with LA150 cross section library. JOUR ZAANE 47 85

A = 134

No references found

A = 135

¹³⁵Xe 2011AD18 NUCLEAR REACTIONS ²³²Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, E γ , I γ . ^{85m}Kr, ⁹³Y, ⁹⁷Zr, ⁹⁹Mo, ¹⁰³Ru, ¹⁰⁵Rh, ¹³²Te, ^{131,133}I, ^{133,135}Xe, ¹⁴⁰Ba, ^{141,143}Ce, ²³¹Th, ²³³Pa, ²³⁷U, ²³⁹Np deduced reaction rates, T_{1/2}. ²³²Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³²Th(n, f), E=400 keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced mass distribution; calculated mass distribution at two lowest energies using TALYS. Neutron flux calculated using MCNPX with LA150 cross section library. JOUR ZAANE 47 85

A=136

¹³⁶Cs **2011WI09** NUCLEAR REACTIONS U(p, X)^{136m}Cs, E=1.4 GeV; measured E γ , I γ , E(ce), I(ce), γ (ce)-coin, isomer half-life, conversion coefficients. ¹³⁶Cs; deduced levels, J, π , multipolarity, level scheme of isomer decay, B(E3), B(M4). Comparison with shell-model calculations. JOUR PRVCA 84 014329

A = 137

No references found

A=138

No references found

¹³⁹ La	2010MAZD	NUCLEAR REACTIONS ¹³⁹ La(γ , γ '), E=0-11.5 MeV,
		bremsstrahlung; measured $E\gamma$, $I\gamma$; deduced σ , dipole-strength
		distribution. Compared with (γ, n) data from literature. CONF
		Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P228,Makinaga
$^{139}\mathrm{Ce}$	2011ZH26	NUCLEAR REACTIONS ^{85,87} Rb, ⁸⁹ Y, ^{140,142} Ce, ¹⁶⁹ Tm, ¹⁷⁵ Lu, ¹⁸¹ Ta,
		¹⁸⁵ Re, ²³⁸ U(n, 2n), E=14 MeV; measured reaction products, $E\gamma$, $I\gamma$;
		deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data
		library. JOUR NSENA 169 188

KEYNUMBERS AND KEYWORDS

A = 140

^{140}Ba	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85
$^{140}\mathrm{Ce}$	2010NIZR	RADIOACTIVITY ¹⁴⁰ Pr(EC)[from ¹⁴⁰ Ce(p, n)]; measured ¹⁴⁰ Ce
		X-rays E(X), I(X, t). CONF Tsukuba(Nuclear Physics Trends)
		Proc.P219,Nishimura
$^{140}\mathrm{Pr}$	2010NIZR	RADIOACTIVITY ¹⁴⁰ Pr(EC)[from ¹⁴⁰ Ce(p, n)]; measured ¹⁴⁰ Ce
		X-rays E(X), I(X, t). CONF Tsukuba(Nuclear Physics Trends)
		Proc.P219,Nishimura

A = 141

$^{141}\mathrm{Ce}$	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		97 Zr, 99 Mo, 103 Ru, 105 Rh, 132 Te, 131,133 I, 133,135 Xe, 140 Ba, 141,143 Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		$\mathrm{keV},14,25,50,100,200$ MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85
	2011ZH26	NUCLEAR REACTIONS ^{85,87} Rb, ⁸⁹ Y, ^{140,142} Ce, ¹⁶⁹ Tm, ¹⁷⁵ Lu, ¹⁸¹ Ta,
		¹⁸⁵ Re, ²³⁸ U(n, 2n), E=14 MeV; measured reaction products, $E\gamma$, $I\gamma$;
		deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data
		library. JOUR NSENA 169 188
$^{141}\mathrm{Pm}$	2011GU12	NUCLEAR REACTIONS ¹²⁶ Te(¹⁹ F, 4n), E=90 MeV; measured $E\gamma$,
		I γ , $\gamma\gamma$ -coin, DCO. ¹⁴¹ Pm; deduced levels, J, π , high-spin oblate bands,
		moments of inertia, multipolarity. Comparison with MRPM (triaxial
		n-particle-n-hole particle rotor model) calculations; and with
		systematics of moments of inertia plots for ¹³² Ba, ^{131,136} La and
		^{134,136} Ce. JOUR PRVCA 83 064303

A = 142

$^{142}\mathrm{Xe}$	2010SMZX	RADIOACTIVITY ¹⁴² Xe(β^{-}); measured I β (t); deduced T _{1/2} . No
		numbers given, analysis in progress. CONF Heidelberg (NIC XI)
		Proc,P283,Smith
^{142}Cs	2010SMZX	RADIOACTIVITY ¹⁴² Xe(β^{-}); measured I β (t); deduced T _{1/2} . No
		numbers given, analysis in progress. CONF Heidelberg (NIC XI)
		Proc,P283,Smith
$^{143}\mathrm{Xe}$	2011RZ01	RADIOACTIVITY ²⁴⁸ Cm(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, using
---------------------	----------	---
		EUROGAM-2 array. ¹⁴³ Xe; deduced levels, J, π , conversion
		coefficients, multipolarity, bands, configurations. Comparison with
		quasiparticle-rotor model calculations with a reflection-symmetric
		potential. Systematics of bandheads of N=89 nuclei. JOUR PRVCA 83
		067301
$^{143}\mathrm{Ce}$	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		97 Zr, 99 Mo, 103 Ru, 105 Rh, 132 Te, 131,133 I, 133,135 Xe, 140 Ba, 141,143 Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85

A = 144

No references found

A = 145

No references found

A = 146

No references found

A = 147

No references found

A = 148

No references found

A = 149

¹⁴⁹Pm 2011IN04 RADIOACTIVITY ¹⁴⁹Sm(EC)[from ¹⁴⁹Eu electron capture]; measured conversion electrons, X-rays from excited ¹⁴⁹Sm using Eu compounds as targets; deduced energy differences, relative intensities. JOUR ZAANE 47 84

A=149 (continued)

¹⁴⁹Sm 2011IN04 RADIOACTIVITY ¹⁴⁹Sm(EC)[from ¹⁴⁹Eu electron capture]; measured conversion electrons, X-rays from excited ¹⁴⁹Sm using Eu compounds as targets; deduced energy differences, relative intensities. JOUR ZAANE 47 84

A = 150

$^{150}\mathrm{Nd}$	2011GU14	RADIOACTIVITY ¹⁵⁰ Nd($2\beta^{-}$); calculated matrix elements for $0\nu\beta\beta$
		and $2\nu\beta\beta$ decay modes using QRPA calculations. Comparison with
		experimental data. JOUR PRVCA 83 064318
$^{150}\mathrm{Pm}$	2011GU14	NUCLEAR REACTIONS 150 Nd(3 He, t), E=140 MeV / nucleon;
		150 Sm(t, 3 He), E=115 MeV / nucleon; measured triton and 3 He
		spectra, excitation energy spectra, differential cross sections, $\sigma(\theta)$
		150 Pm; deduced B(GT) strengths; isovector spin-flip giant monopole
		resonance (IVSGMR). Grand Raiden Spectrometer for $({}^{3}\text{He}, t)$ and
		S-800 spectrometer for (t, ³ He). Comparison with Quasi-Particle
		Random Phase Approximation (QRPA) calculations. Application to
		double β decay of ¹⁵⁰ Nd. JOUR PRVCA 83 064318
$^{150}\mathrm{Sm}$	2011GU14	RADIOACTIVITY ¹⁵⁰ Nd($2\beta^{-}$); calculated matrix elements for $0\nu\beta\beta$
		and $2\nu\beta\beta$ decay modes using QRPA calculations. Comparison with
		experimental data. JOUR PRVCA 83 064318

A=151

No references found

$^{152}\mathrm{Sm}$	2010ZHZU	NUCLEAR REACTIONS $^{184}W(^{32}S, X)$, E(cm)=118-148 MeV;
		measured reaction products; deduced σ , quasifission σ , anisotropy,
		reaction mechanism; calculated σ , fusion probability, anisotropy.
		90,96 Zr(32 S, X), E(cm)=70-95 MeV; measured reaction products;
		deduced σ ; calculated σ . ^{152,154} Sm, ¹⁸⁴ W, ¹⁹⁶ Pt, ²⁰⁸ Pb(¹⁶ O, ¹⁶ O),
		$E(cm)=35-70$ MeV; measured reaction products; deduced $\sigma(\theta=175^0)$;
		calculated $\sigma(\theta=175^{\circ})$ using CCFULL. CONF Tsukuba(Nuclear Physics
		Trends) Proc.P50,Zhang
$^{152}\mathrm{Gd}$	2011KE03	ATOMIC MASSES 153 Eu, 152,154,155,156,157,158,160 Gd, 175,176 Lu,
		^{176,177,178,179,180} Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311
$^{152}\mathrm{Yb}$	2011DA12	RADIOACTIVITY ¹⁶⁰ Re(p), (α)[from ¹⁰⁶ Cd(⁵⁸ Ni, X), E=290, 300
		MeV]; ¹⁵⁶ Ta(p), (β^+) [from ¹⁶⁰ Re α decay]; ¹⁵⁹ W(α)[from ¹⁶⁰ Re p
		decay]; ¹⁵⁶ Hf(α)[from ¹⁵⁶ Ta β^+ decay]; measured E(p), I(p), E α , I α ,
		$E\gamma$, half-lives using GREAT spectrometer; deduced branching ratios for
		proton, α and β decay modes, spectroscopic factors. ¹⁵⁶ Ta, ¹⁶⁰ Re;
		deduced J, π for ground states. JOUR PRVCA 83 064320

¹⁵³Eu 2011KE03 ATOMIC MASSES ¹⁵³Eu, ^{152,154,155,156,157,158,160}Gd, ^{175,176}Lu, ^{176,177,178,179,180}Hf; measured masses using TOF-ICR technique and TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values; evaluated mass excesses. JOUR PRVCA 84 014311

A = 154

 $^{154}\mathrm{Sm}$ NUCLEAR REACTIONS $^{184}W(^{32}S, X)$, E(cm)=118-148 MeV; 2010ZHZU measured reaction products; deduced σ , quasifission σ , anisotropy, reaction mechanism; calculated σ , fusion probability, anisotropy. 90,96 Zr(32 S, X), E(cm)=70-95 MeV; measured reaction products; deduced σ ; calculated σ . ^{152,154}Sm, ¹⁸⁴W, ¹⁹⁶Pt, ²⁰⁸Pb(¹⁶O, ¹⁶O), E(cm)=35-70 MeV; measured reaction products; deduced $\sigma(\theta=175^0)$; calculated $\sigma(\theta=175^{\circ})$ using CCFULL. CONF Tsukuba(Nuclear Physics Trends) Proc.P50,Zhang ATOMIC MASSES ¹⁵³Eu, ^{152,154,155,156,157,158,160}Gd, ^{175,176}Lu, $^{154}\mathrm{Gd}$ 2011KE03 ^{176,177,178,179,180}Hf; measured masses using TOF-ICR technique and TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values; evaluated mass excesses. JOUR PRVCA 84 014311

A = 155

$^{155}\mathrm{Gd}$	2011KE03	ATOMIC MASSES 153 Eu, 152,154,155,156,157,158,160 Gd, 175,176 Lu,
		^{176,177,178,179,180} Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311
$^{155}\mathrm{Hf}$	2011DA12	RADIOACTIVITY ¹⁶⁰ Re(p), (α) [from ¹⁰⁶ Cd(⁵⁸ Ni, X), E=290, 300
		MeV]; ¹⁵⁶ Ta(p), (β^+) [from ¹⁶⁰ Re α decay]; ¹⁵⁹ W(α)[from ¹⁶⁰ Re p
		decay]; ¹⁵⁶ Hf(α)[from ¹⁵⁶ Ta β^+ decay]; measured E(p), I(p), E α , I α ,
		$E\gamma$, half-lives using GREAT spectrometer; deduced branching ratios for
		proton, α and β decay modes, spectroscopic factors. ¹⁵⁶ Ta, ¹⁶⁰ Re;
		deduced J, π for ground states. JOUR PRVCA 83 064320

$^{156}\mathrm{Gd}$	2011EL05	ATOMIC MASSES ¹⁵⁶ Dy, ¹⁵⁶ Gd; measured cyclotron frequency ratio,
		TOF; deduced Q-value for double electron capture. SHIPTRAP
		Penning-trap mass spectrometer. Comparison with AME-2003. JOUR
		PRVCA 84 012501
	2011EL05	RADIOACTIVITY ¹⁵⁶ Dy(2EC); calculated electron wave functions,
		double-electron-hole binding energy; deduced resonant enhancement
		factor for the probability of neutrinoless double-electron capture.
		Estimated partial half-life. Dirac-Fock method, Fermi model. JOUR
		PRVCA 84 012501

A=156 (continued)

	2011KE03	ATOMIC MASSES ¹⁵³ Eu, ^{152,154,155,156,157,158,160} Gd, ^{175,176} Lu, ^{176,177,178,179,180} Hf. measured messes using TOF ICP technicus and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values; evaluated mass excesses JOUR PRVCA 84 014311
	2011SU15	NUCLEAR REACTIONS ¹⁵⁶ Gd(³² S, ³² S'), E=118 MeV; ¹⁵⁶ Gd(⁵⁸ Ni, ⁵⁸ Ni'), E=225 MeV; measured scattered particle spectra, $E\gamma$, $I\gamma$, $\gamma\gamma$ -,
		(particle) γ -, (particle) $\gamma\gamma$ -coin, (particle) $\gamma(\theta)$. ¹⁵⁶ Gd; deduced levels, J, π ground-state γ β and octupole bands γ -ray yields and branching
		ratios, E2, E1 and E3 matrix elements from GOSIA analysis of
156 D		ATTOMIC MACCERC 156D 156C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Dy	2011EL05	ATOMIC MASSES ¹⁵⁰ Dy, ¹⁵⁰ Gd; measured cyclotron frequency ratio,
		10F; deduced Q-value for double electron capture. SHIP1RAP
		Penning-trap mass spectrometer. Comparison with AME-2003. JOUR
		PRVUA 84 012001 DADIOACTIVITTY 156D-(0EC), coloraleted electrony much for etime
	2011EL05	RADIOACTIVITY ²⁵⁰ Dy(2EC); calculated electron wave functions,
		double-electron-noie binding energy; deduced resonant ennancement
		Estimated nextical helf if Direct Each mathed Estimated LOUP
		PRVCA 84 012501
$^{156}{ m Hf}$	2011DA12	RADIOACTIVITY 160 Re(p), (α)[from 106 Cd(58 Ni, X), E=290, 300
		MeV]; ¹⁵⁶ Ta(p), (β^+) [from ¹⁶⁰ Re α decay]; ¹⁵⁹ W(α)[from ¹⁶⁰ Re p
		decay]; ¹⁵⁶ Hf(α)[from ¹⁵⁶ Ta β^+ decay]; measured E(p), I(p), E α , I α ,
		$E\gamma$, half-lives using GREAT spectrometer; deduced branching ratios for
		proton, α and β decay modes, spectroscopic factors. ¹⁵⁶ Ta, ¹⁶⁰ Re;
		deduced J, π for ground states. JOUR PRVCA 83 064320
156 Ta	2011DA12	RADIOACTIVITY 160 Re(p), (α)[from 106 Cd(58 Ni, X), E=290, 300
		MeV]; ¹⁵⁶ Ta(p), (β^+) [from ¹⁶⁰ Re α decay]; ¹⁵⁹ W(α)[from ¹⁶⁰ Re p
		decay]; ¹⁵⁶ Hf(α)[from ¹⁵⁶ Ta β^+ decay]; measured E(p), I(p), E α , I α ,
		$E\gamma$, half-lives using GREAT spectrometer; deduced branching ratios for
		proton, α and β decay modes, spectroscopic factors. ¹⁵⁶ Ta, ¹⁶⁰ Re;
		deduced J, π for ground states. JOUR PRVCA 83 064320

$^{157}\mathrm{Gd}$	2011KE03	ATOMIC MASSES ¹⁵³ Eu, ^{152,154,155,156,157,158,160} Gd, ^{175,176} Lu,
		170,177,170,179,180 Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311
$^{157}\mathrm{Er}$	2011WA14	NUCLEAR REACTIONS $^{114}Cd(^{48}Ca, X)^{157}Er / ^{158}Er, E=215 MeV;$
		measured reaction products, $E\gamma$, $I\gamma$, γ - γ -coin.; deduced transition
		quadrupole moments for weakly populated collective bands, large
		deformations, stable triaxial shapes. Comparison with
		Nilsson-Strutinsky calculations. JOUR PYLBB 702 127

A=158

¹⁵⁸ Gd	2011CH31	NUCLEAR REACTIONS ¹⁵⁷ Gd(n, γ), E=<300 eV; measured E γ , I γ using DANCE γ calorimeter. ¹⁵⁸ Gd; deduced E1, M1 and E1 photon strength distributions, resonances, multiplicity, spin distribution, multistep cascade (MSC) spectra. Statistical model calculations using DICEBOX code. Scissors mode. JOUR PRVCA 84 014306
	2011KE03	ATOMIC MASSES ¹⁵³ Eu, ^{152,154,155,156,157,158,160} Gd, ^{175,176} Lu, ^{176,177,178,179,180} Hf; measured masses using TOF-ICR technique and TRIGA-TRAP Penning-trap mass spectrometer: deduced δV_{rec} values:
		evaluated mass excesses. JOUR PRVCA 84 014311
¹⁵⁸ Tb	2011PR06	NUCLEAR REACTIONS $^{159}\text{Tb}(^6\text{Li}, X)^{158}\text{Tb} / ^{159}\text{Dy} / ^{159}\text{Tb} / ^{159}\text{Dy} / ^{160}\text{Tb} / ^{160}\text{Dy} / ^{161}\text{Ho} / ^{160}\text{Er} / ^{161}\text{Er} / ^{162}\text{Er} / ^{163}\text{Er} / , E=23-39$ MeV; $^{159}\text{Tb}(^7\text{Li}, X)^{161}\text{Er} / ^{162}\text{Er} / ^{163}\text{Er} / ^{164}\text{Er} / , E=28, 34, 37;$ measured E γ , I γ , on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels. Comparison with previous data for $^{159}\text{Tb}+^6\text{Li}, ^{159}\text{Tb}+^7\text{Li}, ^{159}\text{Tb}+^{10}\text{B}, ^{159}\text{Tb}+^{11}\text{B}, ^{144}\text{Sm}+^6\text{Li}, ^{208}\text{Pb}+^6\text{Li}, ^{209}\text{Bi}+^6\text{Li}$ systems, and with Coupled-channel (CC) calculations using the computer code CCFULL.
¹⁵⁸ Dy	2011PR06	JOUR PRVCA 83 064606 NUCLEAR REACTIONS ¹⁵⁹ Tb(⁶ Li, X) ¹⁵⁸ Tb / ¹⁵⁸ Dy / ¹⁵⁹ Tb / ¹⁵⁹ Dy / ¹⁶⁰ Tb / ¹⁶⁰ Dy / ¹⁶¹ Ho / ¹⁶⁰ Er / ¹⁶¹ Er / ¹⁶² Er / ¹⁶³ Er / , E=23-39 MeV; ¹⁵⁹ Tb(⁷ Li, X) ¹⁶¹ Er / ¹⁶² Er / ¹⁶³ Er / ¹⁶⁴ Er / , E=28, 34, 37; measured E γ , I γ , on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels.
$^{158}\mathrm{Er}$	2011WA14	Comparison with previous data for ¹⁵⁹ Tb+ ⁶ Li, ¹⁵⁹ Tb+ ⁷ Li, ¹⁵⁹ Tb+ ¹⁰ B, ¹⁵⁹ Tb+ ¹¹ B, ¹⁴⁴ Sm+ ⁶ Li, ²⁰⁸ Pb+ ⁶ Li, ²⁰⁹ Bi+ ⁶ Li systems, and with Coupled-channel (CC) calculations using the computer code CCFULL. JOUR PRVCA 83 064606 NUCLEAR REACTIONS ¹¹⁴ Cd(⁴⁸ Ca, X) ¹⁵⁷ Er / ¹⁵⁸ Er, E=215 MeV; measured reaction products, $E\gamma$, $I\gamma$, γ - γ -coin.; deduced transition quadrupole moments for weakly populated collective bands, large deformations, stable triaxial shapes. Comparison with Nilsson-Strutinsky calculations. JOUR PYLBB 702 127

A = 159

¹⁵⁹Gd **2011BU08** NUCLEAR REACTIONS ¹⁵⁸Gd, ¹⁷⁹Hf(n, γ), E=thermal; measured reaction products, $E\gamma$, $I\gamma$; deduced resonance energies. Comparison with available values, Am-Be neutron source. JOUR ANEND 38 2550

A=159 (continued)

$^{159}\mathrm{Tb}$	2011PR06	NUCLEAR REACTIONS $^{159}\mathrm{Tb}(^{6}\mathrm{Li},\mathrm{X})^{158}\mathrm{Tb}$ / $^{158}\mathrm{Dy}$ / $^{159}\mathrm{Tb}$ / $^{159}\mathrm{Dy}$		
		$/ \frac{160}{10}$ Tb $/ \frac{160}{10}$ Dy $/ \frac{161}{10}$ Ho $/ \frac{160}{10}$ Er $/ \frac{161}{10}$ Er $/ \frac{163}{10}$ Er $/ $		
		MeV; 159 Tb(7 Li, X) 161 Er / 162 Er / 163 Er / 164 Er / , E=28, 34, 37;		
		measured $\mathrm{E}\gamma$, $\mathrm{I}\gamma$, on-line and off-line γ spectra, complete fusion cross		
		sections, incomplete fusion (ICF) and $/$ or transfer cross sections;		
		deduced ratios of cross sections for different reaction channels.		
		Comparison with previous data for ${}^{159}\text{Tb}+{}^{6}\text{Li}$, ${}^{159}\text{Tb}+{}^{7}\text{Li}$, ${}^{159}\text{Tb}+{}^{10}\text{B}$, ${}^{159}\text{Tb}+{}^{11}\text{B}$, ${}^{144}\text{Sm}+{}^{6}\text{Li}$, ${}^{208}\text{Pb}+{}^{6}\text{Li}$, ${}^{209}\text{Bi}+{}^{6}\text{Li}$ systems, and with		
		Coupled-channel (CC) calculations using the computer code CCFULL.		
		JOUR PRVCA 83 064606		
159 Dy	2011PR06	NUCLEAR REACTIONS 159 Tb(6 Li, X) 158 Tb / 158 Dy / 159 Tb / 159 Dy		
		/ $^{160}{\rm Tb}$ / $^{160}{\rm Dy}$ / $^{161}{\rm Ho}$ / $^{160}{\rm Er}$ / $^{161}{\rm Er}$ / $^{162}{\rm Er}$ / $^{163}{\rm Er}$ / , E=23-39		
		MeV; 159 Tb(7 Li, X) 161 Er / 162 Er / 163 Er / 164 Er / , E=28, 34, 37;		
		measured E γ , I γ , on-line and off-line γ spectra, complete fusion cross		
		sections, incomplete fusion (ICF) and $/$ or transfer cross sections;		
		deduced ratios of cross sections for different reaction channels.		
		Comparison with previous data for ${}^{159}\text{Tb} + {}^{6}\text{Li}$, ${}^{159}\text{Tb} + {}^{7}\text{Li}$, ${}^{159}\text{Tb} + {}^{10}\text{B}$,		
		139 Tb+ 11 B, 144 Sm+ 6 Li, 208 Pb+ 6 Li, 209 Bi+ 6 Li systems, and with		
		Coupled-channel (CC) calculations using the computer code CCFULL.		
150		JOUR PRVCA 83 064606		
^{159}W	2011DA12	RADIOACTIVITY ¹⁶⁰ Re(p), (α) [from ¹⁶⁶ Cd(³⁸ Ni, X), E=290, 300		
		MeV]; ¹⁵⁶ Ta(p), (β^+) [from ¹⁶⁰ Re α decay]; ¹⁵⁹ W(α)[from ¹⁶⁰ Re p		
		decay]; ¹³⁶ Hf(α)[from ¹³⁶ Ta β^+ decay]; measured E(p), I(p), E α , I α ,		
		$E\gamma$, half-lives using GREAT spectrometer; deduced branching ratios for		
		proton, α and β decay modes, spectroscopic factors. ¹⁵⁰ Ta, ¹⁶⁰ Re;		
		deduced J, π for ground states. JOUR PRVCA 83 064320		
	A=160			

$^{160}\mathrm{Gd}$	2011KE03	ATOMIC MASSES 153 Eu, 152,154,155,156,157,158,160 Gd, 175,176 Lu,
		^{176,177,178,179,180} Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311
$^{160}\mathrm{Tb}$	2011PR06	NUCLEAR REACTIONS 159 Tb(6 Li, X) 158 Tb / 158 Dy / 159 Tb / 159 Dy
		$/ {\rm ^{160}Tb} / {\rm ^{160}Dy} / {\rm ^{161}Ho} / {\rm ^{160}Er} / {\rm ^{161}Er} / {\rm ^{162}Er} / {\rm ^{163}Er} / {\rm , E=23-39}$
		MeV; 159 Tb(7Li, X) 161 Er / 162 Er / 163 Er / 164 Er / , E=28, 34, 37;
		measured $E\gamma$, $I\gamma$, on-line and off-line γ spectra, complete fusion cross
		sections, incomplete fusion (ICF) and / or transfer cross sections;
		deduced ratios of cross sections for different reaction channels.
		Comparison with previous data for ¹⁵⁹ Tb+ ⁶ Li, ¹⁵⁹ Tb+ ⁷ Li, ¹⁵⁹ Tb+ ¹⁰ B,
		159 Tb $+^{11}$ B, 144 Sm $+^{6}$ Li, 208 Pb $+^{6}$ Li, 209 Bi $+^{6}$ Li systems, and with
		Coupled-channel (CC) calculations using the computer code CCFULL.
		JOUR PRVCA 83 064606

A=160 (continued)

¹⁶⁰ Dy	2011PR06	NUCLEAR REACTIONS $^{159}\text{Tb}(^{6}\text{Li}, X)^{158}\text{Tb} / ^{159}\text{Dy} / ^{159}\text{Tb} / ^{159}\text{Dy} / ^{160}\text{Tb} / ^{160}\text{Dy} / ^{161}\text{Ho} / ^{160}\text{Er} / ^{161}\text{Er} / ^{162}\text{Er} / ^{163}\text{Er} / , E=23-39$ MeV; $^{159}\text{Tb}(^{7}\text{Li}, X)^{161}\text{Er} / ^{162}\text{Er} / ^{163}\text{Er} / ^{164}\text{Er} / , E=28, 34, 37;$ measured E γ , I γ , on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels. Comparison with previous data for $^{159}\text{Tb}+^{6}\text{Li}, ^{159}\text{Tb}+^{7}\text{Li}, ^{159}\text{Tb}+^{10}\text{B}, ^{159}\text{Tb}+^{11}\text{B}, ^{144}\text{Sm}+^{6}\text{Li}, ^{208}\text{Pb}+^{6}\text{Li}, ^{209}\text{Bi}+^{6}\text{Li}$ systems, and with Coupled-channel (CC) calculations using the computer code CCFULL.
¹⁶⁰ Er	2011PR06	JOUR PRVCA 83 064606 NUCLEAR REACTIONS ¹⁵⁹ Tb(⁶ Li, X) ¹⁵⁸ Tb / ¹⁵⁸ Dy / ¹⁵⁹ Tb / ¹⁵⁹ Dy / ¹⁶⁰ Tb / ¹⁶⁰ Dy / ¹⁶¹ Ho / ¹⁶⁰ Er / ¹⁶¹ Er / ¹⁶² Er / ¹⁶³ Er / , E=23-39 MeV; ¹⁵⁹ Tb(⁷ Li, X) ¹⁶¹ Er / ¹⁶² Er / ¹⁶³ Er / ¹⁶⁴ Er / , E=28, 34, 37; measured $E\gamma$, $I\gamma$, on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels. Comparison with previous data for ¹⁵⁹ Tb+ ⁶ Li, ¹⁵⁹ Tb+ ⁷ Li, ¹⁵⁹ Tb+ ¹⁰ B, ¹⁵⁹ Tb+ ¹¹ B, ¹⁴⁴ Sm+ ⁶ Li, ²⁰⁸ Pb+ ⁶ Li, ²⁰⁹ Bi+ ⁶ Li systems, and with
¹⁶⁰ Re	2011DA12	Coupled-channel (CC) calculations using the computer code CCFULL. JOUR PRVCA 83 064606 RADIOACTIVITY ¹⁶⁰ Re(p), (α)[from ¹⁰⁶ Cd(⁵⁸ Ni, X), E=290, 300 MeV]; ¹⁵⁶ Ta(p), (β^+)[from ¹⁶⁰ Re α decay]; ¹⁵⁹ W(α)[from ¹⁶⁰ Re p decay]; ¹⁵⁶ Hf(α)[from ¹⁵⁶ Ta β^+ decay]; measured E(p), I(p), E α , I α , E γ , half-lives using GREAT spectrometer; deduced branching ratios for proton, α and β decay modes, spectroscopic factors. ¹⁵⁶ Ta, ¹⁶⁰ Re; deduced J, π for ground states. JOUR PRVCA 83 064320

$^{161}\mathrm{Ho}$	2011PR06	NUCLEAR REACTIONS ¹⁵⁹ Tb(⁶ Li, X) ¹⁵⁸ Tb / ¹⁵⁸ Dy / ¹⁵⁹ Tb / ¹⁵⁹ Dy
		$/ {}^{160}\text{Tb} / {}^{160}\text{Dy} / {}^{161}\text{Ho} / {}^{160}\text{Er} / {}^{161}\text{Er} / {}^{162}\text{Er} / {}^{163}\text{Er} / , E=23-39$
		MeV; 159 Tb(7Li, X) 161 Er / 162 Er / 163 Er / 164 Er / , E=28, 34, 37;
		measured E γ , I γ , on-line and off-line γ spectra, complete fusion cross
		sections, incomplete fusion (ICF) and / or transfer cross sections;
		deduced ratios of cross sections for different reaction channels.
		Comparison with previous data for ¹⁵⁹ Tb+ ⁶ Li, ¹⁵⁹ Tb+ ⁷ Li, ¹⁵⁹ Tb+ ¹⁰ B,
		159 Tb $+^{11}$ B, 144 Sm $+^{6}$ Li, 208 Pb $+^{6}$ Li, 209 Bi $+^{6}$ Li systems, and with
		Coupled-channel (CC) calculations using the computer code CCFULL.
		JOUR PRVCA 83 064606

A=161 (continued)

¹⁶¹Er 2011PR06 NUCLEAR REACTIONS ¹⁵⁹Tb(⁶Li, X)¹⁵⁸Tb / ¹⁵⁸Dy / ¹⁵⁹Tb / ¹⁵⁹Dy / ¹⁶⁰Tb / ¹⁶⁰Dy / ¹⁶¹Ho / ¹⁶⁰Er / ¹⁶¹Er / ¹⁶²Er / ¹⁶³Er / , E=23-39 MeV; ¹⁵⁹Tb(⁷Li, X)¹⁶¹Er / ¹⁶²Er / ¹⁶³Er / ¹⁶⁴Er / , E=28, 34, 37; measured $E\gamma$, I γ , on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels. Comparison with previous data for ¹⁵⁹Tb+⁶Li, ¹⁵⁹Tb+⁷Li, ¹⁵⁹Tb+¹⁰B, ¹⁵⁹Tb+¹¹B, ¹⁴⁴Sm+⁶Li, ²⁰⁸Pb+⁶Li, ²⁰⁹Bi+⁶Li systems, and with Coupled-channel (CC) calculations using the computer code CCFULL. JOUR PRVCA 83 064606

A = 162

¹⁶²Er 2011PR06 NUCLEAR REACTIONS ¹⁵⁹Tb(⁶Li, X)¹⁵⁸Tb / ¹⁵⁸Dy / ¹⁵⁹Tb / ¹⁵⁹Dy / ¹⁶⁰Tb / ¹⁶⁰Dy / ¹⁶¹Ho / ¹⁶⁰Er / ¹⁶¹Er / ¹⁶²Er / ¹⁶³Er / , E=23-39 MeV; ¹⁵⁹Tb(⁷Li, X)¹⁶¹Er / ¹⁶²Er / ¹⁶³Er / ¹⁶⁴Er / , E=28, 34, 37; measured E γ , I γ , on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels. Comparison with previous data for ¹⁵⁹Tb+⁶Li, ¹⁵⁹Tb+⁷Li, ¹⁵⁹Tb+¹⁰B, ¹⁵⁹Tb+¹¹B, ¹⁴⁴Sm+⁶Li, ²⁰⁸Pb+⁶Li, ²⁰⁹Bi+⁶Li systems, and with Coupled-channel (CC) calculations using the computer code CCFULL. JOUR PRVCA 83 064606

¹⁶³ Er	2011PR06	NUCLEAR REACTIONS ¹⁵⁹ Tb(⁶ Li, X) ¹⁵⁸ Tb / ¹⁵⁸ Dy / ¹⁵⁹ Tb / ¹⁵⁹ Dy / ¹⁶⁰ Tb / ¹⁶⁰ Dy / ¹⁶¹ Ho / ¹⁶⁰ Er / ¹⁶¹ Er / ¹⁶² Er / ¹⁶³ Er / , E=23-39 MeV; ¹⁵⁹ Tb(⁷ Li, X) ¹⁶¹ Er / ¹⁶² Er / ¹⁶³ Er / ¹⁶⁴ Er / , E=28, 34, 37; measured E γ , I γ , on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels. Comparison with previous data for ¹⁵⁹ Tb+ ⁶ Li, ¹⁵⁹ Tb+ ⁷ Li, ¹⁵⁹ Tb+ ¹⁰ B, ¹⁵⁹ Tb+ ¹¹ B, ¹⁴⁴ Sm+ ⁶ Li, ²⁰⁸ Pb+ ⁶ Li, ²⁰⁹ Bi+ ⁶ Li systems, and with Coupled-channel (CC) calculations using the computer code CCFULL.
		Coupled-channel (CC) calculations using the computer code CCFULL. JOUR PRVCA 83 064606

¹⁶⁴Er **2011PR06** NUCLEAR REACTIONS ¹⁵⁹Tb(⁶Li, X)¹⁵⁸Tb / ¹⁵⁸Dy / ¹⁵⁹Tb / ¹⁵⁹Dy / ¹⁶⁰Tb / ¹⁶⁰Dy / ¹⁶¹Ho / ¹⁶⁰Er / ¹⁶¹Er / ¹⁶²Er / ¹⁶³Er / , E=23-39 MeV; ¹⁵⁹Tb(⁷Li, X)¹⁶¹Er / ¹⁶²Er / ¹⁶³Er / ¹⁶⁴Er / , E=28, 34, 37; measured $E\gamma$, $I\gamma$, on-line and off-line γ spectra, complete fusion cross sections, incomplete fusion (ICF) and / or transfer cross sections; deduced ratios of cross sections for different reaction channels. Comparison with previous data for ¹⁵⁹Tb+⁶Li, ¹⁵⁹Tb+⁷Li, ¹⁵⁹Tb+¹⁰B, ¹⁵⁹Tb+¹¹B, ¹⁴⁴Sm+⁶Li, ²⁰⁸Pb+⁶Li, ²⁰⁹Bi+⁶Li systems, and with Coupled-channel (CC) calculations using the computer code CCFULL. JOUR PRVCA 83 064606

A = 165

¹⁶⁵Er **2011WA19** NUCLEAR REACTIONS ¹⁶⁰Gd(⁹Be, 4n), E=42, 45 MeV; measured E γ , I γ , $\gamma\gamma$ -coin. ¹⁶⁵Er; deduced levels, J, π , rotational bands, alignments, configurations; calculated quasineutron Routhians. Comparison of alignments in ^{161,163,165}Er, ¹⁶³Dy, ¹⁶⁷Yb, ¹⁶⁹Hf nuclei, and with predictions of cranked shell model. JOUR PRVCA 84 017303

A=166

No references found

A=167

¹⁶⁷Ta **2011HA25** NUCLEAR REACTIONS ¹²⁰Sn(⁵¹V, 4n), E=235 MeV; measured E γ , I γ , $\gamma\gamma$ -coin $\gamma\gamma(\theta)$ using Gammasphere array. ¹⁶⁷Ta; deduced levels, J, π , multipolarity, B(M1) / B(E2), rotational bands, alignments, band crossing frequencies, band configurations. Comparison with particle-rotor model calculations, and trends in the wobbling phonon energies in ^{161,163,165,167}Lu, and ¹⁶⁷Ta. JOUR PRVCA 83 064307

A=168

¹⁶⁸Tm **2011ZH26** NUCLEAR REACTIONS ^{85,87}Rb, ⁸⁹Y, ^{140,142}Ce, ¹⁶⁹Tm, ¹⁷⁵Lu, ¹⁸¹Ta, ¹⁸⁵Re, ²³⁸U(n, 2n), E=14 MeV; measured reaction products, E γ , I γ ; deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data library. JOUR NSENA 169 188

¹⁶⁹Yb **2010GLZZ** NUCLEAR REACTIONS ¹⁷⁰Yb(γ , n), E=8.9-9.9 MeV; measured activation technique E γ , I γ at HIPS (High INtensity Photon Setup); ¹⁶⁹Tm(p, n), E=3.3-7 MeV;¹⁶⁶Er(α , n), E=11.75-15 MeV; measured activation technique E γ , I γ ; deduced σ ; calculated σ using TALYS, NON-SMOKER. CONF Heidelberg (NIC XI) Proc,P234,Glorius

A = 170

No references found

A = 171

No references found

A = 172

No references found

A = 173

No references found

A = 174

¹⁷⁴Lu **2011ZH26** NUCLEAR REACTIONS ^{85,87}Rb, ⁸⁹Y, ^{140,142}Ce, ¹⁶⁹Tm, ¹⁷⁵Lu, ¹⁸¹Ta, ¹⁸⁵Re, ²³⁸U(n, 2n), E=14 MeV; measured reaction products, E γ , I γ ; deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data library. JOUR NSENA 169 188

A = 175

¹⁷⁵Lu 2011KE03 ATOMIC MASSES ¹⁵³Eu, ^{152,154,155,156,157,158,160}Gd, ^{175,176}Lu, ^{176,177,178,179,180}Hf; measured masses using TOF-ICR technique and TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values; evaluated mass excesses. JOUR PRVCA 84 014311

A = 176

¹⁷⁶Lu 2011KE03 ATOMIC MASSES ¹⁵³Eu, ^{152,154,155,156,157,158,160}Gd, ^{175,176}Lu, ^{176,177,178,179,180}Hf; measured masses using TOF-ICR technique and TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values; evaluated mass excesses. JOUR PRVCA 84 014311

A=176 (continued)

$^{176}\mathrm{Hf}$	2011KE03	ATOMIC MASSES 153 Eu, 152,154,155,156,157,158,160 Gd, 175,176 Lu,
		^{176,177,178,179,180} Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311
^{176}Os	2010ZHZR	NUCLEAR REACTIONS ¹⁰⁰ Mo(¹¹ B, 5n), E=60 MeV; measured $E\gamma$,
		I γ , $\gamma\gamma$ -coin. ¹⁰⁶ Ag deduced levels, J, π , positive parity bands,
		rotational band, yrast, yrare, B(M1) / B(E2). 124 Sn(11 B, 5n), E=65
		MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin. ¹³⁰ Cs deduced levels, J, π , $T_{1/2}$,
		yrast, B(E2), B(M1). 152 Sm(28 Si, 4n), E=140 MeV; measured E γ , I γ ,
		$\gamma\gamma$ -coin. ¹⁷⁶ Os deduced levels, J, π , T _{1/2} , quadrupole moment,
		deformation, $B(E2)$; calculated quadrupole moment using $U(5)$, $X(5)$,
		SU(3). CONF Tsukuba(Nuclear Physics Trends) Proc.P363,Zhu

A = 177

177 Lu	2011RO22	NUCLEAR REACTIONS ${}^{177m}Lu(n, n')$, E=cold ; measured E(n),
		$I(n), E\gamma, I\gamma$, cross section in the inelastic neutron acceleration (INNA)
		process; deduced resonances parameters. Mechanism to induce an
		isomer de-excitation. JOUR PRVCA 83 064617
$^{177}\mathrm{Hf}$	2011KE03	ATOMIC MASSES 153 Eu, 152,154,155,156,157,158,160 Gd, 175,176 Lu,
		^{176,177,178,179,180} Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311

A = 178

¹⁷⁸Hf **2011KE03** ATOMIC MASSES ¹⁵³Eu, ^{152,154,155,156,157,158,160}Gd, ^{175,176}Lu, ^{176,177,178,179,180}Hf; measured masses using TOF-ICR technique and TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values; evaluated mass excesses. JOUR PRVCA 84 014311

A=179

$^{179}{ m Hf}$	2011KE03	ATOMIC MASSES 153 Eu, 152,154,155,156,157,158,160 Gd, 175,176 Lu,
		^{176,177,178,179,180} Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311

A = 180

¹⁸⁰Hf **2011BU08** NUCLEAR REACTIONS ¹⁵⁸Gd, ¹⁷⁹Hf(n, γ), E=thermal; measured reaction products, E γ , I γ ; deduced resonance energies. Comparison with available values, Am-Be neutron source. JOUR ANEND 38 2550

A=180 (continued)

	2011KE03	ATOMIC MASSES 153 Eu, 152,154,155,156,157,158,160 Gd, 175,176 Lu, 176,177,178,179,180 Hf; measured masses using TOF-ICR technique and
		TRIGA-TRAP Penning-trap mass spectrometer; deduced δV_{pn} values;
		evaluated mass excesses. JOUR PRVCA 84 014311
¹⁸⁰ Ta	2011ZH26	NUCLEAR REACTIONS ^{85,87} Rb, ⁸⁹ Y, ^{140,142} Ce, ¹⁶⁹ Tm, ¹⁷⁵ Lu, ¹⁸¹ Ta,
		¹⁸⁵ Re, ²³⁸ U(n, 2n), E=14 MeV; measured reaction products, $E\gamma$, $I\gamma$;
		deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data
		library. JOUR NSENA 169 188
^{180}W	2010BEZ0	RADIOACTIVITY ^{64,70} Zn, ^{180,186} W(2 β); measured E γ , I γ ; deduced
		$T_{1/2}$ limits. ZnWO ₄ samples, Gran Sasso. CONF Frascati(Nuclear
		Physics in Astrophysics IV 2009), P012038
^{180}W	2010BEZ0	RADIOACTIVITY ^{64,70} Zn, ^{180,186} W(2 β); measured E γ , I γ ; deduced T _{1/2} limits. ZnWO ₄ samples, Gran Sasso. CONF Frascati(Nuclear Physics in Astrophysics IV 2009), P012038

A = 181

No references found

A = 182

No references found

A=183

No references found

$^{184}\mathrm{W}$	2010ZHZU	NUCLEAR REACTIONS $^{184}W(^{32}S, X)$, E(cm)=118-148 MeV;
		measured reaction products; deduced σ , quasifission σ , anisotropy,
		reaction mechanism; calculated σ , fusion probability, anisotropy.
		90,96 Zr(32 S, X), E(cm)=70-95 MeV; measured reaction products;
		deduced σ ; calculated σ . ^{152,154} Sm, ¹⁸⁴ W, ¹⁹⁶ Pt, ²⁰⁸ Pb(¹⁶ O, ¹⁶ O),
		E(cm)=35-70 MeV; measured reaction products; deduced $\sigma(\theta=175^0)$;
		calculated $\sigma(\theta=175^{\circ})$ using CCFULL. CONF Tsukuba(Nuclear Physics
		Trends) Proc.P50,Zhang
$^{184}\mathrm{Re}$	2011ZH26	NUCLEAR REACTIONS ^{85,87} Rb, ⁸⁹ Y, ^{140,142} Ce, ¹⁶⁹ Tm, ¹⁷⁵ Lu, ¹⁸¹ Ta,
		¹⁸⁵ Re, ²³⁸ U(n, 2n), E=14 MeV; measured reaction products, $E\gamma$, $I\gamma$;
		deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data
		library. JOUR NSENA 169 188

¹⁸⁵Pt **2011LI35** NUCLEAR REACTIONS ¹⁷³Yb(¹⁶O, 4n), E=90 MeV; measured reaction products, $E\gamma$, $I\gamma$, γ - γ -coin.; deduced level scheme, J, π , intra-band B(M1) / B(E2) ratios. Comparison with theoretical values from the semi-classical Donau and Frauendorf approach. JOUR JPGPE 38 095105

A=186

¹⁸⁶W 2010BEZ0 RADIOACTIVITY ^{64,70}Zn, ^{180,186}W(2 β); measured E γ , I γ ; deduced T_{1/2} limits. ZnWO₄ samples, Gran Sasso. CONF Frascati(Nuclear Physics in Astrophysics IV 2009), P012038

A=187

No references found

A=188

No references found

A=189

¹⁸⁹Pt **2010HUZZ** NUCLEAR REACTIONS ¹⁷⁶Yb(¹⁸O, 5n), E=88, 95 MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, (X-ray) γ -coin. ¹⁸⁹Pt deduced levels, E, J, π , rotational bands, deformation. CONF Tsukuba(Nuclear Physics Trends) Proc.P77,Hua

A=190

$^{190}\mathrm{Os}$	2011BE32	RADIOACTIVITY ^{190,198} Pt(2β), (2EC); measured E γ , I γ using
		ultra-low background HPGe; deduced $T_{1/2}$ limit. Gran Sasso
		laboratory. JOUR ZAANE 47 91
$^{190}\mathrm{Pt}$	2011BE32	RADIOACTIVITY ^{190,198} Pt(2β), (2EC); measured E γ , I γ using
		ultra-low background HPGe; deduced $T_{1/2}$ limit. Gran Sasso
		laboratory. JOUR ZAANE 47 91

A = 191

No references found

No references found

A = 193

No references found

A=194

$^{194}\mathrm{Re}$	2010BEZM	RADIOACTIVITY 194,195,196 Re, 199,200 Os, 198,199,201,202 Ir, 203,204 Pt,
		$20^{\circ} \text{Au}(\beta)$ [from 200 Pb and 200 U fragmentation on "Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure
$^{194}\mathrm{Os}$	2010BEZM	RADIOACTIVITY 194,195,196 Re, 199,200 Os, 198,199,201,202 Ir, 203,204 Pt,
		204 Au(β^{-})[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure

A=195

$^{195}\mathrm{Re}$	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt,
		204 Au(β^{-})[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure
$^{195}\mathrm{Os}$	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt,
		204 Au(β^{-})[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure
$^{195}\mathrm{Pt}$	2011FA08	NUCLEAR REACTIONS ¹⁹² Os(⁷ Li, 3np), (⁷ Li, 2nd), (⁷ Li, nt), E=44
		MeV; measured $E\gamma$, $I\gamma$, $\gamma\gamma(\theta)$, $(x ray)\gamma$ -, $\gamma\gamma$ -coin. ¹⁹⁵ Pt; deduced
		levels, J, π , bands, multipolarity. Systematics of level energies in
		191,193,195 Pt with reference to yrast g.s. members in 192,194,196 Pt.
		JOUR PRVCA 84 017301

A = 196

$^{196}\mathrm{Re}$	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt,
		204 Au(β^{-})[from 208 Pb and 238 U fragmentation on 9 Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure

Page 86

A=196 (continued)

$^{196}\mathrm{Os}$	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt,
		204 Au(β^{-})[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure
$^{196}\mathrm{Pt}$	2010ZHZU	NUCLEAR REACTIONS $^{184}W(^{32}S, X)$, E(cm)=118-148 MeV;
		measured reaction products; deduced σ , quasifission σ , anisotropy,
		reaction mechanism; calculated σ , fusion probability, anisotropy.
		^{90,96} Zr(³² S, X), E(cm)=70-95 MeV; measured reaction products;
		deduced σ ; calculated σ . ^{152,154} Sm, ¹⁸⁴ W, ¹⁹⁶ Pt, ²⁰⁸ Pb(¹⁶ O, ¹⁶ O),
		E(cm)=35-70 MeV; measured reaction products; deduced $\sigma(\theta=175^0)$;
		calculated $\sigma(\theta=175^{\circ})$ using CCFULL. CONF Tsukuba(Nuclear Physics
		Trends) Proc.P50,Zhang
$^{196}\mathrm{Au}$	2010ITZX	NUCLEAR REACTIONS 197 Au(γ , n), E=8-13.4 MeV; measured LCS
		(Laser Inverse Compton Scattering) $E\gamma$, $I\gamma$, En, In; deduced σ ,
		resonance parameters. Cross sections compared with other data.
		CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P237,Itoh
	2011EJ01	NUCLEAR REACTIONS ¹⁰⁰ Mo, ¹⁹⁷ Au(γ , n), ¹⁰⁰ Mo(γ , p), E=12-16
		MeV; measured reaction products, $E\gamma$, $I\gamma$; deduced relative yields,
		effective σ . JOUR JUPSA 80 094202

A=197

$^{197}\mathrm{Au}$	2011COZZ	NUCLEAR REACTIONS ³ He(⁷ Be, α), E=53.4 MeV; measured reaction products; deduced σ (E). ¹⁹⁷ Au(⁷ Be, ⁷ Be), E=53.4 MeV;
		measured reaction products; deduced $\sigma(\theta)$. REPT
		CNS-REP-86,P19,Condori
	2011PI08	NUCLEAR REACTIONS ⁹ Be, ¹⁹⁷ Au(⁶ He, ⁶ He), E=16.2, 21.3 MeV,
		^{[6} He secondary beam from ⁹ Be(⁷ Li, ⁶ He), E=22.18, 26.10 MeV primary
		beam]; measured ⁶ He spectra, cross sections, $\sigma(\theta)$, biparametric
		spectrum. Effect of the collective couplings to the excited states.
		Coupled channels calculations, using a double-folding potential, and
		three- and four-body continuum-discretized coupled-channels (CDCC)
		calculations. JOUR PRVCA 83 064603

$^{198}\mathrm{Os}$	2011BE32	RADIOACTIVITY ^{190,198} Pt(2 β), (2EC); measured E γ , I γ using
		ultra-low background HPGe; deduced $T_{1/2}$ limit. Gran Sasso
		laboratory. JOUR ZAANE 47 91
198 Ir	2010BEZM	RADIOACTIVITY 194,195,196 Re, 199,200 Os, 198,199,201,202 Ir, 203,204 Pt,
		204 Au(β^{-})[from 208 Pb and 238 U fragmentation on 9 Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure

A=198 (continued)

¹⁹⁸ Pt	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^-)[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONE Heidelberg (NIC XI)
	2011BE32	Proc,P84,Benlliure RADIOACTIVITY ^{190,198} Pt(2β), (2EC); measured E γ , I γ using ultra-low background HPGe; deduced T _{1/2} limit. Gran Sasso laboratory. JOUR ZAANE 47 91

A=199

^{199}Os	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt,
		$^{204}{\rm Au}(\beta^-)[{\rm from}~^{208}{\rm Pb}~{\rm and}~^{238}{\rm U}$ fragmentation on $^9{\rm Be}$ target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure
199 Ir	2010BEZM	RADIOACTIVITY 194,195,196 Re, 199,200 Os, 198,199,201,202 Ir, 203,204 Pt,
		204 Au(β^{-})[from 208 Pb and 238 U fragmentation on 9 Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure
$^{199}\mathrm{Pt}$	2010BEZM	RADIOACTIVITY 194,195,196 Re, 199,200 Os, 198,199,201,202 Ir, 203,204 Pt,
		204 Au(β^{-})[from 208 Pb and 238 U fragmentation on 9 Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure

$^{200}\mathrm{Os}$	2010BEZM	RADIOACTIVITY 194,195,196 Re, 199,200 Os, 198,199,201,202 Ir, 203,204 Pt,
		204 Au(β^{-})[from 208 Pb and 238 U fragmentation on 9 Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure
200 Ir	2010BEZM	RADIOACTIVITY 194,195,196 Re, 199,200 Os, 198,199,201,202 Ir, 203,204 Pt,
		204 Au(β^{-})[from 208 Pb and 238 U fragmentation on 9 Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$.
		Comparison with calculations. CONF Heidelberg (NIC XI)
		Proc,P84,Benlliure

²⁰¹ Ir	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^-)[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONF Heidelberg (NIC XI)
²⁰¹ Pt	2010BEZM	Proc,P84,Benlliure RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^-)[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONF Heidelberg (NIC XI) Proc,P84,Benlliure

A = 202

²⁰² Ir	2010BEZM	RADIOACTIVITY $^{194,195,196}\text{Re},~^{199,200}\text{Os},~^{198,199,201,202}\text{Ir},~^{203,204}\text{Pt},~^{204}\text{Au}(\beta^-)[\text{from}~^{208}\text{Pb}$ and ^{238}U fragmentation on ^{9}Be target at 1 GeV / nucleon]; measured decay products position, time; deduced $T_{1/2}.$ Comparison with calculations. CONF Heidelberg (NIC XI)
²⁰² Pt	2010BEZM	Proc,P84,Benlliure RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^{-})[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONF Heidelberg (NIC XI) Proc,P84,Benlliure

²⁰³ Pt	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^-)[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONF Heidelberg (NIC XI) Proc P84 Benlliure
²⁰³ Au	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^{-})[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV
		/ nucleon]; measured decay products position, time; deduced $T_{1/2}$. Comparison with calculations. CONF Heidelberg (NIC XI) Proc,P84,Benlliure
²⁰³ Hg	2011SZ01	NUCLEAR REACTIONS ²⁰⁸ Pb, ²³⁸ U(⁴⁰ Ca, X), E=305, 330 MeV; measured E γ , I γ , $\gamma\gamma$ -coin, prompt and delayed γ spectra, isomer half-lives by $\gamma(t)$ using Gammasphere array. ²⁰³ Hg; deduced high-spin levels, isomers, J, π , total conversion coefficients, multipolarities, configurations. Comparison with shell model calculations. JOUR PRVCA 83 064315

A=204

²⁰⁴ Ir	2011M018	NUCLEAR REACTIONS $Be(^{208}Pb, X)^{207}Hg / ^{206}Au / ^{205}Pt / ^{204}Ir$, E=1 GeV / nucleon; measured yields of the reaction products, (p, n) charge exchange cross sections, production cross sections, longitudinal, velocity distributions. Comparison with simulated fragmentation yields for ²³⁸ U projectile. Relevance to r-process nuclei in elemental
²⁰⁴ Pt	2010BEZM	abundances. JOUR PRVCA 84 011601 RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^-)[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONF Heidelberg (NIC XI) Proc P84 Benlliure
²⁰⁴ Au	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^-)[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONF Heidelberg (NIC XI) Proc.P84.Benlliure
²⁰⁴ Hg	2010BEZM	RADIOACTIVITY ^{194,195,196} Re, ^{199,200} Os, ^{198,199,201,202} Ir, ^{203,204} Pt, ²⁰⁴ Au(β^-)[from ²⁰⁸ Pb and ²³⁸ U fragmentation on ⁹ Be target at 1 GeV / nucleon]; measured decay products position, time; deduced T _{1/2} . Comparison with calculations. CONF Heidelberg (NIC XI) Proc.P84.Benlliure
²⁰⁴ Tl	2011BR12	NUCLEAR REACTIONS ²⁰⁸ Pb(⁴⁸ Ca, X), E=305; ²³⁸ U(⁴⁸ Ca, X), E=330 MeV; measured E γ , in-beam and off-beam I γ , $\gamma\gamma$ -coin, $\gamma\gamma$ (t), isomer half-lives using Gammasphere array. ²⁰⁴ Tl; deduced levels, J, π , conversion coefficients, multipolarity, B(M2), B(E3), configurations, octupole excitations. Comparison with shell-model calculations. JOUR PRVCA 84 014330

205 Pt	2011M018	NUCLEAR REACTIONS $Be(^{208}Pb, X)^{207}Hg / ^{206}Au / ^{205}Pt / ^{204}Ir$,
		E=1 GeV / nucleon; measured yields of the reaction products, (p, n)
		charge exchange cross sections, production cross sections, longitudinal,
		velocity distributions. Comparison with simulated fragmentation yields
		for ²³⁸ U projectile. Relevance to r-process nuclei in elemental
		abundances. JOUR PRVCA 84 011601
205 Pb	2010KOZX	NUCLEAR REACTIONS 206,207,208 Pb(γ , n), E=7.00-13.50 MeV;
		measured In; deduced σ using Taylor expansion method. Comparison
		with other data. CONF Kobe(Tours Nuc.Phys.and Astroph.VII)
		Proc.P231,Kondo

A=206

$^{206}\mathrm{Au}$	2011MO18	NUCLEAR REACTIONS Be(208 Pb, X) 207 Hg / 206 Au / 205 Pt / 204 Ir,
		E=1 GeV / nucleon; measured yields of the reaction products, (p, n)
		charge exchange cross sections, production cross sections, longitudinal,
		velocity distributions. Comparison with simulated fragmentation yields
		for ²³⁸ U projectile. Relevance to r-process nuclei in elemental
		abundances. JOUR PRVCA 84 011601
$^{206}\mathrm{Pb}$	2010KOZX	NUCLEAR REACTIONS 206,207,208 Pb(γ , n), E=7.00-13.50 MeV;
		measured In; deduced σ using Taylor expansion method. Comparison
		with other data. CONF Kobe(Tours Nuc.Phys.and Astroph.VII)
		Proc.P231,Kondo

A=207

$^{207}\mathrm{Hg}$	2011M018	NUCLEAR REACTIONS Be($^{208}\mathrm{Pb},\mathrm{X})^{207}\mathrm{Hg}$ / $^{206}\mathrm{Au}$ / $^{205}\mathrm{Pt}$ / $^{204}\mathrm{Ir},$
		E=1 GeV / nucleon; measured yields of the reaction products, (p, n)
		charge exchange cross sections, production cross sections, longitudinal,
		velocity distributions. Comparison with simulated fragmentation yields
		for ²³⁸ U projectile. Relevance to r-process nuclei in elemental
		abundances. JOUR PRVCA 84 011601
$^{207}\mathrm{Pb}$	2010KOZX	NUCLEAR REACTIONS 206,207,208 Pb(γ , n), E=7.00-13.50 MeV;
		measured In; deduced σ using Taylor expansion method. Comparison
		with other data. CONF Kobe(Tours Nuc.Phys.and Astroph.VII)
		Proc.P231,Kondo

²⁰⁸ Pb	2010BEZJ	NUCLEAR REACTIONS ²⁰⁸ Pb(²⁷ P, p ²⁶ Si), E≈450 MeV / nucleon; measured Coulomb excitation products using ALADIN-LAND setup; deduced preliminary σ . CONF Heidelberg (NIC XI) Proc,P227,Beceiro Novo
	2010ERZV	NUCLEAR REACTIONS ²⁰⁸ Pb(⁹² Mo, n ⁹¹ Mo), (¹⁰⁰ Mo, 2n ⁹⁸ Mo), (¹⁰⁰ Mo, n ⁹⁹ Mo), E \approx 500 MeV / nucleon; measured Coulomb excitation products using SIS / FRS / LAND; deduced mass yields, σ .
		Comparison with Beil et al. Measured also ^{93,94} Mo Coulomb dissociation, analysis is underway. CONF Heidelberg (NIC XI) Proc,P232,Ershova
	2010LAZU	NUCLEAR REACTIONS ²⁰⁸ Pb(³² Ar, p ³¹ Cl), (³¹ Cl, p ³⁰ S), (³⁴ Ar, p ³³ Cl), E=590 MeV / nucleon; measured Coulomb excitation products using ALADIN-LAND setup; deduced Q-value. Analysis still under way to determine $\sigma(E)$, B(E1). CONF Heidelberg (NIC XI)
	2010MAZF	Proc,P224,Langer NUCLEAR REACTIONS ²⁰⁸ Pb(¹⁷ Ne, 2p ¹⁵ O), E=500 MeV / nucleon; measured Coulomb excitation products. Analysis in progress. CONF Heidelberg (NIC XI) Proc,P225.Marganiec
	2010TOZW	NUCLEAR REACTIONS ²⁰⁸ Pb(³¹ Cl, p ³⁰ S), E=58 MeV / nucleon; measured Coulomb excitation products; deduced ³¹ Cl 1st excited state resonance. CONF Heidelberg (NIC XI) Proc,P228,Togano

A=208 (continued)

2010ZHZU	NUCLEAR REACTIONS ¹⁸⁴ W(³² S, X), E(cm)=118-148 MeV; measured reaction products; deduced σ , quasifission σ , anisotropy,
	reaction mechanism; calculated σ , fusion probability, anisotropy.
	90,96 Zr(32 S, X), E(cm)=70-95 MeV; measured reaction products;
	E(cm)=35-70 MeV: measured reaction products: deduced $\sigma(\theta=175^{\circ})$:
	calculated $\sigma(\theta - 175^0)$ using CCFULL CONE Tsukuba(Nuclear Physics
	Trends) Proc P50 Zhang
2011HE13	NUCLEAR REACTIONS 208 Pb(p, p'), 207 Pb(d, p), E<14 MeV;
	measured proton spectra; deduced excitation energies, J, π , σ . JOUR
	JPGPE 38 105102
2011MU10	NUCLEAR REACTIONS 40,48 Ca(n, n), E=11.9, 16.9 MeV; measured
	$E(n)$, $I(n)$, σ , $\sigma(E, \theta)$, time-of-flight spectra. ⁴⁰ Ca(n, n), E=9.9-85.0;
	${}^{48}Ca(n, n), E=7.97-16.9 \text{ MeV}; {}^{54}Ca(n, n), E=5.5-26.0 \text{ MeV}; {}^{58,60}Ni(n, n), E=5.5-26.0 \text{ MeV}; {}^{58,60$
	n), E=4.5-24.0 MeV; ${}^{92}Mo(n, n)$, E=7.0-30.4 MeV; ${}^{116,118}Sn(n, n)$,
	$E=9.95-24.0 \text{ MeV}; {}^{120}Sn(n, n), E=9.94-16.91 \text{ MeV}; {}^{124}Sn(n, n),$
	$E=11.0-24.0 \text{ MeV}; {}^{208}Pb(n, n), E=4.0-185.0 \text{ MeV}; {}^{50}Ti(p, p),$
	$E=6.0-65.0 \text{ MeV}; {}^{52}Cr(p, p), E=10.77-39.9 \text{ MeV}; {}^{54}Fe, {}^{64}Ni(p, p),$
	$E=9.69-65.0 \text{ MeV}; {}^{58}\text{Ni}(p, p), E=7.0-192.0 \text{ MeV}; {}^{60}\text{Ni}(p, p),$
	$E=7.0-178.0 \text{ MeV}; {}^{62}\text{Ni}(p, p), E=8.02-156.0 \text{ MeV}; {}^{90}\text{Zr}(p, p),$
	$E=5.57-185.0 \text{ MeV}; {}^{92}Mo(p, p), E=12.5-49.45 \text{ MeV}; {}^{114}Sn(p, p),$
	$E=30.4 \text{ MeV}; {}^{116}Sn(p, p), E=16.0-61.4 \text{ MeV}; {}^{118,122,124}Sn(p, p),$
	$E=16.0-49.35 \text{ MeV}; {}^{120}Sn(p, p), E=9.8-156.0 \text{ MeV}; {}^{208}Pb(p, p),$
	E=9.0-200.0 MeV; analyzed total cross sections, $\sigma(E, \theta)$, single-particle
	levels, spectroscopic factors, occupation probabilities, mass dependence on cross section. Dispersal optical model (DOM) analysis. JOUR
	PRVCA 83 064605
2011TA18	NUCLEAR REACTIONS ²⁰⁸ Pb(p, p'), E<20 MeV; measured reaction
	products, proton spectra; deduced electric dipole (E1) and spin
	magnetic dipole (M1) modes, E1 strength distribution, neutron skin
	thickness. Comparison with experimental data. JOUR PRLTA 107
	062502

A=209

No references found

A = 210

No references found

²¹¹Rn **2011KA23** NUCLEAR REACTIONS ²⁰⁸Pb(¹²C, X)²²⁰Ra, ²⁰⁷Pb(¹³C, X)²²⁰Ra, ²⁰⁸Pb(¹²C, 2n), (¹²C, 3n), (¹²C, 4n), (¹²C, 5n), (¹²C, 6n), (¹²C, n\alpha), (¹²C, 3n\alpha), (¹²C, 4n\alpha), (¹²C, 5n\alpha), ²⁰⁷Pb(¹³C, 3n), (¹³C, 4n), (¹³C, 5n), (¹³C, 6n), (¹³C, 3n\alpha), (¹³C, 4n\alpha), ²⁰⁷Pb(¹³C, F), (¹³C, xn), ²⁰⁸Pb(¹²C, F), (¹²C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38 095104

A = 212

²¹²Rn 2011KA23 NUCLEAR REACTIONS ²⁰⁸Pb(¹²C, X)²²⁰Ra, ²⁰⁷Pb(¹³C, X)²²⁰Ra, ²⁰⁸Pb(¹²C, 2n), (¹²C, 3n), (¹²C, 4n), (¹²C, 5n), (¹²C, 6n), (¹²C, n\alpha), (¹²C, 3n\alpha), (¹²C, 4n\alpha), (¹²C, 5n\alpha), ²⁰⁷Pb(¹³C, 3n), (¹³C, 4n), (¹³C, 5n), (¹³C, 6n), (¹³C, 3n\alpha), (¹³C, 4n\alpha), ²⁰⁷Pb(¹³C, F), (¹³C, xn), ²⁰⁸Pb(¹²C, F), (¹²C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38 095104

A = 213

²¹³Rn **2011KA23** NUCLEAR REACTIONS ²⁰⁸Pb(¹²C, X)²²⁰Ra, ²⁰⁷Pb(¹³C, X)²²⁰Ra, ²⁰⁸Pb(¹²C, 2n), (¹²C, 3n), (¹²C, 4n), (¹²C, 5n), (¹²C, 6n), (¹²C, n\alpha), (¹²C, 3n\alpha), (¹²C, 3n\alpha), (¹²C, 4n\alpha), (¹²C, 5n\alpha), ²⁰⁷Pb(¹³C, 3n), (¹³C, 4n), (¹³C, 5n), (¹³C, 6n), (¹³C, 3n\alpha), (¹³C, 4n\alpha), ²⁰⁷Pb(¹³C, F), (¹³C, xn), ²⁰⁸Pb(¹²C, F), (¹²C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38 095104

²¹⁴ Ra 2011KA23	NUCLEAR REACTIONS ²⁰⁸ Pb(¹² C, X) ²²⁰ Ra, ²⁰⁷ Pb(¹³ C, X) ²²⁰ Ra, ²⁰⁸ Pb(¹² C, 2n), (¹² C, 3n), (¹² C, 4n), (¹² C, 5n), (¹² C, 6n), (¹² C, n\alpha), (¹² C, 3n\alpha), (¹² C, 4n\alpha), (¹² C, 5n\alpha), ²⁰⁷ Pb(¹³ C, 3n), (¹³ C, 4n), (¹³ C, 5n), (¹³ C, 6n), (¹³ C, 3n\alpha), (¹³ C, 4n\alpha), ²⁰⁷ Pb(¹³ C, F), (¹³ C, xn), ²⁰⁸ Pb(¹² C, F), (¹² C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38 095104
----------------------------	---

²¹⁵ Rn	2011KA23	NUCLEAR REACTIONS ²⁰⁸ Pb(¹² C, X) ²²⁰ Ra, ²⁰⁷ Pb(¹³ C, X) ²²⁰ Ra, ²⁰⁸ Pb(¹² C, 2n), (¹² C, 3n), (¹² C, 4n), (¹² C, 5n), (¹² C, 6n), (¹² C, n\alpha), (¹² C, 3n\alpha), (¹² C, 4n\alpha), (¹² C, 5n\alpha), ²⁰⁷ Pb(¹³ C, 3n), (¹³ C, 4n), (¹³ C, 5n), (¹³ C, 6n), (¹³ C, 3n\alpha), (¹³ C, 4n\alpha), ²⁰⁷ Pb(¹³ C, F), (¹³ C, xn), ²⁰⁸ Pb(¹² C, F), (¹² C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38 095104
²¹⁵ Ra	2011KA23	NUCLEAR REACTIONS ²⁰⁸ Pb(¹² C, X) ²²⁰ Ra, ²⁰⁷ Pb(¹³ C, X) ²²⁰ Ra, ²⁰⁸ Pb(¹² C, 2n), (¹² C, 3n), (¹² C, 4n), (¹² C, 5n), (¹² C, 6n), (¹² C, n\alpha), (¹² C, 3n\alpha), (¹² C, 4n\alpha), (¹² C, 5n\alpha), ²⁰⁷ Pb(¹³ C, 3n), (¹³ C, 4n), (¹³ C, 5n), (¹³ C, 6n), (¹³ C, 3n\alpha), (¹³ C, 4n\alpha), ²⁰⁷ Pb(¹³ C, F), (¹³ C, xn), ²⁰⁸ Pb(¹² C, F), (¹² C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38 095104

A = 216

²¹⁶ Ra	2011KA23	NUCLEAR REACTIONS ²⁰⁸ Pb(¹² C, X) ²²⁰ Ra, ²⁰⁷ Pb(¹³ C, X) ²²⁰ Ra, ²⁰⁸ Pb(¹² C, 2n), (¹² C, 3n), (¹² C, 4n), (¹² C, 5n), (¹² C, 6n), (¹² C, n\alpha), (¹² C, 3n\alpha), (¹² C, 4n\alpha), (¹² C, 5n\alpha), ²⁰⁷ Pb(¹³ C, 3n), (¹³ C, 4n), (¹³ C, 5n), (¹³ C, 6n), (¹³ C, 3n\alpha), (¹³ C, 4n\alpha), ²⁰⁷ Pb(¹³ C, F), (¹³ C, xn), ²⁰⁸ Pb(¹² C, F), (¹² C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38
²¹⁶ Th	2011R020	095104 NUCLEAR REACTIONS ²⁰⁸ Pb(⁵⁰ Ti, 2n), E=240 MeV; measured E γ , I γ , ce, $\gamma\gamma$ -, γ (ce)-coin, γ (t), half-life. ²⁵⁶ Rf; deduced levels, J, π , isomers, configurations; calculated energies of two-quasiparticle high-K isomers with the universal Woods-Saxon energies. ¹⁷⁰ Er(⁵⁰ Ti, 4n) ²¹⁶ Th, E=222 MeV; measured E γ , ce, γ (ce)-coin from isomer, half-life, isomer ratio; used as a test case. JOUR PRVCA 83 064311

217 Ra	2011KA23	NUCLEAR REACTIONS 208 Pb $(^{12}$ C, X $)^{220}$ Ra, 207 Pb $(^{13}$ C, X $)^{220}$ Ra,
		208 Pb(12 C, 2n), (12 C, 3n), (12 C, 4n), (12 C, 5n), (12 C, 6n), (12 C, n α),
		$(^{12}C, 3n\alpha), (^{12}C, 4n\alpha), (^{12}C, 5n\alpha), ^{207}Pb(^{13}C, 3n), (^{13}C, 4n), (^{$
		5n), $({}^{13}C, 6n)$, $({}^{13}C, 3n\alpha)$, $({}^{13}C, 4n\alpha)$, ${}^{207}Pb({}^{13}C, F)$, $({}^{13}C, xn)$,
		208 Pb(12 C, F), (12 C, xn), E=58-94 MeV; measured reaction products;
		deduced fusion σ . deduced incomplete fusion. Comparison with with
		the single-barrier penetration model calculations. JOUR JPGPE 38
		095104

²¹⁸Ra **2011KA23** NUCLEAR REACTIONS ²⁰⁸Pb(¹²C, X)²²⁰Ra, ²⁰⁷Pb(¹³C, X)²²⁰Ra, ²⁰⁸Pb(¹²C, 2n), (¹²C, 3n), (¹²C, 4n), (¹²C, 5n), (¹²C, 6n), (¹²C, n\alpha), (¹²C, 3n\alpha), (¹²C, 4n\alpha), (¹²C, 5n\alpha), ²⁰⁷Pb(¹³C, 3n), (¹³C, 4n), (¹³C, 5n), (¹³C, 6n), (¹³C, 3n\alpha), (¹³C, 4n\alpha), ²⁰⁷Pb(¹³C, F), (¹³C, xn), ²⁰⁸Pb(¹²C, F), (¹²C, xn), E=58-94 MeV; measured reaction products; deduced fusion σ . deduced incomplete fusion. Comparison with with the single-barrier penetration model calculations. JOUR JPGPE 38 095104

A = 219

No references found

A = 220

220 Rn	2011KI16	RADIOACTIVITY 232,233 U(α); 228,229 Th(α)[from 232,233 U α decay];
		measured $\mathbf{E}\alpha$, $\mathbf{I}\alpha$. ²²⁹ Th; deduced half-life of ground state by the
		method of activity ratios and growth times. Comparison with previous
		measurements. ²²⁴ Ra, ²²⁵ Ac(α); measured E α , I α . JOUR PRVCA 84
		014316
220 Ra	2011KA23	NUCLEAR REACTIONS ²⁰⁸ Pb(¹² C, X) ²²⁰ Ra, ²⁰⁷ Pb(¹³ C, X) ²²⁰ Ra,
		208 Pb(12 C, 2n), (12 C, 3n), (12 C, 4n), (12 C, 5n), (12 C, 6n), (12 C, n α),
		$(^{12}C, 3n\alpha), (^{12}C, 4n\alpha), (^{12}C, 5n\alpha), ^{207}Pb(^{13}C, 3n), (^{13}C, 4n), (^{$
		5n), $({}^{13}C, 6n)$, $({}^{13}C, 3n\alpha)$, $({}^{13}C, 4n\alpha)$, ${}^{207}Pb({}^{13}C, F)$, $({}^{13}C, xn)$,
		208 Pb(12 C, F), (12 C, xn), E=58-94 MeV; measured reaction products;
		deduced fusion σ . deduced incomplete fusion. Comparison with with
		the single-barrier penetration model calculations. JOUR JPGPE 38
		095104

A = 221

²²¹Fr **2011KI16** RADIOACTIVITY ^{232,233}U(α); ^{228,229}Th(α)[from ^{232,233}U α decay]; measured E α , I α . ²²⁹Th; deduced half-life of ground state by the method of activity ratios and growth times. Comparison with previous measurements. ²²⁴Ra, ²²⁵Ac(α); measured E α , I α . JOUR PRVCA 84 014316

A = 222

No references found

A = 223

No references found

²²⁴Ra **2011KI16** RADIOACTIVITY ^{232,233}U(α); ^{228,229}Th(α)[from ^{232,233}U α decay]; measured E α , I α . ²²⁹Th; deduced half-life of ground state by the method of activity ratios and growth times. Comparison with previous measurements. ²²⁴Ra, ²²⁵Ac(α); measured E α , I α . JOUR PRVCA 84 014316

A = 225

²²⁵ Ra	2011KI16	RADIOACTIVITY ^{232,233} U(α); ^{228,229} Th(α)[from ^{232,233} U α decay]; measured E α , I α . ²²⁹ Th; deduced half-life of ground state by the method of activity ratios and growth times. Comparison with previous measurements. ²²⁴ Ra, ²²⁵ Ac(α); measured E α , I α . JOUR PRVCA 84
²²⁵ Ac	2011KI16	014316 RADIOACTIVITY ^{232,233} U(α); ^{228,229} Th(α)[from ^{232,233} U α decay]; measured E α , I α . ²²⁹ Th; deduced half-life of ground state by the method of activity ratios and growth times. Comparison with previous measurements. ²²⁴ Ra, ²²⁵ Ac(α); measured E α , I α . JOUR PRVCA 84 014316

A=226

No references found

A = 227

No references found

A = 228

²²⁸Th **2011KI16** RADIOACTIVITY ^{232,233}U(α); ^{228,229}Th(α)[from ^{232,233}U α decay]; measured E α , I α . ²²⁹Th; deduced half-life of ground state by the method of activity ratios and growth times. Comparison with previous measurements. ²²⁴Ra, ²²⁵Ac(α); measured E α , I α . JOUR PRVCA 84 014316

A = 229

²²⁹Th **2011KI16** RADIOACTIVITY ^{232,233}U(α); ^{228,229}Th(α)[from ^{232,233}U α decay]; measured E α , I α . ²²⁹Th; deduced half-life of ground state by the method of activity ratios and growth times. Comparison with previous measurements. ²²⁴Ra, ²²⁵Ac(α); measured E α , I α . JOUR PRVCA 84 014316

A=230

No references found

A = 231

2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
	E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
	⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce,
	231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
	2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
	keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
	mass distribution; calculated mass distribution at two lowest energies
	using TALYS. Neutron flux calculated using MCNPX with LA150 cross
	section library. JOUR ZAANE 47 85
2011RE13	NUCLEAR REACTIONS ²³² Th(n, 2n), E=13.57-14.83 MeV; measured
	reaction products, $E\gamma$, $I\gamma$; deduced σ . Comparison with nuclear model
	calculations and ENDF / B-VII, ENDF / B-VI, ROSFOND-2010,
	JENDL-4.0, JENDL-3.3 and JEFF-3.1 evaluated nuclear libraries.
	JOUR ANEND 38 2359
	2011AD18 2011RE13

A = 232

$^{232}\mathrm{Th}$	2011R026	NUCLEAR REACTIONS ²³² Th(α , α '), E=16-30 MeV; measured E α ,
		I α , quasi-elastic-scattering $\sigma(E)$; deduced fusion-barrier distribution
		and width. 232 Th(12 C, 12 C'), E(cm)=52-77 MeV; 232 Th(16 O, 16 O'),
		$E(cm) = 70-97 \text{ MeV}; {}^{232}Th({}^{19}F, {}^{19}F'), E(cm) = 77-102 \text{ MeV}; analyzed$
		fusion-barrier distributions and widths. Comparison with
		coupled-channel fusion model calculations. JOUR PRVCA 84 011602
$^{232}\mathrm{U}$	2011KI16	RADIOACTIVITY 232,233 U(α); 228,229 Th(α)[from 232,233 U α decay];
		measured $\mathbf{E}\alpha$, $\mathbf{I}\alpha$. ²²⁹ Th; deduced half-life of ground state by the
		method of activity ratios and growth times. Comparison with previous
		measurements. ²²⁴ Ra, ²²⁵ Ac(α); measured E α , I α . JOUR PRVCA 84
		014316

233 Th	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		97 Zr, 99 Mo, 103 Ru, 105 Rh, 132 Te, 131,133 I, 133,135 Xe, 140 Ba, 141,143 Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, $T_{1/2}$. 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85

A=233 (continued)

233 Pa	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, $T_{1/2}$. 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85
	2011KO32	RADIOACTIVITY ²³³ Pa(β^{-}) [from ²³⁷ Nb(α)]; measured decay
		products, $E\gamma$, $I\gamma$, $E\alpha$, $I\alpha$; deduced γ -emission probabilities.
		Comparison with experimental data. JOUR NIMAE 652 654
^{233}U	2011KI16	RADIOACTIVITY ^{232,233} U(α); ^{228,229} Th(α)[from ^{232,233} U α decay];
		measured $\mathbf{E}\alpha$, $\mathbf{I}\alpha$. ²²⁹ Th; deduced half-life of ground state by the
		method of activity ratios and growth times. Comparison with previous
		measurements. ²²⁴ Ra, ²²⁵ Ac(α); measured E α , I α . JOUR PRVCA 84
		014316
	2011KO30	NUCLEAR REACTIONS 234 U(polarized d, t), E=22 MeV; measured
		$E(t)$, $I(t)$, $\sigma(\theta)$, analyzing powers using Q3D spectrometer. ²³³ U;
		deduced levels, J, π , rotational bands, spectroscopic strengths and
		fingerprints for bands, Nilsson configurations. DWBA analysis.
		Comparison with previous data. JOUR PRVCA 84 014334
	2011KO32	RADIOACTIVITY ²³³ Pa(β^{-}) [from ²³⁷ Nb(α)]; measured decay
		products, $E\gamma$, $I\gamma$, $E\alpha$, $I\alpha$; deduced γ -emission probabilities.
		Comparison with experimental data. JOUR NIMAE 652 654

A = 234

No references found

A=235

No references found

A=236

²³⁶U 2010JIZZ NUCLEAR REACTIONS ⁹³Nb(n, 2n), ²³⁸U(n, 3n), E=14 MeV; measured σ using AMS (Accelerator Mass Spectrometry). CONF Tsukuba(Nuclear Physics Trends) Proc.P144,Jiang

^{237}U	2011AD18	NUCLEAR REACTIONS ²³² Th, U(n, f), (n, γ), (n, 2n),
		E=1.E-10-1.E3 MeV; measured reaction products, $E\gamma$, $I\gamma$. ^{85m} Kr, ⁹³ Y,
		⁹⁷ Zr, ⁹⁹ Mo, ¹⁰³ Ru, ¹⁰⁵ Rh, ¹³² Te, ^{131,133} I, ^{133,135} Xe, ¹⁴⁰ Ba, ^{141,143} Ce,
		231 Th, 233 Pa, 237 U, 239 Np deduced reaction rates, T _{1/2} . 232 Th, U(n,
		2n), E=10-2000 MeV; calculated σ using TALYS. ²³² Th(n, f), E=400
		keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced
		mass distribution; calculated mass distribution at two lowest energies
		using TALYS. Neutron flux calculated using MCNPX with LA150 cross
		section library. JOUR ZAANE 47 85
	2011ZH26	NUCLEAR REACTIONS ^{85,87} Rb, ⁸⁹ Y, ^{140,142} Ce, ¹⁶⁹ Tm, ¹⁷⁵ Lu, ¹⁸¹ Ta,
		¹⁸⁵ Re, ²³⁸ U(n, 2n), E=14 MeV; measured reaction products, $E\gamma$, $I\gamma$;
		deduced σ . Comparison with ENDF / B-VII.0 evaluated nuclear data
		library. JOUR NSENA 169 188

A = 238

No references found

A = 239

²³⁹Np **2011AD18** NUCLEAR REACTIONS ²³²Th, U(n, f), (n, γ), (n, 2n), E=1.E-10-1.E3 MeV; measured reaction products, E γ , I γ . ^{85m}Kr, ⁹³Y, ⁹⁷Zr, ⁹⁹Mo, ¹⁰³Ru, ¹⁰⁵Rh, ¹³²Te, ^{131,133}I, ^{133,135}Xe, ¹⁴⁰Ba, ^{141,143}Ce, ²³¹Th, ²³³Pa, ²³⁷U, ²³⁹Np deduced reaction rates, T_{1/2}. ²³²Th, U(n, 2n), E=10-2000 MeV; calculated σ using TALYS. ²³²Th(n, f), E=400 keV, 14, 25, 50, 100, 200 MeV; measured fission products, deduced mass distribution; calculated mass distribution at two lowest energies using TALYS. Neutron flux calculated using MCNPX with LA150 cross section library. JOUR ZAANE 47 85

A = 240

No references found

241 Pu	2009WE08	RADIOACTIVITY ²⁴¹ Pu(β^{-}); measured half-life by ratios of ²⁴¹ Pu /
		$^{240}\mathrm{Pu}$ and $^{240}\mathrm{Pu}$ / $^{239}\mathrm{Pu}$ activities over 30-year year interval. JOUR
		JASPE 24 801
$^{241}\mathrm{Am}$	2009WE08	RADIOACTIVITY ²⁴¹ Pu(β^{-}); measured half-life by ratios of ²⁴¹ Pu /
		240 Pu and 240 Pu / 239 Pu activities over 30-year year interval. JOUR
		JASPE 24 801

No references found

A = 243

No references found

A = 244

No references found

A = 245

No references found

A=246

No references found

A = 247

No references found

A = 248

²⁴⁸Cm **2011RZ01** RADIOACTIVITY ²⁴⁸Cm(SF); measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, using EUROGAM-2 array. ¹⁴³Xe; deduced levels, J, π , conversion coefficients, multipolarity, bands, configurations. Comparison with quasiparticle-rotor model calculations with a reflection-symmetric potential. Systematics of bandheads of N=89 nuclei. JOUR PRVCA 83 067301

A = 249

No references found

A=250

No references found

A=251

No references found

A = 252

²⁵² Cf	2010ZHZT	RADIOACTIVITY ²⁵² Cf(SF); measured E γ , I γ , $\gamma\gamma$ -coin. ¹⁰³ Nb, ^{105,106} Mo, ^{107,108} Tc, ^{110,112} Ru deduced levels, J, π , collective vibrational, rotational bands. CONF Tsukuba(Nuclear Physics Trends) Proc.P253.Zhu
	2011KAZY	RADIOACTIVITY ²⁵² Cf(SF); measured fission fragment mass, (fragment)(fragment)-coin, n(fragment)-coin. CONF Dubna(ISINN-18).P102.Kamanin
	2011LI25	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, fission yields ratios using the Gammasphere array. ¹¹⁴ Rh; deduced levels, J, π , rotational bands, signature inversion, configurations. Comparison with Triaxial Projected Shell Model calculations. Systematics of negative-parity yrast bands of odd-odd Rh nuclei with A=104-114. JOUR PRVCA 83 064310
	2011LI29	RADIOACTIVITY ²⁵² Cf(SF); measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin using Gammasphere array. ¹¹⁵ Rh; deduced levels, J, π , bands, moment of inertia, signature splitting, fission yield ratios. Comparison with Rotor plus particle model calculations. Systematics of level energies, signature splittings and moments of inertia plots of ^{107,109,111,113,115} Rh nuclei. JOUR PRVCA 84 014304
	2011LI34	RADIOACTIVITY ²⁵² Cf(SF); measured decay products, $E\gamma$, $I\gamma$, γ - γ - γ -coin. ^{88,90,92} Kr, ⁸⁶ Se; deduced level schemes, energies, J, π . Comparison with nuclear systematics and angular correlation measurements. JOUR IMPEE 20 1825

A = 253

²⁵³No 2010HAZN NUCLEAR REACTIONS ²⁰⁷Pb(⁴⁸Ca, 2n), E=220 MeV; measured reaction products, (ER) α -correlations, E γ , I γ , (DSSD) γ -coin, X-rays. ²⁵³No deduced decay partial scheme. DSDD (Double-Sided Si-Strip Detector), analysis in progress. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P337,Hauschild

A = 254

No references found

A=255

No references found

 256 Rf 2011R020 NUCLEAR REACTIONS ²⁰⁸Pb(⁵⁰Ti, 2n), E=240 MeV; measured $E\gamma$, I γ , ce, $\gamma\gamma$ -, γ (ce)-coin, γ (t), half-life. ²⁵⁶Rf; deduced levels, J, π . isomers, configurations; calculated energies of two-quasiparticle high-K isomers with the universal Woods-Saxon energies. ¹⁷⁰Er(⁵⁰Ti, $(4n)^{216}$ Th, E=222 MeV; measured E γ , ce, γ (ce)-coin from isomer, half-life, isomer ratio; used as a test case. JOUR PRVCA 83 064311 A = 257No references found A = 258 $^{258}\mathrm{Lr}$ RADIOACTIVITY ²⁶⁶Bh(α)[from ²⁴⁸Cm(²³Na, 5n)];²⁶²Db(α)[from 2010MOZV ²⁶⁶Bh]; measured evaporation residues, $E\alpha$, $I\alpha$, $\alpha\alpha$ -coin, (SF) α -coin, $\alpha\alpha$ -correlations, (SF) α -correlations; deduced T_{1/2}, Q-values. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P331,Morita A = 259No references found A = 260 ^{260}Sg RADIOACTIVITY 264,265 Hs(α), (SF) [from 208 Pb(58 Fe, 2n), 2011SA41 207,208 Pb(58 Fe, n), E(cm)=200-227 MeV]; measured E α , I α ; deduced α -particle energies, α and spontaneous fission branches, Q-values, T_{1/2}. JOUR JUPSA 80 094201 A = 261 $^{261}\mathrm{Sg}$ RADIOACTIVITY 264,265 Hs(α), (SF) [from 208 Pb(58 Fe, 2n), 2011SA41 207,208 Pb(58 Fe, n), E(cm)=200-227 MeV]; measured E α , I α ; deduced α -particle energies, α and spontaneous fission branches, Q-values, T_{1/2}. JOUR JUPSA 80 094201 A = 262 262 Db RADIOACTIVITY ²⁶⁶Bh(α)[from ²⁴⁸Cm(²³Na, 5n)];²⁶²Db(α)[from 2010MOZV ²⁶⁶Bh]; measured evaporation residues, $E\alpha$, $I\alpha$, $\alpha\alpha$ -coin, $(SF)\alpha$ -coin, $\alpha\alpha$ -correlations, (SF) α -correlations; deduced T_{1/2}, Q-values. CONF Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P331,Morita

A=263

No references found

A=264

264 Hs	2011SA41	NUCLEAR REACTIONS 208 Pb(58 Fe, 2n), 207,208 Pb(58 Fe, n),
		$E(cm)=200-227$ MeV; measured reaction products; deduced σ . JOUR
		JUPSA 80 094201
	2011SA41	RADIOACTIVITY 264,265 Hs(α), (SF) [from 208 Pb(58 Fe, 2n),
		207,208 Pb(58 Fe, n), E(cm)=200-227 MeV]; measured E α , I α ; deduced
		α -particle energies, α and spontaneous fission branches, Q-values, T _{1/2}
		JOUR JUPSA 80 094201

A=265

2011SA41	NUCLEAR REACTIONS 208 Pb(58 Fe, 2n), 207,208 Pb(58 Fe, n),
	$E(cm)=200-227$ MeV; measured reaction products; deduced σ . JOUR
	JUPSA 80 094201
2011SA41	RADIOACTIVITY 264,265 Hs(α), (SF) [from 208 Pb(58 Fe, 2n),
	207,208 Pb(58 Fe, n), E(cm)=200-227 MeV]; measured E α , I α ; deduced
	α -particle energies, α and spontaneous fission branches, Q-values, $T_{1/2}$.
	JOUR JUPSA 80 094201
	2011SA41 2011SA41

²⁶⁶ Rf	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286112, ²⁸⁶114(α), (SF), ^{287,288,289114, ^{287,288,289,290115}}}
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
266 Db	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

A=266 (continued)

²⁶⁶ Sg	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 115, ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission
		products, E α , I α ; deduced decay mode, $T_{1/2}$, energy, Q-value.
^{266}Bh	2010M0ZV	RADIOACTIVITY ²⁶⁶ Bh(α)[from ²⁴⁸ Cm(²³ Na, 5n)]; ²⁶² Db(α)[from ²⁶⁶ Bh]: measured evaporation residues. E α , I α , $\alpha\alpha$ -coin, (SF) α -coin.
		$\alpha\alpha$ -correlations, (SF) α -correlations; deduced T _{1/2} , Q-values. CONF
200		Kobe(Tours Nuc.Phys.and Astroph.VII) Proc.P331,Morita
²⁶⁶ Hs	2011IT06	NUCLEAR REACTIONS ${}^{249}Cf({}^{22}Ne, X){}^{271}Hs^*, E=102, 127 MeV;$ ${}^{248}Cm({}^{26}Mg, X){}^{274}Hs^*, E=129, 143, 160 MeV; {}^{238}U({}^{36}S, X){}^{274}Hs^*,$
		$E=173, 179, 186, 198 \text{ MeV}; {}^{208}\text{Pb}({}^{58}\text{Fe}, X){}^{266}\text{Hs}^*, E=289, 305, 315,$
		324 MeV; measured binary reaction product spectra in coincidence
		mode using TOF; deduced yields, mass-energy and TKE distributions
		of binary products. Comparison of measured fragment mass-energy
		distributions with those expected for fission processes of excited
		compound nucleus in the framework of the liquid drop model and
		empirical systematics. JOUR PRVCA 83 064613

A = 267

267 Rf	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 12, ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, E α , I α ; deduced decay mode, T _{1/2} , energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429	268 Rf	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
$ \begin{array}{l} & 274,275,276,278\mathrm{Mt}(\alpha),\ 2^{79}\mathrm{Ds}(\mathrm{SF}),\ (\alpha),\ ^{281}\mathrm{Ds}(\mathrm{SF}),\ ^{278,279,280,282}\mathrm{Rg}(\alpha) \\ & 2^{81}\mathrm{Rg}(\mathrm{SF}),\ ^{282,284}\mathrm{Cn}(\mathrm{SF}),\ ^{285}\mathrm{Cn}(\alpha),\ ^{283}\mathrm{Cn}(\alpha),\ (\mathrm{SF}),\ ^{282,283,284,285,286}\mathrm{113},\ ^{286}\mathrm{114}(\alpha),\ (\mathrm{SF}),\ ^{287,288,289}\mathrm{114},\ ^{287,288,289,290}\mathrm{11},\ ^{290,291,292,293}\mathrm{116},\ ^{293,294}\mathrm{117},\ ^{294}\mathrm{118}(\alpha);\ \mathrm{measured\ decay\ and\ fission\ products,\ E\alpha,\ I\alpha;\ deduced\ decay\ mode,\ T_{1/2},\ \mathrm{energy},\ Q-value.\ Comparison\ with\ theoretical\ calculations.\ JOUR\ RAACA\ 99\ 429 \end{array} $			266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 1 ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, E α , I α ; deduced decay mode, T _{1/2} , energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429			274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 1 ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, E α , I α ; deduced decay mode, T _{1/2} , energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429			281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, E α , I α ; deduced decay mode, T _{1/2} , energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429			$282,283,284,285,286$ 113, 286 114(α), (SF), $287,288,289$ 114, $287,288,289,290$ 115,
products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429			290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
Comparison with theoretical calculations. JOUR RAACA 99 429			products, $\mathbf{E}\alpha$, $\mathbf{I}\alpha$; deduced decay mode, $\mathbf{T}_{1/2}$, energy, Q-value.
			Comparison with theoretical calculations. JOUR RAACA 99 429 $$

A=268 (continued)

A=269

A = 270

110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
	266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
	274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
	281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF).
	282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
	290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
	products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
	Comparison with theoretical calculations. JOUR RAACA 99 429
110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
	266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
	274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
	281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
	$^{282,283,284,285,286}_{285,286}_{113}$, $^{286}_{114}(\alpha)$, (SF), $^{287,288,289}_{287,288,289}_{114}$, $^{287,288,289,290}_{287,288,289}_{115}$,
	$290,291,292,293$ 116, $293,294$ 117, 294 118(α); measured decay and fission
	products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
	Comparison with theoretical calculations. JOUR RAACA 99 429
110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
	266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
	274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
	281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
	$^{282,283,284,285,286}_{282,283,284,285,286}_{113}$, $^{286}_{281}_{114}(\alpha)$, (SF), $^{287,288,289}_{281,285,286}_{114}$, $^{287,288,289,290}_{281,285,286}_{115}$,
	200, 201, 202, 202, 4, 6, 202, 204, 4, 7, 204, 4, 6, (1)
	$^{290,291,292,293}116, ^{293,294}117, ^{294}118(\alpha)$; measured decay and fission
	products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
	110G07 110G07 110G07

Page 105

A=270 (continued)

²⁷⁰Hs **20110G07** RADIOACTIVITY ²⁶⁷Rf(SF), ^{266,268,270}Db(SF), (EC), ²⁶⁹Db(SF), ²⁶⁶Sg(SF), ²⁷¹Sg(α), (SF), ^{270,272,274}Bh(α), ^{270,275}Hs(α), ^{274,275,276,278}Mt(α), ²⁷⁹Ds(SF), (α), ²⁸¹Ds(SF), ^{278,279,280,282}Rg(α), ²⁸¹Rg(SF), ^{282,284}Cn(SF), ²⁸⁵Cn(α), ²⁸³Cn(α), (SF), ^{282,283,284,285,286}113, ²⁸⁶114(α), (SF), ^{287,288,289}114, ^{287,288,289,290}115, ^{290,291,292,293}116, ^{293,294}117, ²⁹⁴118(α); measured decay and fission products, E α , I α ; deduced decay mode, T_{1/2}, energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429

A = 271

²⁷¹ Sg	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
$^{271}\mathrm{Bh}$	20110G07	Comparison with theoretical calculations. JOUR RAACA 99 429 RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF), 266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF), 282,283,284,285,286112, 286114(α), (SF), 287,288,289114, 287,288,289,290115
		$^{290,291,292,293}_{116}$ $^{293,294}_{117}_{117}_{294}_{118}(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
271 Hs	2011IT06	NUCLEAR REACTIONS ${}^{249}Cf({}^{22}Ne, X){}^{271}Hs^*, E=102, 127 MeV;$ ${}^{248}Cm({}^{26}Mg, X){}^{274}Hs^*, E=129, 143, 160 MeV; {}^{238}U({}^{36}S, X){}^{274}Hs^*,$
		$E=173, 179, 186, 198 MeV; {}^{208}Pb({}^{58}Fe, X){}^{266}Hs^*, E=289, 305, 315,$
		324 MeV; measured binary reaction product spectra in coincidence
		mode using TOF; deduced yields, mass-energy and TKE distributions
		of binary products. Comparison of measured fragment mass-energy
		distributions with those expected for fission processes of excited
		compound nucleus in the framework of the liquid drop model and
		empirical systematics. JOUR PRVCA 83 064613

^{272}Bh	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286113, 286114(\alpha), (SF), 287,288,289114, 287,288,289,290115,$
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

No references found

A = 274

^{274}Bh	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$^{282,283,284,285,286}_{282,283,284,285,286}_{113}$, $^{286}_{281,14}(\alpha)$, (SF), $^{287,288,289}_{282,114}, ^{287,288,289,290}_{282,283,284,285,286}_{113}$
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
^{274}Hs	2011IT06	NUCLEAR REACTIONS 249 Cf $(^{22}$ Ne, X $)^{271}$ Hs [*] , E=102, 127 MeV:
		248 Cm(26 Mg, X) 274 Hs*, E=129, 143, 160 MeV; 238 U(36 S, X) 274 Hs*,
		$E=173, 179, 186, 198 \text{ MeV}; {}^{208}\text{Pb}({}^{58}\text{Fe}, X){}^{266}\text{Hs}^*, E=289, 305, 315,$
		324 MeV; measured binary reaction product spectra in coincidence
		mode using TOF; deduced yields, mass-energy and TKE distributions
		of binary products. Comparison of measured fragment mass-energy
		distributions with those expected for fission processes of excited
		compound nucleus in the framework of the liquid drop model and
		empirical systematics. JOUR PRVCA 83 064613
$^{274}\mathrm{Mt}$	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286113$, $286114(\alpha)$, (SF), $287,288,289114$, $287,288,289,290115$,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

275 Hs	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

A=275 (continued)

²⁷⁵Mt **20110G07** RADIOACTIVITY ²⁶⁷Rf(SF), ^{266,268,270}Db(SF), (EC), ²⁶⁹Db(SF), ²⁶⁶Sg(SF), ²⁷¹Sg(α), (SF), ^{270,272,274}Bh(α), ^{270,275}Hs(α), ^{274,275,276,278}Mt(α), ²⁷⁹Ds(SF), (α), ²⁸¹Ds(SF), ^{278,279,280,282}Rg(α), ²⁸¹Rg(SF), ^{282,284}Cn(SF), ²⁸⁵Cn(α), ²⁸³Cn(α), (SF), ^{282,283,284,285,286}113, ²⁸⁶114(α), (SF), ^{287,288,289}114, ^{287,288,289,290}115, ^{290,291,292,293}116, ^{293,294}117, ²⁹⁴118(α); measured decay and fission products, E α , I α ; deduced decay mode, T_{1/2}, energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429

A = 276

A = 277

No references found

$^{278}\mathrm{Mt}$	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
$^{278}\mathrm{Rg}$	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286$ 113, 286 114(α), (SF), $287,288,289$ 114, $287,288,289,290$ 115,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
A=279

279 Ds	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286$ 113, 286 114(α), (SF), $287,288,289$ 114, $287,288,289,290$ 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
279 Rg	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286$ 113, 286 114(α), (SF), $287,288,289$ 114, $287,288,289,290$ 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429 $$

A=280

²⁸⁰ Rg	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 115, ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, Eα, Iα; deduced decay mode, T _{1/2} , energy, Q-value. Comparison with theoretical calculations, JOUR RAACA 99 429
		comparison with theoretical calculations. So off thirten 55 425

A = 281

281 Ds	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286113$, $286114(\alpha)$, (SF), $287,288,289114$, $287,288,289,290115$,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $\mathbf{E}\alpha$, $\mathbf{I}\alpha$; deduced decay mode, $\mathbf{T}_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
281 Rg	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286113, 286114(\alpha), (SF), 287,288,289114, 287,288,289,290115,$
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

A = 282

282 Rg	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
$^{282}113$	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

A = 283

A=284

A = 285

²⁸⁵113 **20110G07** RADIOACTIVITY ²⁶⁷Rf(SF), ^{266,268,270}Db(SF), (EC), ²⁶⁹Db(SF), ²⁶⁶Sg(SF), ²⁷¹Sg(α), (SF), ^{270,272,274}Bh(α), ^{270,275}Hs(α), ^{274,275,276,278}Mt(α), ²⁷⁹Ds(SF), (α), ²⁸¹Ds(SF), ^{278,279,280,282}Rg(α), ²⁸¹Rg(SF), ^{282,284}Cn(SF), ²⁸⁵Cn(α), ²⁸³Cn(α), (SF), ^{282,283,284,285,286}113, ²⁸⁶114(α), (SF), ^{287,288,289}114, ^{287,288,289,290}115, ^{290,291,292,293}116, ^{293,294}117, ²⁹⁴118(α); measured decay and fission products, E α , I α ; deduced decay mode, T_{1/2}, energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429

A=286

286113	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
286114	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286113, 286114(\alpha), (SF), 287,288,289114, 287,288,289,290115,$
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

287114	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		$^{290,291,292,293}116$, $^{293,294}117$, $^{294}118(\alpha)$; measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
287115	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286$ 113, 286 114(α), (SF), $287,288,289$ 114, $287,288,289,290$ 115,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

A=288

$^{288}\mathrm{Ds}$	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds,
		292,293,294,295,296,297,298,299 114, $293,294,295,296,297,298,299,300$ 115; measured
		abundance in natural platinum, lead, and bismuth samples using
		accelerator mass spectrometry (AMS) technique. Comparison with
		previous data. Ultrasensitive search for SHE in natural Pt. Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA
		83 065806
²⁸⁸ 114	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
288115	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$^{282,283,284,285,286}113, ^{286}114(\alpha), (SF), ^{287,288,289}114, ^{287,288,289,290}115,$
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

A=289

$^{289}\mathrm{Ds}$	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using
		accelerator mass spectrometry (AMS) technique. Comparison with
		previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA
		83 065806
$2^{289}114$	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$^{282,283,284,285,286}113,^{286}114(\alpha),$ (SF), $^{287,288,289}114,^{287,288,289,290}115,$
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429 $$

A=289 (continued)

²⁸⁹115 **20110G07** RADIOACTIVITY ²⁶⁷Rf(SF), ^{266,268,270}Db(SF), (EC), ²⁶⁹Db(SF), ²⁶⁶Sg(SF), ²⁷¹Sg(α), (SF), ^{270,272,274}Bh(α), ^{270,275}Hs(α), ^{274,275,276,278}Mt(α), ²⁷⁹Ds(SF), (α), ²⁸¹Ds(SF), ^{278,279,280,282}Rg(α), ²⁸¹Rg(SF), ^{282,284}Cn(SF), ²⁸⁵Cn(α), ²⁸³Cn(α), (SF), ^{282,283,284,285,286}113, ²⁸⁶114(α), (SF), ^{287,288,289}114, ^{287,288,289,290}115, ^{290,291,292,293}116, ^{293,294}117, ²⁹⁴118(α); measured decay and fission products, E α , I α ; deduced decay mode, T_{1/2}, energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429

A=290

$^{290}\mathrm{Ds}$	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds,
		292,293,294,295,296,297,298,299114, $293,294,295,296,297,298,299,300$ 115; measured
		abundance in natural platinum, lead, and bismuth samples using
		accelerator mass spectrometry (AMS) technique. Comparison with
		previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA
		83 065806
290115	20110G07	RADIOACTIVITY 267 Rf(SF), 266,268,270 Db(SF), (EC), 269 Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		282,283,284,285,286 113, 286 114(α), (SF), 287,288,289 114, 287,288,289,290 115,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429
290116	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		266 Sg(SF), 271 Sg(α), (SF), 270,272,274 Bh(α), 270,275 Hs(α),
		274,275,276,278 Mt(α), 279 Ds(SF), (α), 281 Ds(SF), 278,279,280,282 Rg(α),
		281 Rg(SF), 282,284 Cn(SF), 285 Cn(α), 283 Cn(α), (SF),
		$282,283,284,285,286113$, $286114(\alpha)$, (SF), $287,288,289114$, $287,288,289,290115$,
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

A = 291

291 Ds	2011DE21	ATOMIC MASSES 288,289,290,291,292,293,294,295 Ds,
		292,293,294,295,296,297,298,299 114, $293,294,295,296,297,298,299,300$ 115; measured
		abundance in natural platinum, lead, and bismuth samples using
		accelerator mass spectrometry (AMS) technique. Comparison with
		previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA
		83 065806

A=291 (continued)

²⁹¹116 **20110G07** RADIOACTIVITY ²⁶⁷Rf(SF), ^{266,268,270}Db(SF), (EC), ²⁶⁹Db(SF), ²⁶⁶Sg(SF), ²⁷¹Sg(α), (SF), ^{270,272,274}Bh(α), ^{270,275}Hs(α), ^{274,275,276,278}Mt(α), ²⁷⁹Ds(SF), (α), ²⁸¹Ds(SF), ^{278,279,280,282}Rg(α), ²⁸¹Rg(SF), ^{282,284}Cn(SF), ²⁸⁵Cn(α), ²⁸³Cn(α), (SF), ^{282,283,284,285,286}113, ²⁸⁶114(α), (SF), ^{287,288,289}114, ^{287,288,289,290}115, ^{290,291,292,293}116, ^{293,294}117, ²⁹⁴118(α); measured decay and fission products, E α , I α ; deduced decay mode, T_{1/2}, energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429

A = 292

$^{292}\mathrm{Ds}$	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds,
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt. Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA 83.065806
²⁹² 114	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299,114} , ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806
²⁹² 116	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 115, ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, Eα, Iα; deduced decay mode, $T_{1/2}$, energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429

A=293

²⁹³Ds 2011DE21 ATOMIC MASSES ^{288,289,290,291,292,293,294,295}Ds, ^{292,293,294,295,296,297,298,299}114, ^{293,294,295,296,297,298,299,300}115; measured abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806

A=293 (continued)

²⁹³ 114	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299,114} , ^{293,294,295,296,297,298,299,300} 115: measured
202445		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806
²⁹³ 115	2011DE21	ATOMIC MASSES 260,297,293,294,295,293,293,293,293,293,293 Ds, 292,293,294,295,296,297,298,299,114 , 293,294,295,296,297,298,299,300 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806
²⁹³ 116	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 115, ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, E α , I α ; deduced decay mode, T _{1/2} , energy, Q-value. Comparison with theoretical calculations. IOUR B A ACA 00, 420
²⁹³ 117	20110G07	Comparison with theoretical calculations. JOUR RAACA 99 429 RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α), ²⁸¹ Rg(SF), ^{282,284} Cn(SF), ²⁸⁵ Cn(α), ²⁸³ Cn(α), (SF), ^{282,283,284,285,286} 113, ²⁸⁶ 114(α), (SF), ^{287,288,289} 114, ^{287,288,289,290} 115, ^{290,291,292,293} 116, ^{293,294} 117, ²⁹⁴ 118(α); measured decay and fission products, E α , I α ; deduced decay mode, T _{1/2} , energy, Q-value. Comparison with theoretical calculations. JOUR RAACA 99 429

294 Ds	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA 83 065806
²⁹⁴ 114	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806

A=294 (continued)

$^{294}115$	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299,114} ^{293,294,295,296,297,298,299,300} 115, monsured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 82.065806
²⁹⁴ 117	20110G07	RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF), ²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ^{270,272,274} Bh(α), ^{270,275} Hs(α),
		$ \begin{array}{l} 274,275,276,278 \operatorname{Mt}(\alpha), \ 279 \operatorname{Ds}(\mathrm{SF}), \ (\alpha), \ ^{281} \operatorname{Ds}(\mathrm{SF}), \ ^{278,279,280,282} \operatorname{Rg}(\alpha), \\ 2^{81} \operatorname{Rg}(\mathrm{SF}), \ ^{282,284} \operatorname{Cn}(\mathrm{SF}), \ ^{285} \operatorname{Cn}(\alpha), \ ^{283} \operatorname{Cn}(\alpha), \ (\mathrm{SF}), \\ 2^{82,283,284,285,286} 113, \ ^{286} 114(\alpha), \ (\mathrm{SF}), \ ^{287,288,289} 114, \ ^{287,288,289,290} 115, \\ 2^{90,291,292,293,116}, \ ^{293,294,117}, \ ^{294,118}(\alpha), \ (\mathrm{SF}), \ ^{287,288,289} 114, \ ^{287,288,289,290} 115, \\ \end{array} $
		products, $E\alpha$, $I\alpha$; deduced decay mode, $T_{1/2}$, energy, Q-value.
²⁹⁴ 118	20110G07	Comparison with theoretical calculations. JOUR RAACA 99 429 RADIOACTIVITY ²⁶⁷ Rf(SF), ^{266,268,270} Db(SF), (EC), ²⁶⁹ Db(SF),
		²⁶⁶ Sg(SF), ²⁷¹ Sg(α), (SF), ²⁷⁰ S ^{272,274} Bh(α), ²⁷⁰ S ²⁷³ Hs(α), ^{274,275,276,278} Mt(α), ²⁷⁹ Ds(SF), (α), ²⁸¹ Ds(SF), ^{278,279,280,282} Rg(α),
		$ \sum_{\substack{281 \text{Rg}(\text{SF}), \\ 282, 283, 284, 285, 286 \\ 113, \\ 282, 283, 284, 285, 286 \\ 113, \\ 28114(\alpha), \\ (\text{SF}), \\ 287, 288, 289 \\ 114, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289, 290 \\ 115, \\ 287, 288, 289 \\ 114, 287, 288, 289, 290 \\ 115, \\ 287, 288, 289 \\ 114, 287, 288, 289, 290 \\ 115, \\ 287, 288, 289 \\ 114, 287, 288, 289, 290 \\ 115, \\ 287, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, 287, 280 \\ 115, $
		290,291,292,293 116, 293,294 117, 294 118(α); measured decay and fission
		products, E α , I α ; deduced decay mode, $T_{1/2}$, energy, Q-value.
		Comparison with theoretical calculations. JOUR RAACA 99 429

295 Ds	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds,
		^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using
		accelerator mass spectrometry (AMS) technique. Comparison with
		previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA
		83 065806
$^{295}114$	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds,
		292,293,294,295,296,297,298,299114, $293,294,295,296,297,298,299,300$ 115; measured
		abundance in natural platinum, lead, and bismuth samples using
		accelerator mass spectrometry (AMS) technique. Comparison with
		previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA
		83 065806
$^{295}115$	2011DE21	ATOMIC MASSES 288,289,290,291,292,293,294,295 Ds.
		^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using
		accelerator mass spectrometry (AMS) technique. Comparison with
		previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA
		83 065806

A=296

²⁹⁶ 114	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806
²⁹⁶ 115	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806

A=297

²⁹⁷ 114	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
²⁹⁷ 115	2011DE21	abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806 ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds.
-		^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806

A = 298

292,293,294,295,296,297,298,299114,293,294,295,296,297,298	3,299,300115; measured
abundance in natural platinum, lead, and bismut	h samples using
accelerator mass spectrometry (AMS) technique.	Comparison with
previous data. Ultrasensitive search for SHE in n	atural Pt, Pb and Bi
samples proved negative with upper limits establi	ished. JOUR PRVCA
$83\ 065806$	

A=298 (continued)

²⁹⁸115 **2011DE21** ATOMIC MASSES ^{288,289,290,291,292,293,294,295}Ds, ^{292,293,294,295,296,297,298,299}114, ^{293,294,295,296,297,298,299,300}115; measured abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806

²⁹⁹ 114	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi
		samples proved negative with upper limits established. JOUR PRVCA 83 065806
²⁹⁹ 115	2011DE21	ATOMIC MASSES ^{288,289,290,291,292,293,294,295} Ds, ^{292,293,294,295,296,297,298,299} 114, ^{293,294,295,296,297,298,299,300} 115; measured
		abundance in natural platinum, lead, and bismuth samples using accelerator mass spectrometry (AMS) technique. Comparison with previous data. Ultrasensitive search for SHE in natural Pt, Pb and Bi samples proved negative with upper limits established. JOUR PRVCA 83 065806

References

R.Wellum, A.Verbruggen, R.Kessel - J.anal.at.spectrom. 24, 801 (2009) 2009WE08 A new evaluation of the half-life of 241 Pu 2010AC02 P.Achenbach, C.Ayerbe Gayoso, J.C.Bernauer, S.Bianchin, R.Bohm, O.Borodina, D.Bosnar, V.Bozkurt, L.Debenjak, A.Denig, M.O.Distler, A.Esser, H.Fonvieille, I.Friscic, B.Gokuzum, K.Griessinger, E.Kim, F.E.Maas, M.Makek, H.Merkel, S.Minami, U.Muller, D.Nakajima, L.Nungesser, B.Ozel-Tashenov, J.Pochodzalla, M.Potokar, C.Rappold, T.R.Saito, S.Sanchez Majos, B.S.Schlimme, S.Sirca, M.Weinriefer - Nucl.Phys. A835, 313c (2010) First measurements of Λ and Σ^0 hyperons in elementary electroproduction at MAMI M.Agnello, L.Benussi, M.Bertani, H.C.Bhang, G.Bonomi, E.Botta, M.Bregant, 2010AG13 T.Bressani, S.Bufalino, L.Busso, D.Calvo, P.Camerini, B.Dalena, F.De Mori, G.D'Erasmo, F.L.Fabbri, A.Feliciello, A.Filippi, E.M.Fiore, A.Fontana, H.Fujioka, P.Genova, P.Gianotti, N.Grion, B.Kang, V.Lucherini, S.Marcello, F.Moia, T.Maruta, N.Mirfakhrai, P.Montagna, O.Morra, T.Nagae, D.Nakajima, H.Outa, A.Pantaleo, V.Paticchio, S.Piano, R.Rui, G.simonetti, A.Toyoda, R.Wheadon, A.Zenoni - Nucl.Phys. A835, 414c (2010) FINUDA hypernuclear spectroscopy M.Agnello, for the FINUDA collaboration - Nucl. Phys. A835, 439c (2010) 2010AG14 Study of two-body non-mesonic decays of light hypernuclei with FINUDA 2010AH04 J.K.Ahn, and the LEPS Collaboration - Nucl. Phys. A835, 329c (2010) The Nature of the $\Lambda(1405)$ from Photoproduction at SPring-8 / LEPS S.Almaraz-Calderon, W.Tan, A.Aprahamian, B.Bucher, J.Gorres, A.Roberts, 2010ALZZ A.Villano, M.Wiescher, C.Brune, Z.Heinen, T.Massey, N.Ozkan, R.T.Guray, H.Mach - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.215 (2010) The level structure of 18 Ne D.Bardayan, K.A.Chipps, R.P.Fitzgerald, J.C.Blackmon, K.Y.Chae, 2010BAZV A.E.Champagne, U.Greife, R.Hatarik, R.L.Kozub, C.Matei, B.H.Moazen, C.D.Nesaraja, S.D.Pain, W.A.Peters, S.T.Pittman, J.F.Shriner, Jr., M.S.Smith -Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.202 (2010) Direct Measurements of (p, γ) cross sections at astrophysical energies using radioactive beams and the Daresbury Recoil Separator

2010BEZI P.Belli, R.Bernabei, R.S.Boiko, V.B.Brudanin, F.Cappella, V.Caracciolo, R.Cerulli, D.M.Chernyak, F.A.Danevich, S.d'Angelo, A.E.Dossovitskiy, E.N.Galashov, A.Incicchitti, V.V.Kobychev, S.S.Nagorny, F.Nozzoli, B.N.Kropivyansky, V.M.Kudovbenko, A.L.Mikhlin, A.S.Nikolaiko, D.V.Poda, R.B.Podviyanuk, O.G.Polischuk, D.Prosperi, V.N.Shlegel, Yu.G.Stenin, J.Suhonen, V.I.Tretyak, Ya.V.Vasiliev - Proc.Exotic Nuclei and Nuclear Particle Astrophysics III: From Nuclei to Stars, Sinaia, Romania, 20 June-3 July, 2010, L.Trache, A.Smirnov, S.Stoica, Eds. p.354 (2010); AIP Conf.Proc. 1304 (2010) First Results of the Experiment to Search for 2β Decay of ¹⁰⁶Cd with the Help of ¹⁰⁶CdWO₄ Crystal Scintillators S.Beceiro Novo, K.Summerer, D.Cortina-Gil, C.Wimmer, R.Plag, H.Alvarez-Pol, 2010BEZJ T.Aumann, K.Behr, K.Boretzky, E.Casarejos, A.Chatillon, U.Datta-Pramanik, Z.Elekes, Z.Fulop, D.Galaviz, H.Geissel, S.Giron, U.Greife, F.Hammache, M.Heil, J.Hoffman, H.Johansson, C.Karagiannis, O.Kiselev, N.Kurz, K.Larsson, T.Le Bleis, Y.Litvinov, K.Mahata, C.Muntz, C.Nociforo, W.Ott, S.Paschalis, W.Prokopowicz, C.Rodriguez-Tajes, D.Rossi, H.Simon, M.Stanoiu, J.Stroth, S.Typel, A.Wagner, F.Wamers, H.Weick - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.227 (2010) Coulomb dissociation of ²⁷P: a reaction of astrophysical interest 2010BEZK A.Best, J.Gorres, M.Wiescher, S.Falahat, K.-L.Kratz - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.183 (2010) Determination of the Stellar Reaction Rates of ${}^{17}O(\alpha, n)^{20}Ne$ and ${}^{17}O(\alpha, \gamma)^{21}Ne$ 2010BEZM J.Benlliure, H.Alvarez, T.Kurtukian-Nieto, A.I.Morales, E.Casarejos, D.Cortina-Gil, J.Pereira, F.Becker, I.Borzov, T.Engvist, D.Henzlova, K.Langanke, G.Martinez-Pinedo, K.-H.Schmidt, O.Yordanov, B.Blank, J.Giovinazzo, B.Jurado, L.Audouin, P.Napolitani, B.Fernandez, F.Rejmund, for the RISING Collaboration -Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.84 (2010) Production and β half-lives of heavy neutron-rich nuclei approaching the r-process path at N=126 2010BEZ0 R.Bernabei, P.Belli, F.Cappella, R.Cerulli, F.A.Danevich, B.V.Grinyov, A.Incicchitti, V.V.Kobychev, V.M.Mokina, S.S.Nagorny, L.L.Nagornaya, S.Nisi, F.Nozzoli, D.V.Poda, D.Prosperi, V.I.Tretyak, S.S.Yurchenko - Proc.22nd Int.Nuc.Phy.Div.Con.of the European Phys.Soc., Nuclear Physics in Astrophysics IV, Frascati, Italy, June 8-12, 2009 p.012038 (2010) Search for double beta decay of zinc and tungsten with low background ZnWO₄ crystal scintillators 2010CAZL A.Caciolli, for the LUNA Collaboration - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.117 (2010) LUNA: The ¹⁵N(p, γ)¹⁶O reaction study at low energies with the BGO detector 2010CAZM A.Caciolli, for the LUNA collaboration - Proc.22nd Int.Nuc.Phy.Div.Con.of the European Phys.Soc., Nuclear Physics in Astrophysics IV, Frascati, Italy, June 8-12, 2009 p.012036 (2010) Study of the ${}^{15}N(p, \gamma){}^{16}O$ reaction at the LUNA accelerator with a BGO detector

2010CHZT	 K.Y.Chae, D.W.Bardayan, C.D.Nesaraja, M.S.Smith, S.H.Ahn, A.Ayres, A.Bey, K.L.Jones, S.T.Pittman, M.E.Howard, P.D.O'Malley, R.L.Kozub, M.Matos, B.H.Moazen, W.A.Peters - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.217 (2010) A new technique for measuring astrophysically important (α, p) reactions
2010CHZU	K.A.Chipps, D.W.Bardayan, J.F.Liang, C.D.Nesaraja, S.D.Pain, M.S.Smith, K.Y.Chae, B.H.Moazen, S.T.Pittman, K.T.Schmitt, J.A.Cizewski, P.D.O'Malley, W.A.Peters, R.L.Kozub, C.Matei - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.205 (2010) Proton decay of ²⁶ Si via the ²⁸ Si(p, t) ²⁶ Si Reaction and Implications for ²⁵ Al(p, γ) ²⁶ Si
2010DEZU	N.de Sereville, M.Assie, I.Bahrini, D.Beaumel, M.Chabot, M.Ferraton, S.Fortier, S.Franchoo, S.Giron, F.Hammache, M.Lebois, F.Marechal, A.Matta, B.Mouginot, C.Petrache, P.Roussel, JA.Scarpaci, I.Stefan, D.Verney, A.Coc, I.Deloncle, J.Duprat, C.Hamadache, J.Kiener, A.Lefebvre-Schuhl, F.de Oliveira, F.de Grancey, JC.Thomas, M.Fallot, L.Giot, L.Lamia, R.G.Pizzone, S.Romano - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.212 (2010) Spectroscopic study of ²⁶ Si for application to nova gamma-ray emission
2010DEZV	 C.Deibel, M.Alcorta, P.F.Bertone, J.A.Clark, J.Greene, C.R.Hoffman, C.L.Jiang, B.P.Kay, H.Y.Lee, R.C.Pardo, K.E.Rehm, A.Rogers, C.Ugalde, G.Zinkann, S.Bedoor, D.V.Shetty, A.H.Wuosmaa, J.C.Lighthall, S.T.Marley, N.R.Patel, J.M.Figueira, M.Paul - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.56 (2010) Studying the (α, p)-process in X-ray Bursts using Radioactive Ion Beams
2010DIZW	I.Dillmann, T.Faestermann, G.Korschinek, J.Lachner, M.Maiti, M.poutivtsev, G.Rugel, S.Walter, F.Kappeler, M.Erhard, A.R.Junghans, C.Nair, R.Schwengner, A.Wagner, M.Pignatari, T.Rauscher, A.Mengoni - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.49 (2010) First measurement of the 64 Ni(γ , n) 63 Ni cross section
2010ERZV	 O.Ershova, P.Adrich, H.Alvarez-Pol, F.Aksouh, T.Aumann, M.Babilon, K.H.Behr, J.Benlliure, T.Berg, M.Bohmer, K.Boretzky, A.Brunle, R.Beyer, E.Casarejos, M.Chartier, D.Cortina-Gil, A.Chatillon, U.Datta Pramanik, L.Deveaux, M.Elvers, T.Elze, H.Emling, M.Erhard, B.Fernandez-Dominguez, H.Geissel, M.Gorska, M.Heil, M.Hellstrom, G.Ickert, H.Johansson, A.Junghans, F.Kappeler, O.Kiselev, A.Klimkiewicz, J.V.Kratz, R.Kulessa, N.Kurz, M.Labiche, T.Le Bleis, R.Lemmon, K.Lindenberg, Y.Litvinov, P.Maierbeck, A.Movsesyan, S.Muller, T.Nilsson, C.Nociforo, N.Paar, R.Palit, S.Paschalis, R.Plag, W.Prokopowicz, R.Reifarth, D.Rossi, L.Schnorrenberger, H.Simon, K.Summerer, G.Surowka, D.Vretenar, A.Wagner, S.Walter, W.Walus, H.Weick, N.Winckler, M.Winkler, A.Zilges - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.232 (2010) Coulomb dissociation reactions on Mo isotopes for astrophysics applications

2010ESZY	 A.Estrade, M.Matos, H.Schatz, M.Amthor, D.Bazin, M.Beard, E.Brown, A.Becerril, T.Elliot, A.Gade, D.Galaviz, S.Gupta, W.R.Hix, R.Lau, G.Lorusso, P.Moller, J.Pereira, M.Portillo, A.M.Rogers, D.Shapira, E.Smith, A.Stolz, M.Wallace, M.Wiescher - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.221 (2010) Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts
2010FUZQ	Y.Fujita, T.Adachi, B.Blank, P.von Brentano, G.P.A.Berg, H.Fujita, K.Fujita, K.Hatanaka, K.Nakanishi, A.Negret, L.Popescu, B.Rubio, Y.Shimbara, Y.Shimizu, Y.Tameshige, A.Tamii, M.Yosoi, K.O.Zell - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.297 (2010) AIP Conf.Proc.1238 Gamow-Teller Transitions and β -decay Half-life in Proton Rich pf-shell Nuclei
2010FUZR	M.Fujiwara - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.274 (2010) AIP Conf.Proc.1238 Nuclear Incompressibility and the Asymmetry Term: Implications for Astrophysics and Physics with Exotic Nuclei
2010FUZS	M.Fukuda, for the NIRS and RIBF Collaboration - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.270 (2010) AIP Conf.Proc.1238 Reaction cross section studies at NIRS and RIBF
2010GIZY	S.Giron, F.Hammache, N.de Sereville, D.Beaumel, G.Burgunder, L.Caceres, G.Duchene, E.Clement, B.Fernandez, F.Flavigny, G.De France, S.Franchoo, D.Galaviz-Redondo, L.Gasques, J.Gibelin, A.Gillibert, S.Grevy, J.Guillot, M.Heil, J.Kiener, V.Lapoux, F.Marechal, A.Matta, I.Matea, M.Moukaddam, L.Nalpas, L.Perrot, A.Obertelli, R.Raabe, P.Roussel, J.A.Scarpaci, O.Sorlin, I.Stephan, C.Stoedel, M.Takechi, J.C.Thomas, Y.Togano - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.190 (2010) Indirect study of $^{60}\rm{Fe}(n,\gamma)^{61}\rm{Fe}$ via the transfer reaction $d(^{60}\rm{Fe},p\gamma)^{61}\rm{Fe}$
2010GLZZ	 J.Glorius, M.Knorzer, S.Muller, N.Pietralla, A.Sauerwein, K.Sonnabend, C.Walzlein, M.Wiescher - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.234 (2010) Probing Hauser-Feshbach cross sections for the astrophysical p process
2010HAZN	 K.Hauschild, A.Lopez-Martens, O.Dorvaux, J.Piot, D.Curien, B.Gall, A.V.Yeremin, M.L.Chelnokov, V.I.Chepigin, A.V.Isaev, I.N.Izosimov, A.P.Kabachenko, D.E.Katrasev, A.N.Kuznetsov, O.N.Malyshev, A.G.Popeko, E.A.Sokol, A.I.Svirikhin, T.Wiborg-Hagen, H.T.Nyhus, S.Siem, G.Drafta, D.Pantelica, N.Scintee, A.Gorgen, T.Kutsarova, S.Mullins, S.Saro - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.337 (2010) AIP Conf.Proc.1238

	Spectroscopy of transfermium nuclei using the GABRIELA set up at the focal plane of the VASSILISSA recoil separator
2010HAZO	T.Hayakawa, T.Shizuma, S.Chiba, T.Kajino, Y.Hatsukawa, N.Iwamoto, N.Shinohara, H.Harada - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.225 (2010) AIP Conf.Proc.1238 Thermal neutron capture cross-section to ¹¹³ Cd isomer for the study of s-process origin of ¹¹⁵ Sn
2010HAZQ	 R.Hannaske, D.Bemmerer, R.Beyer, E.Birgersson, E.Grosse, A.Hartmann, A.R.Junghans, M.Kempe, T.Kogler, K.Kosev, M.Marta, R.Massarczyk, A.Matic, K.D.Schilling, R.Schwengner, M.Sobiella, D.Stach, A.Wagner, D.Yakorev - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.90 (2010) Towards a precision measurement of the photodissociation of the deuteron at energies relevant to Big Bang nucleosynthesis
2010HAZR	S.Hayakawa, S.Kubono, T.Hashimoto, H.Yamaguchi, D.N.Binh, D.Kahl, Y.Wakabayashi, N.Iwasa, N.Kume, I.Miura, T.Teranishi, J.J.He, Y.K.Kwon, T.Komatsubara, S.Kato, S.Wanajo - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.62 (2010) Direct determination of the ¹¹ C(α , p) ¹⁴ N reaction rate with CRIB: an alternative synthesis path to the CNO elements
2010HUZZ	W.Hua, X.H.Zhou, Y.H.Zhang, Y.Zheng, M.L.Liu, F.Ma, S.Guo, L.Ma, S.T.Wang, N.T.Zhang, Y.D.Fang, X.G.Lei, Y.X.Guo, M.Oshima, Y.Toh, M.Koizumi, Y.Hatsukawa, B.Qi, S.Q.Zhang, J.Meng, M.Sugawara - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.77 (2010); AIP Conf.Proc.1235 (2009) Band properties of the transitional nucleus ¹⁸⁹ Pt
2010ICZX	Y.Ichikawa, T.K.Onishi, D.Suzuki, H.Iwasaki, T.Kubo, V.Naik, A.Chakrabarti, N.Aoi, B.A.Brown, N.Fukuda, S.Kubono, T.Motobayashi, T.Nakabayashi, T.Nakamura, T.Nakao, T.Okumura, H.J.Ong, H.Suzuki, M.K.Suzuki, T.Teranishi, K.N.Yamada, H.Yamaguchi, H.Sakurai - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.290 (2010) AIP Conf.Proc.1238 Mirror asymmetry for B(GT) of ²⁴ Si induced by Thomas-Ehrman shift
2010ICZY	Y.Ichikawa, T.K.Onishi, D.Suzuki, H.Iwasaki, T.Kubo, V.Naik, A.Chakrabarti, N.Aoi, B.A.Brown, N.Fukuda, S.Kubono, T.Motobayashi, T.Nakabayashi, T.Nakamura, T.Nakao, T.Okumura, H.J.Ong, H.Suzuki, M.K.Suzuki, T.Teranishi, K.N.Yamada, H.Yamaguchi, H.Sakurai - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.265 (2010); AIP Conf.Proc.1235 (2009) Gamow-Teller transition of the proton-rich nucleus ²⁴ Si

2010ITZX	O.Itoh, H.Utsunomiya, H.Akimune, T.Yamagata, M.Kamata, T.Kondo, H.Toyokawa, YW.Lui, F.Kitatani, H.Harada, S.Goko, C.Nair - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.237 (2010) AIP Conf.Proc.1238 Determination of photoneutron cross sections for ¹⁹⁷ Au by using laser inverse-Compton scattering gamma-rays
2010IWZX	C.Iwamoto, H.Akimune, H.Utsunomiya, T.Yamagata, T.Kondo, M.Kamata, H.Toyokawa, H.Harano, T.Matsumoto, YW.Lui - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.301 (2010) AIP Conf.Proc.1238 M1 and E1 transition cross sections in $D((\gamma-pol), n)$ reactions near reaction threshold
2010JIZZ	S.Jiang, H.Shen, M.He, X.Ruan, W.Wu, K.Dong, G.He, X.Wang, J.Yuan, W.Wang, S.Wu - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.144 (2010); AIP Conf.Proc.1235 (2009) The AMS Measurements and Its Applications in Nuclear Physics at China Institute of Atomic Energy (CIAE)
2010KA38	H.Kanda, B.Beckford, T.Fujii, Y.Fujii, K.Futatsukawa, Y.C.Han, O.Hashimoto, K.Hirose, T.Ishikawa, M.Kaneta, S.Kiyokawa, C.Kimura, T.Koike, K.Maeda, T.Maruta, K.Miwa, S.N.Nakamura, A.Okuyama, H.Shimizu, K.Suzuki, T.Tamae, H.Tamura, T.S.Wang, H.Yamazaki, and the NKS / NKS2 collaborations - Nucl.Phys. A835, 317c (2010) Strangeness photoproduction experiments at SENDAI
2010KAZJ	M.Kamata, H.Utsunomiya, H.Akimune, T.Yamagata, O.Itoh, C.Iwamoto, T.Kondo, H.Toyokawa, YW.Lui, S.Goriely - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.234 (2010) AIP Conf.Proc.1238 Extra γ -ray strength for ^{116,117} Sn arising from pygmy dipole resonance
2010KAZL	J.Kasagi, Y.Toriyabe, E.Yoshida, K.H.Fang, H.Yonemura - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.151 (2010) AIP Conf.Proc.1238 Low-Energy Nuclear Reactions In Low-Temperature Dense Plasmas
2010KAZO	T.Kawabata - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.207 (2010); AIP Conf.Proc.1235 (2009) Alpha inelastic scattering and cluster structures in light nuclei

2010KI15	M.Kim, S.Ajimura, K.Aoki, A.Banu, H.Bhang, T.Fukuda, O.Hashimoto, J.I.Hwang, S.Kameoka, B.H.Kang, E.Kim, J.H.Kim, T.Maruta, Y.Miura, Y.Miyake, T.Nagae, M.Nakamura, S.N.Nakamura, H.Noumi, S.Okada, Y.Okayasu, H.Outa, H.Park, P.K.Saha, Y.Sato, M.Sekimoto, T.Takahashi, H.Tamura, K.Tanida, A.Toyoda, K.Tshoo, K.Tsukada, T.Watanabe, H.J.Yim - Nucl.Phys. A835, 434c (2010) Coincidence measurement of the weak decay of $^{12}_{\Lambda}\mathrm{C}$ and the three-body weak decay process (J-PARC 50GeV PS E18)
2010KIZU	O.S.Kirsebom, M.Alcorta, M.J.G.Borge, J.Buscher, S.Fox, B.Fulton, H.O.U.Fynbo, H.Hultgren, A.Jokinen, B.Jonson, H.Knudsen, A.Laird, M.Madurga, I.Moore, G.Nyman, R.Raabe, K.Riisager, A.Saastamoinen, O.Tengblad, J.Aysto - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.16 (2010) The ⁸ B neutrino spectrum
2010KOZX	T.Kondo, H.Utsunomiya, H.Akimune, T.Yamagata, C.Iwamoto, M.Kamata, O.Itoh, H.Toyokawa, YW.Lui - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.231 (2010) AIP Conf.Proc.1238 Threshold photoneutron cross sections for ^{208,207,206} Pb isotopes
2010KUZS	S.Kumar, S.K.Mandal, A.K.Jain, L.Chaturvedi, R.K.Sinha, D.Negi, A.Dhal, R.Kumar, R.P.Singh, S.Muralithar, R.K.Bhowmik, S.C.Pancholi - Proc.Exotic Nuclei and Nuclear Particle Astrophysics III: From Nuclei to Stars, Sinaia, Romania, 20 June-3 July, 2010, L.Trache, A.Smirnov, S.Stoica, Eds. p.374 (2010); AIP Conf.Proc. 1304 (2010) Band Structure of ⁸⁵ Sr
2010LAZU	 C.Langer, O.Lepyoshkina, Y.Aksyutina, T.Aumann, S.Beceiro, J.Benlliure, K.Boretzky, M.Chartier, D.Cortina, U.Datta-Pramanik, O.Ershova, H.Geissel, R.Gernhaeuser, M.Heil, G.Ickert, H.Johansson, B.Jonson, A.Kelic, A.Klimkiewicz, J.V.Kratz, R.Kruecken, R.Kulessa, K.Larsson, T.Le Bleis, R.Lemmon, K.Mahata, T.Nilsson, V.Panin, R.Plag, W.Prokopowicz, R.Reifarth, V.Ricciardi, D.Rossi, S.Schwertel, H.Simon, K.Summerer, B.Streicher, J.Taylor, J.R.Vignote, F.Wamers, C.Wimmer, P.Z.Wu - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.224 (2010) Coulomb dissociation reactions on proton-rich Ar isotopes
2010LEZW	C.Lederer, for the n-TOF Collaboration - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.48 (2010) New measurement of the astrophysically important reaction $^{62}\mathrm{Ni}(\mathrm{n},\gamma)$ at n-TOF
2010LI49	C.J.Lister, E.A.McCutchan, R.B.Wiringa, S.C.Pieper, D.Seweryniak, J.P.Greene, P.F.Bertone, M.P.Carpenter, C.R.Hoffman, G.Henning, R.V.F.Janssens, T.L.Khoo, T.Lauritsen, S.Shu, G.Gurdal, C.J.Chiara - Bull.Am.Phys.Soc. 55, MG5 (2010) A precise determination of the ¹⁰ C excited state lifetime

2010LIZW	 W.P.Liu, Z.H.Li, X.X.Bai, Y.B.Wang, B.Guo, G.Lian, J.Su, S.Zeng, B.X.Wang, S.Q.Yan, Y.J.Li, E.T.Li, S.J.Jin - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.322 (2010); AIP Conf.Proc.1235 (2009) Indirect measurement of nuclear reactions of astrophysical interest
2010MA72	Y.Ma, S.Ajimura, K.Aoki, M.Dairaku, Y.Y.Fu, H.Fujioka, T.Fukuda, K.Futatsukawa, K.Hosomi, W.Imoto, M.Kawai, Y.Kakiguchi, S.Kinoshita, T.Koike, N.Maruyama, M.Mimori, S.Minami, Y.Miura, K.Miwa, Y.Miyagi, T.Nagae, D.Nakajima, H.Noumi, K.Shirotori, T.Suzuki, T.Takahashi, T.N.Takahashi, H.Tamura, K.Tanida, N.Terada, A.Toyoda, K.Tsukada, M.Ukai, S.H.Zhou - Nucl.Phys. A835, 422c (2010) Updated results on the $^{11}_{\Lambda}\mathrm{B}$ and $^{12}_{\Lambda}\mathrm{C}$ $\gamma\text{-ray}$ spectroscopy study
2010MAZD	A.Makinaga, G.Rusev, R.Schwengner, F.Donau, R.Beyer, D.Bemmerer, P.Crespo, M.Erhard, A.R.Junghans, J.Klug, C.Nair, K.D.Schilling, A.Wagner - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.228 (2010) AIP Conf.Proc.1238 Cross section measurement on ¹³⁹ La (γ , γ ') below neutron separation energy
2010MAZF	J.Marganiec, T.Aumann, M.Heil, R.Plag, F.Wamers - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.225 (2010) Study of the ${}^{15}O(2p, \gamma){}^{17}Ne$ reaction by the Coulomb Dissociation method
2010MAZG	C.Massimi, for the n_TOF Collaboration - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.194 (2010) Measurement of the $^{24,25,26}\mathrm{Mg}(\mathrm{n},\gamma)$ reaction cross-section at n_TOF
2010MAZH	M.Matos, J.C.Blackmon, L.E.Linhardt, D.W.Bardayan, C.D.Nesaraja, J.A.Clark, C.M.Deibel, P.D.O'Malley P.D.Parker, K.T.Schmitt - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.53 (2010) Unbound States of ³² Cl Relevant for Novae
2010MAZI	Y.G.Ma, D.Q.Fang, P.Zhou, X.Z.Cai, J.G.Chen, W.Guo, X.Y.Sun, W.D.Tian, H.W.Wang, G.Q.Zhang, X.G.Cao, Y.Fu, Z.G.Hu, J.S.Wang, M.Wang, Y.Togano, N.Aoi, H.Baba, T.Honda, K.Okada, Y.Hara, K.Ieki, Y.Ishibashi, Y.Itou, N.Iwasa, S.Kanno, T.Kawabata, H.Kimura, Y.Konda, K.Kurita, M.Kurokawa, T.Moriguchi, H.Murakami, H.Oishi, S.Ota, A.Ozawa, H.Sakurai, S.Shimoura, R.Shioda, E.Takeshita, S.Takeuchi, K.Yamada, Y.Yamada, Y.Yasuda, K.Yoneda, T.Motobayashi - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.377 (2010); AIP Conf.Proc.1235 (2009) Measurement on proton-proton correlation of the excited ²³ Al

2010MAZJ	 K.Matsuta, S.Zhu, M.Mihara, D.Zhou, D.Nishimura, Y.Zheng, M.Fukuda, D.Yuan, R.Matsumiya, Y.Zuo, J.Komurasaki, P.Fan, X.Zhang, D.Ishikawa, T.Suzuki, T.Nagatomo, T.Izumikawa, T.Ohtsubo, S.Takahashi, H.Hirano, Y.Shimbara, T.Kubo, R.Yamada, Y.Namiki, M.Nagashima, S.Momota, K.Ooi, Y.Nojiri, D.Kameda, A.Kitagawa, M.Kanazaw, M.Torikoshi, S.Sato, T.Minamisono, T.Sumikama, M.Ogura, H.Akai, J.R.Alonso, T.J.M.Symons, G.F.Krebs - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.260 (2010); AIP Conf.Proc.1235 (2009) Electromagnetic Moments of Proton-Rich ²⁸P and Decomposition of Its Spin
2010MOZV	K.Morita, K.Morimoto, D.Kaji, H.Haba, K.Ozeki, Y.Kudou, N.Sato, T.Sumita, A.Yoneda, T.Ichikawa, Y.Fujimori, S.Goto, E.Ideguchi, Y.Kasamatsu, K.Katori, Y.Komori, H.Koura, H.Kudo, K.Ooe, A.Ozawa, F.Tokanai, K.Tsukada, T.Yamaguchi, A.Yoshida - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.331 (2010) AIP Conf.Proc.1238 Decay Properties of ²⁶⁶ Bh and ²⁶² Db Produced in the ²⁴⁸ Cm+ ²³ Na Reaction -Further Confirmation of the ²⁷⁸ 113 Decay Chain-
2010NAZW	S.Nakayama, E.Matsumoto, T.Suzuki, T.Yamagata, H.Akimune, M.Fujiwara, K.Fushimi, M.B.Greenfield, H.Hashimoto, R.Hayami, H.Ikemizu, K.Kawase, T.Kudoh, K.Nakanishi, T.Oota, K.Sagara, M.Tanaka, M.Yosoi - Proc.Tours Symposium on Nuclear Physics and Astrophysics - VII, Kobe (Japan), 16-20 Nov.2009, H.Susa, M.Arnould, S.Gales, T.Motobayashi, C.Scheidenberger, H.Utsunomiya, Eds. p.280 (2010) AIP Conf.Proc.1238 Isovector dipole resonances in ⁴ He and neutrino-heating in supernova
2010NIZR	D.Nishimura, M.Fukuda, T.Izumikawa, K.Kisamori, Y.Kuwada, K.Makisaka, R.Matsumiya, K.Matsuta, M.Mihara, T.Ohtsubo, T.Suzuki, A.Takagi, T.Yamaguchi, R.Yokoyama - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.219 (2010); AIP Conf.Proc.1235 (2009) Decay curve study in a standard electron capture decay
20100UZZ	N.Oulebsir, F.Hammache, P.Roussel, M.G.Pellegriti, L.Audouin, D.Beaumel, A.Bouda, P.Descouvemont, S.Fortier, L.Gaudefroy, J.Kiener, A.Lefebvre-Schuhl, V.Tatischeff - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.129 (2010) Study of ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction via the transfer reaction ${}^{12}C({}^{7}\text{Li}, t){}^{16}O$
2010PAZT	A.Parikh, T.Faestermann, R.Krucken, V.Bildstein, S.Bishop, K.Eppinger, C.Herlitzius, O.Lepyoshkina, P.Maierbeck, D.Seiler, K.Wimmer, R.Hertenberger, H.F.Wirth, J.Fallis, U.Hager, D.A.Hutcheon, C.Ruiz, L.Buchmann, D.Ottewell, B.Freeman, C.Wrede, A.Garcia, B.Delbridge, A.Knecht, A.Sallaska, A.Chen, J.A.Clark, C.Deibel, B.R.Fulton, A.Laird, U.Greife, B.Guo, ET.Li, Z.Li, G.Lian, Y.Wang, W.Liu, P.Parker, K.Setoodehnia - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.52 (2010) The ${}^{33}S(p, \gamma)^{34}Cl$ reaction in classical nova explosions

2010PIZW	R.G.Pizzone, C.Spitaleri, L.Lamia, V.Burjan, S.Cherubini, Z.Hons, G.G.Kiss, V.Kroha, M.La Cognata, C.Li, J.Mrazek, S.Piskor, S.M.R.Puglia, G.G.Rapisarda, S.Romano, M.L.Sergi, A.Tumino - Proc.Exotic Nuclei and Nuclear Particle Astrophysics III: From Nuclei to Stars, Sinaia, Romania, 20 June-3 July, 2010, L.Trache, A.Smirnov, S.Stoica, Eds. p.202 (2010); AIP Conf.Proc. 1304 (2010) Pole approximation validation in the study of the ⁶ Li(d, α) ⁴ He reaction
2010SAZK	A.Saastamoinen, L.Trache, A.Banu, M.A.Bentley, T.Davinson, J.C.Hardy, V.E.Iacob, D.G.Jenkins, A.Jokinen, M.McCleskey, B.Roeder, E.Simmons, G.Tabacaru, R.E.Tribble, P.J.Woods, J.Aysto - Proc.Exotic Nuclei and Nuclear Particle Astrophysics III: From Nuclei to Stars, Sinaia, Romania, 20 June-3 July, 2010, L.Trache, A.Smirnov, S.Stoica, Eds. p.411 (2010); AIP Conf.Proc. 1304 (2010) β -decay of ²³ Al and nova nucleosynthesis
2010SAZM	A.Sauerwein, M.Elvers, J.Endres, J.Hasper, A.Hennig, L.Netterdon, A.Zilges - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.244 (2010) In-beam experiments for the astrophysical p process
2010SAZN	A.Saastamoinen, L.Trache, A.Banu, M.A.Bentley, T.Davinson, J.C.Hardy, V.E.Iacob, M.McCleskey, B.Roeder, E.Simmons, G.Tabacaru, R.E.Tribble, P.J.Woods, J.Aysto - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.211 (2010) β -delayed proton decay of ²³ Al and nova nucleosynthesis
2010SAZO	A.Sallaska, C.Wrede, A.Garcia, D.W.Storm, T.A.D.Brown, K.Snover, C.Ruiz, D.F.Ottewell, L.Buchmann, C.Vokenhuber, D.A.Hutcheon, J.A.Caggiano - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.51 (2010) Destruction of ²² Na in Novae: Surprising Results from an Absolute Measurement of ²² Na(p, γ) Resonance Strengths
2010SEZU	K.Setoodehnia, A.Chen, T.Komatsubara, S.Kubono, D.N.Binh, T.Hashimoto, T.Hayakawa, Y.Ishibashi, Y.Ito, D.Kahl, T.Moriguchi, H.Ooishi, A.Ozawa, Y.Sugiyama, T.Shizuma, H.Yamaguchi - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.213 (2010) Study of Astrophysically Important Resonant States of ³⁰ S using the ²⁸ Si(³ He, $n\gamma$) ³⁰ S Reaction
2010SEZV	K.Setoodehnia, A.A.Chen, J.Chen, J.A.Clark, C.Deibel, D.Kahl, W.N.Lennard, P.D.Parker, C.Wrede - Proc.22nd Int.Nuc.Phy.Div.Con.of the European Phys.Soc., Nuclear Physics in Astrophysics IV, Frascati, Italy, June 8-12, 2009 p.012042 (2010) Study of astrophysically important resonant states in ³⁰ S using the ³² S(p, t) ³⁰ S reaction
2010SHZW	T.Shima, Y.Nagai, S.Miyamoto, S.Amano, K.Horikawa, T.Mochizuki, H.Utsunomiya, H.Akimune - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.315 (2010); AIP Conf.Proc.1235 (2009) Experimental Study of Nuclear Astrophysics with Photon Beams

2010SIZW	E.Simmons, L.Trache, A.Banu, M.McCleskey, B.Roeder, A.Spiridon, R.E.Tribble, A.Saastamoinen, J.Aysto, T.Davinson, P.J.Woods, G.J.Lotay, J.Wallace - Proc.Exotic Nuclei and Nuclear Particle Astrophysics III: From Nuclei to Stars, Sinaia, Romania, 20 June-3 July, 2010, L.Trache, A.Smirnov, S.Stoica, Eds. p.415 (2010); AIP Conf.Proc. 1304 (2010) Very Low Energy Protons From The Beta Decay Of Proton Rich Nuclei For Nuclear Astrophysics
2010SMZX	K.Smith, F.Attallah, T.Faestermann, U.Giesen, H.Geissel, M.Hannawald, M.Hausmann, M.Hellstrom, R.Kessler, K.L.Kratz, H.Mahmud, Y.Litvinov, M.N.Mineva, F.Montes, G.Munzenberg, B.Pfeiffer, J.Pereira Conca, P.Santi, H.Schatz, C.Scheidenberger, K.Schmidt, R.Schneider, A.Stolz, K.Summerer, J.Stadlmann, E.Wefers, P.J.Woods - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.283 (2010) β -decay and neutron emission studies of r-process nuclei near ¹³⁷ Sb
2010SPZY	R.Sparta, R.G.Pizzone, C.Spitaleri, M.Aliotta, V.Burjan, S.Cherubini, V.Crucilla, M.Gulino, Z.Hons, G.Kiss, V.Kroha, M.La Cognata, L.Lamia, M.McCleskey, J.Mrazek, S.M.R.Puglia, G.G.Rapisarda, S.Romano, M.L.Sergi, L.Trache, A.Tumino - Proc.Exotic Nuclei and Nuclear Particle Astrophysics III: From Nuclei to Stars, Sinaia, Romania, 20 June-3 July, 2010, L.Trache, A.Smirnov, S.Stoica, Eds. p.420 (2010); AIP Conf.Proc. 1304 (2010) Indirect Approach To The ² H(d, p) ³ H Reaction Study
2010TAZU	M.Taggart, U.Hager, A.Laird, C.Ruiz, D.Hutcheon, D.F.Ottewell, J.Fallis, L.Erikson, M.Bentley, J.Brown, L.Buchmann, A.A.Chen, J.Chen, K.Chipps, J.D'Auria, B.Davids, C.Davis, C.A.Diget, S.P.Fox, B.Fulton, N.Galinski, U.Greife, F.Herwig, R.Hirschi, D.Howell, L.Martin, D.Mountford, A.Murphy, M.Pignatari, S.Reeve, G.Ruprecht, S.Sjue, L.Veloce - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.45 (2010) The first direct measurement of ${}^{17}O(\alpha, \gamma){}^{21}Ne$ and its impact upon s-process abundances
2010TOZW	Y.Togano, T.Motobayashi, N.Aoi, H.Baba, S.Bishop, X.Cai, P.Doornenbal, D.Fang, T.Furukawa, K.Ieki, N.Iwasa, T.Kawabata, S.Kanno, N.Kobayashi, Y.Kondo, T.Kuboki, N.Kume, K.Kurita, M.Kurokawa, Y.G.Ma, Y.Matsuo, H.Murakami, M.Matsushita, T.Nakamura, K.Okada, S.Ota, Y.Satou, S.Shimoura, R.Shioda, K.Tanaka, S.Takeuchi, W.Tian, H.Wang, J.Wang, K.Yamada, Y.Yamada, K.Yoneda - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.228 (2010) Astrophysical reaction rate of ${}^{30}S(p, \gamma){}^{31}Cl$ studied by Coulomb dissociation
2010WAZV	C.Wagemans, S.Vermote, J.Van Gils - Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.199 (2010) The $^{41}\text{Ca}(n,\alpha)^{38}\text{Ar}$ reaction cross section up to 100 keV neutron energy
2010WAZX	H.Watanabe - Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.84 (2010); AIP Conf.Proc.1235 (2009)

Multi-quasiparticle isomers in the vicinity of 132 Sn

- 2010WEZZ M.Weigand, S.Walter, F.Kappeler, R.Plag, R.Reifarth Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.248 (2010) Cross section measurements of 103 Rh(p, γ)¹⁰⁴Pd with the Karlsruhe 4π BaF₂ detector
- 2010WRZZ C.Wrede, J.A.Clark, C.M.Deibel, T.Faestermann, R.Hertenberger, A.Parikh,
 H.F.Wirth, S.Bishop, A.Chen, K.Eppinger, B.M.Freeman, A.Garcia, R.Kruecken,
 O.Lepyoshkina, G.Rugel, K.Setoodehnia Proc.Intern.Symposium on Nuclei in the
 Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.55 (2010)
 Precision measurements of ²⁰Na, ²⁴Al, ²⁸P, ³²Cl, and ³⁶K for the rp-process
- 2010YAZX H.Yamaguchi, T.Hashimoto, S.Hayakawa, D.N.Binh, D.Kahl, S.Kubono -Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.214 (2010)
 Alpha-induced astrophysical reactions studied at CRIB
- 2010YAZY H.Yamaguchi, T.Hashimoto, S.Hayakawa, D.N.Binh, D.Kahl, S.Kubono Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.247 (2010); AIP Conf.Proc.1235 (2009) Nuclear Astrophysics and Structure Studies Using Low-energy RI Beams at CRIB
- 2010ZHZR L.H.Zhu, X.G.Wu, C.Y.He, X.Hao, L.L.Wang, Y.Zheng, G.S.Li Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan),
 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.363 (2010); AIP Conf.Proc.1235 (2009) Magnetic Rotation and Chirality and X(5) Critical Symmetry in Nucleus
- 2010ZHZT S.J.Zhu, J.H.Hamilton, J.G.Wang, H.B.Ding, L.Gu, A.V.Ramayya, J.K.Hwang,
 S.H.Liu, K.Li, Y.X.Luo, J.O.Rasmussen, I.Y.Lee, Q.Xu, E.Y.Yeoh, Z.G.Xiao, B.Qi,
 J.Meng Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends,
 Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.253 (2010); AIP
 Conf.Proc.1235 (2009)
 New Band Structures in A ~ 110 Neutron-Rich Nuclei
- 2010ZHZU H.Q.Zhang, C.L.Zhang, H.M.Jia, C.J.Lin, F.Yang, Z.H.Liu, Z.D.Wu, F.Jia, X.X.Xu, A.Richard, A.K.Nasirov, G.Mandaglio, M.Manganaro, G.Giardina, K.Hagino Proc.7th Japan-China Joint Nucl.Phys.Symp.on Nuclear Physics Trends, Tsukuba (Japan), 9-13 Nov.2009, A.Ozawa, W.Lu, Eds. p.50 (2010); AIP Conf.Proc.1235 (2009)
 - Studies of heavy ion reactions around Coulomb barrier
- 2010ZIZZ J.Zickefoose, J.Schweitzer, T.Spillane, F.Strieder, H.-W.Becker, C.Rolfs, A.Di Leva, M.De Cesare, N.De Cesare, F.Terrasi, L.Gialanella, D.Schurmann, Y.Guan, G.Imbriani, B.Limata Proc.Intern.Symposium on Nuclei in the Cosmos XI, July 19-23 2010, Heidelberg, Germany, p.19 (2010)
 Low energy beam induced background studies for a ¹²C(¹²C, p)²³Na reaction cross section measurement

2011AB05	D.Abriola, A.F.Gurbich, M.Kokkoris, A.Lagoyannis, V.Paneta - Nucl.Instrum.Methods Phys.Res. B269, 2011 (2011) Proton elastic scattering differential cross-sections for ¹² C
2011AD14	Zh.I.Adymov, N.Burtebayev, S.B.Sakuta - Bull.Rus.Acad.Sci.Phys. 75, 914 (2011) Lifetimes of $^{48}\mathrm{Ti},^{52}\mathrm{Cr}$ and $^{80}\mathrm{Se}$ excited states
2011AD18	J.Adam, C.Bhatia, K.Katovsky, V.Kumar, M.Majerle, V.S.Pronskikh, A.M.Khilmanovich, B.A.Martsynkevich, I.V.Zhuk, V.M.Golovatiouk, W.Westmeier, A.A.Solnyshkin, V.M.Tsoupko-Sitnikov, A.S.Potapenko - Eur.Phys.J. A 47, 85 (2011) A study of reaction rates of (n, f), (n, γ) and (n, 2n) reactions in ^{nat} U and ²³² Th by the neutron fluence produced in the graphite set-up (GAMMA-3) irradiated by 2.33 GeV deuteron beam
2011AG15	E.F.Aguilera, P.Amador-Valenzuela, E.Martinez-Quiroz, D.Lizcano, P.Rosales, H.Garcia-Martinez, A.Gomez-Camacho, J.J.Kolata, A.Roberts, L.O.Lamm, G.Rogachev, V.Guimaraes, F.D.Becchetti, A.Villano, M.Ojaruega, M.Febbraro, Y.Chen, H.Jiang, P.A.DeYoung, G.F.Peaslee, C.Guess, U.Khadka, J.Brown, J.D.Hinnefeld, L.Acosta, E.S.Rossi, Jr., J.F.P.Huiza, T.L.Belyaeva - Phys.Rev.Lett. 107, 092701 (2011) Near-Barrier Fusion of the ⁸ B+ ⁵⁸ Ni Proton-Halo System
2011AL17	F.Alrumayan, S.Al-Yanbawi, J.Schneider, I.Al-Jammaz - J.Labelled Compd.Radiopharm. Supp.1., 54, S250 (2011) Development of dual beam targets for producing I-124
2011AR09	R.Arnold, for the NEMO-3 Collaboration - Phys.Rev.Lett. 107, 062504 (2011) Measurement of the $\beta\beta$ Decay Half-Life of ¹³⁰ Te with the NEMO-3 Detector
2011AR10	S.V.Artemov, M.K.Baktybayev, N.Burtebaev, D.T.Burtebaeva, A.A.Karakhodzhaev, M.A.Kayumov, S.B.Kuranov, G.K.Nie, G.A.Radyuk, E.A.Zaparov - Bull.Rus.Acad.Sci.Phys. 75, 920 (2011) Comparison of asymptotic normalization coefficients for ${}^{10}B \rightarrow {}^{9}B + n$ and ${}^{10}B \rightarrow {}^{9}Be + p$ configurations obtained from ${}^{10}B(d, t){}^{9}B$ and ${}^{10}B(d, {}^{3}He){}^{9}Be$ reactions
2011ARZZ	S.Arzumanov, L.Bondarenko, P.Geltenbort, V.Morozov, V.V.Nesvizhevsky, Yu.Panin, S.Chernyavsky, A.Strepetov - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.11 (2011) Measurement of the Neutron Lifetime by Storing Ultracold Neutrons and Monitoring the Losses by Counting Inelastically Scattered Neutrons (Phase 2)
2011AS08	 P.Ascher, L.Audirac, N.Adimi, B.Blank, C.Borcea, B.A.Brown, I.Companis, F.Delalee, C.E.Demonchy, F.de Oliveira Santos, J.Giovinazzo, S.Grevy, L.V.Grigorenko, T.Kurtukian-Nieto, S.Leblanc, JL.Pedroza, L.Perrot, J.Pibernat, L.Serani, P.C.Srivastava, JC.Thomas - Phys.Rev.Lett. 107, 102502 (2011) Direct Observation of Two Protons in the Decay of ⁵⁴Zn

2011AT02	 F.Atchison, B.Blau, K.Bodek, B.van den Brandt, T.Brys, M.Daum, P.Fierlinger, P.Geltenbort, P.Hautle, R.Henneck, S.Heule, A.Holley, M.Kasprzak, K.Kirch, A.Knecht, J.A.Konter, M.Kuzniak, CY.Liu, A.Pichlmaier, C.Plonka, Y.Pokotilovski, A.Saunders, D.Tortorella, M.Wohlmuther, A.R.Young, J.Zejma, G.Zsigmond - Europhys.Lett. 95, 12001 (2011) Production of ultracold neutrons from cryogenic ²H₂, O₂, and C²H₄ converters
2011BA25	A.Barioni, J.C.Zamora, V.Guimaraes, B.Paes, J.Lubian, E.F.Aguilera, J.J.Kolata, A.L.Roberts, F.D.Becchetti, A.Villano, M.Ojaruega, H.Jiang - Phys.Rev. C 84, 014603 (2011) Elastic scattering and total reaction cross sections for the ⁸ B, ⁷ Be, and ⁶ Li + ¹² C systems
2011BA27	A.Banu, L.Trache, F.Carstoiu, N.L.Achouri, A.Bonaccorso, W.N.Catford, M.Chartier, M.Dimmock, B.Fernandez-Dominguez, M.Freer, L.Gaudefroy, M.Horoi, M.Labiche, B.Laurent, R.C.Lemmon, F.Negoita, N.A.Orr, S.Paschalis, N.Patterson, E.S.Paul, M.Petri, B.Pietras, B.T.Roeder, F.Rotaru, P.Roussel-Chomaz, E.Simmons, J.S.Thomas, R.E.Tribble - Phys.Rev. C 84, 015803 (2011) Structure of ²³ Al from the one-proton breakup reaction and astrophysical implications
2011BA30	V.V.Baluev, L.N.Bogdanova, V.R.Bom, D.L.Demin, C.W.E.van Eijk, V.V.Filchenkov, N.N.Grafov, S.K.Grishechkin, K.I.Gritsaj, A.D.Konin, K.L.Mikhailyukov, A.I.Rudenko, Yu.I.Vinogradov, V.P.Volnykh, A.A.Yukhimchuk, S.A.Yukhimchuk - J.Exper.Theo.Phys. 113, 68 (2011) Experimental search for the radiative capture reaction d + d \rightarrow ⁴ He + γ from the dd μ muonic molecule state J = 1
2011BE27	O.O.Belyuskina, V.I.Grantsev, V.V.Davidovsky, K.K.Kisurin, S.E.Omelchuk, G.P.Palkin, Yu.S.Roznyuk, B.A.Rudenko, V.S.Semenov, L.I.Slyusarenko, B.G.Struzhko, V.K.Tartakovsky - Bull.Rus.Acad.Sci.Phys. 75, 925 (2011) Quasi-free inclusive processes in the two-particle splitting of tritons by deuterons with an energy of 37 MeV
2011BE28	O.A.Bezshyyko, A.N.Vodin, L.A.Golinka-Bezshyyko, A.N.Dovbnya, I.N.Kadenko, O.A.Kivernyk, A.A.Kovalenko, V.A.Kushnir, V.V.Mitrochenko, S.N.Olejnik, G.E.Tuller - Bull.Rus.Acad.Sci.Phys. 75, 937 (2011) Isomeric ratios of the products of $(\gamma, \text{ xnp})$ reactions on 90,91 Zr nuclei for a maximum bremsstrahlung energy of 84 MeV
2011BE29	O.A.Bezshyyko, A.N.Vodin, L.O.Golinka-Bezshyyko, A.M.Dovbnya, I.N.Kadenko, O.A.Kivernyk, A.A.Kovalenko, V.A.Kushnir, A.I.Levon, V.V.Mitrochenko, S.N.Olejnik, G.E.Tuller - Bull.Rus.Acad.Sci.Phys. 75, 941 (2011) Isomer ratios for products of photonuclear reactions with middle-weight nuclei
2011BE31	G.Bendiscioli, T.Bressani, S.Costanza, P.Salvini - Eur.Phys.J. A 47, 82 (2011) Features of charged-pion energy spectra in antiproton- ⁴ He annihilation at rest and formation of excited hadronic blobs

2011BE32	P.Belli, R.Bernabei, F.Cappella, R.Cerulli, F.A.Danevich, A.Di Marco, A.Incicchitti, M.Laubenstein, S.S.Nagorny, S.Nisi, O.G.Polischuk, V.I.Tretyak - Eur.Phys.J. A 47, 91 (2011) First search for double- β decay of platinum by ultra-low background HP Ge γ spectrometry
2011BIZZ	D.N.Binh, L.H.Khiem, N.T.Tho, S.Kubono, H.Yamaguchi, Y.Wakabayashi, S.Hayakawa, D.Kahl, T.Hashimoto, T.Teranishi, S.Kato, K.Iwasa - CNS-REP-86, Ann.Report 2009, p.5 (2011) Multichannel R-matrix analysis for an alpha scattering in inverse kinematics using a ²¹ Na radioisotope beam
2011BR12	R.Broda, K.H.Maier, B.Fornal, J.Wrzesinski, B.Szpak, M.P.Carpenter, R.V.F.Janssens, W.Krolas, T.Pawlat, S.Zhu - Phys.Rev. C 84, 014330 (2011) High-spin states and isomers in the one-proton-hole and three-neutron-hole ²⁰⁴ Tl isotope
2011BR13	T.Brunner, M.Brodeur, P.Delheij, S.Ettenauer, D.Frekers, A.T.Gallant, R.Krucken, A.Lapierre, D.Lunney, R.Ringle, V.V.Simon, J.Dilling - Hyperfine Interactions 199, 191 (2011) In-trap decay spectroscopy for $2\nu\beta\beta$ decay experiments
2011BU07	C.Bucci, and the CUORE Collaboration - Nucl.Phys. B(Proc.Supp.) S217, 41 (2011) Final results of Cuoricino and status of CUORE
2011BU08	M.G.Budak, M.Karadag, H.Yucel - Ann.Nucl.Energy 38, 2550 (2011) Experimental determination of effective resonance energies for $^{158}Gd(n, \gamma)^{159}Gd$ and $^{179}Hf(n, \gamma)^{180m}Hf$ reactions
2011CA20	M.Cavallaro, F.Cappuzzello, D.Carbone, A.Cunsolo, A.Foti, R.Linares, D.Pereira, J.R.B.Oliveira, P.R.S.Gomes, J.Lubian, R.Chen - Nucl.Instrum.Methods Phys.Res. A648, 46 (2011) Challenging measurement of the ¹⁶ O+ ²⁷ Al elastic and inelastic angular distributions up to large angles
2011CH31	A.Chyzh, B.Baramsai, J.A.Becker, F.Becvar, T.A.Bredeweg, A.Couture, D.Dashdorj, R.C.Haight, M.Jandel, J.Kroll, M.Krticka, G.E.Mitchell, J.M.O'Donnell, W.Parker, R.S.Rundberg, J.L.Ullmann, D.J.Vieira, C.L.Walker, J.B.Wilhelmy, J.M.Wouters, C.Y.Wu - Phys.Rev. C 84, 014306 (2011) Measurement of the ¹⁵⁷ Gd(n, γ) reaction with the DANCE γ calorimeter array
2011CH32	R.J.Charity, J.M.Elson, J.Manfredi, R.Shane, L.G.Sobotka, B.A.Brown, Z.Chajecki, D.Coupland, H.Iwasaki, M.Kilburn, J.Lee, W.G.Lynch, A.Sanetullaev, M.B.Tsang, J.Winkelbauer, M.Youngs, S.T.Marley, D.V.Shetty, A.H.Wuosmaa, T.K.Ghosh, M.E.Howard - Phys.Rev. C 84, 014320 (2011) Investigations of three-, four-, and five-particle decay channels of levels in light nuclei created using a ⁹ C beam

2011CH33	P.Chodash, C.T.Angell, J.Benitez, E.B.Norman, M.Pedretti, H.Shugart, E.Swanberg, R.Yee - Appl.Radiat.Isot. 69, 1447 (2011) Measurement of excitation functions for the $^{nat}Mo(d,x)^{99}Mo$ and $^{nat}Mo(p,x)^{99}Mo$ reactions
2011CI05	A.Ciarmatori, G.Cicoria, D.Pancaldi, A.Infantino, S.Boschi, S.Fanti, M.Marengo - Radiochim.Acta 99, 631 (2011) Some experimental studies on ⁸⁹ Zr production
2011COZZ	R.P.Condori, R.Lichtenthaler, V.Guimaraes, S.Kubono, H.Yamaguchi, A.Lepine-Szily, Y.Wakabayashi, S.Hayakawa, Y.Kurihara, J.S.Yoo, N.Iwasa, S.Kato - CNS-REP-86, Ann.Report 2009, p.19 (2011) Spectroscopy of ⁶ Be by the ³ He(⁷ Be, α) ⁶ Be reaction
2011DA12	I.G.Darby, R.D.Page, D.T.Joss, L.Bianco, T.Grahn, D.S.Judson, J.Simpson, S.Eeckhaudt, P.T.Greenlees, P.M.Jones, R.Julin, S.Juutinen, S.Ketelhut, M.Leino, AP.Leppanen, M.Nyman, P.Rahkila, J.Saren, C.Scholey, A.N.Steer, J.Uusitalo, M.Venhart, S.Erturk, B.Gall, B.Hadinia - Phys.Rev. C 83, 064320 (2011) Precision measurements of proton emission from the ground states of 156 Ta and $^{160}\mathrm{Re}$
2011DE20	A.N.Deacon, D.Steppenbeck, S.Zhu, S.J.Freeman, R.V.F.Janssens, M.P.Carpenter, B.Fornal, M.Honma, B.P.Kay, F.G.Kondev, J.Kozemczak, A.Larabee, T.Lauritsen, C.J.Lister, A.P.Robinson, D.Seweryniak, J.F.Smith, Y.Sun, X.Wang, F.R.Xu, YC.Yang - Phys.Rev. C 83, 064305 (2011) Single-particle and collective structures in ⁵⁵ Cr and ⁵⁵ V
2011DE21	 F.Dellinger, O.Forstner, R.Golser, A.Priller, P.Steier, A.Wallner, G.Winkler, W.Kutschera - Phys.Rev. C 83, 065806 (2011) Ultrasensitive search for long-lived superheavy nuclides in the mass range A=288 to A=300 in natural Pt, Pb, and Bi
2011DE25	T.R.DeGrado, J.P.Byrne, A.B.Packard, A.P.Belanger, S.Rangarajan, M.K.Pandey - J.Labelled Compd.Radiopharm. Supp.1., 54, S248 (2011) A solution target approach for cyclotron production of ⁸⁹ Zr: Understanding and coping with in-target electrolysis
2011DI08	A.Dijon, E.Clement, G.de France, P.Van Isacker, J.Ljungvall, A.Gorgen, A.Obertelli, W.Korten, A.Dewald, A.Gadea, L.Gaudefroy, M.Hackstein, D.Mengoni, Th.Pissulla, F.Recchia, M.Rejmund, W.Rother, E.Sahin, C.Schmitt, A.Shrivastava, J.J.Valiente-Dobon, K.O.Zell, M.Zielinska - Phys.Rev. C 83, 064321 (2011) Lifetime measurements in $^{63}\mathrm{Co}$ and $^{65}\mathrm{Co}$
2011DI09	F.Ditroi, F.Tarkanyi, S.Takacs, A.Hermanne, H.Yamazaki, M.Baba, A.Mohammadi, A.V.Ignatyuk - Nucl.Instrum.Methods Phys.Res. B269, 1878 (2011) Activation cross-sections of deuteron induced nuclear reactions on manganese up to 40 MeV
2011DI10	F.Ditroi, F.Tarkanyi, S.Takacs, A.Hermanne, H.Yamazaki, M.Baba, A.Mohammadi, A.V.Ignatyuk - Nucl.Instrum.Methods Phys.Res. B269, 1963 (2011)

Study of activation cross-sections of deuteron induced reactions on rhodium up to 40 MeV2011DI11 I.Dillmann, L.Coquard, C.Domingo-Pardo, F.Kappeler, J.Marganiec, E.Uberseder, U.Giesen, A.Heiske, G.Feinberg, D.Hentschel, S.Hilpp, H.Leiste, T.Rauscher, F.-K.Thielemann - Phys.Rev. C 84, 015802 (2011) Cross sections for proton-induced reactions on Pd isotopes at energies relevant for the γ process 2011DU19 S.B.Dubovichenko, N.Burtebaev, D.M.Zazulin, Zh.K.Kerimkulov, A.S.A.Amar -Phys.Atomic Nuclei 74, 984 (2011) Astrophysical S factor for the radiative-capture reaction $p^6Li \rightarrow {}^7Be\gamma$ H.Ejiri, T.Shima, S.Miyamoto, K.Horikawa, Y.Kitagawa, Y.Asano, S.Date, 2011EJ01 Y.Ohashi - J.Phys.Soc.Jpn. 80, 094202 (2011) Resonant Photonuclear Reactions for Isotope Transmutation 2011EL05 S.Eliseev, M.Goncharov, K.Blaum, M.Block, C.Droese, F.Herfurth, E.Minaya-Ramirez, Yu.N.Novikov, L.Schweikhard, V.M.Shabaev, I.I.Tupitsyn, K.Zuber, N.A.Zubova - Phys.Rev. C 84, 012501 (2011) Multiple-resonance phenomenon in neutrinoless double-electron capture 2011EL06 V.-V.Elomaa, J.Jurttila, J.Rajander, O.Solin - J.Labelled Compd.Radiopharm. Supp.1., 54, S244 (2011) Automation of the ⁶⁴Cu production at the Turku PET Centre Y.D.Fang, Y.H.Zhang, X.H.Zhou, M.L.Liu, J.G.Wang, Y.X.Guo, X.G.Lei, W.Hua, 2011FA08 F.Ma, S.C.Wang, B.S.Gao, S.C.Li, X.L.Yan, L.He, Z.G.Wang, F.Fang, X.G.Wu, C.Y.He, Y.Zheng, Z.M.Wang, Y.Shi, F.R.Xu - Phys.Rev. C 84, 017301 (2011) Identification of high-spin states in the stable nucleus ¹⁹⁵Pt 2011FE06 B.Fernandez-Dominguez, J.S.Thomas, W.N.Catford, F.Delaunay, S.M.Brown, N.A.Orr, M.Rejmund, M.Labiche, M.Chartier, N.L.Achouri, H.Al Falou, N.I.Ashwood, D.Beaumel, Y.Blumenfeld, B.A.Brown, R.Chapman, N.Curtis, C.Force, G.de France, S.Franchoo, J.Guillot, P.Haigh, F.Hammache, V.Lapoux, R.C.Lemmon, F.Marechal, A.M.Moro, X.Mougeot, B.Mouginot, L.Nalpas, A.Navin, N.Patterson, B.Pietras, E.C.Pollacco, A.Leprince, A.Ramus, J.A.Scarpaci, N.de Sereville, I.Stephan, O.Sorlin, G.L.Wilson - Phys.Rev. C 84, 011301 (2011); Pub.Note JOUR PRVCA 84 029902 (2011) Emergence of the N = 16 shell gap in ²¹O 2011FI06 D.Filipescu, V.Avrigeanu, T.Glodariu, C.Mihai, D.Bucurescu, M.Ivascu, I.Cata-Danil, L.Stroe, O.Sima, G.Cata-Danil, D.Deleanu, D.G.Ghita, N.Marginean, R.Marginean, A.Negret, S.Pascu, T.Sava, G.Suliman, N.V.Zamfir - Phys.Rev. C 83, 064609 (2011) Cross sections for α -particle induced reactions on ^{115,116}Sn around the Coulomb barrier

2011FL05	A.Flores-Moreno, M.Valle-Gonzalez, A.Zarate-Morales, G.Ferro-Flores, M.Pedraza-Lopez, C.Arteaga de Murphy, M.A.Avila-Rodriguez - J.Labelled Compd.Radiopharm. Supp.1., 54, S249 (2011) Production of ⁶⁸ Ga for preclinical applications by irradiation of a natural Zn foil with 7 MeV protons
2011FL06	R.L.Flack, and the NEMO-3 Collaboration - Nucl.Phys. B(Proc.Supp.) S217, 53 (2011) NEMO-3 and SuperNEMO: A search for zero neutrino double beta decay
2011F008	A.S.Fomichev, I.G.Mukha, S.V.Stepantsov, L.V.Grigorenko, E.V.Litvinova, V.Chudoba, I.A.Egorova, M.S.Golovkov, A.V.Gorshkov, V.A.Gorshkov, G.Kaminski, S.A.Krupko, Yu.L.Parfenova, S.I.Sidorchuk, R.S.Slepnev, G.M.Ter-Akopian, R.Wolski, M.V.Zhukov - Int.J.Mod.Phys. E20, 1491 (2011) Lifetime of ²⁶ S and a limit for its 2p decay energy
2011FR10	S.Friedreich, D.Barna, A.Dax, R.Hayano, D.Horvath, M.Hori, B.Juhasz, O.Massiczek, A.Soter, T.Pask, E.Widmann - Hyperfine Interactions 199, 337 (2011) Spectroscopy of the hyperfine structure of antiprotonic ⁴ He and ³ He
2011FR11	 J.A.Frenje, C.K.Li, F.H.Seguin, D.T.Casey, R.D.Petrasso, D.P.McNabb, P.Navratil, S.Quaglioni, T.C.Sangster, V.Yu.Glebov, D.D.Meyerhofer - Phys.Rev.Lett. 107, 122502 (2011) Measurements of the Differential Cross Sections for the Elastic n-³H and n-²H Scattering at 14.1 MeV by Using an Inertial Confinement Fusion Facility
2011GI03	J.Gibelin, M.Wiedeking, L.Phair, P.Fallon, S.Basunia, L.A.Bernstein, J.T.Burke, D.L.Bleuel, R.M.Clark, M.Cromaz, MA.Deleplanque, B.F.Goldblum, S.Gros, H.B.Jeppesen, P.T.Lake, IY.Lee, S.R.Lesher, A.O.Macchiavelli, M.A.McMahan, J.Pavan, E.Rodriguez-Vieitez, N.D.Scielzo, L.G.Moretto - Nucl.Instrum.Methods Phys.Res. A648, 109 (2011) Channel selection of neutron-rich nuclei following fusion-evaporation reactions of light systems
2011GI05	D.B.Gin, V.G.Kiptily, A.A.Pasternak, I.N.Chugunov, A.E.Shevelev - Bull.Rus.Acad.Sci.Phys. 75, 931 (2011) Doppler shapes of the γ line in the ⁹ Be $(\alpha, n\gamma)^{12}$ C reaction in plasma at temperatures $T_{\alpha} < 0.6$ MeV
2011GLZZ	Yu.M.Gledenov, M.V.Sedysheva, G.Zhang, J.Zhang, H.Wu, J.Liu, J.Chen, G.Khuukhenkhuu, P.J.Szalanski - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.143 (2011) Measurements of the 64 Zn and 67 Zn(n, α) Reactions Cross Sections in the MeV Neutron Energy Region
2011GR11	K.A.Gridnev, N.Burtebayev, N.A.Maltsev, N.Amangeldi, Sh.Hamada - Bull.Rus.Acad.Sci.Phys. 75, 961 (2011) Investigating the ${}^{16}O + {}^{12}C$ reaction over a wide range of energies

2011GR12	E.Grodner, I.Sankowska, T.Morek, S.G.Rohozinski, Ch.Droste, J.Srebrny, A.A.Pasternak, M.Kisielinski, M.Kowalczyk, J.Kownacki, J.Mierzejewski, A.Krol, K.Wrzosek - Phys.Lett. B 703, 46 (2011) Partner bands of ¹²⁶ Cs - first observation of chiral electromagnetic selection rules
2011GU12	L.Gu, S.J.Zhu, J.G.Wang, E.Y.Yeoh, Z.G.Xiao, S.Q.Zhang, J.Meng, M.Zhang, Y.Lou, H.B.Ding, Q.Xu, L.H.Zhu, X.G.Wu, C.Y.He, G.S.Li, L.L.Wang, Y.Zheng, B.Zhang - Phys.Rev. C 83, 064303 (2011) Observation of high-spin oblate band structures in ¹⁴¹ Pm
2011GU14	C.J.Guess, T.Adachi, H.Akimune, A.Algora, S.M.Austin, D.Bazin, B.A.Brown, C.Caesar, J.M.Deaven, H.Ejiri, E.Estevez, D.Fang, A.Faessler, D.Frekers, H.Fujita, Y.Fujita, M.Fujiwara, G.F.Grinyer, M.N.Harakeh, K.Hatanaka, C.Herlitzius, K.Hirota, G.W.Hitt, D.Ishikawa, H.Matsubara, R.Meharchand, F.Molina, H.Okamura, H.J.Ong, G.Perdikakis, V.Rodin, B.Rubio, Y.Shimbara, G.Susoy, T.Suzuki, A.Tamii, J.H.Thies, C.Tur, N.Verhanovitz, M.Yosoi, J.Yurkon, R.G.T.Zegers, J.Zenihiro - Phys.Rev. C 83, 064318 (2011) The ¹⁵⁰ Nd(³ He, t) and ¹⁵⁰ Sm(t, ³ He) reactions with applications to $\beta\beta$ decay of ¹⁵⁰ Nd
2011HA25	D.J.Hartley, R.V.F.Janssens, L.L.Riedinger, M.A.Riley, X.Wang, A.Aguilar, M.P.Carpenter, C.J.Chiara, P.Chowdhury, I.G.Darby, U.Garg, Q.A.Ijaz, F.G.Kondev, S.Lakshmi, T.Lauritsen, A.Ludington, W.C.Ma, E.A.McCutchan, S.Mukhopadhyay, R.Pifer, E.P.Seyfried, U.Shirwadkar, I.Stefanescu, S.K.Tandel, J.R.Vanhoy, S.Zhu, S.Frauendorf - Phys.Rev. C 83, 064307 (2011) Rotational structures and the wobbling mode in ¹⁶⁷ Ta
2011HAZY	S.Hayakawa, S.Kubono, T.Hashimoto, H.Yamaguchi, D.N.Binh, D.Kahl, Y.Wakabayashi, N.Iwasa, K.Kume, Y.Miura, T.Teranishi, J.J.He, Y.K.Kwon, T.Komatsubara, S.Kato, S.Wanajo - CNS-REP-86, Ann.Report 2009, p.7 (2011) First direct measurement of the ${}^{11}C(\alpha, p){}^{14}N$ stellar reaction
2011HE13	A.Heusler, T.Faestermann, R.Hertenberger, R.Krucken, HF.Wirth, P.von Brentano - J.Phys.(London) G38, 105102 (2011) Structure of states in ^{208}Pb with major components of the neutron particle-hole configuration $\nu(\mathrm{d}_{5/2}^{+1}\mathrm{p}_{3/2}^{-1})$
2011IDZZ	E.Ideguchi, S.Ota, T.Morikawa, M.Oshima, M.Koizumi, Y.Toh, A.Kimura, H.harada, K.Furutaka, S.Nakamura, F.Kitatani, Y.Hatsukawa, T.Shizuma, M.Sugawara, Y.X.Watanabe, Y.Hirayama, M.Oi - CNS-REP-86, Ann.Report 2009, p.23 (2011) Study of High-Spin States in ³⁵ S
2011IN04	A.Kh.Inoyatov, L.L.Perevoshchikov, A.Kovalik, O.Dragoun, D.V.Filosofov - Eur.Phys.J. A 47, 84 (2011) Experimental investigation of ligand effects on the conversion electron spectrum of the 22.5 keV M1 + E2 nuclear transition in ¹⁴⁹ Sm

2011IT06	I.M.Itkis, E.M.Kozulin, M.G.Itkis, G.N.Knyazheva, A.A.Bogachev, E.V.Chernysheva, L.Krupa, Yu.Ts.Oganessian, V.I.Zagrebaev, A.Ya.Rusanov, F.Goennenwein, O.Dorvaux, L.Stuttge, F.Hanappe, E.Vardaci, E.de Goes Brennand - Phys.Rev. C 83, 064613 (2011) Fission and quasifission modes in heavy-ion-induced reactions leading to the formation of Hs [*]
2011JA07	 B.Janutta, and the COBRA Collaboration - Nucl.Phys. B(Proc.Supp.) S217, 47 (2011) Status of the COBRA double beta decay experiment
2011KA23	K.Kalita - J.Phys.(London) G38, 095104 (2011) Evidence for incomplete fusion on the $^{12}C + ^{208}Pb$ and $^{13}C + ^{207}Pb$ reactions in above-barrier energies
2011KA24	A.S.Kachan, I.V.Kurguz, I.S.Kovtunenko, V.M.Mishchenko, S.N.Utenkov - Bull.Rus.Acad.Sci.Phys. 75, 917 (2011) The resonance-like structure observed in the 40 Ar(p γ) 41 K reaction
2011KAZU	T.Kawabata, T.Adachi, M.Fujiwara, K.Hatanaka, Y.Ishiguro, M.Itoh, Y.Maeda, H.Matsubara, H.Miyasako, Y.Nozawa, T.Saito, S.Sakaguchi, Y.Sasamoto, Y.Shimizu, T.Takahashi, A.Tamii, S.Terashima, H.Tokieda, N.Tomida, T.Uesaka, M.Uchida, Y.Yasuda, N.Yokota, H.P.Yoshida, J.Zenihiro - Proc.Int.Symp.on New Faces of Atomic Nuclei, Okinawa (Japan), 15-17 Nov.2010, W.Bentz, M.Oka, T.Otsuka, N.Yoshinaga, Eds. p.194 (2010); AIP Conf.Proc.1355 (2011) Alpha inelastic scattering and cluster structures in ²⁴ Mg
2011KAZY	D.V.Kamanin, Yu.V.Pyatkov, A.A.Alexandrov, I.A.Alexandrova, S.B.Borzakov, N.Jacobs, N.A.Kondratiev, E.A.Kuznetsova, V.Malaza, S.Mullins, Ts.Panteleev, D.Pham Minh, V.E.Zhuchko - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.102 (2011) Collinear Cluster Tri-Partition of ²⁵² Cf(sf) - Evidences in Neutron Gated Data
2011KE03	J.Ketelaer, G.Audi, T.Beyer, K.Blaum, M.Block, R.B.Cakirli, R.F.Casten, C.Droese, M.Dworschak, K.Eberhardt, M.Eibach, F.Herfurth, E.Minaya-Ramirez, Sz.Nagy, D.Neidherr, W.Nortershauser, C.Smorra, M.Wang - Phys.Rev. C 84, 014311 (2011) Mass measurements on stable nuclides in the rare-earth region with the Penning-trap mass spectrometer TRIGA-TRAP
2011KHZW	V.A.Khryachkov, I.P.Bondarenko, B.D.Kuzminov, N.N.Semenova, A.I.Sergachev - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.153 (2011) Study of (n, α) Reaction Cross Section on a Set of Light Nuclei
2011KHZY	R.U.Khafizov, I.A.Kolesnikov, M.V.Nikolenko, S.A.Tarnovitskiy, S.V.Tolokonnikov, V.D.Torokhov, V.A.Solovei, M.R.Kolhidashvili, I.A.Konorov - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.73 (2011) Optimal Conditions for Conducting the Neutron Radiative Decay Experiment

2011KI14	O.S.Kirsebom, S.Hyldegaard, M.Alcorta, M.J.G.Borge, J.Buscher, T.Eronen, S.Fox, B.R.Fulton, H.O.U.Fynbo, H.Hultgren, A.Jokinen, B.Jonson, A.Kankainen, P.Karvonen, T.Kessler, A.Laird, M.Madurga, I.Moore, G.Nyman, H.Penttila, S.Rahaman, M.Reponen, K.Riisager, T.Roger, J.Ronkainen, A.Saastamoinen, O.Tengblad, J.Aysto - Phys.Rev. C 83, 065802 (2011) Precise and accurate determination of the ⁸ B decay spectrum
2011KI15	G.G.Kiss, P.Mohr, Zs.Fulop, Gy.Gyurky, Z.Elekes, J.Farkas, E.Somorjai, C.Yalcin, D.Galaviz, R.T.Guray, N.Ozkan, J.Gorres - Phys.Rev. C 83, 065807 (2011) 110,116 Cd($\alpha, \alpha)^{110,116}$ Cd elastic scattering and systematic investigation of elastic α scattering cross sections along the Z=48 isotopic and N=62 isotonic chains
2011KI16	H.Kikunaga, T.Suzuki, M.Nomura, T.Mitsugashira, A.Shinohara - Phys.Rev. C 84, 014316 (2011) Determination of the half-life of the ground state of 229 Th by using 232 U and 233 U decay series
2011KI17	S.Kisyov, S.Lalkovski, N.Marginean, D.Bucurescu, L.Atanasova, D.L.Balabanski, Gh.Cata-Danil, I.Cata-Danil, JM.Daugas, D.Deleanu, P.Detistov, D.Filipescu, G.Georgiev, D.Ghita, T.Glodariu, J.Jolie, D.S.Judson, R.Lozeva, R.Marginean, C.Mihai, A.Negret, S.Pascu, D.Radulov, JM.Regis, M.Rudigier, T.Sava, L.Stroe, G.Suliman, N.V.Zamfir, K.O.Zell, M.Zhekova - Phys.Rev. C 84, 014324 (2011) In-beam fast-timing measurements in ^{103,105,107} Cd
2011KIZY	G.N.Kim, M.W.Lee, K.S.Kim, K.Kim, S.C.Yang, T.I.Ro, Y.R.Kang, H.S.Kang, M.H.Cho, I.S.Ko, W.Namkung - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.257 (2011) Recent Activities at Laboratory of Experimental Nuclear and Particle Physics
2011K029	K.Kondo, I.Murata, K.Ochiai, N.Kubota, H.Miyamaru, C.Konno, T.Nishitani - J.Nucl.Sci.Technol.(Tokyo) 48, 1146 (2011) Measurement of Charged-Particle Emission Double-Differential Cross Section of Fluorine for 14.2 MeV Neutrons
2011KO30	T.Kotthaus, P.Reiter, H.Hess, M.Kalkuhler, A.Wendt, A.Wiens, R.Hertenberger, T.Morgan, P.G.Thirolf, HF.Wirth, T.Faestermann - Phys.Rev. C 84, 014334 (2011) Probing Nilsson states in ²³³ U
2011KO32	F.G.Kondev, I.Ahmad, J.P.Greene, A.L.Nichols, M.A.Kellett - Nucl.Instrum.Methods Phys.Res. A652, 654 (2011) Measurements of absolute gamma-ray emission probabilities in the decay of ²³³ Pa
2011LA13	M.La Cognata, A.M.Mukhamedzhanov, C.Spitaleri, I.Indelicato, M.Aliotta, V.Burjan, S.Cherubini, A.Coc, M.Gulino, Z.Hons, G.G.Kiss, V.Kroha, L.Lamia, J.Mrazek, S.Palmerini, S.Piskor, R.G.Pizzone, S.M.R.Puglia, G.G.Rapisarda, S.Romano, M.L.Sergi, A.Tumino - Astrophys.J. 739, L54 (2011) The Fluorine Destruction in Stars: First Experimental Study of the ¹⁹ F(p, α_0) ¹⁶ O Reaction at Astrophysical Energies

2011LE22	O.Lebeda, E.J.van Lier, J.Stursa, J.Ralis, A.Zyuzin - J.Labelled Compd.Radiopharm. Supp.1., 54, S243 (2011) Cyclotron Production of ^{99m} Tc: Experimental Evaluation of Radionuclidic Impurities
2011LE23	 J.I.Lee, H.C.Bhang, J.H.Choi, E.J.Jeon, W.G.Kang, H.J.Kim, S.C.Kim, S.K.Kim, Y.D.Kim, J.H.Lee, M.J.Lee, S.J.Lee, K.J.Ma, S.S.Myung, S.Ryu, J.H.So - Nucl.Instrum.Methods Phys.Res. A654, 157 (2011) Experimental study on neutrinoless double beta decay of ⁹²Mo
2011LI25	S.H.Liu, J.H.Hamilton, A.V.Ramayya, Y.S.Chen, Z.C.Gao, S.J.Zhu, L.Gu, E.Y.Yeoh, N.T.Brewer, J.K.Hwang, Y.X.Luo, J.O.Rasmussen, W.C.Ma, J.C.Batchelder, A.V.Daniel, G.M.Ter-Akopian, Yu.Ts.Oganessian, A.Gelberg - Phys.Rev. C 83, 064310 (2011) Signature inversion in odd-odd ¹¹⁴ Rh: First identification of high-spin states in very neutron-rich ¹¹⁴ Rh and application of the triaxial projected shell model
2011LI28	Z.Liu, D.Seweryniak, P.J.Woods, C.N.Davids, M.P.Carpenter, T.Davinson, R.V.F.Janssens, R.D.Page, A.P.Robinson, J.Shergur, S.Sinha, X.D.Tang, F.R.Xu, S.Zhu - Phys.Lett. B 702, 24 (2011) Structure of the proton emitter ¹¹⁷ La studied by proton and γ -ray spectroscopy
2011LI29	S.H.Liu, J.H.Hamilton, A.V.Ramayya, A.Gelberg, L.Gu, E.Y.Yeoh, S.J.Zhu, N.T.Brewer, J.K.Hwang, Y.X.Luo, J.O.Rasmussen, W.C.Ma, A.V.Daniel, Yu.Ts.Oganessian, G.M.Ter-Akopian - Phys.Rev. C 84, 014304 (2011) High-spin level structure of ¹¹⁵ Rh: Evolution of triaxiality in odd-even Rh isotopes
2011LI34	K.Li, H.Hamilton, A.V.Ramayya, S.H.Liu, X.Q.Zhang, N.T.Brewer, J.K.Hwang, C.Goodin, S.J.Zhu, Y.X.Luo, J.O.Rasmussen, I.Y.Lee, S.C.Wu, R.Donangelo, A.V.Daniel, G.M.Ter-Akopian, Yu.Ts.Oganessian, A.Unzhakova, J.D.Cole, W.C.Ma, M.A.Stoyer - Int.J.Mod.Phys. E20, 1825 (2011) Identification of high-spin states in neutron-rich ^{89,90,92} Kr and ⁸⁶ Se
2011LI35	G.S.Li, X.H.Zhou, Y.H.Zhang, Y.Zheng, M.L.Liu, W.Hua, H.B.Zhou, B.Ding, H.X.Wang, X.G.Lei, S.Q.Zhang, Y.Shi, J.Meng, F.R.Xu, M.Oshima, Y.Toh, M.Koizumi, A.Osa, Y.Hatsukawa, M.Sugawara - J.Phys.(London) G38, 095105 (2011) Signature inversion in the 7 / 2 ⁻ [503] band of ¹⁸⁵ Pt
2011LIZZ	W.P.Liu, B.Guo, J.Su, ZH.Li, D.N.Binh, Y.L.Han, H.Hashimoto, S.Hayakawa, J.J.He, J.Hu, N.Iwasa, D.M.Kahl, S.Kubono, N.Kume, Y.J.Li, ZH.Li, Y.B.Wang, S.W.Xu, H.Yamaguchi, S.Q.Yan, X.X.Bai, G.Lian, B.X.Wang, S.Zeng - CNS-REP-86, Ann.Report 2009, p.15 (2011) Indirect measurement of astrophysical $^{12}\mathrm{N}(\mathrm{p},\gamma)^{13}\mathrm{O}$ reaction rate
2011ME10	D.G.Medvedev, L.F.Mausner, S.O.Kurczak, S.Srivastava - J.Labelled Compd.Radiopharm. Supp.1., 54, S236 (2011) Overview of the development of large scale production of ⁸⁶ Y at Brookhaven Linac Isotope Producer

2011MO18	 A.I.Morales, J.Benlliure, J.Agramunt, A.Algora, N.Alkhomashi, H.Alvarez-Pol, P.Boutachkov, A.M.Bruce, L.S.Caceres, E.Casarejos, A.M.D.Bacelar, P.Doornenbal, D.Dragosavac, G.Farrelly, A.Gadea, W.Gelletly, J.Gerl, M.Gorska, J.Grebosz, I.Kojouharov, F.Molina, D.Perez-Loureiro, S.Pietri, Z.Podolyak, P.H.Regan, B.Rubio, H.Shaffner, S.J.Steer, S.Tashenov, S.Verma, H.J.Wollersheim - Phys.Rev. C 84, 011601 (2011) Synthesis of N = 127 isotones through (p, n) charge-exchange reactions induced by relativistic ²⁰⁸Pb projectiles
2011M021	T.J.Morley, C.Hoehr, K.Buckley, P.Schaffer, F.Benard, T.J.Ruth - J.Labelled Compd.Radiopharm. Supp.1., 54, S245 (2011) Rapid and Efficient Production of Tc-94m
2011MU10	 J.M.Mueller, R.J.Charity, R.Shane, L.G.Sobotka, S.J.Waldecker, W.H.Dickhoff, A.S.Crowell, J.H.Esterline, B.Fallin, C.R.Howell, C.Westerfeldt, M.Youngs, B.J.Crowe, III, R.S.Pedroni - Phys.Rev. C 83, 064605 (2011) Asymmetry dependence of nucleon correlations in spherical nuclei extracted from a dispersive-optical-model analysis
2011N012	M.Norrby, T.Lonnroth, V.Z.Goldberg, G.V.Rogachev, M.S.Golovkov, KM.Kallman, M.Lattuada, S.V.Perov, S.Romano, B.B.Skorodumov, G.P.Tiourin, W.H.Trzaska, A.Tumino, A.N.Vorontsov - Eur.Phys.J. A 47, 96 (2011) Elastic alpha-particle resonances as evidence of clustering at high excitation in ⁴⁰ Ca
20110G07	Yu.Ts.Oganessian - Radiochim.Acta 99, 429 (2011) Synthesis of the heaviest elements in $^{48}\mathrm{Ca\text{-induced}}$ reactions
2011PE20	D.Perez-Loureiro, J.Benlliure, H.Alvarez-Pol, B.Blank, E.Casarejos, D.Dragosavac, V.Fohr, M.Gascon, W.Gawlikowicz, A.Heinz, K.Helariutta, A.Kelic-Heil, S.Lukic, F.Montes, L.Pienkowski, KH.Schmidt, M.Staniou, K.Subotic, K.Summerer, J.Taieb, A.Trzcinska - Phys.Lett. B 703, 552 (2011) Production of neutron-rich nuclei in fragmentation reactions of ¹³² Sn projectiles at relativistic energies
2011PE21	M.Petri, P.Fallon, A.O.Macchiavelli, S.Paschalis, K.Starosta, T.Baugher, D.Bazin, L.Cartegni, R.M.Clark, H.L.Crawford, M.Cromaz, A.Dewald, A.Gade, G.F.Grinyer, S.Gros, M.Hackstein, H.B.Jeppesen, I.Y.Lee, S.McDaniel, D.Miller, M.M.Rajabali, A.Ratkiewicz, W.Rother, P.Voss, K.A.Walsh, D.Weisshaar, M.Wiedeking, B.A.Brown - Phys.Rev.Lett. 107, 102501 (2011) Lifetime Measurement of the 2 ⁺ ₁ State in ²⁰ C
2011PI08	K.C.C.Pires, R.Lichtenthaler, A.Lepine-Szily, V.Guimaraes, P.N.de Faria, A.Barioni, D.R.Mendes, Jr., V.Morcelle, R.P.Condori, M.C.Morais, J.C.Zamora, E.Crema, A.M.Moro, M.Rodriguez-Gallardo, M.Assuncao, J.M.B.Shorto, S.Mukherjee - Phys.Rev. C 83, 064603 (2011) Experimental study of ⁶ He+ ⁹ Be elastic scattering at low energies

2011P009	M.Pomorski, M.Pfutzner, W.Dominik, R.Grzywacz, T.Baumann, J.S.Berryman, H.Czyrkowski, R.Dabrowski, T.Ginter, J.Johnson, G.Kaminski, A.Kuzniak, N.Larson, S.N.Liddick, M.Madurga, C.Mazzocchi, S.Mianowski, K.Miernik, D.Miller, S.Paulauskas, J.Pereira, K.P.Rykaczewski, A.Stolz, S.Suchyta - Phys.Rev. C 83, 061303 (2011) First observation of two-proton radioactivity in ⁴⁸ Ni
2011P010	O.Povoroznyk, O.K.Gorpinich, O.O.Jachmenjov, H.V.Mokhnach, O.Ponkratenko, G.Mandaglio, F.Curciarello, V.De Leo, G.Fazio, G.Giardina - J.Phys.Soc.Jpn. 80, 094204 (2011) High-Lying ⁶ Li Levels at Excitation Energy of around 21 MeV
2011PR06	M.K.Pradhan, A.Mukherjee, P.Basu, A.Goswami, R.Kshetri, S.Roy, P.Roy Chowdhury, M.Saha-Sarkar, R.Palit, V.V.Parkar, S.Santra, M.Ray - Phys.Rev. C 83, 064606 (2011) Fusion of ⁶ Li with ¹⁵⁹ Tb at near-barrier energies
2011PR12	M.G.Procter, D.M.Cullen, C.Scholey, P.Ruotsalainen, L.Angus, T.Back, B.Cederwall, A.Dewald, C.Fransen, T.Grahn, P.T.Greenlees, M.Hackstein, U.Jakobsson, P.M.Jones, R.Julin, S.Juutinen, S.Ketelhut, M.Leino, R.Liotta, N.M.Lumley, P.J.R.Mason, P.Nieminen, M.Nyman, J.Pakarinen, T.Pissulla, P.Peura, P.Rahkila, J.Revill, S.V.Rigby, W.Rother, M.Sandzelius, J.Saren, J.Sorri, M.J.Taylor, J.Uusitalo, P.Wady, C.Qi, F.R.Xu - Phys.Lett. B 704, 118 (2011) Anomalous transition strength in the proton-unbound nucleus ${}^{109}_{53}I_{56}$
2011RA24	S.Rahaman, VV.Elomaa, T.Eronen, J.Hakala, A.Jokinen, A.Kankainen, J.Rissanen, J.Suhonen, C.Weber, J.Aysto - Phys.Lett. B 703, 412 (2011) Double-beta decay Q values of 116 Cd and 130 Te
2011RE13	I.A.Reyhancan - Ann.Nucl.Energy 38, 2359 (2011) Measurements and model calculations of activation cross sections for 232 Th(n, 2n)231Th reaction between 13.57 and 14.83 MeV neutrons
2011RI07	J.Rissanen, J.Kurpeta, A.Plochocki, VV.Elomaa, T.Eronen, J.Hakala, A.Jokinen, A.Kankainen, P.Karvonen, I.D.Moore, H.Penttila, S.Rahaman, A.Saastamoinen, W.Urban, C.Weber, J.Aysto - Eur.Phys.J. A 47, 97 (2011) Penning-trap-assisted study of ¹¹⁵ Ru beta decay
2011R020	 A.P.Robinson, T.L.Khoo, D.Seweryniak, I.Ahmad, M.Asai, B.B.Back, M.P.Carpenter, P.Chowdhury, C.N.Davids, J.Greene, P.T.Greenlees, K.Hauschild, A.Heinz, RD.Herzberg, R.V.F.Janssens, D.G.Jenkins, G.D.Jones, S.Ketelhut, F.G.Kondev, T.Lauritsen, C.J.Lister, A.Lopez-Martens, P.Marley, E.McCutchan, P.Papadakis, D.Peterson, J.Qian, D.Rostron, U.Shirwadkar, I.Stefanescu, S.K.Tandel, X.Wang, S.Zhu - Phys.Rev. C 83, 064311 (2011) Search for a 2-quasiparticle high-K isomer in ²⁵⁶Rf
2011RO22	O.Roig, V.Meot, B.Rosse, G.Belier, JM.Daugas, A.Letourneau, A.Menelle, P.Morel - Phys.Rev. C 83, 064617 (2011) Direct evidence for inelastic neutron "acceleration" by ¹⁷⁷ Lu ^m

2011RD26	P.Roy, A.Saxena, B.K.Nayak, E.T.Mirgule, B.John, Y.K.Gupta, L.S.Danu, R.P.Vind, A.Kumar, R.K.Choudhury - Phys.Rev. C 84, 011602 (2011) Systematic study of projectile-structure effect on the fusion-barrier distribution
2011ROZZ	A.M.Rogers, J.Giovinazzo, C.J.Lister, B.Blank, G.Canchel, J.A.Clark, S.M.Fischer, G.de France, S.Grevy, S.Gros, E.A.McCutchan, F.de Oliveira Santos, G.Savard, D.Seweryniak, I.Stefan, JC.Thomas - Priv.Comm. (2011) ⁶⁹ Kr β -delayed proton emission: A Trojan horse for studying states in proton-unbound ⁶⁹ Br
2011RU10	N.I.Rukhadze, Ch.Briancon, V.B.Brudanin, V.G.Egorov, A.A.Klimenko, A.Kovalik, V.V.Timkin, P.Chermak, Yu.A.Shitov, F.Simkovic, I.Stekl - Bull.Rus.Acad.Sci.Phys. 75, 879 (2011) Search for double beta decay of ¹⁰⁶ Cd
2011RZ01	T.Rzaca-Urban, W.Urban, J.A.Pinston, A.G.Smith, I.Ahmad - Phys.Rev. C 83, 067301 (2011) Near-yrast, medium-spin structure of $^{143}\rm{Xe}$
2011SA25	D.Santiago-Gonzalez, I.Wiedenhover, V.Abramkina, M.L.Avila, T.Baugher, D.Bazin, B.A.Brown, P.D.Cottle, A.Gade, T.Glasmacher, K.W.Kemper, S.McDaniel, A.Rojas, A.Ratkiewicz, R.Meharchand, E.C.Simpson, J.A.Tostevin, A.Volya, D.Weisshaar - Phys.Rev. C 83, 061305 (2011) Triple configuration coexistence in ⁴⁴ S
2011SA41	N.Sato, H.Haba, T.Ichikawa, D.Kaji, Y.Kudou, K.Morimoto, K.Morita, K.Ozeki, T.Sumita, A.Yoneda, E.Ideguchi, H.Koura, A.Ozawa, T.Shinozuka, T.Yamaguchi, A.Yoshida - J.Phys.Soc.Jpn. 80, 094201 (2011) Production and Decay Properties of ²⁶⁴ Hs and ²⁶⁵ Hs
2011SC18	C.Scholl, Y.Fujita, T.Adachi, P.von Brentano, H.Fujita, M.Gorska, H.Hashimoto, K.Hatanaka, H.Matsubara, K.Nakanishi, T.Ohta, Y.Sakemi, Y.Shimbara, Y.Shimizu, Y.Tameshige, A.Tamii, M.Yosoi, R.G.T.Zegers - Phys.Rev. C 84, 014308 (2011) High-resolution study of the ⁹ Be(³ He, t) ⁹ B reaction up to the ⁹ B triton threshold
2011SC21	P.Schaffer, T.J.Morley, K.Gagnon, E.Asselin, K.R.Buckley, J.Klug, V.Hanemaayer, S.Zeisler, M.Dodd, S.A.McQuarrie, M.S.Kovacs, F.S.Prato, J.Valliant, F.Benard, T.J.Ruth - J.Labelled Compd.Radiopharm. Supp.1., 54, S247 (2011) Assessing the potential of using the ¹⁰⁰ Mo(p, 2n) ^{99m} Tc transformation as a means of producing Curie-quantities of ⁹⁹ mTc on existing cyclotron infrastructure
2011SC23	D.Schurmann, A.Di Leva, L.Gialanella, R.Kunz, F.Strieder, N.De Cesare, M.De Cesare, A.D'Onofrio, K.Fortak, G.Imbriani, D.Rogalla, M.Romano, F.Terrasi - Phys.Lett. B 703, 557 (2011) Study of the 6.05 MeV cascade transition in $^{12}\mathrm{C}(\alpha,\gamma)^{16}\mathrm{O}$
2011SE06	K.Sekiguchi, H.Okamura, N.Sakamoto, H.Suzuki, M.Dozono, Y.Maeda, T.Saito, S.Sakaguchi, H.Sakai, M.Sasano, Y.Shimizu, T.Wakasa, K.Yako, H.Witala, W.Glockle, J.Golak, H.Kamada, A.Nogga - Phys.Rev. C 83, 061001 (2011)

Three nucleon force effects in intermediate-energy deuteron analyzing powers for dp elastic scattering

2011SI17 E.Simeckova, P.Bem, M.Honusek, M.Stefanik, U.Fischer, S.P.Simakov, R.A.Forrest, A.J.Koning, J.-C.Sublet, M.Avrigeanu, F.L.Roman, V.Avrigeanu - Phys.Rev. C 84, 014605 (2011)

Low and medium energy deuteron-induced reactions on γ . Ou nuc	Low and	medium	energy	deuteron	-induced	reactions	on	$^{63,65}Cu$	nuc	lei
---	---------	--------	--------	----------	----------	-----------	----	--------------	-----	-----

- 2011S022 D.Sohler, S.Grevy, Zs.Dombradi, O.Sorlin, L.Gaudefroy, B.Bastin, N.L.Achouri, J.C.Angelique, F.Azaiez, D.Baiborodin, R.Borcea, C.Bourgeois, A.Buta, A.Burger, L.Caceres, R.Chapman, J.C.Dalouzy, Z.Dlouhy, A.Drouard, Z.Elekes, S.Franchoo, S.Iacob, I.Kuti, B.Laurent, M.Lazar, X.Liang, E.Lienard, S.M.Lukyanov, J.Mrazek, L.Nalpas, F.Negoita, F.Nowacki, N.A.Orr, Yu.E.Penionzkhevitch, Zs.Podolyak, F.Pougheon, A.Poves, P.Roussel-Chomaz, M.Stanoiu, I.Stefan, M.G.St-Laurent Phys.Lett. B 703, 417 (2011)
 Spectroscopy of ^{39,41}Si and the border of the N=28 island of inversion
- 2011SU15 M.Sugawara, H.Kusakari, Y.Yoshizawa, H.Inoue, T.Morikawa, T.Shizuma, J.Srebrny
 Phys.Rev. C 83, 064308 (2011) Coulomb excitation of ¹⁵⁶Gd
- 2011SU16 T.Sumikama, K.Matsuta, T.Nagatomo, M.Ogura, T.Iwakoshi, Y.Nakashima, H.Fujiwara, M.Fukuda, M.Mihara, K.Minamisono, T.Yamaguchi, T.Minamisono Phys.Rev. C 83, 065501 (2011) Test of the conserved vector current hypothesis by a β -ray angular distribution measurement in the mass-8 system
- 2011SZ01 B.Szpak, K.H.Maier, A.S.Smolkowska, B.Fornal, R.Broda, M.P.Carpenter, N.Cieplicka, R.V.F.Janssens, W.Krolas, T.Pawlat, J.Wrzesinski, S.Zhu - Phys.Rev. C 83, 064315 (2011)
 Yrast structure of the two-proton- and three-neutron-hole nucleus ²⁰³Hg from the decay of a 53 / 2⁺ isomer
- 2011SZ02 S.Szilner, L.Corradi, F.Haas, D.Lebhertz, G.Pollarolo, C.A.Ur, L.Angus, S.Beghini, M.Bouhelal, R.Chapman, E.Caurier, S.Courtin, E.Farnea, E.Fioretto, A.Gadea, A.Goasduff, D.Jelavic-Malenica, V.Kumar, S.Lunardi, N.Marginean, P.Mason, D.Mengoni, G.Montagnoli, F.Nowacki, F.Recchia, E.Sahin, M.-D.Salsac, F.Scarlassara, R.Silvestri, J.F.Smith, N.Soic, A.M.Stefanini, J.J.Valiente-Dobon -Phys.Rev. C 84, 014325 (2011) Interplay between single-particle and collective excitations in argon isotopes populated by transfer reactions
| 2011TA17 | G.Tagliente, P.M.Milazzo, K.Fujii, U.Abbondanno, G.Aerts, H.Alvarez, F.Alvarez-Velarde, S.Andriamonje, J.Andrzejewski, L.Audouin, G.Badurek, P.Baumann, F.Becvar, F.Belloni, E.Berthoumieux, S.Bisterzo, F.Calvino, M.Calviani, D.Cano-Ott, R.Capote, C.Carrapico, P.Cennini, V.Chepel, E.Chiaveri, N.Colonna, G.Cortes, A.Couture, J.Cox, M.Dahlfors, S.David, I.Dillmann, C.Domingo-Pardo, W.Dridi, I.Duran, C.Eleftheriadis, M.Embid-Segura, A.Ferrari, R.Ferreira-Marques, W.Furman, R.Gallino, I.Goncalves, E.Gonzalez-Romero, F.Gramegna, C.Guerrero, F.Gunsing, B.Haas, R.Haight, M.Heil, A.Herrera-Martinez, E.Jericha, F.Kappeler, Y.Kadi, D.Karadimos, D.Karamanis, M.Kerveno, E.Kossionides, M.Krticka, C.Lamboudis, H.Leeb, A.Lindote, I.Lopes, M.Lozano, S.Lukic, J.Marganiec, S.Marrone, T.Martnez, C.Massimi, P.Mastinu, A.Mengoni, C.Moreau, M.Mosconi, F.Neves, H.Oberhummer, S.O'Brien, J.Pancin, C.Papachristodoulou, C.Papadopoulos, C.Paradela, N.Patronis, A.Pavlik, P.Pavlopoulos, L.Perrot, M.T.Pigni, R.Plag, A.Plompen, A.Plukis, A.Poch, J.Praena, C.Pretel, J.Quesada, T.Rauscher, R.Reifarth, M.Rosetti, C.Rubbia, G.Rudolf, P.Rullhusen, J.Salgado, C.Santos, L.Sarchiapone, I.Savvidis, C.Stephan, J.L.Tain, L.Tassan-Got, L.Tavora, R.Terlizzi, G.Vannini, P.Vaz, A.Ventura, D.Villamarin, M.C.Vincente, V.Vlachoudis, R.Vlastou, F.Voss, S.Walter, M.Wiescher, K.Wisshak - Phys.Rev. C 84, 015801 (2011) Neutron capture on ⁹⁴Zr: Resonance parameters and Maxwellian-averaged cross sections |
|----------|--|
| 2011TA18 | A.Tamii, I.Poltoratska, P.von Neumann-Cosel, Y.Fujita, T.Adachi, C.A.Bertulani, J.Carter, M.Dozono, H.Fujita, K.Fujita, K.Hatanaka, D.Ishikawa, M.Itoh, T.Kawabata, Y.Kalmykov, A.M.Krumbholz, E.Litvinova, H.Matsubara, K.Nakanishi, R.Neveling, H.Okamura, H.J.Ong, B.Ozel-Tashenov, B.Rubio, H.Sakaguchi, Y.Sakemi, Y.Sasamoto, Y.Shimbara, Y.Shimizu, V.Yu.Ponomarev, A.Richter, F.D.Smit, T.Suzuki, Y.Tameshige, J.Wambach, R.Yamada, M.Yosoi, J.Zenihiro - Phys.Rev.Lett. 107, 062502 (2011) Complete Electric Dipole Response and the Neutron Skin in ²⁰⁸Pb |
| 2011TEZZ | T.Teranishi, S.Kubono, H.Yamaguchi, T.Hashimoto, S.Hayakawa, Y.Kurihara, D.N.Binh, D.Kahl, Y.Wakabayashi, L.H.Khiem, P.V.Cuong, S.Watanabe, A.Goto - CNS-REP-86, Ann.Report 2009, p.17 (2011)
Test Measurement of ¹⁷ Ne+p resonance elastic scattering |
| 2011TH03 | S.Thieme, M.Walther, J.Rajander, HJ.Pietzsch, O.Solin, J.Steinbach - J.Labelled Compd.Radiopharm. Supp.1., 54, S237 (2011)
Production of ⁶¹ Cu via the ⁶⁴ Zn(p, α) ⁶¹ Cu reaction with high specific activity |
| 2011TO06 | W.Tornow, H.J.Karwowski, J.H.Kelley, R.Raut, G.Rusev, S.C.Stave, A.P.Tonchev, A.Deltuva, A.C.Fonseca, L.E.Marcucci, M.Viviani, A.Kievsky, J.Golak, R.Skibinski, H.Witala, R.Schiavilla - Phys.Lett. B 702, 121 (2011)
Two-body photodisintegration of ³ He between 7 and 16 MeV |
| 2011TO07 | S.Yu.Torilov, K.A.Gridnev, V.I.Zherebchevsky, M.Brenner, L.I.Vinogradov,
V.Z.Goldberg, T.V.Korovitskaya, T.Lonnroth, N.A.Maltsev, M.Mutterer,
B.G.Novatskii, M.Norrby, J.M.K.Slotte, Yu.G.Sobolev, W.H.Trzaska, G.P.Tyurin,
S.V.Khlebnikov - JETP Lett. 94, 6 (2011)
Cluster states in the neutron excess nucleus ²² Ne |

Page 146

2011UN01	V.R.Sharma, A.Yadav, P.P.Singh, M.K.Sharma, D.P.Singh, Unnati, R.Kumar, K.S.Golda, B.P.Singh, A.K.Sinha, R.Prasad - Phys.Rev. C 84, 014612 (2011) Identification of fission-like events in the ¹⁶ O + ¹⁸¹ Ta system: Mass and isotopic yield distribution
2011VE07	Ph.Velten, G.Ban, D.Durand, X.Flechard, E.Lienard, F.Mauger, A.Mery, O.Naviliat-Cuncic, D.Rodriguez, J.C.Thomas - Hyperfine Interactions 199, 29 (2011) The LPCTrap experiment: measurement of the β - ν angular correlation in ⁶ He ⁺ decay using a transparent Paul trap
2011VEZY	V.A.Vesna, Yu.M.Gledenov, V.V.Nesvizhevsky, P.V.Sedyshev, E.V.Shulgina - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.235 (2011) Result on Measurements of the P-Odd Asymmetry of Emitted γ -Quanta in the ¹⁰ B(n, α) ⁷ Li [*] \rightarrow ⁷ Li(g.st.) Reaction with Slow Polarized Neutrons
2011VI03	 P.Vingerhoets, K.T.Flanagan, J.Billowes, M.L.Bissell, K.Blaum, B.Cheal, M.De Rydt, D.H.Forest, Ch.Geppert, M.Honma, M.Kowalska, J.Kramer, K.Kreim, A.Krieger, R.Neugart, G.Neyens, W.Nortershauser, J.Papuga, T.J.Procter, M.M.Rajabali, R.Sanchez, H.H.Stroke, D.T.Yordanov - Phys.Lett. B 703, 34 (2011) Magnetic and quadrupole moments of neutron deficient ⁵⁸⁻⁶²Cu isotopes
2011WA13	Z.M.Wang, R.Chapman, F.Haas, X.Liang, F.Azaiez, B.R.Behera, M.Burns, L.Corradi, D.Curien, A.N.Deacon, Zs.Dombradi, E.Farnea, E.Fioretto, A.Gadea, A.Hodsdon, F.Ibrahim, A.Jungclaus, K.Keyes, V.Kumar, A.Latina, N.Marginean, G.Montagnoli, D.R.Napoli, J.Ollier, D.O'Donnell, A.Papenberg, G.Pollarolo, MD.Salsac, F.Scarlassara, J.F.Smith, K.M.Spohr, M.Stanoiu, A.M.Stefanini, S.Szilner, M.Trotta, D.Verney - Phys.Rev. C 83, 061304 (2011) Collectivity in ⁴¹ S
2011WA14	X.Wang, M.A.Riley, J.Simpson, E.S.Paul, J.Ollier, R.V.F.Janssens, A.D.Ayangeakaa, H.C.Boston, M.P.Carpenter, C.J.Chiara, U.Garg, D.J.Hartley, D.S.Judson, F.G.Kondev, T.Lauritsen, N.M.Lumley, J.Matta, P.J.Nolan, M.Petri, J.P.Revill, L.L.Riedinger, S.V.Rigby, C.Unsworth, S.Zhu, I.Ragnarsson - Phys.Lett. B 702, 127 (2011) Quadrupole moments of collective structures up to spin ~ 65h in ¹⁵⁷ Er and ¹⁵⁸ Er: A challenge for understanding triaxiality in nuclei
2011WA15	J.Walker, A.Jungclaus, J.Leske, KH.Speidel, A.Ekstrom, P.Boutachkov, J.Cederkall, P.Doornenbal, J.Gerl, R.Gernhauser, N.Goel, M.Gorska, I.Kojouharov, P.Maier-Komor, V.Modamio, F.Naqvi, N.Pietralla, S.Pietri, W.Prokopowicz, H.Schaffner, R.Schwengner, HJ.Wollersheim - Phys.Rev. C 84, 014319 (2011) Magnetic moments of the first excited 2 ⁺ states in the semi-magic ^{112,114,116,122,124} Sn isotopes
2011WA17	T.Wakasa, M.Okamoto, M.Takaki, M.Dozono, K.Hatanaka, M.Ichimura, T.Noro, H.Okamura, Y.Sakemi - Phys.Rev. C 84, 014614 (2011) Complete set of polarization transfer observables for the ${}^{16}O($ p, n) ${}^{16}F$ reaction at 296 MeV and 0 degrees

2011WA19	S.T.Wang, X.H.Zhou, Y.H.Zhang, Y.Zheng, M.L.Liu, L.Chen, N.T.Zhang, W.Hua, S.Guo, Y.H.Qiang, G.S.Li, B.Ding, Y.Shi, F.R.Xu - Phys.Rev. C 84, 017303 (2011) Rotational band properties in ¹⁶⁵ Er
2011WA20	M.Wada, A.Takamine, T.Sonoda, K.Okada, P.Schury - Hyperfine Interactions 199, 269 (2011) Developments at the SLOWRI facility at RIKEN: precision optical spectroscopy of 7,9,10,11 Be ⁺ ions
2011WA21	S.Y.Wang, B.Qi, L.Liu, S.Q.Zhang, H.Hua, X.Q.Li, Y.Y.Chen, L.H.Zhu, J.Meng, S.M.Wyngaardt, P.Papka, T.T.Ibrahim, R.A.Bark, P.Datta, E.A.Lawrie, J.J.Lawrie, S.N.T.Majola, P.L.Masiteng, S.M.Mullins, J.Gal, G.Kalinka, J.Molnar, B.M.Nyako, J.Timar, K.Juhasz, R.Schwengner - Phys.Lett. B 703, 40 (2011) The first candidate for chiral nuclei in the A ~ 80 mass region: $^{80}{\rm Br}$
2011WAZY	Y.Wakabayashi, H.Yamaguchi, T.Hashimoto, S.Hayakawa, Y.Kurihara, D.N.Binh, D.Kahl, S.Nishimura, Y.Gono, Y.Fujita, S.Kubono - CNS-REP-86, Ann.Report 2009, p.13 (2011) Beta-decay measurement of ⁴⁶ Cr
2011WAZZ	A.Wagner, D.Bemmerer, R.Beyer, E.Birgersson, A.Ferrari, E.Grosse, R.Hannaske, A.R.Junghans, M.Kempe, T.Kogler, M.Marta, A.Matic, R.Nolte, K.D.Schilling, G.Schramm, R.Schwengner, FP.Weiss, D.Yakorev - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.127 (2011) Fast Neutron Cross Section Measurements with the NELBE Neutron Time- of- Flight Facility
2011WH01	C.Wheldon, N.I.Ashwood, M.Barr, N.Curtis, M.Freer, Tz.Kokalova, J.D.Malcolm, S.J.Spencer, V.A.Ziman, Th.Faestermann, R.Krucken, HF.Wirth, R.Hertenberger, R.Lutter, A.Bergmaier - Phys.Rev. C 83, 064324 (2011) High-resolution measurement of absolute α -decay widths in ¹⁶ O
2011WI09	K.Wimmer, U.Koster, P.Hoff, Th.Kroll, R.Krucken, R.Lutter, H.Mach, Th.Morgan, S.Sarkar, M.Saha-Sarkar, W.Schwerdtfeger, P.C.Srivastava, P.G.Thirolf, P.Van Isacker - Phys.Rev. C 84, 014329 (2011); Pub.Note JOUR PRVCA 84 029903 (2011) Identification of the slow E3 transition $^{136}Cs^m \rightarrow ^{136}Cs$ with conversion electrons
2011YA13	T.Yamaguchi, K.Tanaka, T.Suzuki, A.Ozawa, T.Ohtsubo, T.Aiba, N.Aoi, H.Baba, M.Fukuda, Y.Hashizume, K.Inafuku, N.Iwasa, T.Izumikawa, K.Kobayashi, M.Komuro, Y.Kondo, T.Kubo, M.Kurokawa, T.Matsuyama, S.Michimasa, T.Motobayashi, T.Nakabayashi, S.Nakajima, T.Nakamura, H.Sakurai, R.Shinoda, M.Shinohara, H.Suzuki, M.Takechi, E.Takeshita, S.Takeuchi, Y.Togano, K.Yamada, T.Yasuno, M.Yoshitake - Nucl.Phys. A864, 1 (2011) Nuclear reactions of ^{19,20} C on a liquid hydrogen target measured with the superconducting TOF spectrometer
2011YAZZ	H.Yamaguchi, T.Hashimoto, S.Hayakawa, D.N.Binh, D.Kahl, S.Kubono, T.Kawabata, Y.Wakabayashi, N.Iwasa, Y.Miura, Y.KJ.Kwon, L.H.Khiem, N.N.Duy, T.Teranishi - CNS-REP-86, Ann.Report 2009, p.1 (2011)

	Measurement of alpha resonance scattering on $^{7}\mathrm{Be}$
2011ZH22	HY.Zhou, FG.Deng, W.Cheng, FS.Zhang, Q.Zhao, J.Su, L.M.Dong, Q.Zhu, GY.Fan - Nucl.Instrum.Methods Phys.Res. A648, 192 (2011) Associated gamma radiation in interaction of 14.9 MeV neutrons with natural silicon
2011ZH26	C.Zhu, Y.Chen, Y.Mou, P.Zheng, T.He, X.Wang, L.An, H.Guo - Nucl.Sci.Eng. 169, 188 (2011) Measurements of (n, 2n) Reaction Cross Sections at 14 MeV for Several Nuclei
2011ZH27	GH.Zhang, S.Liu, JM.Liu, ZH.Xue, H.Wu, JX.Chen - Chin.Phys.Lett. 28, 082801 (2011) Measurement of Cross Sections for the ${}^{10}B(n, \alpha)^{7}Li$ Reaction at 4.0 and 5.0 MeV Using an Asymmetrical Twin Gridded Ionization Chamber
2011ZHZY	G.L.Zhang, H.Q.Zhang, C.J.Lin, C.L.Zhang, G.P.An, Z.D.Wu, H.M.Jia, X.X.Xu, F.Yang, Z.H.Liu, S.Kubono, H.Yamaguchi, S.Hayakawa, D.N.Binh, Y.K.Kwon, N.Iwasa - CNS-REP-86, Ann.Report 2009, p.21 (2011) Elastic scattering for 60MeV ¹⁷ F on ¹² C target
2011ZHZZ	B.V.Zhuravlev, A.A.Lychagin, N.N.Titarenko, V.G.Demenkov, V.I.Trykova - Proc.18th Intern.Seminar on Int.of Neutrons with Nuclei, Dubna, Russia, May 26-29, 2010 p.225 (2011) Nuclear Level Densities of ⁴⁷ V, ⁴⁸ V, ⁴⁹ V, ⁵³ Mn, ⁵⁴ Mn from Neutron Evaporation Spectra