

ENDF/B-VII. 1 versus ENDFB/-VII.0: What's Different?

by
Dermott E. Cullen
Lawrence Livermore National Laboratory
P.O. Box 808/L-198
Livermore, CA 94550

March 17, 2012

Approved for public release; further dissemination unlimited

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

ENDF/B-VII. 1
 versus
 ENDFB/-VII.0:
 What's Different?

by
Dermott E. Cullen
Lawrence Livermore National Laboratory
P.O. Box 808/L-198
Livermore, CA 94550

March 17, 2012

Overview

Recently the new ENDF/B-VII. 1 library was released; this completely replaces the earlier ENDF/B-VII. 0 library. One of the first questions we ask about a new library is: What's Different? Here I attempt to at least partially answer this question. I present results in both tabulated form (so you can quickly determine if any evaluations of interest to you have changed), and graphic form (so that you can see how much evaluations have changed and in what energy ranges).

For the table I have compared what I refer to as the ENDF neutron data, namely $\mathrm{MF}=1$ through 6 . Here I did a character-by-character comparison of the same sections (MF/MT) that appear I both ENDF/B-VII. 0 and VII.1; here I found differences in 170 evaluations.

For the plots I have only compared the total cross sections for all evaluations that are common to both libraries, and I found that of the 423 evaluations in ENDF/B-VII.1, 120 of these have total cross sections that differ by 1% or more from the evaluation of the same isotope in ENDF/B-VII.0.

WARNING: This should be considered only a preliminary comparison; obviously there can be more subtle important differences that do not effect of total cross sections.

Here I present plots comparing the total cross section of these 120 isotopes. The plots are only broad overviews of the total cross sections over their entire energy range. If you have interest in more detailed plots for specific evaluations, you can download the evaluations [1,2]
http://www-nds.iaea.org/point2009/pt2009.htm
http://www.nndc.bnl.gov/exfor/POINT2012/POINT2012.htm
and the PREPRO [3] codes
http://www-nds.iaea.org/ndspub/endf/prepro/
I used to prepare and view the data. This is all I needed to do my comparisons, and is all you should need to do any more detailed comparisons to meet your individual needs.

What I present in the plots is the original ENDF/B-VII. 0 and VII. 1 data after it has been processed by my PREPRO codes [3]; these codes linearized all of the data and added any resonance contributions to the cross sections. The result is "cold" 0 Kelvin data [1, 2]

120 Evaluations where total cross section differs by 1% or more

The below tables defines all 120 evaluations where the total cross section differs by 1% or more between ENDF/B-VII. 0 and VII.1. From this table you should be able to quickly see whether or not any material of interest to you is affected; for more details see the plots later in his report.

The follow page lists all 423 evaluations included in ENDF/B-VII.1. Comparing these two tables you can see that many evaluations are identical in both ENDF/B-VII. 0 and VII.1.

$1-\mathrm{H}-3$	$28-\mathrm{Ni}-58$	$47-\mathrm{Ag}-109$	$72-\mathrm{Hf}-179$	$92-\mathrm{U}-232$	$96-\mathrm{Cm}-243$
$2-\mathrm{He}-4$	$28-\mathrm{Ni}-60$	$48-\mathrm{Cd}-106$	$72-\mathrm{Hf}-180$	$92-\mathrm{U}-233$	$96-\mathrm{Cm}-244$
$3-\mathrm{Li}-6$	$28-\mathrm{Ni}-61$	$48-\mathrm{Cd}-108$	$73-\mathrm{Ta}-181$	$92-\mathrm{U}-237$	$96-\mathrm{Cm}-245$
$4-\mathrm{Be}-9$	$28-\mathrm{Ni}-62$	$48-\mathrm{Cd}-110$	$74-\mathrm{W}-182$	$92-\mathrm{U}-239$	$96-\mathrm{Cm}-246$
$15-\mathrm{P}-31$	$28-\mathrm{Ni}-64$	$48-\mathrm{Cd}-111$	$74-\mathrm{W}-183$	$93-\mathrm{Np}-235$	$96-\mathrm{Cm}-247$
$17-\mathrm{Cl}-35$	$33-\mathrm{As}-75$	$48-\mathrm{Cd}-112$	$74-\mathrm{W}-184$	$93-\mathrm{Np}-236$	$96-\mathrm{Cm}-248$
$17-\mathrm{Cl}-37$	$36-\mathrm{Kr}-78$	$48-\mathrm{Cd}-113$	$74-\mathrm{W}-186$	$93-\mathrm{Np}-237$	$96-\mathrm{Cm}-249$
$19-\mathrm{K}-39$	$36-\mathrm{Kr}-86$	$48-\mathrm{Cd}-114$	$75-\mathrm{Re}-185$	$93-\mathrm{Np}-238$	$96-\mathrm{Cm}-250$
$19-\mathrm{K}-41$	$39-\mathrm{Y}-89$	$48-\mathrm{Cd}-116$	$75-\mathrm{Re}-187$	$93-\mathrm{Np}-239$	$97-\mathrm{Bk}-249$
$22-\mathrm{Ti}-46$	$40-\mathrm{Zr}-90$	$50-\mathrm{Sn}-125$	$89-\mathrm{Ac}-225$	$94-\mathrm{Pu}-236$	$97-\mathrm{Bk}-250$
$22-\mathrm{Ti}-47$	$40-\mathrm{Zr}-91$	$54-\mathrm{Xe}-123$	$89-\mathrm{Ac}-226$	$94-\mathrm{Pu}-237$	$98-\mathrm{Cf}-249$
$22-\mathrm{Ti}-48$	$40-\mathrm{Zr}-92$	$54-\mathrm{Xe}-124$	$89-\mathrm{Ac}-227$	$94-\mathrm{Pu}-238$	$98-\mathrm{Cf}-250$
$22-\mathrm{Ti}-49$	$40-\mathrm{Zr}-93$	$55-\mathrm{Cs}-133$	$90-\mathrm{Th}-227$	$94-\mathrm{Pu}-240$	$98-\mathrm{Cf}-251$
$22-\mathrm{Ti}-50$	$40-\mathrm{Zr}-94$	$60-\mathrm{Nd}-145$	$90-\mathrm{Th}-228$	$94-\mathrm{Pu}-242$	$98-\mathrm{Cf}-252$
$24-\mathrm{Cr}-50$	$40-\mathrm{Zr}-95$	$63-\mathrm{Eu}-153$	$90-\mathrm{Th}-229$	$94-\mathrm{Pu}-244$	$98-\mathrm{Cf}-253$
$24-\mathrm{Cr}-52$	$40-\mathrm{Zr}-96$	$64-\mathrm{Gd}-157$	$90-\mathrm{Th}-230$	$94-\mathrm{Pu}-246$	$98-\mathrm{Cf}-254$
$24-\mathrm{Cr}-53$	$42-\mathrm{Mo}-92$	$72-\mathrm{Hf}-174$	$90-\mathrm{Th}-232$	$95-\mathrm{Am}-241$	$99-\mathrm{Es}-253$
$24-\mathrm{Cr}-54$	$42-\mathrm{Mo}-95$	$72-\mathrm{Hf}-176$	$90-\mathrm{Th}-233$	$95-\mathrm{Am}-243$	$99-\mathrm{Es}-254$
$25-\mathrm{Mn}-55$	$43-\mathrm{Tc}-99$	$72-\mathrm{Hf}-177$	$90-\mathrm{Th}-234$	$96-\mathrm{Cm}-241$	$99-\mathrm{Es}-255$
$27-\mathrm{Co}-58$	$45-\mathrm{Rh}-103$	$72-\mathrm{Hf}-178$	$91-\mathrm{Pa}-232$	$96-\mathrm{Cm}-242$	$100-\mathrm{Fm}-255$

423 Evaluations in VII. 1 (32 new evaluations in RED)

1-H-1	20-Ca-44	32-Ge-74	42-Mo-92	49-In-115	54-Xe-131	61-Pm-147	68-Er-166	88-Ra-224	94-Pu-242
1-H-2	20-Ca-46	32-Ge-76	42-Mo-94	50-Sn-112	54-Xe-131	61-Pm-148	68-Er-167	88-Ra-225	$4-\mathrm{Pu}-243$
1-H -3	20-Ca-48	33-As-74	42-Mo-95	50-Sn-113	54-Xe-133	61-Pm-	68-Er-168	88-Ra-226	94-Pu-244
2-He-3	21-Sc-45	33-As-75	42-Mo-96	50-Sn-114	54-Xe-134	48m	68-Er-170	89-Ac-225	94-Pu-246
2-He-4	22-Ti-46	34-Se-74	42-Mo-97	50-Sn-115	54-Xe-135	61-Pm-149	69-Tm-168	89-Ac-226	95-Am-240
3-Li-6	22-Ti-47	34-Se-76	42-Mo-98	50-Sn-116	54-Xe-136	61-Pm-151	Tm-169	-Ac-227	95-Am-241
3-Li-7	22-Ti-48	34-Se-77	42-Mo-99	50-Sn-117	55-Cs-133	62-Sm-144	71-Lu-175	90-Th-227	95-Am-242m
4-Be-7	22-Ti-49	34-Se-78	42-Mo-100	50-Sn-118	55-Cs-134	62-Sm-148	71-Lu-176	90-Th-229	95-Am-243
4-Be-9	22-Ti-50	34-Se-79	43-Tc-99	50-Sn-119	55-Cs-135	62-Sm-149	72-Hf-174	90-Th-230	95-Am-244
5-B-10	23-V -50	34-Se-80	44-Ru-96	50-Sn-120	55-Cs-136	62-Sm-150	72-Hf-176	90-Th-231	95-Am-244m
5-B -11	23-V -51	34-Se-82	44-Ru-98	50-Sn-122	55-Cs-137	62-Sm-151	72-Hf-177	90-Th-232	96-Cm-240
6-C -Nat	24-Cr-50	35-Br-79	44-Ru-99	50-Sn-123	56-Ba-130	62-Sm-152	72-Hf-178	90-Th-233	96-Cm-241
7-N -14	24-Cr-52	35-Br-81	44-Ru-100	50-Sn-124	56-Ba-132	62-Sm-153	72-Hf-179	90-Th-234	96-Cm-242
7-N -15	24-Cr-53	36-Kr-78	44-Ru-101	50-Sn-125	56-Ba-133	62-Sm-154	72-Hf-180	91-Pa-229	96-Cm-243
8-O-16	24-Cr-54	36-Kr-80	44-Ru-102	50-Sn-126	56-Ba-134	63-Eu-151	73-Ta-180	91-Pa-230	96-Cm-244
8-O-17	25-Mn-55	36-Kr-82	44-Ru-103	51-Sb-121	56-Ba-135	63-Eu-152	73-Ta-181	91-Pa-231	96-Cm-245
9-F -19	26-Fe-54	36-Kr-83	44-Ru-104	51-Sb-123	56-Ba-136	63-Eu-153	73-Ta-182	91-Pa-232	96-Cm-246
11-Na-22	26-Fe-56	36-Kr-84	44-Ru-105	51-Sb-124	56-Ba-137	63-Eu-154	74-W -180	91-Pa-233	96-Cm-247
11-Na-23	26-Fe-57	36-Kr-85	44-Ru-106	51-Sb-125	56-Ba-138	63-Eu-155	74-W -182	92-U-230	96-Cm-248
12-Mg-24	26-Fe-58	36-Kr-86	45-Rh-103	51-Sb-126	56-Ba-140	63-Eu-155 63-Eu-156	74-W -183	92-U-231	96-Cm-249
12-Mg-25	27-Co-58	37-Rb-85	45-Rh-105	52-Te-120	57-La-138	63-Eu-157	74-W -184	92-U-232	96-Cm-250
12-Mg-26	27-Co-58m	37-Rb-86	46-Pd-102	52-Te-122	57-La-139	64-Eu-158	74-W -186	92-U-233	97-Bk-245
13-Al-27	27-Co-59	37-Rb-87	46-Pd-104	52-Te-123	57-La-140	64-Gd-153	75-Re-185	92-U-234	97-Bk-246
14-Si-28	28-Ni-58	38-Sr-84	46-Pd-105	52-Te-124	58-Ce-136	64-Gd-154	75-Re-187	92-U -235	97-Bk-247
14-Si-29	28-Ni-59	38-Sr-86	46-Pd-106	52-Te-125	58-Ce-138	64-Gd-155	77-Ir-191	92-U-236	97-Bk-248
14-Si-30	28-Ni-60	38-Sr-87	46-Pd-107	52-Te-126	58-Ce-139	64-Gd-156	77-Ir-193	92-U -237	97-Bk-249
15-P -31	28-Ni-61	38-Sr-88	46-Pd-108	$\underset{52-\mathrm{Te}-127 \mathrm{~m}}{5-\mathrm{Te}-128}$	58-Ce-140	64-Gd-157	79-Au-197	92-U -238	97-Bk-250
16-S -32	28-Ni-62	38-Sr-89	46-Pd-110	$\underset{52-\mathrm{Te}-129 \mathrm{~m}}{ }$	58-Ce-141	64-Gd-158	80-Hg-196	92-U -239	98-Cf-246
16-S -33	28-Ni-64	38-Sr-90	47-Ag-107	${ }_{\text {52-Te-129m }}$	58-Ce-142	64-Gd-160	80-Hg-198	92-U -240	98-Cf-248
16-S -34	29-Cu-63 29-Cu-65	$39-\mathrm{Y}-89$ $39-\mathrm{Y}-90$	47-Ag-109 $47-\mathrm{Ag}-110 \mathrm{~m}$	52-Te-130 $52-\mathrm{Te}-132$	58-Ce-143 $58-\mathrm{Ce}-144$	65-Tb-159	80-Hg-199	92-U -241	98-Cf-249
17-Cl-35	29-Cu-65	39-Y -90	47-Ag-110m	52-fe-132 $53-\mathrm{I}-127$	58-Ce-144 $59-P r-141$	65-Tb-160	80-Hg-200	93-Np-234	98-Cf-250
17-Cl-37	$30-\mathrm{Zn}-65$	40-Zr-90	48-Cd-106	53-I-129	59-Pr-142	66-Dy-156	80-Hg-201	93-Np-235	98-Cf-251
18-Ar-36	$30-\mathrm{Zn}-66$	40-Zr-91	48-Cd-108	53-I -130	59-Pr-143	66-Dy-158	80-Hg-202	93-Np-236	88-Cf-252
18-Ar-38	30-Zn-67	40-Zr-92	48-Cd-110	53-I -131	60-Nd-142	66-Dy-160 66-Dy-161	$80-\mathrm{Hg}-204$ $81-\mathrm{Tl}-203$	93-Np-237	98-Cf-253
18-Ar-40	$30-\mathrm{Zn}-68$	40-Zr-93	48-Cd-111	53-I -135	60-Nd-143	66-Dy-162	81-Tl-205	93-Np-239	99-Es-251
19-K -39	$30-\mathrm{Zn}-70$	40-Zr-94	48-Cd-112	54-Xe-123	60-Nd-144	66-Dy-163	82-Pb-204	94-Pu-236	99-Es-252
19-K -40	31-Ga-69	40-Zr-95	48-Cd-113	54-Xe-124	60-Nd-145	66-Dy-164	82-Pb-206	94-Pu-237	99-Es-253
19-K -41 20-Ca-40	31-Ga-71	40-Zr-96 $41-\mathrm{Nb}-93$	48-Cd-114	54-Xe-126	60-Nd-146	67-Ho-165	82-Pb-207	94-Pu-238	99-Es-254
20-Ca-40	$32-\mathrm{Ge}-70$ $32-\mathrm{Ge}-72$	41-Nb-93 $41-\mathrm{Nb}-94$	48-Cd-115m	54-Xe-128 54-Xe-129	60-Nd-147 60-Nd-148	67-Ho-166m	82-Pb-208	94-Pu-239	99-Es-254m
20-Ca-42 20-Ca-43	32-Ge-72	41-Nb-94 $41-\mathrm{Nb}-95$	48-Cd-116 49-In-113	54-Xe-129 54-Xe-130	60-Nd-148 $\mathbf{6 0 - N d}-150$	68-Er-162	83-Bi-209	94-Pu-240	99-Es-255
			4-1n-13	54-Xe-130	60-Nd-150	68-Er-164	88-Ra-223	94-Pu-241	100-Fm-255

Detailed Differences

I have compared in more detail the original evaluations, exactly as distributed by the National Nuclear data Center (NNDC), Brookhaven. For this comparison I have not changed the original evaluations in any way; that is I have not performed any processing of the files; these are what are identified at the on-line POINT libraries as "Original" [1, 2].

Of the 423 evaluation in VII.1, 391 were also included in VII.0. I have checked what I will call the "neutron" ENDF files, MF=1 through 6, and major reactions (MT=2, 102, 18, 4 and 16), character by character for differences between the evaluations in VII. 1 and VII.0. I have found differences in 170 of these evaluations, i.e., the remaining 221 evaluations are character by character identical in both libraries.

The below table summarizes my results. I have only listed results for the 170 evaluations where I found differences. An " X " in any position indicates that both VII. 1 and VII. 0 include the same section (the same MF/MT), but these sections are NOT IDENTICA in VII. 1 and VII.0..

What I have checked and listed in the below table, reading left to right,

1) The evaluation identification
2) $\mathrm{MF}=1 / \mathrm{MT}=452=$ total neutrons per fission
3) $\mathrm{MF}=2=$ resonance parameters

Beyond this point the organization of the table switches to group results by MT, including MT=2 (elastic), $\mathrm{MT}=102$ (capture), $\mathrm{MF}=18$ (fission), $\mathrm{MT}=4$ (total inelastic), and M T=16 (n,2n). Under each of these 5 reactions I define whether or not I found differences in MF=3 through 6,
$3=$ cross sections
4 = angular distributions
5 = energy distributions
$6=$ double differential distributions
For example, if you look at the below table, for $17-\mathrm{Cl}-35$, I found differences for resonance parameters ($\mathrm{MF}=2$), tabulated elastic cross sections (MT/MF=2/3), and tabulated capture cross sections $(\mathrm{MT} / \mathrm{MF}=102 / 3)$.

Evaluation	MF=1	$\mathrm{MF}=2$	$\mathrm{MT}=2$			$\mathrm{MT}=102$				$\mathrm{MT}=18$			MT $=4$			$\mathrm{MT}=16$			
MF	Nu	Res	3	45	56	3	4	5	6	34	5	6	3		6		34	6	
45-Rh-103		X																	
47-Ag-109		X	X			X							X						
48-Cd-106		X																	
48-Cd-108		X																	
48-Cd-110		X																	
48-Cd-111		X																	
48-Cd-112		X																	
48-Cd-113		X																	
48-Cd-114		X																	
48-Cd-116		X																	
50-Sn-115		X																	
50-Sn-125			X															X	
51-Sb-123				X															
52-Te-124		X																	
52-Te-126		X																	
54-Xe-123			X	X		X											X		
54-Xe-124		X	X	X		X											X		
54-Xe-126				X															
$54-\mathrm{Xe}-130$				X															
55-Cs-133		X																	
56-Ba-137						X													
57-La-139				X		X													
58-Ce-139																		X	
58-Ce-141		X																	
60-Nd-144																		X	
$60-\mathrm{Nd}-145$		X																	
61-Pm-148				X															
62-Sm-148																		X	
63-Eu-152		X																	
63-Eu-153		X																	
64-Gd-157		X	X																
72-Hf-174		X	X	X		X							X				X X		
72-Hf-176		X	X	X		X							X				X X		
72-Hf-177		X	X	X		X							X				X X		
72-Hf-178		X	X	X		X							X				X X		
72-Hf-179		X	X	X		X							X				X X		
72-Hf-180		X	X	X		X							X				X X		
73-Ta-181			X	X		X											X		
74-W -182		X	X	X		X							X				X		
74-W -183		X	X	X		X							X				X		
74-W -184		X	X	X		X							X				X		
74-W -186		X	X	X		X							X				X		
75-Re-185			X	X		X											X		
75-Re-187			X	X		X											X		
$80-\mathrm{Hg}-196$				X															
$80-\mathrm{Hg}-198$				X															
$80-\mathrm{Hg}-199$				X															
$80-\mathrm{Hg}-200$				X															
$80-\mathrm{Hg}-201$				X															
$80-\mathrm{Hg}-202$				X															

Acknowledgments

I thank the following for reviewing a preliminary version of this paper and making constructive criticism that has been incorporated in the final version of this paper: John Scorby (LLNL), Maurice Greene (ORNL), S. Ganesan (BARC), Andrej Trkov (IJS), Jean Christophe Sublet (CEA).

References

1) "POINT 2012: ENDF/B-VII. 1 Final Temperature Dependent Cross Section Library", LLNL-TR-534938, January 2012, by D.E. Cullen. http://www.nndc.bnl.gov/exfor/POINT2012/POINT2012.htm
2) "POINT 2009: A Temperature Dependent ENDF/B-VII. 0 data Cross Section Library", June 2009, by D.E. Cullen.
http://www-nds.iaea.org/point2009/pt2009.htm
3) "PREPRO 2010: 2010 ENDF/B Pre-Processing Codes", IAEA-NDS-39, Rev. 14, October 2010, by D.E. Cullen; particularly the code COMPLOT, which was used to produce the plots in this report.
http://www-nds.iaea.org/ndspub/endf/prepro/

120 Plots

The following plots only present an overview of the difference in the total cross section (MF/MT=3/2) for the 120 cases where I found differences of 1% on more. For each evaluation there is only one plot covering the entire energy range of each evaluation; for most ENDF/B evaluations this spans the energy range from $10^{-5} \mathrm{eV}$ to 20 MeV , or more.

The 120 plots are grouped 4 per page, for a total of 30 pages; I judged 120 pages of plots to be excessive and larger plots add little additional information.

Each plot is divided into the upper two-thirds to show the total cross section for VII. 1 (black) and VII. 0 (red). The lower third of each plot shows the ratio of the VII. 0 total divided by the VII. 1 total.

From each plot you can see,

1) The isotope identification, in the upper right hand corner
2) Maximum negative and positive \% differences, below isotope id
3) The energy range of resolved and unresolved energy ranges, if any
4) Vertical arrows show the position of maximum differences
5) The energy and cross section scales.

Below is an example to which I added an explanatory comment

(suriaq) 4op70as ssox olfay

(suraq) morpoas sso.ry oifay

Incident Energy (eV)

[^0]

[^0]:

