SAMMY User Guidance for ENDF Formats

March 2007

Updated April 2007

Prepared by

Nancy M. Larson
Nuclear Science and Technology Division

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge.

Web site http://www.osti.gov/bridge
Reports produced before January 1, 1996, may be purchased by members of the public from the following source.

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639
Fax 703-605-6900
E-mail info@ntis.gov
Web site http://www.ntis.gov/support/ordernowabout.htm
Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source.

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831
Telephone 865-576-8401
Fax 865-576-5728
E-mail reports@osti.gov
Web site http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Nuclear Science and Technology Division

SAMMY USER GUIDANCE FOR ENDF FORMATS

Nancy M. Larson

March 2007

[^0]Prepared by the OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37831-6283
managed by
UT-BATTELLE, LLC
for the
U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

CONTENTS

ACKNOWLEDGMENTS vii
ABSTRACT ix
I. INTRODUCTION 1
II. GENERAL DESCRIPTION OF ENDF-102 FORMATS 3
ENDF-102 Sections
0.7. General Description of Data Formats. 5
0.7.1. Structure of an ENDF Data Tape 5
0.7.2. Format Nomenclature. 6
0.7.3. Types of Records 6
0.7.4. TEXT Records 7
0.7.5. Control Records 8
0.7.5.1. CONT Records 8
0.7.5.2. HEAD Records 8
0.7.5.3. END Records. 8
0.7.5.4. DIR Records 8
0.7.6. LIST Records 9
0.7.7. TAB1 Records 9
0.7.8. TAB2 Records 10
0.7.9. INTG Records. 10
III. INTRODUCTION TO FILE 2: PARAMETERS FOR RESOLVED RESONANCE REGION 11
ENDF-102 Sections
2. File 2. RESONANCE PARAMETERS 13
2.1. General Description 13
2.2. Resolved Resonance Parameters (LRU = 1). 20
2.2.1.Formats 20
2.2.1.1. SLBW and MLBW (LRU $=1$, LRF $=1$ or 2) 22
2.2.1.2 Reich-Moore (LRU = 1, LRF = 3) 23
2.2.1.3 Adler-Adler (LRU = 1, LRF = 4) not included
2.2.1.4 removed from ENDF-102
2.2.1.5 removed from ENDF-102
2.2.1.6 removed from ENDF-102
2.2.1.7. R-Matrix Limited Format ($\mathrm{LRU}=1, \mathrm{LRF}=7$). 24
2.2.1.7.1 Formats for the basic RML subsection. 25
2.2.1.7.2 Formats for optional extensions to the RML. 28
2.3. Unresolved Resonance Parameters (LRU = 1) not included
IV. INTRODUCTION TO ENDF FILE 32: COVARIANCE MATRIX ASSOCIATED WITH RESONANCE PARAMETERS 31
ENDF-102 Sections
32. FILE 32. COVARIANCES OF RESONANCE PARAMETERS 33
32.1. General Description 33
32.2. Formats. 35
32.2.1. Compatible resolved resonance subsection format (LCOMP $=0$) 36
32.2.2. General resolved resonance subsection formats for LCOMP = 1. 37
32.2.2.a Short-range sections. 37
32.2.2.a. 1 LRF $=1,2$, LRU $=1$, LCOMP $=1$. 38
32.2.2.a. $2 \mathrm{LRF}=3, \mathrm{LRU}=1, \mathrm{LCOMP}=1$. 39
32.2.2.a. 3 LRF $=4$, LRU $=1$, LCOMP $=1$. 39
32.2.2.a. $4 \quad \mathrm{LRF}=7, \mathrm{LRU}=1, \mathrm{LCOMP}=1$. 40
32.2.2.b Long-range sections 41
32.2.3. Unresolved resonance subsection format (LRU = 2). 43
32.3. General Description of Compact Covariance Matrix 44
32.4. Formats for Compact Covariance Matrix 47
32.4.1. Compact covariance matrix formats for subsections of a particular energy range and isotope 48
32.4.1.1. SLBW and MLBW (LRU = 1, LRF $=1$ or 2, LCOMP = 2) 49
32.4.1.2. Reich Moore (LRU = 1, LRF = 3, LCOMP = 2). 49
32.4.1.3. R-Matrix Limited (LRU = 1, LRF = 7,
LCOMP = 2) 50
V. FORMULA FOR THE VARIOUS R-MATRIX REPRESENTATIONS, 51
ENDF-102 Sections
D. APPENDIX D, RESONANCE REGION FORMULA 53
D.1. The resolved resonance region. 53
D.1.1. Single-level Breit Wigner (SLBW) 53
D.1.1.1. Elastic Scattering Cross Sections 53
D.1.1.2. Radiative Capture Cross Sections 53
D.1.1.3. Fission Cross Sections 54
D.1.1.4. The Competitive Reaction Cross Sections 54
D.1.2. Multilevel Breit Wigner (MLBW). 58
D.1.3. Reich Moore (RM). 60
D.1.4-6 not included
D.1.7. R-Matrix Limited (RML) 63
D.1.7.1. Energy-Differential (Angle-Integrated) Cross Sections (Non-Coulomb Channels) 66
D1.7.2. Angular Distributions 68
D.1.7.3. Kinematics for Angular Distributions of Elastic Scattering, 71
D.1.7.4. Spin and Angular Momentum Conventions 72
D.1.7.5. Extensions to R-matrix Theory 73
D.1.7.6. Modifications for Charged Particles 74
VI. EXAMPLES 75

1. File 2, LRF $=1,{ }^{242} \mathrm{Pu}$. 77
2. File 32, LRF $=1$, LCOMP $=0,{ }^{242} \mathrm{Pu}$ 78
3. File 32, LRF $=1$, LCOMP $=1,{ }^{242} \mathrm{Pu}$ 79
4. \quad File 32, LRF $=1$, LCOMP $=2,{ }^{242} \mathrm{Pu}$ 80
5. File 2, LRF $=7,{ }^{242} \mathrm{Pu}$. 81
6. File 32, LRF $=7$, LCOMP $=1,{ }^{242} \mathrm{Pu}$, 82
7. File 32, LRF $=7$, LCOMP $=2,{ }^{242} \mathrm{Pu}$. 83
8. File 2, LRF $=2,{ }^{23} \mathrm{Na}$, 84
9. File 32, LRF $=2$, LCOMP $=0,{ }^{23} \mathrm{Na}$ 85
10. File 32, $\mathrm{LRF}=2, \mathrm{LCOMP}=1,{ }^{23} \mathrm{Na}$ 86
11. File 32, LRF $=2$, LCOMP $=2,{ }^{23} \mathrm{Na}$ 87
12. File 2, $\mathrm{LRF}=3,{ }^{27} \mathrm{Al}$. 88
13. File 32, LRF $=3$, LCOMP $=1,{ }^{27} \mathrm{Al}$ 89
14. File 32, $\mathrm{LRF}=3, \mathrm{LCOMP}=2,{ }^{2 /} \mathrm{Al}$ 90
15. File 2, $\mathrm{LRF}=7,{ }^{27} \mathrm{Al}$. 91
16. File 2, $\mathrm{LRF}=7,{ }^{19} \mathrm{Fl}$ 95
17. File 2, $\mathrm{LRF}=7,{ }^{35} \mathrm{Cl}$. 100
18. File 32, $\mathrm{LRF}=7, \mathrm{LCOMP}=2,{ }^{35} \mathrm{Cl}$. 103
REFERENCES 109

ACKNOWLEDGMENTS

Many of the pages of this document were borrowed from the ENDF-102 manual and modified slightly to provide more clarity to SAMMY users. The author gratefully acknowledges the debt owed to the many authors and editors of the ENDF-102 manual.

Members of the Oak Ridge Nuclear Data Group have provided encouragement and assistance in the development of this document, and their contributions are greatly appreciated. Special thanks go to Royce Sayer, whose ${ }^{35} \mathrm{Cl}$ evaluation created the ENDF File 2 and File 32 shown in examples number 17 and 18 of this document, and to Dorothea Wiarda, who patiently assisted in debugging the SAMMY implementation of the newer ENDF formats.

Abstract

The purpose of this document is to gather into one location information relevant to the use of ENDF formats in the resolved resonance region, with emphasis on the use of those formats within the SAMMY evaluation code. This document contains those portions of the ENDF formats manual (ENDF-102) relevant to the resolved resonance region, with a few corrections and occasional comments interjected into the text (in blue ink, to distinguish from the original ENDF-102 verbiage) to highlight the usage within SAMMY. Examples of ENDF File 2 (resonance parameters) and File 32 (covariances for resonance parameters) are also included.

I. INTRODUCTION

The SAMMY code [Ref. 1] is widely used for analysis and evaluation of neutron-induced time-of-flight experimental data in the resonance region. One important product of such evaluations is a set of R-matrix parameters and the associated covariance matrix which provide the best description of the experimental data. For these data to be useful for reactor or criticality calculations, the resonance parameters and covariance matrix must be written into appropriate formats and reported to appropriate groups such as the Cross Section Evaluation Working Group (CSEWG) [Ref. 2] for inclusion in the Evaluated Nuclear Data Files [Ref. 3].

The SAMMY code contains post-processing capability for creating the relevant portions of the ENDF files. This report serves as documentation of the ENDF formats written and/or read by SAMMY. Much of the information contained in this report is also included in the official ENDF document ENDF-102 [Ref. 4]. One major exception is the examples given in Section VI, which are not in the ENDF-102 manual.

Pages in this report are formatted somewhat differently from those in ENDF-102, for easier legibility. Short sections, for example, are printed on one page rather than divided across two. References to sections of the ENDF-102 manual that are not repeated in this report are so noted in the text. Within this report, sections of the ENDF-102 manual may contain comments added by this author to clarify usage with regard to SAMMY; these comments are printed in blue to distinguish them from the original ENDF-102 verbiage.

This report covers only "File 2" and "File 32" of the many files included in an ENDF file. Moreover, only the resolved resonance portions of these two files are discussed.

Section II of this document corresponds to ENDF-102 Section 0.7 (General Description). Section III corresponds to ENDF-102 Section 2 (File 2, Resonance Parameters). Section IV corresponds to ENDF-102 Section 32 (File 32, Covariances of Resonance Parameters). Section V corresponds to ENDF-102 Appendix D. 1 (Resolved Resonance Region Formulae). Section VI contains realistic annotated examples for both File 2 and File 32, for four different resonance parameter formats ($\mathrm{LRF}=1,2,3$, and 7) and three different representations of the covariance matrix $(\mathrm{LCOMP}=0,1$, and 2$)$.

This document will not be published on paper, but instead will be made available only in electronic format, fully bookmarked and interlinked. The file is downloadable from the SAMMY section of the ORNL Nuclear Data Group's web site http://www.ornl.gov/sci/nuclear science technology/nuclear data/sammyl.
For anyone who wishes to print hard copy, a second version of the file will be available. This version has blank pages inserted as necessary so that double-sided copy will be properly paginated.

The latest version of the SAMMY code was released in October, 2006. Updates for errors uncovered in the code subsequent to that release are available from the author at LarsonNM@ornl.gov. Because some of the updates pertain to the new ENDF formats, anyone using sammy-7.0.0 to create ENDF File 2 or File 32 will want to have the updates.

II. GENERAL DESCRIPTION OF ENDF-102 FORMATS

In order for this report to be sufficiently complete that the user need not constantly refer to the ENDF-102 manual [Ref. 4], portions of that document are repeated here. Information in the remainder of this section is taken essentially verbatim from Section 0.7 of the ENDF-102 manual. However, the layout of the pages has been reformatted to make it easier to read and to make the outline style more prominent. Subsections are as follows:
0.7 General Description of Data Formats
0.7.1 Structure of an ENDF Data Tape
0.7 .2 Format Nomenclature
0.7.3 Types of Records
0.7.4 TEXT Records
0.7.5 Control Records
0.7.5.1
0.7 .5 .2
0.7 .5 .3
0.7.5.4
0.7.6
0.7 .7
0.7 .8 TAB2 Records
0.7.9 INTG Records

0.7. General Description of Data Formats

An ENDF "tape" is built up from a small number of basic structures called "records," such as TPID, TEND, CONT, TAB1, and so on. These "records" normally consist of one or more 80-character FORTRAN records. It is also possible to use binary mode, where each of the basic structures is implemented as a FORTRAN logical record. The advantage of using these basic ENDF "records" is that a small library of utility subroutines can be used to read and write the records in a uniform way.

0.7.1. Structure of an ENDF Data Tape

The structure of an ENDF data tape (file) is illustrated schematically in Fig. 0.3. The tape contains a single record at the beginning that identifies the tape. The major subdivision between these records is by material. The data for a material is divided into files, and each file (MF number) contains the data for a certain class of information. A file is subdivided into sections, each one containing data for a particular reaction type (MT number). Finally, a section is divided into records. Every record on a tape contains three identification numbers: MAT, MF, and MT. These numbers are always in increasing numerical order, and the hierarchy is MAT, MF, MT. The end of a section, file, or material is signaled by special records called SEND, FEND, and MEND, respectively.

Figure 0.3

Structure of an ENDF data tape

0.7.2. Format Nomenclature

An attempt has been made to use an internally consistent notation based on the following rules.
a) Symbols starting with the letter I, J, K, L, M, or N are integers. All other symbols refer to floating-point (real) numbers.
b) The letter I or a symbol starting with I refers to an interpolation code (see Section 0.6.2 of the ENDF-102 manual, which is not repeated in this report).
c) Letters J, K, L, M, or N when used alone are indices.
d) A symbol starting with M is a control number. Examples are MAT, MF, and MT.
e) A symbol starting with L is a test number.

A symbol starting with N is a count of items.
All numbers are given in fields of 11 columns. In character mode, floating-point numbers should be entered in one of the following forms:

$$
\pm 1.234567 \pm n
$$

$\pm 1.23456 \pm n n$, where $n n \leq 38$
depending on the size of the exponent. Both of these forms can be read by the "E11.0" format specification of FORTRAN. However, a special subroutine available to the NNDC must be used to output numbers in the above format. If evaluations are produced using numbers written by "1PE11.5" (that is, 1.2345E $\pm \mathrm{nn}$), the numbers will be standardized into 6 - or 7 -digit form, but the real precision will remain at the 5-digit level.

In the resolved resonance region, the five significant digits provided by this format are often inadequate, especially for the resonance energies for nuclides such as ${ }^{235} \mathrm{U}$ for which the density of resonances is high. SAMMY generally produces ENDF File 2 with ten significant digits. In cases for which it is important to retain the large numbers of significant digits, evaluators should take care when submitting a SAMMY-generated ENDF File 2 to be used in the evaluated nuclear data files, to be sure that subsequent processing of the file does not truncate the values.

0.7.3. Types of Records

All records on an ENDF tape are one of six possible types, denoted by TEXT, CONT, LIST, TAB1, TAB2, and INTG. The CONT record has six special cases called DIR, HEAD, SEND, FEND, MEND, and TEND. The TEXT record has the special case TPID. Every record contains the basic control numbers MAT, MF, and MT, as well as a sequence number. The definitions of the other fields in each record will depend on its usage as described below.

0.7.4. TEXT Records

This record is used either as the first entry on an ENDF tape (TPID) or to give the comments in File 1. It is indicated by the following shorthand notation:
[MAT, MF, MT/ HL] TEXT
where HL is 66 characters of text information. The TEXT record can be read with the following FORTRAN statements:

READ (LIB, 10) HL, MAT, MF, MT, NS
10 FORMAT(A66, I4, I2, I3, I5)
where NS is the sequence number. ${ }^{1}$ For a normal TEXT record, MF $=1$ and $M T=451$. For a TPID record, MAT contains the tape number NTAPE, and MF and MT are both zero.

[^1]
0.7.5. Control Records

0.7.5.1. CONT Records

The smallest possible record is a control (CONT) record. For convenience, a CONT record is denoted by
[MAT, MF , MT/C1, C2, L1, L2, N1, N2]CONT
The CONT record can be read with the following FORTRAN statements:
READ (LIB, 10) C1, C2, L1, L2, N1, N2, MAT, MF , MT, NS
10 FORMAT(2E11.0,4I11, I4, I2, I3, I5).
The actual parameters stored in the six fields C1, C2, L1, L2, N1, and N2 will depend on the application for the CONT record.

0.7.5.2. HEAD Records

The HEAD record is the first in a section and has the same form as CONT, except that the C 1 and C 2 fields always contain ZA and AWR, respectively.

0.7.5.3. END Records

The SEND, FEND, MEND, and TEND records use only the three control integers, which signal the end of a section, file, material, or tape, respectively. In binary mode, the six standard fields are all zero. In character mode, the six are all zero as follows:

[MAT, MF		0.0,	0.0,	0 ,	0,	0,	$0]$	SEND ${ }^{2}$
[MAT, 0,	0/	0.0,	0.0,	0 ,	0,	0,	$0]$	FEND
0, 0,	0/	0.0,	0.0,	0,	0,	0,	$0]$	MEND
-1, 0,	0/	0.0,	0.0,	0,	0,	0,	$0]$	TEND

0.7.5.4. DIR Records

The DIR records are described in more detail in Section 1.1.1. The only difference between a DIR record and a standard CONT record is that the first two fields in the DIR record are blank in character mode.

[^2]
0.7.6. LIST Records

This type of record is used to list a series of numbers B1, B2, B3, etc. The values are given in an array $\mathrm{B}(\mathrm{n})$, and there are NPL of them. The shorthand notation for the LIST record is

```
[MAT,MF,MT/ C1, C2, L1, L2, NPL, N2/ Bn] LIST
```

The LIST record can be read with the following FORTRAN statements:
READ (LIB, 10) C1, C2, L1, L2, NPL, N2, MAT, MF , MT, NS
10 FORMAT(2E11.0,4I11, I4, I2, I3, I5)
READ (LIB, 20) (B(N), N=1,NPL)
20 FORMAT (6E11.0)
The maximum for NPL varies with use (see Appendix G of the ENDF-102 manual, which is not repeated in this document).

0.7.7. TAB1 Records

These records are used for one-dimensional tabulated functions such as $y(x)$. The data needed to specify a one-dimensional tabulated function are the interpolation tables NBT(N) and INT(N) for each of the NR ranges, and the NP tabulated pairs of $x(n)$ and $y(n)$. The shorthand representation is
[MAT,MF,MT/ C1, C2, L1, L2, NR, NP/xint/y(x)]TAB1
The TAB1 record can be read with the following FORTRAN statements:
READ (LIB, 10)C1, C2, L1, L2, NR, NP, MAT, MF, MT, NS
10 FORMAT(2E11.0,4I11, I4, I2, I3, I5)
READ (LIB, 20) (NBT(N), INT(N),N=1,NR)
20 FORMAT(6I11)
READ (LIB, 30) (X(N), Y(N),N=1,NP)
30 FORMAT (6E11.0)
The limits on NR and NP vary with use (see Appendix G of the ENDF-102 manual, which is not repeated here). The limits must be strictly observed in primary evaluations in order to protect processing codes that use the simple binary format. However, these limits can be relaxed in derived libraries in which resonance parameters have been converted into detailed tabulations of cross section versus energy. Such derived libraries can be written in character mode or a non-standard blocked-binary mode.

0.7.8. TAB2 Records

The last record type is the TAB2 record, which is used to control the tabulation of a twodimensional function $y(x, z)$. It specifies how many values of z are to be given and how to interpolate between the successive values of z. Tabulated values of $y_{l}(x)$ at each value of z_{l} are given in TAB1 or LIST records following the TAB2 record, with the appropriate value of z in the field designated as C2. The shorthand notation for TAB2 is
[MAT,MF,MT/ C1, C2, L1, L2, NR, NZ/ Zint]TAB2,
The TAB2 record can be read with the following FORTRAN statements:

```
    READ(LIB,10)C1, C2, L1, L2,NR,NZ,MAT,MF,MT,NS
10 FORMAT(2E11.0,4I11,I4,I2,I3,I5)
    READ(LIB, 20)(NBT(N), INT(N),N=1,NR)
20 FORMAT(6I11)
```

For example, a TAB2 record is used in specifying angular distribution data in File 4. In this case, NZ in the TAB2 record specifies the number of incident energies at which angular distributions are given. Each distribution is given in a LIST or TAB1 record.

0.7.9 INTG records

INTG, or INTeGer, records are used to store a correlation matrix in integer format. The shorthand notation is
[MAT, MF, MT / II, JJ, KIJ] INTG
where II and JJ are position locators, and KIJ is an array whose dimension is specified by the number of digits NDIGIT to be used for representing the values. NDIGIT can have any value from 2 to 6 ; the corresponding dimensions (NROW) are 18, 13, 11, 9 , and 8 , respectively.

The INTG record can be read with the following FORTRAN statements:

```
DIMENSION KIJ(NROW)
```

IF (NDIGIT.EQ.2) READ (LIB,20) II, JJ, KIJ, MAT, MF, MT, NS
IF (NDIGIT.EQ.3) READ (LIB, 30) II, JJ, KIJ, MAT, MF, MT, NS
IF (NDIGIT.EQ.4) READ (LIB, 40) II, JJ, KIJ, MAT, MF, MT, NS
IF (NDIGIT.EQ.5) READ (LIB,50) II, JJ, KIJ, MAT, MF, MT, NS
IF (NDIGIT.EQ.6) READ (LIB,60) II, JJ, KIJ, MAT, MF, MT, NS
20 FORMAT (2I5, 1X, 18I3, 1X, I4, I2, I3, I5)
30 FORMAT (2I5, 1X, 13I4, 3X, I4, I2, I3, I5)
40 FORMAT (2I5, 1X, 11I5, I4, I2, I3, I5)
50 FORMAT (2I5, 1X, 9I6, 1X, I4, I2, I3, I5)
60 FORMAT (2I5, 8I7, I4, I2, I3, I5)

See File 32, LCOMP $=2$, for details regarding the use of this format. The NDIGIT $=2$ format was approved by CSEWG for use in ENDF in 2004; the general case (NDIGIT = 2 through 6) was approved during the November 2006 CSEWG meeting.

III. INTRODUCTION TO ENDF FILE 2: PARAMETERS FOR RESOLVED RESONANCE REGION

In this section are given the various ENDF formats for presentation of R-matrix parameters in the resolved resonance region. Information in the remainder of this section is taken essentially verbatim from Section 2.0 of the ENDF-102 manual. However, the layout of the pages has been reformatted to make it easier to read and to make the outline style more prominent. Subsections are as follows:

2 Resonance Parameters	
2.1	General Description
2.2	Resolved Resonance Parameters
2.2.1	Formats
2.2.1.1	Single and Multilevel Breit Wigner
2.2.1.2	So-called Reich-Moore Format
2.2.1.3	Adler-Adler (not used in SAMMY, so not reproduced in this report)
2.2.1.4 to 2.2.1.6	Deleted in ENDF-102
2.2.1.7	R-Matrix Limited Format, General
2.2.1.7.1	Specifics for basic RML
2.2.1.7.2	Optional extensions to RML
2.2.1.7.2.1	Different R-Matrix Formulations
2.2.1.7.2.2	Background R-Matrix
2.2.1.7.2.3	Tabulated Phase Shifts (not used in SAMMY)
2.3	Unresolved Resonance Parameters (not included in this report)

Note that information on the unresolved resonance region is absent from this report. The current ENDF format for the unresolved region is inadequate and will likely soon be replaced.

2. FILE 2. RESONANCE PARAMETERS

2.1. General Description

The primary function of File 2 is to contain data for both resolved and unresolved resonance parameters. It has only one section, with the reaction type number MT $=151$. A File 2 is required for incident-neutron evaluations, but it may be omitted in other cases. The use of File 2 is controlled by the parameter LRP (see Section 1.1 of ENDF-102, which is not reproduced in this report):
$\mathbf{L R P}=\mathbf{- 1}$ No File 2 is given. Not allowed for incident neutrons. This option is not relevant for SAMMY.
$\mathbf{L R P}=\mathbf{0}$ No resonance parameters are given except for the scattering radius AP. This option is not available for SAMMY and therefore is not discussed in this report.
AP is included for the convenience of users who need an estimate of the potential scattering cross section. It is not used to calculate a contribution to the scattering cross section, which in this case is represented entirely in File 3.

LRP = 1 Resonance contributions for the total, elastic, fission, and radiative capture cross sections are to be computed from the resonance parameters and added to the corresponding cross sections in File 3. ${ }^{1}$ This is the only relevant LRP option for SAMMY.
The File 2 resonance contributions should also be added to any lumped reactions included in File 3. For single-level Breit Wigner (SLBW) and multilevel Breit Wigner (MLBW), any other competing reactions in the resonance range must be given in their entirety in File 3 and included in the background for the total cross section. The effects of the competing reactions on the resonance reactions are included using a single competitive width, Γ_{x}. This width is given explicitly in the unresolved resonance region, and implicitly in the resolved region. In the latter region, it is permissible for the total width to exceed the sum of the neutron, radiative capture, and fission widths. The difference is interpreted as the competitive width,

$$
\Gamma_{x}=\Gamma-\left(\Gamma_{n}+\Gamma_{\gamma}+\Gamma_{f}\right) .
$$

For the so-called Reich-Moore (LRF $=3$) or Adler-Adler ($\mathrm{LRF}=4$) formalisms, competitive reactions are not used. For the R-Matrix Limited format ($L R F=7$), competitive reactions are included as separate channels.

LRP = 2 Resonance parameters are given in File 2 but are not to be used in calculating cross sections, which are assumed to be represented completely in File 3. Used for certain derived libraries only. This option is irrelevant for SAMMY.

[^3]The resonance parameters for a material are obtained by specifying the parameters for each isotope in the material. The data for the various isotopes are ordered by increasing ZAI values (charge and isotopic mass number). The resonance data for each isotope may be divided into several incident neutron energy ranges, given in order of increasing energy. The energy ranges for an isotope should not overlap; each may contain a different representation of the cross sections.

In addition to these parameterized resonance ranges, the full energy range may contain two additional non-resonance ranges, also non-overlapping. Comments on these ranges follow:

1. The low energy region (LER) is one in which the cross sections are tabulated as smooth functions of energy. Doppler effects must be small enough so that the values are essentially zero degrees Kelvin. For light elements, that is, those whose natural widths far exceed their Doppler widths and hence undergo negligible broadening, the entire energy range can often be represented in this way. For heavier materials, this region can sometimes be used below the lowest resolved resonances. With a good multilevel resonance fit, the LER can often be omitted entirely, and this is preferred. An important procedure for the LER is described in Section 2.4.6.4 of ENDF-102, which is not reproduced here.
2. The resolved resonance region (RRR) is one in which resonance parameters for individual resonances are given. Usually this implies that experimental resolution is good enough to "see" the resonances, and to determine their parameters by area or shape analysis, but an evaluator may choose to supply fictitious resolved parameters if he so desires. If the evaluator does this, the resonances must have physically allowed quantum numbers, and be in accord with the statistics of level densities (Appendix D, Section D.2.2 of ENDF-102, which is not reproduced in this report). A File 3 background may be given. The essential point is that resonance self-shielding can be accounted for by the user for each resonance individually.
3. The unresolved resonance region (URR) is that region in which the resonances still do not actually overlap, so that self-shielding is still important, but experimental resolution is inadequate to determine the parameters of individual resonances. In this situation, self-shielding must be handled on a statistical basis. A File 3 may be given. The interpretation of this cross section depends on the flag LSSF (see Sections 2.3.1 and 2.4.21 of ENDF-102, which is not reproduced in this report). It may be interpreted either as a partial background cross section, to be added to the File 2 contribution, as in the resolved resonance region or it may be interpreted as the entire dilute cross section, in which case File 2 is to be used solely to specify the self-shielding appropriate to this energy region. It is important to choose the boundary between the RRR and the URR so that the statistical assumptions underlying the unresolved resonance treatments are valid. This problem is discussed further in Section 2.4 of ENDF-102, which is not reproduced in this report.
4. The high-energy region (HER) starts at still higher energies where the resonances overlap and the cross sections smooth out, subject only to Ericson fluctuations. The boundary between the URR and HER should be chosen so that self-shielding effects are small in the HER.

File 3 may contain "background cross sections" in the resonance ranges resulting from inadequacies in the resonance representation (e.g., SLBW), the effects of resonances outside the energy range, the average effects of missed resonances, or competing cross sections. If these background cross sections are nonzero, there must be double energy points in File 3 corresponding to each resonance range boundary (except $10^{-5} \mathrm{eV}$). See Section 2.4 of ENDF-102 (which is not reproduced in this report) for a more complete discussion of backgrounds.

Several representations are allowed for specifying resolved resonance parameters. The flag LRF indicates the representation used for a particular energy range:
LRF =1 Single-level Breit-Wigner; (no resonance-resonance interference; one single-channel inelastic competitive reaction is allowed). Use of this format is discouraged for new evaluations, which should use the Reich Moore approximation (LRF = 3 or 7).
LRF = 2 Multilevel Breit-Wigner (resonance-resonance interference effects are included in the elastic scattering and total cross sections; one single-channel inelastic competitive reaction is allowed). Use of this format is discouraged for new evaluations, which should use the Reich Moore approximation (LRF = 3 or 7).
LRF = 3 Reich-Moore (multilevel multichannel R-matrix; no competitive reactions allowed). It is possible to define partial widths $\Gamma_{s_{1} J}$ and $\Gamma_{s_{s_{2}} J}$ with two different values of the channel spin, as is required when both the target spin and the orbital angular momentum are greater than zero. This is accomplished by setting the resonance spin parameter AJ to a positive value for the larger channel spin ($s=I+1 / 2$) and negative for the smaller channel spin ($s=I-1 / 2$). (See definition of AJ in 2.2.1 of ENDF-102, which is reproduced in this document.) Older ENDF files have not used this feature, but instead have only positive AJ ; in this case, all resonances of a given l, J are assumed to have the same channel spin.
For a given resonance, the only rigorously conserved quantities are J (total angular momentum) and π (total parity). Nevertheless, this format assumes that both l (orbital angular momentum) and s (channel spin) are also conserved quantities.

The LRF = 3 format permits only a limited subset of Reich-Moore evaluations, but is adequate for some situations.

LRF = 4 Adler-Adler (level-level and channel-channel interference effects are included in all cross sections via "effective" resonance parameters; usually applied to low-energy fissionable materials; no competitive reactions).

LRF =5 This option is no longer available.
$\mathbf{L R F}=6$ This option is no longer available.
LRF = 7 R-Matrix Limited format, which contains all the generality of LRF = 3 plus unlimited numbers and types of channels. This format is appropriate for SAMMY evaluations.

Preferred formalisms for evaluation are discussed in Section 2.4.17 of ENDF-102, which is not reproduced in this report. Further discussion of the above formalisms is contained in the Procedures Section 2.4 of ENDF-102, which is not reproduced in this report. LRF $=7$ (or, in some situations, LRF = 3) is the format of choice for SAMMY users.

Each resonance energy range contains a flag, LRU, that indicates whether it contains resolved or unresolved resonance parameters. LRU $=1$ means resolved, LRU $=2$ means unresolved.

Only one representation is allowed for the unresolved resonance parameters, namely, average single-level Breit-Wigner. However, several options are permitted, designated by the flag LRF. With the first option, LRF $=1$, only the average fission width is allowed to vary as a function of incident neutron energy. The second option, LRF $=2$, allows the following average parameters to vary: level spacing, fission width, reduced neutron width, radiation width, and a width for the sum of all competitive reactions.

The data formats for the various resonance parameter representations are given in Sections 2.2.1 (resolved) and 2.3.1 (unresolved). (Section 2.2.1 is reproduced in this document; Section 2.3 .1 is not.) Formulae for calculating cross sections from the various formalisms are given in Appendix D of ENDF-102, which is reproduced in Section V of this report.

The following quantities have definitions that are the same for all resonance parameter representations:

NIS	Number of isotopes in the material (NIS ≤ 10).
ZAI	(Z, A) designation for an isotope.
NER	Number of resonance energy ranges for this isotope.
ABN	Abundance of an isotope in the material. This is a number fraction, not a weight fraction, nor a percent.
LFW	Flag indicating whether average fission widths are given in the unresolved resonance region for this isotope: LFW $=0$, average fission widths are not given; LFW $=1$, average fission widths are given.
NER	Number of resonance energy ranges for isotope.
EL	Lower limit for an energy range. ${ }^{2}$
EH	Upper limit for an energy range. ${ }^{2}$
LRU	Flag indicating whether this energy range contains data for resolved or unresolved resonance parameters: $\begin{aligned} & \text { LRU }=0 \text {, only the scattering radius is given }(L R F=0, N L S=0, L F W=0 \text { are } \\ & \quad \text { required with this option); } \\ & \text { LRU }=1 \text {, resolved resonance parameters are given. } \\ & \text { LRU }=2 \text {, unresolved resonance parameters are given. } \end{aligned}$

[^4]| LRF | Flag indicating which representation has been used for the energy range. The definition of LRF depends on the value of LRU:
 If $\mathrm{LRU}=1$ (resolved parameters), then
 LRF = 1, single-level Breit-Wigner (SLBW);
 LRF $=2$, multilevel Breit-Wigner (MLBW);
 LRF = 3, Reich-Moore (RM);
 LRF = 4, Adler-Adler (AA);
 LRF $=5$, no longer available;
 LRF $=6$, no longer available;
 LRF $=7$, R-Matrix Limited (RML). This is the recommended format.
 If $\mathrm{LRU}=2$ (unresolved parameters), then
 LRF $=1$, only average fission widths are energy dependent;
 LRF $=2$, average level spacing, competitive reaction widths, reduced neutron widths, radiation widths, and fission widths are energy dependent. |
| :---: | :---: |
| NRO | Flag designating possible energy dependence of the scattering radius:
 $\mathrm{NRO}=0$, radius is energy independent;
 $\mathrm{NRO}=1$ (not allowed in the ENDF/B-VI library). ${ }^{3}$ |
| NAPS | Flag controlling the use of the two radii, the channel radius a and the scattering radius AP.
 For NRO = 0 (AP energy-independent), if
 NAPS $=0$, calculate a from Equation (D.0) given in Appendix D, and read AP as a single energy-independent constant on the subsection CONT (range) record; use a in the penetrabilities and shift factors, and AP in the hard-sphere phase shifts;
 NAPS = 1, do not use Equation (D.0); use AP in the penetrabilities and shift factor as well as in the phase shifts.
 For NRO = 1 (AP energy-dependent), if
 NAPS $=0$, calculate a from the above equation and use it in the penetrabilities and shift factors. Read $\mathrm{AP}(\mathrm{E})$ as a TAB1 quantity in each subsection and use it in the phase shifts;
 NAPS $=1$, read AP(E) and use it in all three places, $P_{l}, S_{l}, \varphi_{l}$;
 NAPS $=2$, read $\operatorname{AP}(E)$ and use it in the phase shifts. In addition, read the single, energy-independent quantity AP, see following, and use it in P_{l} and S_{l}, overriding the above equation for a. |

[^5]File 2 contains a single section (MT=151) containing subsections for each energy range of each isotope in the material.

Two versions of the File 2 format structure are presented here. The first one, denoted a special case, is instead merely a particular instance of the general case with the particular values $\mathrm{NER}=1, \mathrm{LRU}=0, \mathrm{LRF}=0$, and $\mathrm{NRO}=0$.
(1) The structure of File 2, for the special case in which just a scattering radius is specified (no resolved or unresolved parameters are given), is as follows (such a material is not permitted to have multiple isotopes or an energy-dependent scattering radius):

[MAT, [MAT,	2,151/	ZA,	AWR,	0,	0,	NIS,	$0]$	HEAD	(NIS=1)
	2,151/	ZAI,	ABN,	0,	LFW,	NER,	$0]$	CONT	
								(ZAI=ZA,ABN=1.0,LFW=0,NER=1)	
[MAT,	2,151/	EL,	EH,	LRU,	LRF,	NRO,	NAPS]	CONT	
								(LRU=0,LRF=0,NRO=0,NAPS=0)	
[MAT,	2,151/	SPI,	AP,	0,	0,	NLS,	$0]$	CONT	(NLS=0)
[MAT,	2, 0/	0.0,	0.0,	0 ,	0,	0,	$0]$	SEND	
[MAT,	0, 0/	0.0,	0.0,	0 ,	0,	0 ,	$0]$	FEND	

(2) If resonance parameters are given, the structure of File 2 is as follows:

The data are given for all ranges for a given isotope, and then for all isotopes. The data for each range start with a CONT (range) record; those for each isotope, with a CONT (isotope) record. The specifications for the subsections that include resonance parameters are given in Sections 2.2.1 for the resolved resonance region and 2.3.1 for the unresolved resonance region. (Section 2.3.1 is not included in this report.) A multi-isotope material is permitted to have some, but not all, isotopes specified by a scattering radius only. The structure of a subsection for such an isotope is:
[MAT, 2,151/ SPI, AP, 0, 0, NLS, 0] CONT (NLS = 0)
and as above $\mathrm{LFW}=0, \mathrm{NER}=1, \mathrm{LRU}=0, \mathrm{LRF}=0, \mathrm{NRO}=0$, and NAPS $=0$ for this isotope.

In the case that $\mathrm{NRO} \neq 0$, the "range" record preceding each subsection is immediately followed by a record giving the energy dependence of the scattering radius, AP.

If NAPS is 0 or 1 , the value of AP on the next record of the subsection should be set to 0.0 . If NAPS is 2 , the value of AP should be set equal to the desired value of the channel radius.

2.2. Resolved Resonance Parameters (LRU = 1)

2.2.1. Formats

Six different resonance formalisms are allowed to represent the resolved resonance parameters. Formulae for the various quantities, and further comments on usage, are given in Appendix D of ENDF-102, which is reproduced in Section V of this report. The flag LRU $=1$, given in the CONT (range) record, indicates that resolved resonance parameters are given for a particular energy range. Another flag, LRF, in the same record specifies which resonance formalism has been used.

The following quantities are defined for use with all formalisms:

SPI	Spin, I, of the target nucleus.
AP	Scattering radius in units of $10^{-12} \mathrm{~cm}$. For LRF $=1$ through 4, AP is assumed to be independent of the channel quantum numbers.
NLS	Number of l-values (neutron orbital angular momentum) in this energy region. For LRF = 1 through 4, a set of resonance parameters is given for each l-value. Currently, NLS ≤ 4. When higher l-values are needed, use LRF $=7$.
AWRI	Ratio of the mass of a particular isotope to that of a neutron.
QX	Q-value to be added to the incident particle's center-of-mass energy to determine the channel energy for use in the penetrability factor. The conversion to laboratory system energy depends on the reduced mass in the exit channel. For inelastic scattering to a discrete level, the Q-value is minus the level excitation energy. $\mathrm{QX}=0.0$ if $\mathrm{LRX}=0$.
L	Value of l.
LRX	Flag indicating whether this energy range contains a competitive width: For $\operatorname{LRX}=0$, no competitive width is given, and $\Gamma=\Gamma_{\mathrm{n}}+\Gamma_{\gamma}+\Gamma_{\mathrm{f}}$ in the resolved resonance region, while $\left\langle\Gamma_{\mathrm{x}}\right\rangle=0$ in the unresolved resonance region; LRX must be 0 for LRF $=3$ or 4; For $\operatorname{LRX}=1$, a competitive width is given and is an inelastic process to the first excited state. In the resolved region, it is determined by subtraction, $\Gamma_{\mathrm{x}}=\Gamma-\left[\Gamma_{\mathrm{n}}+\Gamma_{\gamma}+\Gamma_{\mathrm{f}}\right]$ This parameter is irrelevant for LRF $=7$.
NRS	Number of resolved resonances for a given l-value. (NRS ≤ 600)
ER	Resonance energy (in the laboratory system).

AJ	The absolute value of AJ is the floating-point value of J (the spin, or total angular momentum, of the resonance). When two channel spins are possible, if the sign of AJ is negative, the lower value for the channel spin is implied; if positive, the higher value is implied. When AJ is zero, only one value of channel spin is possible so there is no ambiguity; the channel spin s is equal to the orbital angular momentum l.
GT	Resonance total width, Γ, evaluated at the resonance energy ER.
GN	Neutron width evaluated at the resonance energy ER.
GG	Radiation width, Γ_{γ}, a constant.
GF	Fission width, Γ_{f}, a constant.
GX	Competitive width, Γ_{x}, evaluated at the resonance energy ER. It is not given explicitly for LRF = 1 or 2 but is to be obtained by subtraction, $G X=G T-(G N+G G+G F)$, if $L R X \neq 0$.
a	Channel radius, in $10^{-12} \mathrm{~cm}$. An uppercase symbol is not defined because it is not an independent library quantity. Depending on the value of NAPS, it is either calculated from the equation given earlier (and in Appendix D of ENDF-102, which is reproduced in Section V of this report) or read from the position usually assigned to the scattering radius AP.

2.2.1.1. SLBW and MLBW (LRU=1, LRF=1 or 2)

The structure of a subsection is as follows:

Use $\mathrm{AP}=0.0$, if $\mathrm{AP}(\mathrm{E})$ is supplied and NAPS $=0$ or 1 .

The LIST record is repeated until each of the NLS l-values has been specified in order of increasing l. The values of ER for each l-value are given in increasing order.

Use of either of the Breit-Wigner formats is discouraged for new evaluations. The recommended format is $\mathrm{LRF}=7$.

2.2.1.2. Reich-Moore (LRU = 1, LRF = 3)

The following additional quantities are defined:

LAD	Flag indicating whether these parameters can be used to compute angular distributions. LAD $=0$ do not use LAD $=1$ can be used if desired. Do not add to File 4.
NLSC	Not relevant.
APL	l-dependent scattering radius. If zero, use APL = AP.
GFA	First partial fission width, a constant.
GFB	Second partial fission width, a constant.

GFA and GFB are signed quantities, their signs being determined by the relative phase of the width amplitudes in the two fission channels. In this case, the structure of a subsection is similar to LRF = 1 and 2, but the total width is eliminated in favor of an additional partial fission width. GFA and GFB can both be zero, in which case, Reich-Moore reduces to an R-function.

The structure for a subsection is as follows:

```
[MAT, 2,151/ 0.0, 0.0, 0, 0, NR, NP/ Eint / AP(E)] TAB1
[MAT, 2,151/ SPI, AP, LAD, 0, NLS, NLSC] CONT
[MAT, 2,151/ AWRI, APL, L, 0, 6*NRS, NRS/
    ER1, AJ , GN , GG , GFA , GFB ,
    ER2, AJ , GN , GG , GFA , GFB ,
    ER NRS, AJ NRS, GN NRS, GG NRS, GFA NRS, GFB NRSS ] LIST
```

The LIST record is repeated until each of the NLS l-values has been specified in order of increasing l. The values of ER for each l-value are given in increasing order.

2.2.1.3. Adler-Adler (LRU = 1, LRF = 4)

Because SAMMY does not use the Adler-Adler formalism, this section is not reproduced in this document.

2.2.1.4. (LRU = 1, LRF = 5) no longer available

2.2.1.5. (deleted)
2.2.1.6. (LRU = 1, LRF = 6) no longer available

2.2.1.7 R-Matrix Limited Format (LRU = 1, LRF = 7)

In R-matrix scattering theory, a channel is defined by the two particles inhabiting that channel and by the quantum numbers for the combination. The two particles are hereafter referred to as a particle-pair (PP), and are defined by their properties: neutron (or other particle) plus target nuclide (in ground or excited state), with individual identifiers such as mass, spin, parity, and charge. The additional quantum numbers defining the channel include orbital angular momentum l, channel spin s and associated parity, and total spin and parity J^{π}.

NOTE: This format is NOT restricted to one neutron (entrance) channel and two exit channels. There may be several entrance channels and a multitude of exit channels. Chargedparticle exit channels are not excluded.

The term "spin group" may be used to define the set of resonances with the same channels and quantum numbers. For any given spin group, only total spin and parity are constant; there may be several entrance channels and/or several reaction channels (and, hence, several values of l or s, etc.) contributing to the spin group.

The "R-Matrix Limited" (RML) format was designed to accommodate the features of R-Matrix theory as implemented in analyses codes being used for current evaluations. In this format, relevant parameters appear only once. Particle-pairs are given first: the masses, spins and parities, and charges for the two particles are specified, as well as the Q -value and the MT value (which defines whether this particle-pair represents elastic scattering, fission, inelastic, capture, etc.). Two particle-pairs will always be present: gamma + compound nucleus and neutron + target nucleus in ground state. Other particle-pairs are included as needed.

The list of resonance parameters is ordered by J^{π}, which (as stated above) is the only conserved quantity for any spin group. For each spin group, the channels are first specified in the order in which they will occur in the list of resonances. For each channel, the particle-pair number and the values for l and s are given, along with the channel radii.

2.2.1.7.1 Formats for the basic RML subsection

Additional quantities are defined (or, in some cases, redefined):

KRM	Flag to specify which formulae for the R-matrix are to be used. $\mathrm{KRM}=1$ for single-level Breit Wigner, KRM = 2 for multilevel Breit Wigner, KRM = 3 for Reich Moore, KRM $=4$ for full R-matrix. (Others may be added at a later date.)
KRL	Flag is zero for non-relativistic kinematics, 1 for relativistic.
NJS	Number of values of J^{π} to be included.
NPP	Total number of particle-pairs.
IA	Spin (and parity, if non-zero) of one particle in the pair (the neutron or projectile, if this is an incident channel).
IB	Spin of the other particle in the pair (target nuclide, if this is an incident channel). IB is set to zero and ignored if the first particle is a photon.
PA	Parity for first particle in the pair, used only in the case where IA is zero and the parity is negative. (Value $=+1.0$ if positive, -1.0 if negative.)
PB	Parity for second particle, used if $\mathrm{IB}=0$ and parity is negative.
MA	Mass of first particle in the pair (in units of neutron mass).
MB	Mass of second particle (in units of neutron mass).
ZA	Charge of first particle.
ZB	Charge of second particle.
QI	Q-value for this particle-pair. (See Section 3.3.2 of ENDF-102 for details; this section is not reproduced in this report.)
PNT	Flag is 1 if penetrability is to be calculated; -1 if not. If PNT is set to zero, the default value for MT = 102 (capture) or 19 (fission) is PNT $=-1$; the default value for other MT values (excluding fission or capture) is generally PNT $=+1$. To be safe, give the value explicitly.
SHF	Flag is 1 if shift factor is to be calculated, -1 if not (default $=$ not, so $\mathrm{SHF}=0$ is equivalent to SHF $=-1$).
MT	Reaction type associated with this particle-pair; see Appendix B.
AJ	Floating point value of J (spin); sign indicates parity.
PJ	Parity (used only if AJ = 0.0).
NCH	Number of channels for the given J^{π}.
IPP	Particle-pair number for this channel (written as floating-point number).
L	Orbital angular momentum (floating-point value).
SCH	Channel spin (floating-point value).
BND	Boundary condition for this channel (needed when SHF = +1)

APE	Effective channel radius (scattering radius), used for calculation of phase shift only. Units are $10^{-12} \mathrm{~cm}$.
APT	True channel radius (scattering radius), used for calculation of penetrability and shift factors. Units are $10^{-12} \mathrm{~cm}$.
KBK	Non-zero if background R-matrix exists; see Subsection 2.2.1.7.2. (Often set to 0.)
KPS	Non-zero if non-hard-sphere phase shift are to be specified. (Often set to 0.)
NRS	Number of resonances for the given J^{π}.
NX	Number of lines required for all resonances for the given J^{π}, assuming each resonance starts on a new line; equal to (NCH/6+1)*NRS (using FORTRAN integer arithmetic). If there are no resonances for a spin group, then NX = 1.
ER	Resonance energy in eV.
IFG	Flag is 0 if GAM is channel width in eV, 1 if reduced-width amplitude in $\mathrm{eV}^{1 / 2}$.
GAM	Channel width in eV or reduced-width amplitude in $\mathrm{eV}^{1 / 2}$.

NOTE:

For IFG $=0$, the input quantity GAM is the width at the energy of the resonance; reducedwidth amplitudes are calculated from Eq. (7) of D.1.7 (Section V of this report), with E set to E_{λ}. (For negative-energy dummy resonances, the convention is that the input quantity is the width evaluated at the absolute value of the resonance energy.) In all cases, if the value GAM given in File 2 for the partial width is negative, the standard convention is assumed: the negative sign is to be associated with the reduced-width amplitude $\gamma_{\lambda c}$ rather than with $\Gamma_{\lambda c}$ (since $\Gamma_{\lambda c}$ is always a positive quantity). More specifically, $\Gamma_{\lambda c}=|\mathrm{GAM}|$ and $\gamma_{\lambda c}=\operatorname{sign}(\mathrm{GAM}) \times \sqrt{\mathrm{GAM} / 2 \mathrm{P}}$, with P evaluated at the energy of the resonance.

If $\operatorname{IFG}=1$, the input quantity is the reduced-width amplitude $\gamma_{\lambda c}$.

Formats are as follows:
[MAT,2,151/ 0.0, 0.0, IFG, KRM, NJS, KRL] CONT
(The following record provides all particle-pair descriptions. For $K R M=1,2$, or 3 , the first particle-pair is the gamma-plus-compound-nucleus pair.)

$$
\begin{aligned}
& \text { [MAT,2,151/ 0.0, 0.0, NPP, 0, 12*NPP, 2*NPP/ } \\
& \mathrm{MA}_{1}, \quad \mathrm{MB}_{1}, \quad \mathrm{ZA}, \quad \mathrm{ZB}_{1}, \quad \mathrm{IA}_{1}, \quad \mathrm{IB}, \\
& \mathrm{Q}_{1}, \quad \mathrm{PNT}_{1}, \quad \mathrm{SHF}_{1}, \quad \mathrm{MT}_{1}, \quad \mathrm{PA}_{1}, \quad \mathrm{~PB}_{1} \text {, } \\
& \mathrm{MA}_{2}, \quad \mathrm{MB}_{2}, \quad \mathrm{ZA}_{2}, \quad \mathrm{ZB}_{2}, \quad \mathrm{IA}_{2}, \quad \mathrm{IB}_{1} \text {, } \\
& \mathrm{Q}_{2}, \quad \mathrm{PNT}_{2}, \quad \mathrm{SHF}_{2}, \quad \mathrm{MT}_{2}, \quad \mathrm{PA}_{2}, \quad \mathrm{~PB}_{1} \text {, } \\
& \begin{array}{llllll}
\text { MA }_{\text {NPP }}, & \text { MB }_{\text {NPP }}, & \text { ZA }_{\text {NPP }}, & \text { ZB }_{\text {NPP }}, & \text { IA }_{\text {NPP }}, & \text { IB }_{\text {NPP }}, \\
\mathbf{Q}_{\text {NPP }}, & \text { PNT }_{\text {NPP }}, & \text { SHF } & \\
\text { NPP }
\end{array}, \begin{array}{ll}
\text { MT }
\end{array}
\end{aligned}
$$

SAMMY users should be aware that the original sammy-7.0.0 release contained an error in the implementation of this format - variables PNT and SHF were interchanged. Be sure to ask the SAMMY author for the update before using sammy-7.0.0 to create LRF $=7$ files.
(The following record provides the channel descriptions for one spin group. This record and the next one are repeated together, once for each of the NJS spin groups.)

[Mat, 2, 151/	AJ, IPP $_{1}$, IPP ${ }_{2}$,	$\begin{aligned} & \mathrm{PJ}, \\ & \mathrm{~L}_{1}, \\ & \mathrm{~L}_{2 \prime}, \end{aligned}$	$\begin{aligned} & \mathrm{KBK}_{1}, \\ & \mathrm{SCH}_{1}, \\ & \mathrm{SCH}_{2}, \end{aligned}$	KPS, $B^{B N D}{ }_{1}$, $B^{B N D}$,	6*NCH APE ${ }_{1}$, APE_{2},	$\begin{aligned} & \text { NCH/ } \\ & \text { APT }_{1}, \end{aligned}$ $\mathrm{APT}_{2},$
	IPP $_{\text {NCH }}$	$\mathrm{L}_{\text {NCH }}$,	SCH ${ }_{\text {NCH }}$	$\mathrm{BND}_{\mathrm{N}}$	APE $_{\text {NCH }}$,	APT $_{\text {NCH }}$

(The following record gives the values for resonance energy and widths for each resonance in this spin group.)

[Mat, 2, 151/	0.0, $E R_{1}$, GAM $_{6,1}$, E_{2}, GAM $_{6,2}$,	$\begin{aligned} & 0.0, \\ & \text { GAM }_{1,1}, \\ & \text { GAM }_{\text {NCH }, 1}, \\ & \text { GAM }_{1,2 \prime} \end{aligned}$ "	$\begin{aligned} & \text { 0, } \\ & \text { GAM }_{2,1} \\ & \\ & \text { GAM }_{2,2 \text {, }} \\ & \text { GAM }_{\text {NCH }, 2}, \end{aligned}$	NRS, GAM $_{3,1}$, GAM $_{3,2}$,	$\begin{aligned} & \text { 6*NX, } \\ & \text { GAM }_{4,1}, \\ & \text { GAM }_{4,2}, \end{aligned}$	NX/ GAM $_{5,1}$, $\mathbf{G A M}_{5,2}$,
	$\begin{aligned} & \mathrm{ER}_{\text {NRS }}, \\ & \mathbf{G A M}_{6, \text { NRS }}, \end{aligned}$	$\begin{gathered} \mathbf{G A M}_{1, \text { NRS }^{\prime}, \mathbf{C}} \\ , \ldots, \text { GAM }_{\text {NCH }}, \end{gathered}$	$\mathrm{GAM}_{2, \text { NRS }}$ NRS	$\mathrm{GAM}_{3, \mathrm{NRS}}$,	GAM ${ }_{4, \mathrm{NRS}}$	$\mathbf{G A M}_{5, \text { NRS }}$

(If the number of resonances is zero for a spin group, then NRS $=0$ but $\mathrm{NX}=1$ in this record.)
Other records may be included here, as described below in Section 2.2.1.7.2. If KBK is greater than zero, a "background R-matrix" is given. If KPS is greater than zero, tabulated values exist for phase shifts. If $K B K=0$ and $K P S=0$, no additional records are needed.

The above two records, beginning with "channel descriptions," are repeated until each of the NJS J^{π} spin groups has been fully specified.

2.2.1.7.2 Formats for optional extensions to the RML

The formats described in the previous section are sufficient for most evaluations currently (2003) available (using KRM $=3$, $\mathrm{KBK}=0$, and $\mathrm{KPS}=0$). For the sake of generality, and to accommodate expected future developments in R-matrix analysis codes, additional capabilities are included in the RML format.

2.2.1.7.2.1 Different R-Matrix formulations (KRM = 1,2,4)

Equations given in Appendix D.1.7 (Section V of this report) are relevant to the ReichMoore approximation to R-Matrix theory. The format, however, can also be used for single-level Breit Wigner ($K R M=1$), multilevel Breit Wigner ($K R M=2$), or R-Matrix without approximations ($\mathrm{KRM}=4$). Equations for $\mathrm{KRM}=1$ or 2 will be written up if/when the need arises. Equations for $K R M=4$ are identical to those given in Appendix D.1.7 with the elimination of the imaginary term in the denominator of Eq. (6), and the inclusion of each gamma-channel on a equal basis with all other channels.

2.2.1.7.2.2 Background R-matrix $(\mathrm{KBK}>0)$:

As described in Appendix D D.1.7.5 of ENDF-102, which is reproduced in Section V of this report), a background R-Matrix can be defined in a variety of different methods.

For KBK $=0$, Option 0 is used everywhere (that is, for all channels for this spin group) for the background R-Matrix. No additional formats are required and no additional records need to be written; the dummy resonances are included along with the physical resonances in the list record described above.

For KBK > 0, one LIST record (and two TAB1 records, for tabulated values) is included for each channel of the current spin group, for a total of NCH records. The particular option to be used for the channel is identified by parameter LBK. The formats for the four options are as follows:

Option 0. Dummy resonances $(\mathbf{L B K}=0)$

No additional information is conveyed in this record, other than $\mathrm{LBK}=0$. No terms are added to the R-matrix for this channel.

```
[Mat,2,151/ 0.0, 0.0, 0, 0, LBK, 1/
    0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ] LIST
```


Option 1. Tabulated complex function of energy $(\mathbf{L B K}=1)$

Notation:

RBR	Value of real part of tabulated function
RBI	Value of imaginary part of tabulated function

[Mat, 2, 151/	0.0,	0.0,	0 ,	0 ,	LBK,	1/			
	0.0,	0.0,	0.0,	0.0,	0.0,	0.0]	LIST		
[Mat, 2,151/	0.0,	0.0,	0 ,	0 ,	NR,	NP/	$\mathrm{E}_{\text {int }} /$	RBR(E)	/ TAB1
[Mat, 2, 151/	0.0,	0.0,	0,	0,	NR,	NP/	$\mathrm{E}_{\text {int }} /$	RBR (E)	/ TAB1

(Recall that NR and NP are parameters which define the interpolation scheme for TAB1 records, as defined in Section 0.7.7 of ENDF-102, which is reproduced in Section II of this report. Energy values given by $\mathrm{E}_{\text {int }}$ are in units of eV .)

Option 2. SAMMY's logarithmic parameterization (LBK = 2)

Notation [See Eq. (40) of Section D.1.7.5 of ENDF-102, which is reproduced in Section V of this report, for meanings of these quantities]:

R0	$\bar{R}_{\text {con }, c}$	S0	$\bar{s}_{\text {con }, c}$
R1	$\bar{R}_{\text {lin,c }}$	S1	$\bar{s}_{\text {lin,c },}$
R2	$\bar{R}_{q, c}$		
EU	$E_{c}^{\text {up }}$	ED	$E_{c}^{\text {down }}$

[Mat, 2, 151/	ED,	EU,	0 ,	0,	LBK,	1/
	R0,	R1,	R2,	S0,	S1,	0.0] LIST

Option 3. Fröhner's parameterization $(\mathbf{L B K}=3)$
Notation [See Eqs. (41) and (42) of Section D.1.7.5 of ENDF-102, which is reproduced in Section V of this report, for meanings of these quantities]:

$\mathbf{R 0}$	\bar{R}_{c}	$\mathbf{S 0}$	\bar{s}
$\mathbf{G A}$	Γ_{γ}		
$\mathbf{E U}$	$E_{c}^{u p}$	ED	$E_{c}^{\text {down }}$

[Mat, 2, 151/	ED,	EU,	0,	0 ,	LBK,	1/	
	R0,	SO	GA,	0.0,	0.0,	0.0]	LIST

2.2.1.7.2.3 Tablulated phase shifts (KPS = 1) (not used in SAMMY)

When phase shifts are calculated externally (from optical model potentials, for example), rather than generated from the usual hard-sphere phase shift formulae, then the phase shifts must be presented in tabular form.

If parameter KPS is equal to 0 , all phase shifts are calculated from the hard-sphere phase shift formulae; see Table D.1.7.1 for non-Coulomb and Section D.1.7.2 for Coulomb hard-sphere phase shifts. Section D.1.7 of ENDF-102 is reproduced in this report. The Coulomb hard-sphere phase shift information was inadvertently omitted from both ENDF-102 and the original version of this document; it has been added as Section D.1.7.6.

For KPS > 0, one LIST record (and two TAB1 records, for tabulated values) is included for each channel of the current spin group, for a total of NCH records. The particular option to be used for the channel is identified by parameter LPS. The formats for the two options are as follows:

Option 0. Hard-sphere phase shifts (LPS = 0)
No additional information is conveyed in this record, other than LPS $=0$.

$[$ Mat $, 2,151 /$	0.0,	0.0,	0,	0,	LPS,	$1 /$
	0.0,	0.0,	0.0,	0.0,	0.0,	$0.0]$ LIST

Option 1. Phase shift is a tabulated complex function of energy $(\mathbf{L P S}=1)$
Notation:
PSR Value of real part of tabulated phase shift
PSI Value of imaginary part of tabulated phase shift

[Mat $, 2,151 /$	0.0,	0.0,	0,	0,	LPS,	$1 /$
	0.0,	0.0,	0.0,	0.0,	0.0,	$0.0]$ LIST
[Mat $, 2,151 /$	0.0,	0.0,	0,	0,	$N R$,	$N P / E_{\text {int }} /$ PSR (E) / TAB1
	0.0,	0.0,	0,	0,	$N R$,	$N P / E_{\text {int }} /$ PSR (E) / TAB1

(Recall that NR and NP are parameters which define the interpolation scheme for TAB1 records, as defined in Section 0.7.7 of ENDF-102, which is reproduced in Section II of this report. Energy values given by $\mathrm{E}_{\text {int }}$ are in units of eV .)

2.3. Unresolved Resonance Parameters $(L R U=2)$

Information for the unresolved resonance region is not included in this report.

IV. INTRODUCTION TO ENDF FILE 32: COVARIANCE MATRIX ASSOCIATED WITH RESONANCE PARAMETERS

In this section are presented the various ENDF formats for presentation of covariance matrix associated with the R-matrix parameters in the resolved resonance region. Information in the remainder of this section is taken essentially verbatim from Section 32.0 of the ENDF-102 manual. However, the layout of the pages has been reformatted to make it easier to read and to make the outline style more prominent. Subsection topics are as follows:

32	Covariances of Resonance Parameters
32.1	General Description
32.2	Formats
32.2.1	LCOMP = 0
32.2.2	LCOMP = 1
	Short-range subsections
	LRF = 1 or 2
	LRF $=3$
	LRF $=4$
	LRF $=7$
	Long-range subsection
32.2 .3	Unresolved resonance region
32.3	LCOMP = 2 (compact)
32.4	Formats for compact covariance matrix
32.4.1	Formats for subsections
32.4.1.1	LRF = 1 or 2
32.4.1.2	LRF $=3$
32.4.1.3	LRF = 7

Information on the unresolved resonance region is included here simply because it was readily available. The reader should be aware, however, that current ENDF formats for the unresolved region are woefully inadequate and will likely soon be replaced. When that occurs, this document will also be modified.

32. FILE 32. COVARIANCES OF RESONANCE PARAMETERS

32.1. General Description

File 32, MT = 151, contains the variances and covariances of the resonance parameters given in File 2, MT = 151. The resonance parameters, used with the appropriate resonance formulae, provide an efficient way to represent the complicated variations in the magnitudes of the different resonant partial cross sections, compared to the use of File 3 alone. Similarly for File 32, the use of the covariances of the resonance parameters of individual resonances provides an efficient way of representing the rapid variation over the individual resonances of the covariances of the partial cross sections. The covariance data of the processed cross sections include the effects of both File 32 and File 33 within a given energy region, similar to the way the cross sections themselves are the sum of contributions from File 2 and File 3.

In the resonance region, the covariances of the partial cross sections are often characterized by a) "long-range" components that affect the covariances over many resonances and b) "short-range" components affecting the covariances of the different partial cross sections in the neighborhood of individual resonances. The former often can best be represented in File 33, while the latter can be given in File 32. In SAMMY, only the short-range components are used since they can be accurately generated rather than crudely estimated.

When the material composition is dilute in the nuclide of concern and the cross sections are to be averaged over an energy region that includes many resonances, the effects of "short-range" components are unimportant and the covariances of the averaged cross sections can be well represented by processing the long-range components given in File 33. Therefore, the covariances of the cross sections in the unresolved resonance energy region should be given entirely by means of File 33 unless resonance self-shielding in this energy region is thought to be of practical significance for a particular nuclide. For many nuclides these conditions may also be valid in the high-energy portion of the resolved resonance energy region.

In the resolved resonance region it may be necessary to calculate covariances for the resonance self-shielding factors to obtain the uncertainty in the Doppler effect. As another example, one may require group cross-section covariances where the groups are narrow compared to the resonance width or where only a few resonances are within a group. In these cases File 32 should be used. Because this situation may be important only in the lower energy portion of the resolved resonance region, File 32 need not include the whole set of resonances given in File 2. File 33 remains available for use in combination with File 32.

The ENDF-6 formats for File 32 are structured to maintain compatibility with those of ENDF/B-V, and there are new features to permit representation of covariance components among the parameters of different resonances. Covariances between resonance energies and widths are now also allowed. While File 32 was limited in ENDF-5 to the Breit-Wigner representations (LRF $=1$ or 2), in ENDF-6 formats, covariances may also be given for the Reich-Moore (LRF = 3), Adler-Adler ($\mathrm{LRF}=4$), and R-Matrix Limited ($\mathrm{LRF}=7$) formulations. A limited representation is offered for unresolved resonance parameter covariance data. The conventions are retained that the cross section
covariances for the resonance region are combined from covariance data in File 32 and File 33, and that relative covariances given in File 33 apply to the cross sections reconstructed from File 2 plus File 3 when that option is specified in File 2. (There is a partial exception for LRF = 4.) Since the ENDF-6 formats do not allow a continuous range of values for the total angular momentum J of a resonance, covariance data for the resonance spin are no longer recognized.

Note that File 32 formats retain many restrictions. For example, there is no provision for representing covariances between the parameters of resonances in two different materials or in two isotopes within the same elemental evaluation. Since File 32 can become cumbersome if many resonances are treated, evaluators will do so only for nuclides of greatest practical importance. (The LCOMP $=2$ format is available for use in the case of very many resonances; this format provides a compact but approximate representation for the resonance parameter covariance matrix. Details are given in Section 32.3 of ENDF-102, which is included in this document.)

The strategy employed for File 32 is similar to that for smooth cross sections in that the variance of a resonance parameter or the covariance between two such parameters can be given as a sum of several components. Some contributions can be labeled by resonance energy and parameter type, while others can arise from long-range covariances among parameters of the same type for different resonances in the same isotope. The latter are labeled by energy bands, and the same uncertainty characteristic is applied to the indicated parameter of all the File 2 resonances in a given band.

The idea of assigning the same relative covariance to all parameters of a given type in an energy region has limited validity. One limit arises because long-range uncertainties in reaction yields do not generally carry over proportionately to uncertainties in the corresponding reaction widths. However, gamma-ray widths are sometimes known only for resonances at low neutron energy, and then the average of these values is used for the resonances at higher energy. This situation motivates formats resembling File 33 except that a relative uncertainty in the file applies to the indicated parameter (e.g., Γ_{γ}) of every resonance in the indicated energy range. The approach here is to allow the long range correlations to extend over any energy interval in which consistent resolved resonance formulations are utilized.

The definitions of common quantities are as given in Section 2 of ENDF-102 Section III of this report).

Caveat: Resonance parameter covariance matrices reported in File 32 are written in terms of the parameters given in the File 2 listing; this is true even when a given parameter is not the actual quantity used in the calculation. In particular, if the value GAM given in File 2 for the partial width is negative, the negative sign is to be associated with the reduced width amplitude $\gamma_{\lambda c}$ rather than with $\Gamma_{\lambda c}$ (since $\Gamma_{\lambda c}$ is always a positive quantity). More specifically, $\Gamma_{\lambda c}=|G A M|$ and $\gamma_{\lambda c}=\operatorname{sign}(\mathrm{GAM}) \times \sqrt{\mathrm{GAM} / 2 \mathrm{P}}$, with P evaluated at the energy of the resonance. In this case, the covariance matrix is written in terms of GAM rather than $\Gamma_{\lambda c}$. [SeeSection 2.2.1.7.1 ff ENDF-102 (in Section III of this report) for details; however, the rule applies for LRF $=1,2$, and 3 as well as LRF = 7.]

32.2. Formats

The format for File 32, MT = 151, parallels the format for File 2, MT = 151, with the restriction to $\operatorname{LRF}=1,2,3,4$, or 7 for LRU $=1$ (resolved parameters) and to LRF $=1$ for LRU $=2$ (unresolved parameters). The File 32 formats for $\mathrm{LRU}=1$, LRF $=7$ may omit some of the File 2 information.

The general structure of File 32 is as follows:

Data are given for all ranges for a given isotope, then for successive isotopes. The data for each isotope start with a CONT (isotope) record; those for each range start with a CONT (range) record. File segments need not be included for all isotopes represented in the corresponding File 2.

If the "range" record preceding a subsection has $\mathrm{NRO} \neq 0$, indicating that the energy dependence of the scattering radius is given in File 2, the initial file segment within the subsection has the form
[MAT, 32,151/ 0.0, 0.0, 0, 0, 0, NI] CONT
<NI sub-subsections as defined in Chapter 33.2 for the energy-dependent covariances of the scattering radius>

The next record of a subsection (the first record if $\mathrm{NRO}=0$) has the form
[MAT, 32,151/ SPI, AP, 0, LCOMP, NLS, 0] CONT

If the compatibility flag, LCOMP, is zero, NLS is the number of L-values for which lists of resonances are given in a form compatible with that used in ENDF-5, as described in Section 32.2.1. If LCOMP $=1$, then NLS $=0$ and subsection formats are as shown in Section 32.2.2 If LCOMP $=2$, the covariance matrix is expressed in compact form as described in Sections 32.3 and 32.4.

32.2.1 Compatible resolved resonance subsection format (LCOMP = 0).

This format differs from that used for ENDF-5 only in that covariances of the resonance spin are all zero. It is applicable only for resolved parameters (LRU=1) and for the Breit-Wigner formalisms (LRF = 1 or 2). While this format is available for reading and writing via SAMMY, its use is discouraged. The following covariance quantities are defined:

DE $^{\mathbf{2}}$	Variance of the resonance energy in units eV^{2}.
$\mathbf{D N}^{2}$	Variance of the neutron width GN in units eV^{2}.
DNDG	Covariance of GN and GG in units eV^{2}.
DG $^{\mathbf{2}}$	Variance of the gamma-ray width in units eV^{2}
DNDF	Covariance of GN and GF in units eV^{2}.
DGDF	Covariance of GG and GF in units eV^{2}.
DF	Variance of the fission width GF in units eV^{2}.
DJDN	(null) covariance of resonance J-value and GN.
DJDG	(null) covariance of resonance J-value and GG.
DJDF	(null) covariance of resonance J-value and GF.
DJ	(null) variance of resonance J -value.

A complete subsection for LCOMP $=0$ has the following form:
<If NRO is not 0 , a control record and NI sub-subsections for energy-dependent covariances of the scattering radius>

[MAT, 32, 151/ SPI,	AP,	0 ,	LCOMP,	NLS,	$0]$	CONT (LCOMP=0)
[MAT, 32, 151/AWRI,	0.0,	L,	0,	18*NRS,	NRS/	
$E \mathrm{R}_{1}$,	AJ_{1},	GT_{1},	GN_{1},	GG_{1},	GF_{1},	
$\mathrm{DE}_{1}{ }^{2}$,	$\mathrm{DN}_{1}{ }^{2}$,	DNDG ${ }_{1}$,	$\mathrm{DG}_{1}{ }^{2}$,	DNDF_{1},	DGDF_{1},	
DF ${ }_{1}{ }^{2}$,	DJDN ${ }_{1}$,	DJDG $_{1}$,	DJDF ${ }_{1}$	$\mathrm{DJ}_{1}{ }^{2}$,	0.0,	
			(DJDN_{1},	$\mathrm{JDG}_{1}, \mathrm{DJD}$	$1=0.0)$	

<three physical records for each resonance through resonance NRS>] LIST <a similar list record for each additional value of L through NLS>

Note that in this compatible format, no covariance can be given between parameters of different resonances even if they overlap. This format therefore permits only a relatively crude approximation to the true resonance parameter covariance matrix. Although SAMMY can read this format in general and write specific cases of this format, use of this format for new evaluations is nevertheless strongly discouraged.

32.2.2 General resolved resonance subsection formats for $\mathrm{LCOMP}=\mathbf{1}$.

Following the record that starts with the target spin, SPI, if it states LCOMP $=1$, the next card of a subsection defines for that isotope and energy range how many (NSRS) subsections will occur for covariances among parameters of specified resonances and how many (NLRS) subsections are to contain data on long-range parameter covariances. The complete structure of an LCOMP $=1$ subsection is as follows:
<if NRO $\neq 0$, a control record and NI sub-subsections for energydependent covariances of the scattering radius>
[MAT, 32,151/ SPI, AP, IFG, LCOMP, NLS, 0] CONT (LCOMP=1,NLS=0) [MAT, 32,151/AWRI, 0.0, 0, 0, NSRS, NLRS] CONT
<NSRS sub-subsections each giving covariances among specified parameters of enumerated sets of resonances>
<NLRS sub-subsections each giving long-range covariances contributions for stated energy regions for a particular type of resonance parameter>
(For LRF = 7, NLS in the first of these formats is to be interpreted as NJS. Parameter IFG is relevant only for LRF = 7 and has the same meaning as in File 2.)

Covariance formats for NSRS-type sub-subsections

The formats here differ from the LCOMP $=0$ formats of Section 32.2.1 in that covariances between parameters of different resonances appear, resonance representations LRF = 1 to 4 and 7 are allowed, there is no segregation by L-value (or by J and parity for LRF = 7), and the number of parameters considered per resonance is declared in each sub-subsection primarily to avoid tabulating zero covariances for fission widths in files concerning structural materials. The listed resonances must be present in File 2, but there is no requirement that all resonances be included in File 32 that are given in File 2.

The following paragraphs cover the formats for the NSRS sub-subsections for the various (LRF) resonance formulations for resolved parameters ($\mathrm{LRU}=1$). $\mathrm{LRF}=1,2,3,4$, and 7 are allowed.
$\underline{\operatorname{LRF}}=1,2, \operatorname{LRU}=1, \operatorname{LCOMP}=1$. These cases have the same formats. All the resonances for which covariances are to be included are divided into blocks. Covariances between parameters can only be included for resonances in the same block. (A given resonance can appear in more than one block.) A sub-subsection covers the data for a block. Within each such block, the parameters are given of those resonances for which covariances are included, and the upper triangular representation of the parameter covariance matrix is included for the whole block of resonances. For each block, one specifies the number MPAR of parameters to be included for each listed resonance in the block, since for most cases there is, for example, no fission width and the size of the covariance matrix can therefore be minimized.

The NSRS-type subsections have the form below for LRF $=1$ and 2:

Note that the record first lists all the parameters of resonances in the group, for positive identification, and then lists the covariance terms.

MPAR	Number of parameters per resonance in this block which have covariance data (in order: ER, GN, GG, GF, GX, indices 1-5).
NVS	Number of covariance elements listed for this block of resonances, $\mathrm{NVS}=[\mathrm{NRB} \times \mathrm{MPAR} \times(\mathrm{NRB} \times \mathrm{MPAR}+1)] / 2$.
NRB	Number of resonances in this block and for which resonance parameter and covariance data are given in this subsection.
ER	Lab system energy of the $\mathrm{k}^{\text {th }}$ resonance (in this block).
$\mathbf{A J}_{\mathbf{k}}$	Floating-point value of the spin for the $\mathrm{k}^{\text {th }}$ resonance.
$\mathbf{G T}_{\mathbf{k}}$	Total width (eV) for the $\mathrm{k}^{\text {th }}$ resonance. $\mathrm{GT}=\mathrm{GN}+\mathrm{GG}+\mathrm{GF}+\mathrm{GX}$.
$\mathbf{G N}_{\mathbf{k}}$	Neutron width of the $\mathrm{k}^{\text {th }}$ resonance.
GG_{k}	Gamma-ray width for the $\mathrm{k}^{\text {th }}$ resonance.
$\mathbf{G F}_{\mathbf{k}}$	Fission width of the $\mathrm{k}^{\text {th }}$ resonance.
$\mathbf{V}_{\mathbf{m n}}$	Variance (eV^{2}) or covariance matrix element, row m and column n, with $n \geq m$. If $j \leq$ MPAR is the parameter index ($j=4$ for fission width) for the $\mathrm{k}^{\text {th }}$ resonance in the block, then $\mathrm{m}=\mathrm{j}+(\mathrm{k}-1) \times$ MPAR. The indexing is the order defined above under MPAR.

$\underline{\operatorname{LRF}=3, ~ L R U=1, ~ L C O M P=1 . ~ T h e ~ r e p r e s e n t a t i o n ~ f o r ~ t h e ~ R e i c h-M o o r e ~ r e s o n a n c e ~}$ formulation is very similar. The listing of the parameters among which covariance terms are allowed takes the form used in File 2, namely,
ER, AJ, GN, GG, GFA, GFB.

Similarly, in interpreting the indices for the covariance matrix of the parameters in a given block of resonances, the order when LRF $=3$ is ER, GN, GG, GFA, GFB and the largest possible value of MPAR is 5 .

LRF $=4, \operatorname{LRU}=1$, LCOMP $=1$. [This is not used in SAMMY.] The Adler-Adler resonance representation includes background constants as well as resonance parameters. The uncertainty in the background constants is to be treated indirectly just as the smooth background given in File 3. (That is, in the energy region EL, EU for LRF = 4 any relative uncertainty data in File 33 applies to the sum of the cross section in File 3 and the contribution of the cross sections computed from the Adler-Adler background constants. Great care will be required if this uncertainty representation for Adler-Adler fits is used in other than single-isotopes evaluations.) The inherent assumption is that covariance data will be detailed for the largest resonances, and those representing the Adler-Adler backgrounds. It is assumed that $\mathrm{LI}=7$.

An LRF $=4$ NSRS sub-subsection takes the following form, using the previous definitions where possible:

The Adler-Adler parameters of the selected list of resonances are given in the same redundant style indicated in Section 2.2.1.3 (which is not reproduced in this report). For LRF $=4$ the maximum value of MPAR is 8 and for a given resonance the covariance matrix indexing is in the order:

$$
\begin{aligned}
& \mu=\mathrm{DET}=\mathrm{DEF}=\mathrm{DEC}, \quad \mathrm{DWT}=\mathrm{DWF}=\mathrm{DWD}=\mathrm{v}, \\
& \text { GRT, GIT, GRF, GIF, GRC, GIC }
\end{aligned}
$$

$\underline{L R F}=7, \operatorname{LRU}=1, \operatorname{LCOMP}=1$. No long-range subsections are allowed for LRF = 7. For each short-range section, it is not sufficient to give merely the number of resonances in the block (as is done for $\operatorname{LRF}=3$, for example). Instead, because the LRF $=7$ format permits different numbers of channels for different spin-and-parity $\left(J^{\pi}\right)$ groups, both the number of spin groups in the block and the number of channels for each spin group must be specified. As with the other LRF values, not all resonances need to be included in this listing; further, not all J^{π} groups need be included here. NJSX is the number of J^{π} groups that are included in this short-range section; the format for specifying NJSX is

$$
\text { [MAT, 2,151/ 0.0, 0.0, NJSX, 0, } 0,0 \quad 0 \text { CONT }
$$

For each spin group, the number of channels (NCH), the number of included resonances (NRB), and the number of lines per resonance (NX) must be specified. In addition, the number of values to be read (6 times the number of lines) must also be given in the LIST record, along with the resonance parameters:

[Mat, 2, 151/	0.0, $E R_{1}$, GAM $_{6,1}$, E_{2}, GAM $_{6,2}$,	$\begin{aligned} & 0.0, \\ & \text { GAM }_{1,1}, \\ & \text { GAM }_{\text {NCH, }}, \\ & \text { GAM }_{1,2}, \\ & \ldots . \end{aligned}$	$\begin{aligned} & \text { NCH, } \\ & \text { GAM }_{2,1} \\ & \\ & \text { GAM }_{2,2,} \\ & \text { GAM }_{\text {NCH } 2,}, \end{aligned}$	NRB, GAM $_{3,1}$, GAM $_{3,2}$,	$\begin{aligned} & \text { 6*NX, } \\ & \text { GAM }_{4,1}, \\ & \text { GAM }_{4,2}, \end{aligned}$	NX/ GAM $_{5,1}$, GAM $_{5,2}$,
	$\begin{aligned} & \mathrm{ER}_{\text {NRB }}, \\ & \mathbf{G A M}_{6, \text { NRB }} \end{aligned}$	$\begin{gathered} \mathbf{G A M}_{1, \text { NRB }}, \\ 3, \ldots, \text { GAM }_{\text {NCH }}, \end{gathered}$	$\mathrm{GAM}_{2, \text { NRB }},$	$\mathrm{GAM}_{3, \mathrm{NRB}}$	$\mathrm{GAM}_{4, \mathrm{NRB}}$,	$\mathbf{G A M}_{5, \mathrm{NRB}}$

The above two records are repeated once for each included J^{π} group.
Parameters are numbered in the order in which they appear in the listing; the total number of parameters (NPARB) is the sum (over all included J^{π} values) of (NCH +1$)^{*} \mathrm{NRB}$, where NRB is the number of resonances from this J^{π} group in this covariance block. Following the final resonance for the final J^{π} group in this block, the triangular half of the covariance matrix is presented as a LIST record with N entries, where $\mathrm{N}=(\mathrm{NPARB}$ *(NPARB+1))/2.

The covariance matrix is given in the following format:
[MAT, 32,151/ 0.0,
Resonance parameter variances and covariances for all resonances listed.

$$
\begin{aligned}
& \text { 0.0, 0, 0, N, NPARB/ } \\
& {\left[\begin{array}{lllll}
\mathrm{V}_{11}, & \mathrm{~V}_{12}, & \ldots & \mathrm{~V}_{1, \text { NPARB }}, & \mathrm{V}_{22}, \\
\cdots, & \mathrm{~V}_{2, \text { NPARB }}, & \mathrm{V}_{33}, & \\
\cdots, & \mathrm{~V}_{\text {NPARB, NPARB }}, & 0.0, & 0.0] \text { LIST }
\end{array}\right.}
\end{aligned}
$$

Format for Long-Range Covariance Sub-subsections (LRU = 1) [not used in SAMMY].

Here are described the forms that the sub-subsections may take to represent long-range (in energy) covariances among parameters of a given type. The strategy is to use formats that resemble those for File 33 but refer to a particular parameter and equally to all resonances of a given isotope within the indicated energy regions.

Here each sub-subsection must identify the resonance parameter considered ($\Gamma_{\mathrm{n}}, \Gamma_{\gamma}$, etc.) via the parameter IDP, indicate the covariance pattern via a value of LB, and give the energy regions and covariance components. The following table defines the permitted values of LB. Note the definition of one LB value not defined in File 33, and that LB $=3$ and 4 are not employed in File 32 because of $\mathrm{LB}=5$ is typically much more convenient. The term $\operatorname{Cov}\left[\Gamma_{\alpha}(i), \Gamma_{\alpha}(j)\right]$ is defined as the covariance between the Γ_{α} parameters for two different resonances (indexed i and j) in the same nuclide.
$\mathbf{L B}=\mathbf{- 1}$ Relative variance components entirely uncorrelated from resonance-to-resonance but having constant magnitude within the stated energy intervals.

$$
\operatorname{Cov}\left[\Gamma_{a}(i) \Gamma_{a}(j)\right]=\delta_{i j} \sum_{k=1}^{N E-1} S_{i}^{k} F_{\alpha k}^{(-1)} \Gamma_{\alpha}^{2}(i)
$$

$\mathbf{L B}=\mathbf{0} \quad$ Absolute covariance components correlated only within each E interval.

$$
\operatorname{Cov}\left[\Gamma_{a}(i) \Gamma_{a}(j)\right]=\sum_{k=1}^{N E-1} P_{j, k}^{i, k} F_{\alpha k}^{(0)}
$$

$\mathbf{L B}=1$ Relative covariance components correlated only within each E interval.

$$
\operatorname{Cov}\left[\Gamma_{a}(i) \Gamma_{a}(j)\right]=\sum_{k=1}^{N E-1} P_{j, k}^{i, k} F_{\alpha k}^{(1)} \Gamma_{\alpha}(i) \Gamma_{\alpha}(j)
$$

$\mathbf{L B}=2$ Fractional covariance components fully correlated over all E intervals with variable magnitude.

$$
\operatorname{Cov}\left[\Gamma_{a}(i) \Gamma_{a}(j)\right]=\sum_{k, k^{\prime}=1}^{N E-1} P_{j, k^{\prime}}^{i, k} F_{\alpha k}^{(2)} F_{\alpha k^{\prime}}^{(2)} \Gamma_{\alpha}(i) \Gamma_{\alpha}(j)
$$

$\mathbf{L B}=5$ Relative covariance components in an upper triangular representation of a symmetric matrix.

$$
\operatorname{Cov}\left[\Gamma_{a}(i) \Gamma_{a}(j)\right]=\sum_{k, k^{\prime}=1}^{N E-1} P_{j, k^{\prime}}^{i, k} F_{\alpha k k^{\prime}}^{(5)} \Gamma_{\alpha}(i) \Gamma_{\alpha}(j)
$$

Note that the $F^{(-1)}, F^{(1)}$, and $F^{(5)}$ parameters have the dimensions of relative covariances, the $F^{(0)}$ are absolute covariances, and the $F^{(2)}$ are relative standard deviations.

The S and P are dimensionless operations defined in Section 33.2 of ENDF-102, which is not reproduced in this report.

The sub-subsection format for $L B=-1,0,1$, or 2 is
[MAT, 32,151/ 0.0,
0.0, IDP, LB, 2*NE,
$\left.N E /\left\{E_{k}, F^{(L B)}\right\}\right]$ LIST

For $\mathrm{LB}=5$ the requisite format is
[MAT, 32,151/ 0.0, 0.0, IDP, LB, NT, NE/\{E $\left.\mathrm{E}_{\mathrm{k}}\right\},\left\{\mathrm{F}_{\mathrm{kk}}{ }^{(5)}\right\}$] LIST(LB=5)
In the above, the following definitions hold:

LB	Indicator of covariance pattern as defined above.
NE	Number of energies in the parameter table for a given subsection.
NT	NE*(NE+1)/2.
IDP	Identification number of a resonance parameter type. This index depends on the resonance formulation used, as summarized in the table below. This table is consistent with the order of parameters used in the NSRS-type sub-subsections to define the parameter covariances included, the first NPAR parameters in the list for the given LRF value.

LRF					
IDP	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	
1	E_{r}	E_{r}	E_{r}	$\mathrm{E}_{\mathrm{r}}=\mu$	
2	Γ_{n}	Γ_{n}	Γ_{n}	v	
3	Γ_{γ}	Γ_{γ}	Γ_{γ}	GRT	
4	Γ_{f}	Γ_{f}	Γ_{f}	GIT	
5	Γ_{x}	Γ_{x}	Γ_{x}	GRF	
6				GIF	
7				GRC	
8				GIC	

For $\mathrm{LB}=0, \pm 1,2$, and 5 , the energy values in the tables are monotonically increasing and cover the range EL to EH . For $\mathrm{LB}=5$, the F -values are given in the upper triangular representation of a symmetric matrix by rows, i.e., $F_{11}, F_{12}, \ldots, F_{1, \mathrm{NE}-1} ; F_{22}, F_{2, \mathrm{NE}-1} ; F_{\mathrm{NE}-1, \mathrm{NE}-1}$.

32.2.3 Unresolved resonance subsection format (LRU = 2)

For the unresolved resonance region, a simplified covariance formulation is permitted. For the purposes of covariance representation, no energy dependence is specified for the average parameter relative covariances, even though in File 2 the unresolved region may be represented with energy-dependent average Breit-Wigner parameters using LRF $=2$. Relative covariance elements are tabulated, unlike the cases above.

If the evaluator wishes to represent the relative covariance of the unresolved resonance parameters, the subsection for a given isotope has the following form.:

MPAR is the number of average parameters for which relative covariance data are given for each L and J, in the order D, GNO, GG, GF, and GX, for a maximum of 5 . That is, relative covariance values for the first MPAR of these are tabulated for each (L,J) combination. If MPAR is given as 4 when $\mathrm{LFW}=0$ on the CONT (isotope) record, then the four covariance matrix indices per (L,J) combination represent D, GNO, GG, and GX.

NPAR $=$ MPAR*(sum of the values of NJS for each L).
The LSSF flag is defined in Section 2.3.1, which is not reproduced in this report.
$R V_{i j}$ is the relative covariance matrix element quantities among these average unresolved parameters for the given isotope. The final LIST record contains the upper triangular portion of the symmetric relative covariance matrix by rows.

32.3. General Description of Compact Covariance Matrix (LCOMP = 2).

This format was developed in order to provide a means of communicating the actual resonance-parameter covariance matrix (as determined during the data-evaluation process) in a compact, legible, and accurate form, for those situations in which it is not practical to provide the entire covariance matrix using the LCOMP $=1$ format. The covariance matrix is specified as uncertainties plus correlation matrix. The correlation coefficients (whose values range from -1 to 1) are presented in a compact representation as an integer with NDIGIT digits plus a sign; each approximated correlation coefficient differs from the original value by at most $0.5 \times 10^{- \text {NDIGIT }}(0.005$ if NDIGIT = 2). Allowed values for NDIGIT are 2 through 6.

If the covariance matrix element connecting parameter number i with parameter number j is denoted by $V_{i j}$, the uncertainty on parameter i by D_{i}, and the correlation coefficient by $C_{i j}$, then these quantities are related by

$$
D_{i}^{2}=V_{i i} \quad V_{i j}=D_{i} C_{i j} D_{j}
$$

Values for $C_{i j}$ range from -1 to +1 ; values for D_{i} are always positive. Note that the diagonal elements of $C_{i j}$, those for which $i=j$, are always exactly 1.0 and therefore are never specified explicitly. Compacting the off-diagonal correlation coefficients is accomplished as follows:

1. Drop (set to zero) all values of $C_{i j}$ between $-10^{- \text {NDIGIT }}$ and $+10^{- \text {NDIGIT }}$.
2. Multiply the remaining coefficients by $10^{\text {NDIGIT }}$.
3. Map all positive values greater than K and less than or equal to $K+1$ to the integer K.
4. Map all negative values less than -K and greater than or equal to $-\mathrm{K}-1$ to the integer -K .

The reverse mapping takes the integer to the center of the range. For example, with NDIGIT $=2$, the positive integer 87 (which corresponds to original correlation coefficients in the range from 0.87 up to and including 0.88) maps to 0.875 . The negative integer -12 (which corresponds to original correlation coefficients in the range from -0.12 inclusive down to -0.13 exclusive) maps to correlation coefficient -0.125 .

In the LCOMP = 2 format, parameters for one resonance are given first (on one line in a LIST record), followed directly by the uncertainties on those parameters, followed by values and uncertainties for the next resonance. After parameters and uncertainties for all resonances have been specified, the correlation coefficients are given.

Two types of records are used for the mapped correlation coefficients. A CONT record reads NDIGIT, NNN (the number of parameters), and NM (the number of lines of INTG records that follow). NDIGIT can have any of the values $2,3,4,5$, or 6 ; the corresponding number NROW of correlation coefficients that can be displayed on one INTG record is 18, 13, 11, 9, and 8, respectively.

The information stored in the INTG records may be summarized as follows: Let i and j represent two of the parameters in the numbering scheme defined above, with $i>j$. All those correlation coefficients mapped to non-zero integers $K_{i j}$ are printed in File 32; zero-valued $K_{i j}$ are printed (as blanks or zeros) only when they occur on the same record with non-zero values. Each line (record) in the file begins by specifying the location (i.e., by specifying i and j, with $i>j$); other K 's on the same line correspond to $(i, j+1),(i, j+2), \ldots(i, j+$ NROW -1$)$, with the restriction that $j+$ NROW $-1<i$. If there are more non-zero K 's for the same i, they are given on another line, again beginning with the next non-zero K.

The following FORTRAN can be used to read the mapped correlation coefficients and reconstruct the correlation matrix:

```
    DIMENSION K(18), CORR(n,n)
C Note that \(n\) must be greater than or equal to NNN
    READ (LIB, 10) NNN, NM, NX, MAT, MF, MT, NS
    10 FORMAT (33X, 3I11, I4, I2, I3, I5)
C The CONT record: NNN is dimension of CORR(NNN,NNN), and
C NM is the number of lines to follow in the file
    DO \(\mathrm{I}=1\), NNN
        DO J=1, I-1
        \(\operatorname{CORR}(J, I)=0.0\)
    END DO
    \(\operatorname{CORR}(I, I)=1.0\)
    END DO
    DO M=1,NM
        IF (Ndigit.EQ.2) THEN
        READ (LIB, 20) I, J, (K(N), N=1,18), MAT, MF, MT, NS
        Nmax \(=18\)
        20 FORMAT (I5, I5, 1X, 18I3, 1X, I4, I2, I3, I5)
        ELSE IF (Ndigit.EQ.3) THEN
        READ (LIB, 30) I, J, (K(N), N=1,13), MAT, MF, MT, NS
        Nmax = 13
        FORMAT (I5, I5, 1X, 13I4, 3X, I4, I2, I3, I5)
    ELSE IF (Ndigit.EQ.4) THEN
        READ (LIB, 40) I, J, (K(N),N=1,11), MAT, MF, MT, NS
        Nmax \(=11\)
        FORMAT (I5, I5, 1X, 11I5, I4, I2, I3, I5)
    ELSE IF (Ndigit.EQ.5) THEN
        READ (LIB,50) I, J, (K(N),N=1,9), MAT, MF, MT, NS
        Nmax \(=9\)
        FORMAT (I5, I5, 1X, 9I6, 1X, I4, I2, I3, I5)
    ELSE IF (Ndigit.EQ.6) THEN
        READ (LIB, 60) I, J, (K(N), N=1, 7), MAT, MF, MT, NS
        Nmax = 8
        FORMAT (I5, I5, 8I7, I4, I2, I3, I5)
    END IF
    \(J P=J-1\)
    Factor =10.0**(-Ndigit)
    DO N=1,Nmax
        \(J P=J P+1\)
        IF (JP.GE.I) GO TO 30
        IF (K(N).NE.0) THEN
                IF (K(N).GT.0) THEN
                    \(\operatorname{CORR}(J P, I)=(K(N)+0.5) *\) Factor
                ELSE
                    CORR (JP, I) \(=-(-K(N)+0.5) *\) Factor
                END IF
```

```
        END IF
        END DO
    END DO
```

Only the upper-triangular portion of the correlation matrix [CORR(J,I) for $\mathrm{J}<\mathrm{I}$] is defined by this procedure. The lower-triangular portion can be found by invoking symmetry [CORR(I,J) $=\operatorname{CORR}(\mathrm{J}, \mathrm{I})]$.

32.4 Formats for Compact Covariance Matrix

The compact format for covariances uses File 32, MT = 151, with LCOMP $=2$ (with LRF $=1,2,3$, and 7) for LRU $=1$ (resolved-resonance parameters). The format parallels the format for File 2, MT = 151, with parameter uncertainties specified along with parameter values. Correlation coefficients are given separately.

The general structure of File 32 is as given in Section 32.2.
 <subsection for the second energy range for the first isotope>
\qquad
[MAT, 32, $151 / E L, E H, ~ L R U, ~ L R F, ~ N R O, ~ N A P S] C O N T ~(r a n g e) ~$ <subsection for the last energy range for the first isotope>

Formats for the individual subsections differ depending on the value of LRF and are discussed in Section 32.4.1.

32.4.1 Compact covariance matrix formats for subsections of a particular energy range and isotope

In the format descriptions to follow, the notation is as defined in Section 2 of ENDF-102, which is reproduced in Section III of this report. Uncertainties are denoted by parameters whose names begin with "D" but are otherwise identical to the parameter of Section 2. For example, ER represents the resonance energy in the laboratory system, in units of eV. Therefore, DER represents the uncertainty (square root of the variance) associated with the resonance energy; DER has the same units as ER.

Parameters that are not variables (i.e., those that are not searchable parameters in the analysis process) do not have uncertainties associated with them. For example, the total spin of a resonance, denoted by parameter AJ, has no associated uncertainty DAJ. In File 32, the value 0.0 is given instead of DAJ (for LRF = 1,2,3).

For LRF = 1 and 2, the redundant parameter GT (which is equal to GN $+\mathrm{GG}+\mathrm{GF}$) has no corresponding uncertainty DGT specified explicitly. Instead, if needed, DGT may be calculated using values for DGN, DGG, and DGF, and the correlation matrix.

During the evaluation process, not all potential variables are treated as searchable parameters. For example, if no capture cross section data were available, the evaluator might choose to set all capture widths GG to a constant value. The associated uncertainty DGG is then specified in File 32 as 0.0 , indicating that this parameter's uncertainty is not known. (The proper procedure to be used in evaluating the effect of these unvaried parameters on the final covariance matrix remains an open question and is not addressed in this document.)

In order to express the correlation matrix as compactly as possible, the resonance parameters (those which may be varied during the evaluation process) are implicitly numbered, in the order in which they occur in the listing of File 2. For $\operatorname{LRF}=1,2$, or 3 , the non-searchable parameter AJ is included in the list but is NOT included in this numbering, nor (for LRF = 1 or 2) is the redundant parameter GT. Parameters whose value is given but whose uncertainty is unknown (as described in the previous paragraph) are nevertheless included in the numerical ordering. For completely nonfissile nuclides, fission widths are not included in the numbering scheme; likewise, for fissile or fissionable nuclides for which the evaluator chose to use only one fission width, the second fission width (for LRF = 3) would not be counted.

Notation used here not previously defined:
NRSA For LRF = 1, 2, or 3, the total number of resonances (for all L values) to be included in the covariance matrix
For LRF = 7, the number of resonances from a particular J^{π} group to be included in the covariance matrix
NJSX For LRF = 7 only, the number of J^{π} groups with resonances to be included in the covariance matrix
NDIGIT Number of digits to be used in writing the LCOMP $=2$ INTG record

32.4.1.1 SLBW and MLBW (LRU = 1, LRF = 1 or 2, LCOMP = 2)

The structure of the subsection (assuming $\mathrm{NRO}=0$) is as follows:

Note that NNN is the total number of unique resonance parameters included in this listing, not including AJ or GT. For fissile nuclides, $N N N=$ NRSA $\times 4$; for non-fissile nuclides, NNN $=$ NRSA $\times 3$.

32.4.1.2 Reich Moore (LRU = 1, LRF = 3, LCOMP = 2)

The structure of the subsection is

Only one LIST record is to be read here; it contains parameter values and uncertainties for all resonances which contribute to the covariance matrix. NNN is the total number of resonance parameters to be included (again not including AJ). For non-fissile nuclides, NNN $=$ NRSA $\times 3$. For fissile nuclides, NNN $=$ NRSA $\times 4$ if only one fission channel is used and NNN $=$ NRSA $\times 5$ if both are used.

32.4.1.3 R-Matrix Limited $(\mathrm{LRU}=1, \operatorname{LRF}=7, \mathrm{LCOMP}=2)$

The structure of the subsection is

[MAT, 32,151/ 0.0,	0.0,		COMP,	NJS,	0	CONT
[MAT, 32,151/ 0.0,	0.0,	NPP,	NJSX,	12*NPP,	2*NPP/	
$M A_{1}$,	MB_{1},	ZA_{1},	ZB_{1},	IA ${ }_{1}$,	IB_{1},	
Q_{1},	PNT ${ }_{1}$,	SHF ${ }_{1}$,	MT ${ }_{1}$,	PA_{1},	PB_{1},	
$M A_{2}$,	MB_{2},	ZA_{2},	Z B_{2},	$\underline{I A}{ }_{2}$	IB_{2},	
Q ${ }^{\text {, }}$	PNT ${ }_{2}$,	SHF_{2},	MT ${ }_{2}$,	PA_{2},	PB_{2},	
MA ${ }_{\text {NPP, }}$ $Q_{\text {NPP, }}$	$M_{\text {NPP }}$, NT ${ }_{\text {NPP }}$,	$\begin{gathered} \text { ZA }_{\text {NPP, }}, \\ \text { SHF }_{\text {NPP, }} \end{gathered}$	ZB NPP , MT ${ }_{\text {NPP, }}$	IA $A_{\text {NPP }}$, PA ${ }_{\text {NPP, }}$	IB ${ }_{\text {NPP }}$, $\mathrm{PB}_{\mathrm{NPP}}$] LIS

<Note that the parameter NJSX is included here but not in File 2>

151/AJ,	PJ,	0 ,	0 ,	6*NCH,	NCH/
IPP ${ }_{1}$,	L_{1},	SCH ${ }_{1}$,	$B \mathrm{CD}_{1}$,	APE_{1},	APT_{1},
IPP ${ }_{2}$,	L_{2},	SCH ${ }_{2}$,	$B^{\prime} D_{2}$,	APE_{2},	APT ${ }_{2}$,

IPP $_{\text {NCH }}, L_{\text {NCH }}$, SCH $_{\text {NCH }}$, BND $_{\text {NCH }}$, APE $_{\text {NCH }}$, APT $\left._{\text {NCH }}\right]$ LIST
[MAT, 32,151/0.0, 0.0, 0, NRSA, 12*NX, NX/

<The above two list records are repeated until each of the NJSX J^{π} states has been specified.>
[MAT, 32, $151 / 0.0, ~ 0.0, N D I G I T, ~ N N N, ~ N M, ~ 0 \quad] ~ C O N T ~$
[MAT, 32, 151 / II, JJ, KIJ] INTG
[MAT, 32, 151 / II, JJ, KIJ] INTG
< Continue until a total of NM INTG records are read >
For LRF = 7 (unlike other formats), the number of channels may vary from one spin group to another. The number of resonance parameters NNN is therefore given by the sum (from 1 to NJS) of (NCH \times NRSA).

V. FORMULAE FOR THE VARIOUS R-MATRIX REPRESENTATIONS

In this section are presented the formulae for representing cross sections in terms of R-matrix parameters in the resolved resonance region. Information in the remainder of this section is taken essentially verbatim from Appendix D of the ENDF-102 manual. However, the layout of the pages has been reformatted to make it easier to read and to make the outline style more prominent. Corrections have been made where needed.

Subsections are as follows:

D	Resonance Region Formulae
D. 1	Resolved resonance region
D.1.1	SLBW (LRF = 1)
D.1.1.1	Elastic
D.1.1.2	Radiative capture
D.1.1.3	Fission
D.1.1.4	Competitive reaction
D.1.2	MLBW (LRF = 2)
D.1.3	So-called Reich Moore (LRF = 3)
D.1.4-6	Not included in this document
D.1.7	R-Matrix Limited (LRF = 7)
D.1.7.1	Energy-differential cross sections
D.1.7.2	Angular distributions
D.1.7.3	Kinematics for angular distributions
D.1.7.4	Spin conventions
D.1.7.5	Extensions
D.1.7.6	Modifications for charged particles

ENDF-102 APPENDIX D

Resonance Region Formulae

D.1. The resolved resonance region

The following resonance formalisms are given for a particular isotope in the laboratory system, without Doppler broadening.

D.1.1. Single-Level Breit-Wigner (SLBW): LRU=1, LRF=1

D.1.1.1. Elastic Scattering Cross Sections ${ }^{1}$

$$
\begin{equation*}
\sigma_{n, n}(E)=\sum_{l=0}^{\mathrm{NLS-1}} \sigma_{n, n}^{l}(E)(E) \tag{D.1.1-1}
\end{equation*}
$$

where

$$
\begin{align*}
\sigma_{n, n}^{l}(E)= & (2 l+1) \frac{4 \pi}{k^{2}} \sin ^{2} \phi_{l} \\
& +\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{N R_{J}} \frac{\Gamma_{n r}^{2}-2 \Gamma_{n r} \Gamma \sin ^{2} \phi_{l}+2\left(E-E_{r}^{\prime}\right) \Gamma_{n r} \sin 2 \phi_{l}}{\left(E-E_{r}^{\prime}\right)^{2}+\frac{1}{4} \Gamma_{r}^{2}} . \tag{D.1.1-2}
\end{align*}
$$

The hard-sphere phase shifts ϕ_{1}, the wave number k, the primed resonance energy E_{r}^{\prime}, the neutron width Γ_{nr}, and through it the total width Γ_{r}, are all functions of energy, $\phi_{l}(E), k(E), E_{\mathrm{r}}^{\prime}(E)$, $\Gamma_{n r}(E)$, and $\Gamma_{r}(E)$, but this dependence is not shown explicitly. Also, each resonance parameter carries the implicit quantum numbers l and J, determined by the appropriate entries in the ENDF/B file. In case a given pair (l, J) is compatible with two different values of the channel spin, s, the width is a sum over the two partial channel spin widths. This allows one to omit an explicit sum over channel spin when defining the cross sections.

D.1.1.2. Radiative Capture Cross Section

$$
\begin{equation*}
\sigma_{n, \gamma}(E)=\sum_{l=0}^{\text {NLS-1 }} \sigma_{n, \gamma}^{l}(E), \tag{D.1.1-3}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{n, j}^{l}(E)=\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{\mathrm{NR}_{J}} \frac{\Gamma_{n r} \Gamma_{\gamma r}}{\left(E-E_{r}^{\prime}\right)+\frac{1}{4} \Gamma_{r}^{2}} \tag{D.1.1-4}
\end{equation*}
$$

and $\Gamma_{\gamma r}$, the radiative capture width, is constant in energy.

[^6]
D.1.1.3. Fission Cross Section

$$
\begin{equation*}
\sigma_{n, f}(E)=\sum_{l=0}^{\text {NLS- }-1} \sigma_{n, f}^{l}(E), \tag{D.1.1-5}
\end{equation*}
$$

where

$$
\begin{equation*}
\sigma_{n, f}^{l}(E)=\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{N R_{J}} \frac{\Gamma_{n r} \Gamma_{f r}}{\left(E-E_{r}^{\prime}\right)^{2}+\frac{1}{4} \Gamma_{r}^{2}} \tag{D.1.1-6}
\end{equation*}
$$

and $\boldsymbol{\Gamma}_{\boldsymbol{f} r}$, the fission width, is constant in energy.

D.1.1.4. The Competitive Reaction Cross Section

The competitive reaction cross section, $\sigma_{\mathrm{n}, \mathrm{x}}(E)$, is given in terms of analogous formulas involving $\Gamma_{x r}$, the competitive width. By convention, the cross section for the competitive reaction is given entirely in File 3 and is not to be computed from the resonance parameters. The reason for this is that the latter calculation can be done correctly only for a single competitive channel, since the file can define only one competitive width.

The statistical factor $g_{J}=(2 J+1) /(2(2 I+1))$ is obtained from the target spin I and the resonance spin J given in File 2 as SPI and $|\mathrm{AJ}|$, respectively.

The sum on l extends over all l-values for which resonance parameters are supplied. There will be NLS terms in the sum. NLS is given in File 2 for each isotope. In general, ENDF/B resonance files are limited to $l=0,1$, and 2 , so that the potential-scattering contribution will be represented by hard-sphere scattering up to the energy where f-wave ($l=3$) potential scattering starts. At that point, the evaluator may have to supply File 3 scattering to simulate the higher l-values. He may also require a File 3 contribution at lower energies to represent any differences between hard-sphere scattering and experiment.

The sum on J extends over all possible J-values for a particular l-value. NR_{J} is the number of resonances for a given pair of l and J values and may be zero. NRS is the total number of resonances for a given l-value and is given in File 2 for each l-value.

$$
\mathrm{NRS}=\sum_{J=\text { JMIN }}^{J=\mathrm{JMAX}} \mathrm{NR}_{J},
$$

where

$$
\mathrm{JMAX}=l+I+\frac{1}{2}
$$

and

$$
\mathrm{JMIN}=\left\{\begin{array}{ll}
\left|l-I-\frac{1}{2}\right| & \text { if } l \geq I \\
\left|I-l-\frac{1}{2}\right| & \text { if } \mathrm{I} \geq l
\end{array}\right\}=|l-I|-\frac{1}{2}
$$

$\Gamma_{\mathrm{nr}}\left(\left|E_{r}\right|\right) \equiv \mathrm{GN}_{\mathrm{r}}$ is the neutron width, for the $\mathrm{r}^{\text {th }}$ resonance for a particular value of l and J, evaluated at the resonance energy E_{r}. For bound levels, the absolute value $\left|\mathrm{E}_{\mathrm{r}}\right|$ is used.

$$
\begin{equation*}
\Gamma_{n r}=\frac{P_{l}(E) \Gamma_{n r}\left(\left|E_{r}\right|\right)}{P_{l}\left(E_{r}\right)} \tag{D.1.1-7}
\end{equation*}
$$

$\Gamma_{\mathrm{r}}=\Gamma_{\mathrm{nr}}(\mathrm{E})+\Gamma_{\gamma \mathrm{r}}+\Gamma_{\mathrm{fr}}+\Gamma_{\mathrm{xr}}$ is the total width, a function of energy through Γ_{nr} and Γ_{xr}, since $\Gamma_{\gamma \mathrm{r}}$ and Γ_{fr} are constant with respect to energy. The "competitive" width Γ_{xr} is not entered explicitly in File 2. It is calculated from the equation

$$
\begin{equation*}
\Gamma_{x r}=\Gamma_{r}-\Gamma_{n r}-\Gamma_{\gamma r}-\Gamma_{f r} \text { at } E=E_{r} . \tag{D.1.1-8}
\end{equation*}
$$

The following quantities are given in File 2 for each resonance:

E_{r}	$=$ ER, the resonance energy
J	$=$ AJ, the angular momentum ("spin") of the resonance state
I	$=$ SPI, the angular momentum ("spin") of the target nucleus
g_{J}	$=$ statistical factor (2J+1)/(2(2I+1))
$\Gamma_{\mathrm{nr}}\left(\left\|E_{r}\right\|\right)$	$=\mathrm{GN}$, the neutron width
$\Gamma_{\gamma \mathrm{rr}}$	$=\mathrm{GG}$, the radiation width
Γ_{fr}	$=\mathrm{GF}$, the fission width and
$\Gamma_{\mathrm{r}}\left(\left\|E_{r}\right\|\right)$	$=\mathrm{GT}$, the total width evaluated at the resonance energy

Since the competitive width Γ_{xr} is not given, Γ_{r} should be obtained from File 2 directly and not by summing partial widths.

For p-, d- and higher l-values, the primed resonance energy E_{r}^{\prime} is energy dependent:

$$
\begin{equation*}
E_{r}^{\prime}=E_{r}+\frac{S_{l}\left(\left|E_{r}\right|\right)-S_{l}(|E|)}{2 P_{l}\left(\left|E_{r}\right|\right)} \Gamma_{n r}\left(\left|E_{r}\right|\right) . \tag{D.1.1-9}
\end{equation*}
$$

The fact that the shift is zero at each E_{r} is an artifact of the SLBW formalism and implies a different R-matrix boundary condition for each resonance.

The neutron wave number in the center-of-mass system is given as

$$
\begin{equation*}
k=\frac{\sqrt{2 m_{n}}}{\hbar} \frac{\text { AWRI }}{\text { AWRI }+1.0} \sqrt{|E|}, \tag{D.1.1-10}
\end{equation*}
$$

where

$$
\begin{aligned}
& \text { AWRI }=\text { ratio of the mass of a particular isotope to that of the neutron, and } \\
& E \quad=\text { laboratory energy in } \mathrm{eV} \text {. }
\end{aligned}
$$

The energy is written with absolute value signs so that the same formula can be used for positive incident neutron energies and for negative (bound state) resonance energies. (When inelastic scattering can occur, resonances below the level threshold are at "negative energy" in the inelastic channel.)
S_{l} is the shift factor,

$$
\begin{array}{ll}
S_{0}=0, & S_{2}=-\frac{18+3 \rho^{2}}{9+3 \rho^{2}+\rho^{4}}, \tag{D.1.1-11}\\
S_{1}=-\frac{1}{1+\rho^{2}}, & S_{3}=-\frac{675+90 \rho^{2}+6 \rho^{4}}{225+45 \rho^{2}+6 \rho^{4}+\rho^{6}} .
\end{array}
$$

(The quantity ρ is defined below.)
For higher l-values, S_{l} is defined by Equation (2.9) in Reference 1 of ENDF-102 Ref. 5 of this report). See also the SAMMY manual [Ref. 1]. In conventional R-matrix theory, the shift factors are defined differently for negative energies (Reference 1, Equations 2.11a-c). In ENDF, the positive-energy formulas are used, but the absolute value of E is used in SLBW and MLBW. For the R-Matrix Limited format, Section D.1.7 (in Section V of this report), a flag indicates whether shifts are to be calculated or assumed to be zero for each particle-pair.
P_{l} is the penetration factor,

$$
\begin{array}{ll}
P_{0}=\rho, & P_{2}=\frac{\rho^{5}}{9+3 \rho^{2}+\rho^{4}}, \\
P_{1}=\frac{\rho^{3}}{1+\rho^{2}}, & P_{3}=\frac{\rho^{7}}{225+45 \rho^{2}+6 \rho^{4}+\rho^{6}} . \tag{D.1.1-12}
\end{array}
$$

For higher l-values, the P_{l} are defined by Equation (2.9) in Reference 1 of ENDF-102 Ref. 5 of this report). See also the SAMMY manual [Ref. 1]. In conventional R-matrix theory, the penetrabilities are zero for negative energies. The theory uses the "theoretical" definition of a reduced width, $\Gamma(E)=2 P_{l}(E) \gamma^{2}$, where E is a channel energy (center-of-mass), and it suffices to say that $P_{l}(E)=0$ if $E<0$.

In ENDF, the "experimental" definition is used, $\Gamma(E)=\Gamma\left(\left|E_{r}\right|\right) P_{l}(E) / P_{l}\left(\left|E_{r}\right|\right)$, and it is necessary to make the convention that a penetrability for a negative resonance energy is evaluated at its absolute value. A negative kinetic energy can occur in an exit channel if the reaction is exothermic, and in this case $P_{l}(E<0)$ is zero.
ϕ_{1} is the (negative of a) hard-sphere phase shift,

$$
\begin{array}{ll}
\phi_{0}=\hat{\rho}, & \phi_{2}=\hat{\rho}-\tan ^{-1}\left\{\frac{3 \hat{\rho}}{3-\hat{\rho}^{2}}\right\}, \\
\phi_{1}=\hat{\rho}-\tan ^{-1} \hat{\rho}, & \phi_{3}=\hat{\rho}-\tan ^{-1}\left\{\frac{\hat{\rho}(15-\hat{\rho})^{2}}{15-6 \hat{\rho}^{2}}\right\} . \tag{D.1.1-13}
\end{array}
$$

For higher l-values, the ϕ_{l} are defined by Equation 2.12 in Reference 1 Ref. 5]. It is not necessary to evaluate a phase shift at negative energies.
ρ and $\hat{\rho}$ are defined as $\mathrm{k} \times$ RADIUS, where RADIUS is defined as follows:
Let $a=$ channel radius in units of $10^{-12} \mathrm{~cm}$
$=0.123 \mathrm{AWRI}^{1 / 3}+0.08$, but see footnote ${ }^{2}$
AP = energy-independent scattering radius, which determines the low-energy scattering cross section. It is given in File 2 following SPI.
$\mathrm{AP}(\mathrm{E})=$ energy-dependent scattering radius, given as a TAB1 card preceding the "SPI AP.... NLS..." card.

If $\mathrm{NRO}=0$ (AP energy-independent)
NAPS $=0$ then $\rho=k a ; \hat{\rho}=k$ AP
NAPS $=1$ then $\rho=\hat{\rho}=k$ AP
If $\mathrm{NRO}=1$ (AP energy-dependent)
NAPS $=0$ then $\rho=k a ; \hat{\rho}=k \operatorname{AP}(E)$
NAPS $=1$ then $\rho=\hat{\rho}=k \operatorname{AP}(E)$
NAPS $=2$ then $\rho=k \mathrm{AP} ; \hat{\rho}=k \operatorname{AP}(E)$

[^7]
D.1.2. Multilevel Breit-Wigner (MLBW): LRU = 1, LRF = 2

The equations are the same as SLBW, ${ }^{3}$ except that a resonance-resonance interference term is included in the equation for elastic scattering of l-wave neutrons, $\sigma_{n, n}^{l}(E)$:

$$
\begin{equation*}
\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=2}^{N R} \sum_{s=1}^{r-1} \frac{2 \Gamma_{n r} \Gamma_{n s}\left(\left(E-E_{r}^{\prime}\right)\left(E-E_{s}^{\prime}\right)+\frac{1}{4} \Gamma_{r} \Gamma_{s}\right)}{\left(\left(E-E_{r}^{\prime}\right)^{2}+\left(\Gamma_{r} / 2\right)^{2}\right)\left(\left(E-E_{s}^{\prime}\right)^{2}+\left(\Gamma_{s} / 2\right)^{2}\right)} . \tag{D.1.2-1}
\end{equation*}
$$

This form, which has $\sim \mathrm{NR}_{J}^{2}$ energy-dependent terms and can involve a great deal of computer time, may be written in the following form with only NR_{J} terms (see Section 2.4.14 of ENDF-102, not included in this report)

$$
\begin{equation*}
\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{\mathrm{NR} R_{j}} \frac{G_{r} \Gamma_{r}+2 H_{r}\left(E-E_{r}^{\prime}\right)}{\left(E-E_{r}^{\prime}\right)^{2}+\left(\Gamma_{r} / 2\right)^{2}} \tag{D.1.2-2}
\end{equation*}
$$

where

$$
\begin{equation*}
G_{r}=\frac{1}{2} \sum_{\substack{s=1 ; \\(s \neq r)}}^{\mathrm{NR}_{J}} \frac{\Gamma_{n r} \Gamma_{n s}\left(\Gamma_{r}+\Gamma_{s}\right)}{\left(E_{r}^{\prime}-E_{s}^{\prime}\right)^{2}+\frac{1}{4}\left(\Gamma_{r}+\Gamma_{s}\right)^{2}}, \tag{D.1.2-3}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{r}=\sum_{\substack{s=1 ; \\(s \neq r)}}^{\mathrm{NR}_{r}} \frac{\Gamma_{n r} \Gamma_{n s}\left(E_{r}^{\prime}-E_{s}^{\prime}\right)}{\left(E_{r}^{\prime}-E_{s}^{\prime}\right)^{2}+\frac{1}{4}\left(\Gamma_{r}+\Gamma_{s}\right)^{2}} . \tag{D.1.2-4}
\end{equation*}
$$

For the user who does not require ψ - and χ-broadening, the following equations, which are mathematically identical to the MLBW equations, require less computing time (See Section 2.4.19 of ENDF-102, not included in this report):

$$
\begin{gather*}
\sigma_{n, n}(E)=\sum_{l=0}^{\mathrm{NLS-1}} \sigma_{n, n}^{l}(E) \tag{D.1.2-5}\\
\sigma_{n, n}^{l}(E)=\frac{\pi}{k^{2}} \sum_{s=|I-1 / 2|}^{I+1 / 2} \sum_{J=|l-s|}^{l+s} g_{J}\left|1-U_{n n}^{\mid s J}(E)\right|^{2} \tag{D.1.2-6}\\
U_{n n}^{l s J}(E)=e^{-2 i \phi_{1}}\left(1+\sum_{r=1}^{\mathrm{NR} s_{s}} \frac{i \Gamma_{n r}^{\mid s J}}{E_{r}^{\prime}-E-i \Gamma_{r} / 2}\right) \tag{D.1.2-7}
\end{gather*}
$$

CAUTION: Use of this formalism is NOT recommended. Computation time is no longer a valid issue for modern computers. All new evaluations should be done with the Reich-Moore formalism (LRF = 3 format for very simple cases, LRF = 7 for most cases), or with the full R-matrix

[^8]formalism (LRF $=7$ with $K R M=4$, an option not yet implemented in SAMMY or in any of the processor codes).

It is important to note that ENDF's version of the multilevel Breit Wigner formalism does not correspond exactly to the "usual" multilevel formalism. Instead, ENDF's MLBW format allows multilevel computations only for elastic scattering; for other types of partial cross sections, the formalism is single level.

D.1.3 Reich-Moore (R-M): LRU = 1, LRF = 3

Evaluators should be aware that the actual Reich-Moore formalism is far more general than the so-called Reich-Moore format would suggest; the LRF = 3 format permits only a severely limited subset of Reich-Moore capabilities. For a more general treatment of the Reich-Moore formalism, use the LRF = 7 format.

This description of the ENDF Reich-Moore formalism differs from previous versions by using notation in closer agreement with References 1 and 5 of ENDF-102 ([Ref. 5] and [Ref. 6], respectively, in this report). The dependence of all quantities on channel spin has been made explicit, to support a format extension which permits specifying the individual channel-spin components of the neutron width.

Partial cross sections may be obtained from a collision matrix $U_{a b}$, which connects entrance channels a with exit channels b. In ENDF, the formalism is applied to neutron reactions, $a=n$:

$$
\begin{equation*}
\sigma_{n b}=\frac{\pi}{k^{2}} g_{n}\left|\delta_{n b}-U_{n b}\right|^{2} \tag{D.1.3-1}
\end{equation*}
$$

These partial cross sections are not observable, but must be summed over the appropriate entrance and exit channels to yield observable cross sections. The statistical factor g_{n} is a result of prior averaging over channels with different magnetic sub-states, since the ENDF formulae apply to unpolarized particles.

In the Reich-Moore formalism as implemented in LRF $=3$, the only reactions requiring explicit channel definitions are elastic scattering and fission; capture is obtained by subtraction (although it is possible to obtain it directly from the collision matrix elements). Neutron channels are labeled by three quantum numbers, l, s, and J. In the ENDF format, l runs from zero to NLS-1, the highest l-value that contributes to the cross section in the energy range of interest. The channel spin s is the vector sum of the target spin I and the neutron spin $i(1 / 2)$, and takes on the range of values $|I-1 / 2|$ to $I+1 / 2$. The total angular momentum J is the vector sum of l and s, and runs from $|l-s|$ to $l+s$. The fission channels do not correspond to individual two-body fission product breakup but to Bohr-channels in deformation space, which is why two are adequate for describing many neutron-induced fission cross sections. It is not necessary to specify the quantum numbers associated with the two "ENDF-allowed" fission channels, and they can simply be labeled f_{1} and f_{2}.

If one sums over all incident channels n and exit channels b, and invokes unitarity, the resulting total cross section can be expressed in terms of the diagonal matrix elements as

$$
\begin{equation*}
\sigma_{T}(E)=\frac{2 \pi}{k^{2}} \sum_{l=0}^{\mathrm{NLS}} \sum_{s=\left|I-\frac{1}{2}\right|}^{I+\frac{1}{2}} \sum_{J=|l-s|}^{l+s} g_{J} \operatorname{Re}\left(1-U_{|s J| s J}\right) . \tag{D.1.3-2}
\end{equation*}
$$

The elastic cross section is obtained by summing the incident neutron channels over all possible $l s J$ values and the exit neutron channels over those quantities $l^{\prime} s^{\prime} J^{\prime}$ that have the same ranges as $l s J$. Conservation of total angular momentum requires that $J^{\prime}=J$; the ENDF format imposes additional "conservation rules" l ' $=l$ and $s '=s$ which are actually just simplifying assumptions, with some basis in theory and experiment. (Modern evaluation practices do NOT use
these assumptions; hence, the newer LRF = 7 ENDF format is often required.) The sixfold summation then reduces to the familiar form

$$
\begin{equation*}
\sigma_{n n}(E)=\left.\frac{2 \pi}{k^{2}} \sum_{l=0}^{\mathrm{NLS}} \sum_{s=\left|I-\frac{1}{2}\right|}^{I+\frac{1}{2}} \sum_{J=|l-s|}^{l+s} g_{J}\left|1-U_{l s J}\right| s J\right|^{2} . \tag{D.1.3-3}
\end{equation*}
$$

The absorption (non-elastic) cross section is obtained by subtraction:

$$
\begin{equation*}
\sigma_{a b s}(E)=\sigma_{T}(E)-\sigma_{n n}(E) . \tag{D.1.3-4}
\end{equation*}
$$

Fission is obtained from the collision matrix by summing Eq. (D.8) over all incident lsJ values and over the two exit fission channels, $b=f 1$ and $b=f 2$:

$$
\begin{equation*}
\sigma_{f}(E)=\frac{2 \pi}{k^{2}} \sum_{l=0}^{\text {NLS }} \sum_{s=\left|I-\frac{1}{2}\right|}^{I+\frac{1}{2}} \sum_{J=|l-s|}^{l+s} g_{J}\left[\left|U_{n f_{1}}^{l s J}\right|^{2}+\left|U_{n f_{2}}^{l s J}\right|^{2}\right] . \tag{D.1.3-5}
\end{equation*}
$$

The Reich-Moore formalism is described in Reference 2 of ENDF-102 Ref. 7 ff this report]. Here we repeat the level-matrix form of the collision matrix as given in the earlier versions of this manual:

$$
\begin{equation*}
U_{n b}^{J}=e^{-i\left(\phi_{n}+\phi_{b}\right)}\left\lfloor 2\left((I-K)^{-1}\right)_{n b}-\delta_{n b}\right\rfloor \tag{D.1.3-6}
\end{equation*}
$$

where

$$
\begin{equation*}
(I-K)_{n b}=\delta_{n b}-\frac{i}{2} \sum_{r} \frac{\Gamma_{n r}^{1 / 2} \Gamma_{b r}^{1 / 2}}{E_{r}-E-i \Gamma_{\gamma r} / 2} . \tag{D.1.3-7}
\end{equation*}
$$

Here ϕ_{b} is zero for fission, $\phi_{n}=\phi_{l}$ (defined previously), and the summation is over those resonances r which have partial widths in both of the channels n and $b ; E_{r}$ is the resonance energy; $\Gamma_{\gamma r}$ is the "eliminated" radiation width; $\Gamma_{n r}$ and $\Gamma_{b r}$ are the partial widths for the $r^{\text {th }}$ resonance in channels n and b.

Caution: While the following equations are correct, they can lead to serious numerical problems if programmed in this form. For a computationally more stable form, the reader is referred to Section II of the SAMMY manual [Ref. 1].

If we define a matrix ρ by the equation

$$
\begin{equation*}
\rho_{n b}=\delta_{n b}-\left((1-K)^{-1}\right)_{n b}, \tag{D.1.3-8}
\end{equation*}
$$

then the various cross sections take the following forms:
Total:

$$
\begin{equation*}
\sigma_{T}(E)=\frac{2 \pi}{k^{2}} \sum_{l s J} g_{J}\left[\left(1-\cos 2 \phi_{l}\right)+2 \operatorname{Re}\left(\rho_{n n} e^{-2 i \phi_{l}}\right)\right] \tag{D.1.3-9}
\end{equation*}
$$

Elastic:

$$
\begin{equation*}
\sigma_{n n}(E)=\frac{\pi}{k^{2}} \sum_{l s J} g_{J}\left[2-2 \cos 2 \phi_{l}+4 \operatorname{Re}\left(\rho_{n n} e^{-2 i \phi_{l}}\right)-4 \operatorname{Re}\left(\rho_{n n}\right)+4\left|\rho_{n n}\right|^{2}\right] . \tag{D.1.3-10}
\end{equation*}
$$

Absorption (fission plus capture):

$$
\begin{equation*}
\sigma_{n a b s}(E)=\frac{4 \pi}{k^{2}} \sum_{l s J} g_{J}\left[\operatorname{Re}\left(\rho_{n n}\right)-\left|\rho_{n n}\right|^{2}\right] . \tag{D.1.3-11}
\end{equation*}
$$

Fission:

$$
\begin{equation*}
\sigma_{n f}(E)=\frac{4 \pi}{k^{2}} \sum_{l s J} g_{J}\left[\left|\rho_{n f_{1}}\right|^{2}+\left|\rho_{n f_{2}}\right|^{2}\right] . \tag{D.1.3-12}
\end{equation*}
$$

The phase shifts and penetrabilities are evaluated in terms of a and AP as described earlier. The shift factor has been set equal to zero in the above equations $\left(E^{\prime}{ }_{r} \rightarrow E_{r}\right)$; hence, they are strictly correct only for s-wave resonances. Originally, the ENDF Reich-Moore format was used for low-energy resonances in fissile materials, which are s-waves. However, it is believed that the "noshift" formulae can be safely applied to higher l-values also, since the difference in shape between a shifted resonance and one that is not shifted at the same energy has no practical significance. Evaluations using the correct shift factors can be reported in the newer LRF $=7$ format.

Footnote 1 (from the SLBW section, page 53 of this report) applies to the Reich-Moore formalism also. Until this revision (i.e., until a format modification approved by CSEWG in 1999), the format did not permit the specification of channel spin; therefore, if an evaluation includes $l>0$ resonances for $I>0$ nucleus, it was necessary for the processing codes to include the potentialscattering contributions from the "missing" channels. (It is adequate to arbitrarily assume that the supplied values are for the $s=I-1 / 2$ channels, and to use the same potential-scattering radius in the missing $I+1$ /2 channels. See Sections 2.4.23 and 2.4.24 of ENDF-102, which is not repeated in this report.) Having the ability to specify which channel spin is intended does not solve this problem, unless the evaluator actually supplies resonances for both channels. In cases where the data can be fit with all the resonances in the same s-channel, the "other one" will still be absent from the ENDF file, since the format stipulates nothing about avoiding missing channels. This is why it is reasonable for the processing codes to run over the triple IsJ loop, inserting potential scattering in every channel, and resonances whenever they are supplied.

Note: When both positive and negative AJ values are given in the file, negative AJ implies $s=I-1 / 2$ and positive AJ implies $s=I+1 / 2$. When AJ $=0$, one and only one of $I-1 / 2$ or $I+1 / 2$ is possible, so the possible ambiguity of ± 0 does not arise. In this case $s=l$, so parity conservation prevents the occurrence, for a given J, of two s-values differing by one unit.
D.1.4. Adler-Adler (AA): $\mathrm{LRU}=1, \mathrm{LRF}=4$
D.1.5. General R-Matrix (GRM): LRU $=1, L R F=5$
D.1.6 Hybrid R-function (HRF): LRU $=1, \operatorname{LRF}=6$
not included in this document
no longer available
no longer available
D.1.7 R-Matrix Limited Format (RML) : LRU =1, LRF = 7

In R-Matrix theory, a channel may be defined by $c=(\alpha, l, s, J)$, where

- $\quad \alpha$ represents the two particles making up channel; α includes mass (m_{a} and m_{b} with subscript a indicating the incident particle for an entrance channel), charge (Z_{a} and Z_{b}), spin (i_{a} and i_{b}), and parity (π_{a} and π_{b}) and all other quantum numbers for each of the two particles, plus the Q -value.
- $\quad l$ is the orbital angular momentum; the associated parity is $(-1)^{l}$.
- $\quad s$ represents the channel spin (including the associated parity); that is, s is the vector sum of the spins of the two particles of the pair.
- J is the total angular momentum (and associated parity); J is the vector sum of l and s.

Only J and its associated parity are conserved for any given interaction. The other quantum numbers may differ from channel to channel, so long as the sum rules for spin and parity are obeyed.

In the Reich-Moore approximation to R-matrix theory, the radiation width is treated separately and differently from widths for other channels (which are hereafter referred to as "particle channels"). In this LRF = 7 format, there is assumed to be an "eliminated channel" which, for the strict interpretation of the Reich-Moore approximation, contains all the radiation width; in this format, it is possible for some portion of the radiation width to be treated in the same fashion as the particle widths. In the equations below, the eliminated width appears only in the denominator of the R-matrix.

In all formulae given below, spin quantum numbers (e.g., J) are implicitly assumed to include the associated parity. Vector sum rules are implicitly assumed to be obeyed; readers unfamiliar with these sum rules are referred to Section D.1.7.4 for details.

Let the angle-integrated cross sections from entrance channel c to exit channel c^{\prime} with total angular momentum J be represented by $\sigma_{c c^{\prime}}$. This cross section is given in terms of the scattering matrix $U_{\text {cc' }}$ as

$$
\begin{equation*}
\sigma_{c c^{\prime}}=\frac{\pi}{k_{a}^{2}} g_{J \alpha}\left|e^{i w_{c}} \delta_{c c^{\prime}}-U_{c c^{\prime}}\right|^{2} \delta_{J J^{\prime}}, \tag{D.1.7-1}
\end{equation*}
$$

where (l) k_{α} is the center-of mass momentum associated with incident particle-pair α, (2) is $g_{J \alpha}$ is the spin statistical factor, and (3) w_{c} is zero for non-Coulomb channels. (Details for the charged-particle case are presented later.) The spin statistical factor is given by

$$
\begin{equation*}
g_{J \alpha}=\frac{2 J+1}{\left(2 i_{a}+1\right)\left(2 i_{b}+1\right)}, \tag{D.1.7-2}
\end{equation*}
$$

and center-of mass momentum k_{α} by

$$
\begin{equation*}
k_{\alpha}^{2}=\frac{2 m_{a} m_{b}^{2}}{\left(m_{a}+m_{b}\right)^{2}} E \tag{D.1.7-3}
\end{equation*}
$$

The scattering matrix U can be written in terms of the matrix W as

$$
\begin{equation*}
U_{c c^{\prime}}=\Omega_{c} W_{c c^{\prime}} \Omega_{c^{\prime}}, \tag{D.1.7-4}
\end{equation*}
$$

where Ω is given by

$$
\begin{equation*}
\Omega_{c}=e^{i\left(w_{C}-\phi_{C}\right)} . \tag{D.1.7-5}
\end{equation*}
$$

Here again, w_{c} is zero for non-Coulomb channels, and the potential scattering phase shifts for nonCoulomb interactions φ_{c} are defined in many references (e.g., Ref. 1, which is [Ref. 5] $\phi \mathrm{f}$ this report; see also [Ref. 1] of this report). The matrix W in Eq. (D.1.7-4) is related to the R-matrix (in matrix notation with indices suppressed) via

$$
\begin{equation*}
W=P^{1 / 2}(I-R L)^{-1}\left(I-R L^{*}\right) P^{-1 / 2} \tag{D.1.7-6}
\end{equation*}
$$

The quantity I in this equation represents the identity matrix. The quantity L in Eq. (D.1.7-6) is given by

$$
\begin{equation*}
L=(S-B)+i P, \tag{D.1.7-7}
\end{equation*}
$$

with P the penetration factor, S the shift factor, and B the arbitrary boundary constant at the channel radius a_{c}. Formulae for P and S are likewise found in many references (see, e.g., Eq. (2.9) in Ref. 1 [Ref. 5 of this report]); for non-Coulomb interactions see Table D.1.7.1 for the appropriate formulae. For fission, the penetrability is unity. For non-eliminated capture channels, the penetrability is unity. For two charged particles, formulae for the penetrabilities are provided in Section II.C. 4 of the SAMMY users' manual [Ref. 1] and will be added to this report as time permits.

In the eliminated-channel approximation, the R-matrix of Eq. (D.1.7-6) (for the spin group defined by total spin J and implicit parity π) has the form

$$
\begin{equation*}
R_{c c^{\prime}}=\left[\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E-i \Gamma_{\lambda \gamma} / 2}+R_{c}^{\mathrm{bkg}} \delta_{c c^{\prime}}\right] \delta_{J J^{\prime}}, \tag{D.1.7-8}
\end{equation*}
$$

where all levels (resonances) of that spin group are included in the sum. Subscripts λ designate the particular level; subscripts c and c^{\prime} designate channels (including particle-pairs and all the relevant quantum numbers). Again, the width $\Gamma_{\lambda \gamma}$ occurring in the denominator corresponds to the "eliminated" non-interfering capture channels of the Reich-Moore approximation.

The "background R-matrix" $R_{c}{ }^{\text {bkg }}$ of Eq. (D.1.7-8) will be discussed in Section D.1.7.5.
The channel width $\Gamma_{\lambda c}$ is given in terms of the reduced width amplitude $\gamma_{\lambda c}$ by

$$
\begin{equation*}
\Gamma_{\lambda c}=2 \gamma_{\lambda c}^{2} P_{c}(E), \tag{D.1.7-9}
\end{equation*}
$$

where P_{c} is the penetrability, whose value is a function of the type of particles in the channel, of the orbital angular momentum l, and of the energy E. Note that the reduced-width amplitude $\gamma_{\lambda c}$ is always independent of energy, but the width $\Gamma_{\lambda c}$ may depend on energy via the penetration factor.

Cross sections may be calculated by using the above expressions for R and L to calculate W, and from there calculating U and, ultimately, σ. However, while Eq. (D.1.7-6) for W is correct, an equivalent form which is computationally more stable is

$$
\begin{equation*}
W=I+2 i X \tag{D.1.7-10}
\end{equation*}
$$

where X is given in matrix notation by

$$
\begin{equation*}
X=P^{1 / 2} L^{-1}\left(L^{-1}-R\right)^{-1} R P^{1 / 2} \tag{D.1.7-11}
\end{equation*}
$$

When the suppressed indices and implied summations are inserted, the expression of X becomes

$$
\begin{equation*}
X_{c c^{\prime}}=\left.P_{c}^{1 / 2} L_{c}^{-1} \sum_{c^{\prime \prime}}\left[\left(L^{-1}-R\right)^{-1}\right]_{c c^{\prime \prime}} R_{c^{\prime \prime} c^{\prime}}\right|_{c^{\prime}} ^{1 / 2} \delta_{J J^{\prime}} \tag{D.1.7-12}
\end{equation*}
$$

The various cross sections are then written in terms of X.

Table D.1.7.1. Hard-sphere penetrability (penetration factor) P, level shift factor S, and potential scattering phase shift ϕ for orbital angular momentum l, center of mass momentum
k, and channel radius a_{c}, with $\rho=k a_{c}$

I	\boldsymbol{P}_{1}	S_{I}	ϕ_{1}
0	ρ	0	ρ
1	$\rho^{3} /\left(1+\rho^{2}\right)$	$-1 /\left(1+\rho^{2}\right)$	$\rho-\tan ^{-1} \rho$
2	$\rho^{5} /\left(9+3 \rho^{2}+\rho^{4}\right)$	$-\left(18+3 \rho^{2}\right) /\left(9+3 \rho^{2}+\rho^{4}\right)$	$\rho-\tan ^{-1}\left[3 \rho /\left(3-\rho^{2}\right)\right]$
3	$\begin{gathered} \rho^{7} /\left(225+45 \rho^{2}\right)+ \\ \left.6 \rho^{4}+\rho^{6}\right) \end{gathered}$	$\begin{aligned} & -\left(675+90 \rho^{2}+6 \rho^{4}\right) / \\ & \quad\left(225+45 \rho^{2}+6 \rho^{4}+\rho^{6}\right) \end{aligned}$	$\rho-\tan ^{-1}\left[\rho\left(15-\rho^{2}\right) /\left(15-6 \rho^{2}\right)\right]$
4	$\begin{gathered} \rho^{9} /\left(11025+1575 \rho^{2}+\right. \\ 135 \rho^{4}+10 \rho^{6}+\rho^{8} \end{gathered}$	$\begin{aligned} & -\left(44100+4725 \rho^{2}+270 \rho^{4}+10 \rho^{6}\right) / \\ & \quad\left(11025+1575 \rho^{2}+135 \rho^{4}+10 \rho^{6}+\rho^{8}\right) \end{aligned}$	$\begin{array}{r} \rho-\tan ^{-1}\left[\rho\left(105-10 \rho^{2}\right) /\right. \\ \left.\quad\left(105-45 \rho^{2}+\rho^{4}\right)\right] \end{array}$
l	$\frac{\rho^{2} P_{l-1}}{\left(l-S_{l-1}\right)^{2}+P_{l-1}^{2}}$	$\frac{\rho^{2}\left(l-S_{l-1}\right)}{\left(l-S_{l-1}\right)^{2}+P_{l-1}^{2}}-l$	$\begin{aligned} & \phi_{l-1}-\tan ^{-1}\left(\left(P_{l-1} /\left(l-S_{l-1}\right)\right)\right. \\ & \text { or } \\ & B_{l}=\left(B_{l-1}+X_{l}\right) \\ & \quad /\left(1-B_{l-1} X_{l}\right) \\ & \text { with } \\ & B_{l}=\tan \left(\rho-\phi_{l}\right) \\ & \text { and } \\ & X_{l}=\left(P_{l-1}\right) /\left(l-S_{l-1}\right) \end{aligned}$

D.1.7.1 Energy-Differential (Angle-Integrated) Cross Sections (Non-Coulomb Channels)

The observable cross sections are found in terms of X by first substituting Eq. (D.1.7-4, -5 , and -10) into Eq. (D.1.7-1), summing over spin groups (i.e., over J^{π}), and then summing over all channels corresponding to those particle pairs and spin groups. If X^{r} represents the real part and X^{i} the imaginary part of X, then the angle-integrated (but energy-differential) cross section for the interaction which leads from particle-pair α to particle-pair α has the form

$$
\begin{gather*}
\sigma_{\alpha, \alpha^{\prime}}(E)=\frac{4 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{c}\left[\left(\sin ^{2} \phi_{c}\left(1-2 X_{c c}^{i}\right)-X_{c c}^{i} \sin \left(2 \phi_{c}\right)\right) \delta_{\alpha, \alpha^{\prime}}\right. \\
\left.+\sum_{c^{\prime}}\left\{X_{c c^{\prime}}^{i{ }^{2}}+X_{c c^{\prime}}^{r}\right\}\right] . \tag{D.1.7.1-1}
\end{gather*}
$$

[This formula is accurate only for cases in which one of particles in α is a neutron; however, both particles in α^{\prime} may be charged.]

In Eq. (D.1.7.1-1) the summations are over those channels c and c^{\prime} \{of the spin group defined by $\left.J^{\pi}\right\}$ for which the particle-pairs are respectively α and α. More than one "incident channel" $c=(\alpha, l, s, J)$ can contribute to this cross section, for example, when both $l=0$ and $l=2$ are possible, or when, in the case of incident neutrons and non-zero spin target nuclei, both channel spins are allowed. Similarly, there may be several "exit channels" $c^{\prime}=\left(\alpha^{\prime}, l^{\prime}, s^{\prime}, J^{\prime}\right)$, depending on the particular reaction being calculated (elastic, inelastic, fission, etc.).

The total cross section (for non-Coulomb initial states) is the sum of Eq. (D.1.7.1-1) over all possible final-state particle-pairs α, assuming the scattering matrix is unitary (i.e., assuming that the sum over c^{\prime} of $\left|U_{c c^{\prime}}\right|^{2}=1$). Written in terms of the X matrix, the total cross section has the form

$$
\begin{equation*}
\sigma_{\alpha, \text { total }}(E)=\frac{4 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{c}\left[\frac{1}{2} \sin ^{2} \phi_{c}+X_{c c}^{i} \cos \left(2 \phi_{c}\right)-X_{c c}^{r} \sin \left(2 \phi_{c}\right)\right], \tag{D.1.7.1-2}
\end{equation*}
$$

where again the sum over c includes only those channels of the J^{π} spin group for which the particlepair is α.

The angle integrated elastic cross section is given by

$$
\begin{equation*}
\sigma_{\alpha, \alpha}(E)=\frac{4 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{c}\left[\sin ^{2} \phi_{c}\left(1-2 X_{c c}^{i}\right)-X_{c c}^{r} \sin \left(2 \phi_{c}\right)+\sum_{c^{\prime}}\left\{X_{c c^{\prime}}^{i{ }^{2}}+X_{c c^{\prime}}^{r^{2}}\right\}\right] .(\tag{D.1.7.1-3}
\end{equation*}
$$

In this case, both c and c^{\prime} are limited to those channels of the J^{π} spin group for which the particlepair is α; again, there may be more than one such channel for a given spin group.

Similarly, the reaction cross section from particle-pair α to particle-pair α^{\prime} (where α^{\prime} is not equal to α) is

$$
\begin{equation*}
\sigma_{\alpha, \alpha^{\prime}}(E)=\frac{4 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{c} \sum_{c^{\prime}}\left[X_{c c^{\prime}}^{i}{ }^{2}+X_{c c^{\prime}}^{r}{ }^{2}\right] . \tag{D.1.7.1-4}
\end{equation*}
$$

Here c is restricted to those channels of the J^{π} spin group from which the particle-pair is α, and c^{\prime} to those channels for which the particle-pair is α^{\prime}.

The absorption cross section has the form

$$
\begin{equation*}
\sigma_{\alpha \text { absorption }}(E)=\frac{4 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{c}\left[X_{c c}^{i}-\sum_{c^{\prime}}\left\{X_{c c^{\prime}}^{i}{ }^{2}+X_{c c^{\prime}}^{r}{ }^{2}\right\}\right] . \tag{D.1.7.1-5}
\end{equation*}
$$

Here both the sum over c and the sum over c^{\prime} include all incident particle channels (i.e., particle-pair α only) for the J^{π} spin group.

The capture cross section for the eliminated radiation channels can be calculated directly as

$$
\begin{equation*}
\sigma_{\alpha \gamma}(E)=\frac{4 \pi}{k_{\alpha}^{2}} \sum_{J} g_{J \alpha} \sum_{\text {incc }}\left[X_{c c}^{i}-\sum_{\text {allc' }}\left\{X_{c c^{\prime}}^{i}{ }^{2}+X_{c c^{\prime}}^{r}{ }^{2}\right\}\right] \tag{D.1.7.1-6}
\end{equation*}
$$

or may be found by subtracting the sum of all reaction cross sections from the absorption cross section. In Eq. (D.1.7.1-6), the sum over c includes all incident particle channels for the J^{π} spin group, and the sum over c^{\prime} includes all particle channels, both incident and exit, for that spin group.

D.1.7.2 Angular Distributions

Angular distributions (elastic, inelastic, or other reaction) cross sections for incident neutrons can be calculated from Reich-Moore resonance parameters. Following Blatt and Biedenharn [Ref. 7] [Ref. 8 in this report] with some notational changes, the angular distribution cross section in the center-of-mass system may be written

$$
\begin{equation*}
\frac{d \sigma_{\mathrm{Ss}}{ }^{\prime}}{d \Omega_{C M}}=\sum_{L} C_{L \alpha \alpha^{\prime}}(E) P_{L}(\cos \beta) \tag{D.1.7.2-1}
\end{equation*}
$$

in which the subscript $\alpha \alpha^{\prime}$ indicates which type of cross section is being considered, P_{L} is the Legendre polynomial of degree L, and β is the angle of the outgoing neutron (or other particle) relative to the incoming neutron in the center-of-mass system. The coefficients $C_{L \alpha \alpha^{\prime}}(E)$ are given by

$$
\begin{align*}
& C_{L \alpha \alpha^{\prime}}(E)=\frac{1}{4 k_{\alpha}^{2}} \sum_{J_{1}} \sum_{J_{2}} \sum_{c_{1}=\left(\alpha l_{1} s_{1} J_{1}\right)} \sum_{c_{1}^{\prime}=\left(\alpha^{\prime} l_{1}^{\prime} s_{1}^{\prime} J_{1}\right)} \sum_{c_{2}=\left(\alpha l_{2} s_{2} J_{2}\right)} \sum_{c_{2}^{\prime}=\left(\alpha^{\prime} l_{2}^{\prime} s_{2}^{\prime} J_{2}\right)} \tag{D.1.7.2-2}\\
& \quad \times B_{\left.\left\{l_{1} s_{1} l^{\prime} s_{1}^{\prime} J_{1}\right\}\left\{l_{2} s_{2} l_{2}^{\prime} s_{2}^{\prime} J_{2}\right\}\right\}^{\prime}} \frac{1}{\left(2 i_{a}+1\right)\left(2 i_{b}+1\right)} \operatorname{Re}\left[\left(\delta_{c_{1} c_{1}}-U_{c_{2} c_{2}^{\prime}}\right)\left(\delta_{c_{1} G_{1}^{\prime}}-U_{c_{2} c_{2} c_{2}^{\prime}}^{*}\right)\right],
\end{align*}
$$

where the various summations are to be interpreted as follows:
(1) sum over all spin groups defined by spin J_{1} and the implicit associated parity.
(2) sum over all spin groups defined by spin J_{2} and implicit associated parity.
(3) sum over all those channels c_{1} belonging to the J_{1} spin group and having particle-pair α

$$
\left[c_{1}=\left(\alpha, l_{1}, s_{1}, J_{1}\right)\right] .
$$

(4) sum over those channels $c_{1}{ }^{\prime} J_{1}$ spin group with particle-pair $\alpha^{\prime}\left[c_{1}{ }^{\prime}=\left(\alpha^{\prime}, l^{\prime}{ }_{1}, s^{\prime}{ }_{1}, J_{1}\right)\right]$.
(5) sum over those channels $c_{2} J_{2}$ spin group with particle-pair $\alpha\left[c_{2}=\left(\alpha, l_{2}, s_{2}, J_{2}\right)\right]$.
(6) sum over those channels $c_{2}{ }^{\prime} J_{2}$ spin group with particle-pair $\alpha^{\prime}\left[c_{2}^{\prime}=\left(\alpha^{\prime}, l^{\prime}{ }_{2}, s^{\prime}{ }_{2}, J_{2}\right)\right]$.

Also note that i_{a} and i_{b} are spins of the two particles in particle-pair α.
The geometric factor B can be exactly evaluated as a product of terms

$$
\begin{equation*}
B_{\left\{l_{1} s_{1} l_{1}^{\prime} s_{1}^{\prime} I_{1}\right\}\left\{l_{2} s_{2} l_{2}^{\prime} s_{2}^{\prime} J_{2}\right\} L}=A_{l_{1} s_{1} l_{1}^{\prime} s_{1}^{\prime} ; J_{1}^{\prime}} A_{l_{2} s_{2} l_{2} s_{2}^{\prime} ; J_{2}} D_{l_{1} s_{1} l_{1}^{\prime} s_{1}^{\prime} l_{2} s_{2} l_{2}^{\prime} s_{2}^{\prime} ; L J_{1} J_{2}}, \tag{D.1.7.2-3}
\end{equation*}
$$

where the factor $A_{l_{1} s_{1} l_{1}^{\prime} s_{1} ; J_{1}}$ is of the form

$$
\begin{equation*}
A_{l_{1} s_{1} l_{1}^{\prime} s_{;}^{\prime} J_{1}}=\sqrt{\left(2 l_{1}+1\right)\left(2 l_{1}^{\prime}+1\right)}\left(2 J_{1}+1\right) \Delta\left(l_{1} J_{1} s_{1}\right) \Delta\left(l_{1}^{\prime} J_{1} s_{1}^{\prime}\right) . \tag{D.1.7.2-4}
\end{equation*}
$$

The expression for D is

$$
\begin{align*}
D_{l_{1} s_{1} l_{1}^{\prime} s_{1}^{\prime} l_{2} s_{2} l_{2}^{\prime} s_{2}^{\prime}, L J_{1} J_{2}} & =(2 L+1) \Delta^{2}\left(J_{1} J_{2} L\right) \Delta^{2}\left(l_{1} l_{2} L\right) \Delta^{2}\left(l_{1}^{\prime} l_{2}^{\prime} L\right) \\
& \times w\left(l_{1} J_{1} l_{2} J_{2}, s_{1} L\right) w\left(l_{1}^{\prime} J_{1} l_{2}^{\prime} J_{2}, s_{1}^{\prime} L\right) \delta_{s_{1} s_{2}} \delta_{s_{1}^{\prime} s_{2}}(-1)^{s_{1}-s_{1}^{\prime}} \tag{D.1.7.2-5}\\
& \times \frac{n!(-1)^{n}}{\left(n-l_{1}\right)!\left(n-l_{2}\right)!(n-L)!} \frac{n^{\prime}!(-1)^{n^{\prime}}}{\left(n^{\prime}-l_{1}^{\prime}\right)!\left(n^{\prime}-l_{2}^{\prime}\right)!\left(n^{\prime}-L\right)!},
\end{align*}
$$

in which n is defined by

$$
\begin{equation*}
2 n=l_{1}+l_{2}+L ; \tag{D.1.7.2-6}
\end{equation*}
$$

D is zero if $l_{1}+l_{2}+L$ is an odd number. A similar expression defines n^{\prime}. The Δ^{2} term is given by

$$
\begin{equation*}
\Delta^{2}(a b c)=\frac{(a+b-c)!(a+b+c)!(a+b+c)!}{(a+b+c+1)!} \tag{D.1.7.2-7}
\end{equation*}
$$

for which the arguments a, b, and c are to be replaced by the appropriate values given in Eqs. (D.1.7.2-4) and (D.1.7.2-5). The expression for $\Delta^{2}(a b c)$ implicitly includes a selection rule for the arguments; that is, the vector sum must hold:

$$
\begin{equation*}
\vec{a}+\vec{b}=\vec{c} . \tag{D.1.7.2-8}
\end{equation*}
$$

The quantity w in Eq. (23) is defined as

$$
\begin{align*}
& w\left(l_{1} J_{1} l_{2} J_{2}, s L\right)=\sum_{k=k \min }^{k \max }\left[\frac{(-1)^{k+l_{1}+J_{1}+l_{2}+J_{2}}(k+1)!}{\left(k-\left(l_{1}+J_{1}+s\right)\right)!\left(k-\left(l_{2}+J_{2}+s\right)\right)!}\right. \\
& \quad \times \frac{1}{\left(k-\left(l_{1}+l_{2}+L\right)\right)!\left(k-\left(J_{1}+J_{2}+L\right)\right)!} \tag{D.1.7.2-9}\\
& \left.\quad \times \frac{1}{\left(l_{1}+J_{1}+l_{2}+J_{2}-k\right)!\left(l_{1}+J_{2}+s+L-k\right)!\left(l_{2}+J_{1}+s+L-k\right)!}\right]
\end{align*}
$$

(and similarly for the primed expression), where kmin and kmax are chosen such that none of the arguments of the factorials are negative. That is,

$$
\begin{align*}
& \text { kmin }=\max \left\{\left(l_{1}+J_{1}+s\right),\left(l_{2}+J_{2}+s\right),\left(l_{1}+l_{2}+L\right),\left(J_{1}+J_{2}+L\right)\right\} \\
& \text { kmax }=\min \left\{\left(l_{1}+J_{1}+l_{2}+J_{2}\right),\left(l_{1}+J_{2}+s+L\right),\left(l_{2}+J_{1}+s+L\right)\right\} . \tag{D.1.7.2-10}
\end{align*}
$$

Single-channel case

For the single-channel case, the coefficients $C_{\text {Laa, }}(\mathrm{E})$ reduce to

$$
\begin{align*}
C_{L \alpha \alpha}(E) & =\frac{1}{4 k_{\alpha}^{2}} \sum_{J_{1}} \sum_{J_{2}} \sum_{c_{1}=\left(\alpha l_{1} s_{1} J_{1}\right)}\left[\sum_{c_{2}=\left(\alpha l_{2} s_{2} J_{2}\right)} B_{\left\{1_{1} s_{1} s_{1} J_{1}\right\}\left\{l_{2} s_{2} l_{2} s_{2} J_{2}\right\} L}\right. \tag{D.1.7.2-11}\\
& \left.\times \frac{1}{\left(2 i_{a}+1\right)\left(2 i_{b}+1\right)} \operatorname{Re}\left[\left(1-U_{c_{1} c_{1}}\right)\left(1-U_{c_{2} c_{2}}^{*}\right)\right]\right]
\end{align*}
$$

where the existence of only one channel requires that the primed quantities of Eq. (D.1.7.2-2) be equal to the unprimed (e.g., $\alpha=\alpha$ '). The geometric factor B becomes

$$
\begin{equation*}
B_{\left\{1_{1} s_{1} l_{1} s_{1} J_{1}\right\}\left\{l_{2} s_{2} l_{2} s_{2} J_{2}\right\} L}=A_{l_{1} s_{1} l_{1} s_{1} ; J_{1}} A_{l_{2} s_{2} l_{2} s_{2} ; J_{2}} D_{l_{1} s_{1} l_{1} s_{2} s_{2} l_{2} s_{2} ; L J_{1} J_{2}} \tag{D.1.7.2-12}
\end{equation*}
$$

where the factor A reduces to the simple form

$$
\begin{equation*}
A_{l_{1} s_{1} l_{1} s_{1} ; J_{1}}=\left(2 l_{1}+1\right)\left(2 J_{1}+1\right) \Delta^{2}\left(l_{1} J_{1} s_{1}\right), \tag{D.1.7.2-13}
\end{equation*}
$$

and the expression for D reduces to

$$
\begin{align*}
D_{l_{1} s_{1} l_{1} s_{1} l_{2} s_{2} l_{2} s_{2} ; L J_{1} J_{2}}= & (2 L+1) \Delta^{2}\left(J_{1} J_{2} L\right) \Delta^{4}\left(l_{1} l_{2} L\right) w^{2}\left(l_{1} J_{1} l_{2} J_{2}, s_{1} L\right) \\
& \times\left[\frac{n!}{\left(n-l_{1}\right)!\left(n-l_{2}\right)!(n-L)!}\right]^{2} \delta_{s_{1} s_{2}} \tag{D.1.7.2-14}
\end{align*}
$$

in which n is again defined as in Eq. (D.1.7.2-6).

D.1.7.3 Kinematics for Angular Distributions of Elastic Scattering

If E represents the laboratory kinetic energy of the incident neutron, E^{\prime} the lab kinetic energy of the outgoing particle, θ the laboratory angle of the outgoing neutron, and Q the Q -value for the reaction, then E^{\prime} may be expressed in terms of E, θ, and Q as

$$
\begin{equation*}
E^{\prime}=E\left[\frac{m_{a}}{m_{a}+m_{b}} \cos \theta+\sqrt{\left(\frac{m_{b}}{m_{a}+m_{b}}\right)^{2}-\sin ^{2} \theta\left(\frac{m_{a}}{m_{a}+m_{b}}\right)^{2}}\right]^{2} \tag{D.1.7.3-1}
\end{equation*}
$$

where m_{a} represents the mass of the incident particle (neutron) and m_{b}, the mass of the sample (target) nucleus. Similarly, the center-of-mass angle β between outgoing and incoming neutron is found from

$$
\begin{equation*}
\cos \beta= \pm \frac{m_{a}}{m_{b}}\left\{\cos \theta \sqrt{\left(\frac{m_{b}^{2}}{m_{a}^{2}}-\sin ^{2} \theta\right)}-\sin ^{2} \theta\right\} \tag{D.1.7.3-2}
\end{equation*}
$$

and the Jacobian of transformation from center-of-mass to laboratory system is

$$
\begin{equation*}
\frac{d(\cos \beta)}{d(\cos \theta)}=2 \cos \theta \frac{m_{a}}{m_{b}}+\frac{1+\left(2 \cos ^{2} \theta-1\right) m_{a}^{2} / m_{b}^{2}}{\sqrt{1-\sin ^{2} \theta m_{a}^{2} / m_{b}^{2}}} \tag{D.1.7.3-3}
\end{equation*}
$$

The elastic angular distribution cross section in the laboratory system is then found by combining Eq. (D.1.7.2-1) with (D.1.7.3-3), using the relationship in Eq. (D.1.7.3-2), to give

$$
\begin{equation*}
\frac{d \sigma}{d \Omega_{l a b}}(\theta)=\frac{d \sigma}{d \Omega_{C M}} \frac{d(\cos \beta)}{d(\cos \theta)} . \tag{D.1.7.3-4}
\end{equation*}
$$

Note that the lowest energy into which a neutron may scatter (i.e., the energy of a neutron after 180-degree scattering) is

$$
\begin{equation*}
E^{\prime}(\cos \theta=-1)=E\left[\frac{m_{b}-m_{a}}{m_{b}+m_{a}}\right]^{2}, \tag{D.1.7.3-5}
\end{equation*}
$$

and the energy of 90 -degree scattering is

$$
\begin{equation*}
E^{\prime}(\cos \theta=0)=E\left[\frac{m_{b}-m_{a}}{m_{b}+m_{a}}\right] . \tag{D.1.7.3-6}
\end{equation*}
$$

D.1.7.4 Spin and Angular Momentum Conventions

The spin and angular momentum conventions used in the R-Matrix Limited Format are described in Table D.1.7.4. Note that the word "channel" refers to the physical configuration as well as to the quantum numbers given here. For example, for an incident neutron (intrinsic spin $i=1 / 2$) impinging on a target (sample) whose spin is I, the channel spin is s, where $\vec{s}=\vec{i}+\vec{I}$. The relative orbital angular momentum of this channel (neutron + target) is l, and total spin is J, where $\vec{J}=\vec{s}+\vec{l}$. The exit channel might be the same as the entrance channel, or it might include, for example, two particles whose individual spins are i^{\prime} and I^{\prime} and whose channel spin is s^{\prime}, where $\vec{s}^{\prime}=\vec{i}^{\prime}+\vec{I}^{\prime}$. The relative angular momentum of the two particles is l^{\prime}, and the total J must satisfy $\vec{J}=\vec{s}^{\prime}+\vec{l}^{\prime}$.

For readers unfamiliar with vector summation, the rules are as follows: All quantum numbers are either integer ($0,1,2, \ldots$) or half-integer ($1 / 2,3 / 2,5 / 2, \ldots$). If vectors of magnitude a and b are to be added, then the sum c has magnitude in the range $|a-b| \leq c \leq a+b ; c$ takes on only integer values if $a+b$ is integer, and half-integer values if $a+b$ is half-integer. The parity associated with c is the product of the parities associated with a and b. Note also that parity associated with orbital angular momentum l is rarely expressed explicitly, as it is always $(-1)^{1}$.

Table D.1.7.4 Spin and angular momentum conventions

Symbol	Meaning	Value or range of values
i or i^{\prime}	Intrinsic spin of incident neutron or outgoing particle	$1 / 2$ for incident neutron
I or I^{\prime}	Spin of target or residual nuclei	integer or half-integer
l or l^{\prime}	Orbital angular momentum of incident or outgoing particle	non-negative integer
s or s^{\prime}	Incident or outgoing channel spin, equal to target spin plus incident particle spin	$\vec{s}=\vec{I}+\vec{i}$ or $\vec{s}^{\prime}=\vec{I}^{\prime}+\vec{i} \vec{i}^{\prime}$
J	(1) Spin of resonance	$\vec{J}=\vec{l}+\vec{s}=\vec{l}{ }^{\prime}+\vec{s}^{\prime}$
	(2) Spin of excited level in the compound nucleus (3) Total angular momentum quantum number	

D.1.7.5 Extensions to R-matrix Theory

As stated in Eq. (D.1.7-8), the R-matrix has the form

$$
\begin{equation*}
R_{c c^{\prime}}=\left[\sum_{\lambda} \frac{\gamma_{\lambda c} \gamma_{\lambda c^{\prime}}}{E_{\lambda}-E-i \Gamma_{\lambda \gamma} / 2}+R_{c}^{\mathrm{bkg}} \delta_{c c^{\prime}}\right] \delta_{J J^{\prime}} \tag{D.1.7.5-1}
\end{equation*}
$$

The external or background R-matrix $R_{c}^{\text {bkg }}$ can be written in many different ways; four options are available in the RML format:

Option $0 . \quad R_{c}^{\mathrm{bkg}}=0$ (in which case the background is described by "dummy" resonances whose energies lie outside the range of validity of this parameterization).

Option 1. $\quad R_{c}^{\mathrm{bkg}}$ is a tabulated complex function of the energy.
Option 2. $\quad R_{c}^{\mathrm{bkg}}$ is a real statistical parameterization of the form available in SAMMY [Ref. 11 of ENDF-102. Ref. 1 in this report],

$$
\begin{align*}
R_{c}^{\mathrm{bkg}}(E)= & \bar{R}_{\mathrm{con}, c}+\bar{R}_{\mathrm{lin}, c} E+\bar{R}_{\mathrm{q}, c} E^{2}-s_{\mathrm{lin}, c}\left(E_{c}^{\mathrm{up}}-E_{c}^{\mathrm{down}}\right) \\
& -\left(s_{\mathrm{con}, c}-s_{\mathrm{lin}, c} E\right) \ln \left[\frac{E_{c}^{\mathrm{up}}-E}{E-E_{c}^{\mathrm{down}}}\right] . \tag{D.1.7.5-2}
\end{align*}
$$

Option 3. $\quad R_{c}^{b k g}$ is a complex statistical parameterization of the form described by Fröhner [Ref. 6 and 10 of ENDF-102, Refs. 8 and 9 in this document],

$$
\begin{equation*}
R_{c}^{\mathrm{bkg}}(E)=\bar{R}_{c}+2 s_{c}\left[\tanh ^{-1}\left(\frac{E-\bar{E}}{\tilde{Q} / 2}\right)+i \frac{\Gamma_{\gamma} / \tilde{Q}}{1-\left(\frac{E-\bar{E}}{\tilde{Q} / 2}\right)}\right], \tag{D.1.7.5-3}
\end{equation*}
$$

with

$$
\begin{equation*}
\tilde{Q}=E_{c}^{\text {up }}-E_{c}^{\text {down }} \quad \text { and } \quad \bar{E}=\left(E_{c}^{\text {up }}+E_{c}^{\text {down }}\right) / 2 . \tag{D.1.7.5-4}
\end{equation*}
$$

[This quantity \tilde{Q} is not to be confused with the Q -value for channel c.]

D.1.7.6. Modifications for Charged Particles

The penetrabilities P_{l}, shift factors S_{l}, and potential-scattering phase shifts φ_{l} defined in Table D.1.7.1 apply only to non-Coulomb interactions such as those involving incident neutrons. However, it is possible for the two particles in a channel to both have a positive charge; examples are the exit channels for (n, α) or (n, p) interactions. In this case the expressions for penetrabilities, shift factors, and phase shifts must be modified to include the long-range interaction; see, for example, the discussion of Lane and Thomas [Ref. 6].

Expressions for P_{l}, S_{l}, and φ_{l} for particle pair α involve the parameter η_{α}, which is defined as

$$
\begin{equation*}
\eta_{\alpha}=\frac{z_{\alpha} Z_{\alpha} e^{2} \mu_{\alpha}}{\hbar^{2} k_{\alpha}} \tag{D.1.7.6-1}
\end{equation*}
$$

where z and Z are the charge numbers for the two particles in the particle pair. The reduced mass μ_{α} is defined in the usual manner as

$$
\begin{equation*}
\mu_{\alpha}=\frac{m_{\alpha} M_{\alpha}}{m_{\alpha}+M_{\alpha}} \tag{D.1.7.6-2}
\end{equation*}
$$

where m_{α} and M_{α} are the masses of the two particles in channel α. The center-of-mass (COM) momentum $\hbar k_{\alpha}$ is defined as

$$
\begin{equation*}
\hbar^{2} k_{\alpha}^{2}=\frac{2 m_{\alpha} M_{\alpha}}{\left(m_{\alpha}+M_{\alpha}\right)}\left(E \frac{M}{(m+M)}+Q\right) \tag{D.1.7.6-3}
\end{equation*}
$$

where Q is the Q -value for the particle-pair.
If a_{c} is the channel radius for this channel, we again define ρ as

$$
\begin{equation*}
\rho=k_{\alpha} a_{c} \tag{D.1.7.6-4}
\end{equation*}
$$

The penetrabilities $P_{l}(\eta, \rho)$, shift factors $S_{l}(\eta, \rho)$, and phase shifts $\varphi_{l}(\eta, \rho)$ are then calculated as functions of $F_{l}(\eta, \rho)$ and $G_{l}(\eta, \rho)$, the regular and irregular Coulomb wave functions, respectively. The equations are as follows:

$$
\begin{equation*}
P_{l}=\frac{\rho}{A_{l}^{2}}, \quad S_{l}=\frac{\rho}{A_{l}} \frac{\partial A_{l}}{\partial \rho}, \quad \text { and } \cos \varphi_{l}=\frac{G_{l}}{A_{l}}, \text { with } A_{l}^{2}=F_{l}^{2}+G_{l}^{2} . \tag{D.1.7.6-5}
\end{equation*}
$$

In Eq. (D.1.7-5), the Coulomb phase-shift difference w_{c} is required for charged-particle interactions. From Lane and Thomas [Ref. 6], this quantity has the value

$$
w_{c}=\left\{\begin{array}{ll}
0 & l=0 \tag{D.1.7.6-6}\\
\sum_{n=1}^{l} \tan ^{-1}\left(\frac{\eta_{\alpha}}{n}\right) & l \neq 0
\end{array} .\right.
$$

VI. EXAMPLES

In this section, examples are given for most of the types of ENDF File 2 and File 32 that can be produced via the SAMMY code. In each case, the example is annotated. That is, interspersed with the actual ENDF lines are comment lines, beginning with \#\#\#\#, that describe the information appearing on the following ENDF line or lines. Inclusion of these annotations makes it significantly easier for a person to understand exactly what is in the ENDF file.

With the addition of a simple input command, SAMMY can produce the annotated version of File 2 or 32, in addition to the usual non-annotated version.

Examples shown on the following pages are described below. Most examples are abbreviated to fit on a single page. None of the examples given in this document correspond to actual ENDF evaluated files, and none should be used for any purposes other than to illustrate the format. Additional examples may be found in other SAMMY test cases; see the listing in Section XII.B of the SAMMY manual [Ref. 1].
\(\left.\begin{array}{llllll}\hline \begin{array}{l}Example

number\end{array} \& Nuclide \& Which \& \& Lile \& LRF\end{array}\right)\) File 32 | SAMMY test case; Comments |
| :--- |
| 1 |
| 2 |

Example 1 (${ }^{\mathbf{2 4 2} \mathbf{P} \mathbf{P u}): ~ F i l e ~ 2, ~ L R F ~=~} \mathbf{1}$ (SAMMY test case tr126 run d10)

Example $\mathbf{2} \mathbf{(~}^{\mathbf{2 4 2}} \mathbf{P u}$): File 32, $\mathbf{L R F}=\mathbf{1 , L C O M P}=\mathbf{0}$ (SAMMY test case tr126 run d10)

94242.0	$2.399790+2$	0	0	1		0944632151	1
\#\#\#\#							
\#\#\#\# Z_A	Abundance	0	LFW	NER			
94242.0	1.000000+0	0	1	1		0944632151	2
\#\#\#\#							
\#\#\#\# Emin	Emax	Lru=1 => Resolved Resonance Region					
\#\#\#\#			Lrf=1	=> SL Breit	Wigner		
1.000000-5	$9.860000+2$	1	1	0		1944632151	3
\#\#\#\#							
\#\#\#\# Spin	Radius		LCOMP = 0				
0.0	9.225000-1	0	0	1		0944632151	4
\#\#\#\#							
\#\#\#\# Weight		L=0	Numbe	r of resona	ces=	68	
2.399790+2		0	0	1224		68944632151	5
-69.9998579	0.5	1.743963-1	1.509889-1	2.340738-2	. 010000	0-9944632151	6
8.314354-3	1.147453-4		5.458204-6			944632151	7
1.00000-24						944632151	8
2.669994986	0.5	2.435226-2	2.324757-3	2.202751-2	. 010000	-0-9944632151	9
9.254801-8	1.345990-9		1.812478-7			944632151	10
1.00000-24						944632151	11
14.59999486	0.5	2.345205-2	6.098099-5	2.339107-2	. 0100000	0-9944632151	12
1.026582-7	. 0013987-9		4.066726-7			944632151	13
1.00000-24						944632151	14
22.56998002	0.5	2.329159-2	2.899690-4	2.300162-2	. 010000	-0-9944632151	15
9.181883-8	. 0271261-9		3.306715-7			944632151	16
1.00000-24						944632151	17
40.94989196	0.5	2.749059-2	4.500253-4	2.704057-2	. 0100000	0-9944632151	18
1.243403-7	. 0641022-9		4.546858-7			944632151	19
1.00000-24						944632151	20
949.1003969	0.5	3.661332-2	1.401404-2	2.259929-2	. 010000	--9944632151	204
2.271531-7	6.597905-8		6.415409-7			944632151	205
1.00000-24						944632151	206
977.9003123	0.5	3.722911-2	1.451083-2	2.271828-2	. 0100000	-0-9944632151	207
2.389999-7	7.193126-8		6.558754-7			944632151	208
1.00000-24						944632151	209

Example $\mathbf{3}{ }^{\mathbf{2 4 2}} \mathbf{P u}$): File 32, $\mathbf{L R F}=\mathbf{1}, \mathbf{L C O M P}=\mathbf{1}$ (SAMMY test case tr126 run d11)

94242.0	$2.399790+2$	0	0	1		0944632		1
\#\#\#\#								
\#\#\#\# Z_A	Abundance	0	LFW	NER				
94242.0	1.000000+0	0	1	1		0944632	151	1
\#\#\#\#								
\#\#\#\# Emin	Emax	Lru=1 => Resolved Resonance Region						
\#\#\#\# Lrf=1 => SL								
1.000000-5	$9.860000+2$	1	1	0		1944632	151	3
\#\#\#\#								
\#\#\#\# Spin	Radius		LCOMP = 1					
0.0	9.225000-1	0		0		094463		4
\#\#\#\#								
\#\# Weight Number of short-range sections = 1								
2.399790+2		0	0	1		0944632	151	5
		4	0	37536		68944632		- 6
\#\#\#\#								
\#\#\#\# E_res	+/- J	Gamma_Tot	Gamma_n	Gamma_gam				
-69.9998579	0.5	1.743963-1	1.509889-1	2.340738-2	. 010000	-99446321		7
2.669994986	0.5	2.435226-2	2.324757-3	2.202751-2	. 010000	-9944632	151	-
14.59999486	0.5	2.345205-2	6.098099-5	2.339107-2	. 010000	-99446321	151	- 9
22.56998002	0.5	2.329159-2	2.899690-4	2.300162-2	. 010000	-9944632	151	10
40.94989196	0.5	2.749059-2	4.500253-4	2.704057-2	. 010000	-9944632		11
949.1003969	0.5	3.661332-2	1.401404-2	2.259929-2	. 010000	-9944632	51	73
977.9003123	0.5	3.722911-2	1.451083-2	2.271828-2	. 010000	-9944632	151	74
8.314354-3	1.399189-5	2.617880-8-	4.77983-27	. 2911310-9-	2.42009	-9944632	151	75
-6.302573-8	-1.30083-26	. 2088863-9-	. 0616098-9-	-3.050185-8-	5.57360	27944632	151	76
-. 1967337-9	. 1293111-9	1.690199-8-	3.19521-27-	. 1222330-9-	. 142423	-9944632	151	77
-1.427914-8	-1.95600-27	. 0571293-9	5.306716-8-1	-1.045402-7-	. 000431	-99446321		78
-8.93599-25 . 1717002-9 . 5908220-9-.2247201-9-4.25074-29 . 0562223-9944632151 6254								
.1618799-9-.0278185-9-5.23406-30 1.00000-24 3.22170-29 1.10859-28944632151 6255								
-4.21655-29-7.97591-48 1.05493-29 3.03744-29-5.21974-30-9.82097-49944632151 6256								
2.271531-7 1.951824-8 5.777406-8 1.09283-26-.0008382-9 .0030162-9944632151 6257								
-.0760592-9-1.43105-29 6.597905-8-4.619432-8-8.73798-27-. 0070418-9944632151 6258								
-. 0025099-9-.2471283-9-4.64972-29 6.415409-7-8.78955-25 .0875423-9944632151 6259								
.2470591-9 .0351968-9 6.62230-30 1.00000-24 1.65592-29 4.67330-29944632151 6260								
6.65774-30 1.25265-48 2.389999-7 2.427716-8 6.449781-8 1.21352-26944632151 6261								
7.193126-8-4.831065-8-9.08966-27 6.558754-7-8.76818-25 1.00000-24944632151 6262								
0.0	0.0	0	0	0		0944632	0	6263

Example $\mathbf{4} \mathbf{(~}^{\mathbf{2 4 2}} \mathbf{P u}$): File 32, $\mathbf{L R F}=\mathbf{1}, \mathbf{L C O M P}=\mathbf{2}(\mathrm{SAMMY}$ test case tr126 run d12)

Example 5 (${ }^{\mathbf{2 4 2} \mathbf{P u}): ~ F i l e ~ 2, ~ L R F ~=~} \mathbf{7}$ (SAMMY test case tr126 run d71)

Example $6{ }^{\left({ }^{242} \mathbf{P u}\right): ~ F i l e ~ 32, ~ L R F ~}=\mathbf{7}$, LCOMP $=\mathbf{1}$ (SAMMY test case tr126 run d71)

Example 8 (${ }^{\mathbf{2 3}} \mathbf{N a}$): File 2, LRF = 2 (SAMMY test case tr126 run c20)

11023.0	2.279200+1		0	1	01125	2151	1
\#\#\#\#							
\#\#\#\# Z_A	Abundance	0	LFW	NER			
11023.0	1.000000+0	0	0	1	01125	2151	2
\#\#\#\#							
\#\#\#\# Emin	Emax	Lru	=> Resolved	Resonance Regi			
\#\#\#\#			Lrf=2 =	=> ML Breit Wign			
\#\#\#\#				NRO	NAPS		
1.000000-5	$5.000000+5$		2	0	11125	2151	3
\#\#\#\#							
\#\#\#\# Spin	Radius		Number of L-val	values = 3			
1.5	5.410000-1	0		3	01125	2151	4
\#\#\#\#							
\#\#\#\# Weight		L=0	Number	r of resonances=	4		
2.279200+1		0	0	24	41125	2151	5
\#\#\#\#							
\#\#\#\# E_res	+/- J	Gamma_Tot	Gamma_n	Gamma_gam			
2810.794885	-1.0	3.767281+2	3.763751+2 3	3.529968-1	1125	2151	6
242969.1586	-1.0	3.361620+2	$3.346627+2$ 1	1.499230+0	1125	2151	7
298319.3838	2.0	2. $036237+3$	$2.035217+31$	1.020005+0	1125	2151	8
539188.7892	-1.0	$6.230475+4$	6.229461+4 1	$1.014000+1$	1125	2151	9
\#\#\#\#							
\#\#\#\# Weight		L=1	Number	r of resonances=	12		
2.279200+1		1	0	72	121125	2151	10
\#\#\#\#							
\#\#\#\# E_res	+/- J	Gamma_Tot	Gamma_n	Gamma_gam			
7617.000003	-2.0	6.058086-1	5.798879-3 6.	6. 000097-1	1125	2151	11
35390.00253	-1.0	3.499837+0	1.599909+0 1	$1.899928+0$	1125	2151	12
53221.04922	-2.0	$1.112909+3$	$1.112124+37$	7.849998-1	1125	2151	13
117430.3589	-1.0	3.100990+1	2.677970+1	4.230197+0	1125	2151	14
143130.4654	0.0	$2.351946+1$	$1.640453+1$	7.114931+0	1125	2151	15
201235. 2222	-1.0	$4.932734+3$	4.929794+3	$2.939992+0$	1125	2151	16
214270.6538	0.0	1.424561+4	1.424097+4 4	4.640000+0	1125	2151	17
239019.8687	-2.0	$5.380853+3$	$5.379653+31$	$1.200013+0$	1125	2151	18
299414.3668	-1.0	1.319195+2	1.293591+2 2	$2.560432+0$	1125	2151	19
392438.3777	-1.0	$2.279061+4$	$2.278074+4$	9.870012+0	1125	2151	20
597973.3723	-1.0	$2.580224+4$	$2.580224+4$	1.000000-3	1125	2151	21
726950.4752	3.0	$4.501252+4$	$4.501251+41$	1.000000-3	1125	2151	22
\#\#\#\#							
\#\#\#\# Weight		L=	Number	r of resonances=	7		
2.279200+1			0	42	71125	2151	23
\#\#\#\#							
\#\#\#\# E_res	+/- J	Gamma_Tot	Gamma_n	Gamma_gam			
190060. 0114	0.0	$2.749747+1$	1.819726+1 9	9.300214+0	1125	2151	24
236710.1242	-2.0	$6.672161+1$	6.513158+1 1	$1.590030+0$	1125	2151	25
305200. 2229	0.0	$7.800650+1$	$6.830654+1$	9.699952+0	1125	2151	26
430897.3099	0.0	4.006030+3	$4.000740+35$	$5.289999+0$	1125	2151	27
448816.3453	-2.0	7.022648+3	$7.019128+3$	$3.520001+0$	1125	2151	28
697096.6622	4.0	$6.000314+4$	6.000314+4 1	1.000000-3	1125	2151	29
780016.0085	4.0	$4.399728+4$	$4.399728+41$	1.000000-3	1125	2151	30

Example 9 (${ }^{\mathbf{2 3}} \mathbf{N a}$): File 32, $\mathbf{L R F}=\mathbf{2}$, LCOMP = $\mathbf{0}$ (SAMMY test case tr126 run c20)

11023.0	$2.279200+1$	0	$0 \quad 1$	0112532151	1
\#\#\#\#					
\#\#\#\# Z_A	Abundance	0	LFW NER		
11023.0	1.000000+0	0	0 1	0112532151	2
\#\#\#\#					
\#\#\#\# Emin	Emax	Lru=1	=> Resolved Resonance Region		
\#\#\#\#			Lrf=2 => ML Breit Wigner		
1.000000-5	$5.000000+5$	1	20	1112532151	3
\#\#\#\#					
\#\#\#\# Spin	Radius		LCOMP = 0		
1.5	5.410000-1	0	0	0112532151	4
\#\#\#\#					
\#\#\#\# Weight		L=0	Number of resonances=	4	
$2.279200+1$		0	072	4112532151	5
2810.794885	-1.0	3.767281+2	3.763751+2 3.529968-1	112532151	6
$2.348437+1$	$2.616888+1$		1.246061-3	112532151	7
				112532151	8
242969.1586	-1.0	3.361620+2	3.346627+2 1.499230+0	112532151	9
$1.800140+2$	7.909686+2		2.248793-2	112532151	10
				112532151	11
298319.3838	2.0	$2.036237+3$	$2.035217+31.020005+0$	112532151	12
7.031740+2	$5.935011+3$		1.040400-2	112532151	13
				112532151	14
539188.7892	-1.0	6.230475+4	6.229461+4 1.014000+1	112532151	15
$1.651040+8$	$2.660382+7$		1.028196+0	112532151	16
				112532151	17
\#\#\#\#					
\#\#\#\# Weight		L=1	Number of resonances=	12	
$2.279200+1$		1	0216	12112532151	18
7617.000003	-2.0	6.058086-1	5.798879-3 6.000097-1	112532151	19
2.329590-3	1.988610-7		2.558230-3	112532151	20
				112532151	21
35390.00253	-1.0	3.499837+0	$1.599909+01.899928+0$	112532151	22
5.667135-3	2.961028-3		1.401073-2	112532151	23
				112532151	24
597973.3723	-1.0	2.580224+4	2.580224+4 1.000000-3	112532151	49
$1.656556+8$	$6.960870+6$		1.000000-8	112532151	50
				112532151	51
726950.4752	3.0	4.501252+4	4.501251+4 1.000000-3	112532151	52
5.060806+8	$2.224173+7$		1.000000-8	112532151	53
				112532151	54
\#\#\#\#					
\#\#\#\# Weight		L=2	Number of resonances=	7	
2.279200+1		2	0126	7112532151	55
190060.0114	0.0	$2.749747+1$	1.819726+1 9.300214+0	112532151	56
$5.512197+0$	$2.504657+0$		8.167593-1	112532151	57
				112532151	58
780016.0085	4.0	4.399728+4	4.399728+4 1.000000-3	112532151	74
$4.839709+8$	$2.622167+7$		1.000000-8	112532151	75
				112532151	76

Example 11 (${ }^{23} \mathbf{N a}$): File 32, LRF = 2, LCOMP = 2 (SAMMY test case tr126 run c22)

Example 12 (${ }^{27} \mathbf{A l}$): File 2, LRF = $\mathbf{3}$ (SAMMY test case tr126 run b31)

13027.0	$2.674961+1$	0	0	1	01300	2151	1	
\#\#\#\#								
\#\#\#\# Z_A	Abundance		0	LFW	NER			
13027.0	1.000000+0	0	\bigcirc	1	01300	2151	2	
\#\#\#\#								
\#\#\#\# Emin	Emax	Lru=1	=> Resolved	Resonance Region				
\#\#\#\#			Lrf=3 =>	=> Reich-Moore forn	mat			
\#\#\#\#				NRO	NAPS			
1.000000-5	$8.400000+5$	1	3	0	11300	2151	3	
\#\#\#\#								
\#\#\#\# Spin	Radius		Number of L-val	values $=3$				
2.5	4.322580-1	1	0	3	41300	2151	4	
\#\#\#\#								
\#\#\#\# Weight	Radius	L=0	Number	of resonances=	24			
$2.674961+1$	4.322580-1	0	0	144	241300	2151	5	
\#\#\#\#								
\#\#\#\# E_res	+/- J	Gamma_n	Gamma_gam	Gamma_others				
-3799639.12	-2.0	3.074628+6	9.967501-1		1300	2151	6	
1320479.141	3.0	2.110464+5	$2.000002+0$		1300	2151	27	
1460153.027	3.0	3.846106+4	$2.000000+0$		1300	2151	28	
1630069.615	-2.0	3.716185+4	$2.000000+0$		1300	2151	29	
\#\#\#\#								
\#\#\#\# Weight	Radius	L=1	Number	of resonances=	38			
$2.674961+1$	6.064000-1	1	0	228	381300	2151	30	
\#\#\#\#								
\#\#\#\# E_res	+/- J	Gamma_n	Gamma_gam	Gamma_others				
5904.691853	-1.0	1.576800+1	7.300000-1		1300	2151	31	
90716.30643	-1.0	5.560800+0	8.676000-2		1300	2151	32	
917701.2064	-3.0	1.412775+5	$2.000005+0$		1300	2151	66	
1100000.000	-2.0	3.400000+3	$2.000000+0$		1300	2151	67	
1301995.797	-1.0	8.039633+4	$2.000000+0$		1300	2151	68	
\#\#\#\#								
\#\#\#\# Weight	Radius	$\mathrm{L}=2$	Number	of resonances=	19			
2.674961+1	4.396000-1	2	0	114	191300	2151	69	
\#\#\#\#								
\#\#\#\# E_res	+/- J	Gamma_n	Gamma_gam	Gamma_others				
261301.6472	4.0	1.343650+2	6.218560-1		1300	2151	70	
268709.4074	4.0	2.061541+2	2.088908-1		1300	2151	71	
604259.9813	4.0	2.220882+1	$2.116048+0$		1300	2151	78	
656160.4315	5.0	3.185940+1	$2.106474+0$		1300	2151	79	
656479.5669	4.0	2.234544+2	$1.057579+0$		1300	2151	80	
707472.3731	5.0	1.309373+3	$2.257103+0$		1300	2151	81	
713793.6249	0.0	$1.418283+4$	$2.396929+0$		1300	2151	82	
759412.0154	-1.0	8.734286+3	$2.003903+0$		1300	2151	83	
768449.4683	4.0	$2.115070+2$	$2.299934+0$		1300	2151	84	
787490.7037	5.0	1.232400+4	$2.003397+0$		1300	2151	85	
822793.8215	4.0	2.012128+2	$2.288267+0$		1300	2151	86	
851450.6242	4.0	3.436535+3	$1.999998+0$		1300	2151	87	
865849.1875	4.0	8.301900+1	$2.000000+0$		1300	2151	88	

Example $13\left({ }^{27} \mathbf{A l}\right):$ File 32, $\mathbf{L R F}=\mathbf{3}, \mathbf{L C O M P}=1$ (SAMMY test case tr126 run b31)

Example 14 (${ }^{27}$ Al): File 32, LRF = 3, LCOMP = 2 (SAMMY test case tr126 run b32)

Example 15 (${ }^{\mathbf{2 7} \mathbf{A l}): ~ F i l e ~ 2, ~ L R F ~=~} 7$ (SAMMY test case tr147 run c; entire file is given here)

\#\#\#\#
\#\#\#\# Number of channels $=4$, res= 19, Lines/Res= 1 $\begin{array}{lllllllll}0.0 & 0.0 & 0 & 19 & 114 & 1 & 987 & 2151 & 35\end{array}$
\#\#\#\# E_res Gamma_gam Gamma_n Gamma_others
$-312910.0009 .959500-11.470500+4 \quad 987215136$
$-185070.0009 .473800-15.608500+4 \quad 987215137$
$-3143.000001 .111100+01.801000+1$
$86267.717292 .061700+01.093800+4$
987215138
$142925.57043 .342600+01.869500+4$
280288.8337 2.274500+0 1.417400+4
386353.5337 6.113000-1 2.303300+3
420255.2813 8.110000-1 4.008900+2
526195.7350 9.788000-1 5.141200+3
586240.0091 1.376000+0 4.596000+3
586285.6250 3.599000-1 1.055000+2
614569.4112 7.095900-1 1.364600+4
655086.0625 1.734000-1 2.569000+2
766337.3125 1.402000+0 3.189000+2
786709.4701 2.210000+0 2.424100+4
820722.9375 1.713000+0 $2.590600+2$
873858.3125 2.210000+0 1.040000+4
$9872151 \quad 39$
987215140
987215141
987215142
$9872151 \quad 43$
987215144
987215145
$9872151 \quad 46$
987215147
987215148
987215149
987215150
987215151
987215152
$1290000.0002 .000000+02.142400+5$
987215153
1460000.000 2.000000+0 3.861500+4

9872151
54
\#\#\#\#
\#\#\#\# Spin group is defined in the next lines
\#\#\#\# J Parity Number of channels= 2

-1.0	0.0	0	0	12	2	987	2151	55

\#\#\#\#
\#\#\#\# First channel is gamma, second is neutron

\#\#\#\#	IPP	L	Ch Spin		APE	APT			
	1.0	0.0	0.0	0.0			987	2151	56
	2.0	1.0	2.0	0.0	6.064000	6.064000-1	987	2151	57

\#\#\#\#
\#\#\#\# Number of channels $=2$, res= 10, Lines/Res= 1 $\begin{array}{lllllllll}0.0 & 0.0 & 0 & 10 & 60 & 1 & 987 & 2151 & 58\end{array}$
$\begin{array}{llll}\text { \#\#\#\# } & \text { E_res Gamma_gam Gamma_n Gamma_others } \\ 5904.676793 & 6.087600-1 & 1.669500+1\end{array}$
$24306.058601 .160000-21.539000+0 \quad 987215160$
$99731.679701 .793000+0 \quad 4.390000+0$
103837.5703 6.174000-1 3.756000+0
220294.4375 5.760000-1 1.000000+1

987215161
987215162
494375.4162 5.038000-1 9.998900+2
707707.6479 1.130000+0 1.001000+4
725166.4375 1.130000+0 8.907000+2

987215163
987215164
$782103.55431 .130000+04.577700+3$
987215165
987215166
1300000.000 2.000000+0 8.130500+4

987215167
\#\#\#\#
\#\#\#\# Spin group is defined in the next lines

\#\#\#\# First channel is gamma, second is neutron

$\# \# \# \#$	IPP	L	Ch Spin		APE	APT		
	0.0	0.0	0.0		2151	70		
	1.0	1.0	2.0	0.0	$6.064000-1$	$6.064000-1$	987	2151

Example $16\left({ }^{\mathbf{1 9}} \mathbf{F l}\right)$: File 2, LRF $=7$ (SAMMY test case tr158 run a; entire file is given here)

\#\#\#\# $\begin{aligned} & \text { \#\#\#\# First channel is gamma, second is neutron }\end{aligned}$

\#\#\#\#	IPP	L	Ch Spin		APE	APT			
	1.0	0.0	0.0	0.0			925	2151	49
	2.0	0.0	1.0	0.0	5.360000-1	5.360000-1	925	2151	50
	2.0	2.0	1.0	0.0	5.360000-1	5.360000-1	925	2151	51
	3.0	1.0	0.0	0.0	5.360000-1	5.360000-1	925	2151	52
	3.0	1.0	-1.0	0.0	5.360000-1	5.360000-1	925	2151	53
	4.0	2.0	2.0	0.0	5.360000-1	5.360000-1	925	2151	54
	4.0	2.0	3.0	0.0	5.360000-1	5.360000-1	925	2151	55

\#\#\#\#

\#\#\#\#
\#\#\#\# Spin group is defined in the next lines
\#\#\#\# J Parity Number of channels= 9

Example 17 (${ }^{35} \mathbf{C l}$): File 2, LRF = 7 (Thanks to Royce Sayer for providing this file.)

\#\#\#\#
\#\#\#\# Spin group is defined in the next lines
\#\#\#\# J Parity Number of channels= 3
$\begin{array}{llllllll}1.0 & 0.0 & 0 & 0 & 18 & 31725 & 2151 & 12\end{array}$
\#\#\#\#
\#\#\#\# First channel is gamma, second is neutron
\#\#\#\# IPP L Ch Spin APE APT

1.0	0.0	0.0	0.0		1725	2151	13
2.0	0.0	1.0	0.0	$3.66798 \mathrm{E}-1$	$4.82222 \mathrm{E}-11725$	2151	14
3.0	0.0	1.0	0.0	$3.66798 \mathrm{E}-1$	$4.82222 \mathrm{E}-11725$	2151	15

\#\#\#\#
\#\#\#\#

$$
\begin{array}{lllll}
\text { Number of channels }= & 4, \text { res }= & 23, & \text { Lines } / \text { Res }= & 1 \\
0.0 & 0.0 & 0 & 23 & 138
\end{array}
$$16

\#\#\#\# E_res Gamma_gam Gamma_n Gamma_others
54931.9958 3.67260E-1 4.64424E+1 1725215117
68236.1571 3.93360E-1 $2.17904 \mathrm{E}+2$ 1.00000E-5 1725215118
$115098.0007 .39000 \mathrm{E}-14.30778 \mathrm{E}+0 \quad 1725215119$
1109187.77 6.06000E-1 $2.74235 \mathrm{E}+3 \quad 1725215138$
1205687.36 6.06000E-1 6.42584E+2 1725215139
\#\#\#\#
\#\#\#\# Spin group is defined in the next lines
\#\#\#\# J Parity Number of channels= 3
$\begin{array}{llllllll}2.0 & 0.0 & 0 & 0 & 18 & 31725 & 2151 & 40\end{array}$
\#\#\#\#
\#\#\#\# First channel is gamma, second is neutron
\#\#\#\# IPP Ch Spin APE APT

1.0	0.0	0.0	0.0	1725	2151	41	
2.0	0.0	2.0	0.0	$3.66798 \mathrm{E}-1$	$4.82222 \mathrm{E}-11725$	2151	42
3.0	0.0	2.0	0.0	$3.66798 \mathrm{E}-1$	$4.82222 \mathrm{E}-11725$	2151	43

\#\#\#\#

Example 18 (${ }^{35}$ Cl): File 32, LRF $=7$, LCOMP $=2$

\#\#\#\#
\#\#\#\# Spin group is defined in the next lines
\#\#\#\# J Parity Number of channels= 3
$\begin{array}{llllllll}1.0 & 0.0 & 0 & 0 & 18 & 3172532151 & 12\end{array}$
\#\#\#\#
\#\#\#\# First channel is gamma, second is neutron

\#\#\#\#
\#\#\#\# Spin group is defined in the next lines

REFERENCES

1. N. M. Larson, Updated Users’ Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes’ Equations, ORNL/TM-9179/R7, Oak Ridge National Laboratory, Oak Ridge, Tenn., 2006. Also available as ENDF-364/R1.
2. Cross Section Evaluation Work Group (CSEWG), http://www.nndc.bnl.gov/csewg/. This is the advisory group for the U.S. Evaluated Nuclear Data File (ENDF/B).
3. Evaluated Nuclear Data File (ENDF), http://www.nndc.bnl.gov/exfor3/endf00.htm.
4. Cross Section Evaluation Working Group, (CSEWG), ENDF-102, Data Formats and Procedures for the Evaluated Nuclear Data File, ENDF-6, ed. V. McLane, C. L. Dunford, and P. F. Rose, BNL-NCS-4495, Brookhaven National Laboratory, Upton, N.Y., April 2001. Updated as BNL-NCS-4495/04-Rev, ed. M. Herman, June 2005.
5. J. E. Lynn, The Theory of Neutron Resonance Reactions, Clarendon Press, Oxford, England, 1958.
6. A. M. Lane and R. G. Thomas, "R-Matrix Theory of Nuclear Reactions," Rev. Mod. Phys. 30, 257 (1958).
7. C. W. Reich and M. S. Moore, "Multilevel Formula for the Fission Process," Phys. Rev. 111, 929 (1958).
8. J. M. Blatt and L. C. Biedenharn, "The Angular Distribution of Scattering and Reaction Cross Sections," Rev. Mod. Phys. 24, 258 (1952).
9. F. H. Fröhner, Applied Neutron Resonance Theory, KFK 2669, Kernforschungszentrum, Karlsruhe, Germany, 1978.
10. F. H. Fröhner, "New Techniques for Multi-Level Cross Section Calculation and Fitting," in Proceedings of the Conference on Nuclear Data Evaluation Methods and Procedures, Vol. I, ed. B. A. Magurno and S. Pearlstein, BNL-NCS-51363, Brookhaven National Laboratory, Upton, N.Y., 1981, p. 375.

[^0]: NOTICE: This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

[^1]: ${ }^{1}$ Records are sequentially numbered within a given MAT/MF/MT.

[^2]: ${ }^{2}$ The SEND record has the sequence number 99999.

[^3]: ${ }^{1}$ In the unresolved resonance region, the evaluator may, optionally, specify a different procedure, which uses the unresolved resonance parameters in File 2 solely for the purpose of computing an energy-dependent self-shielding factor. This option is governed by a flag, LSSF, defined in Section 2.3.1 of ENDF-102, and discussed in Section 2.4.21 of ENDF-102; neither of these sections is included in this report. When this option is specified, File 3 is used to specify the entire infinitely dilute cross section, and the function of File 2 is to specify the calculation of self-shielding factors for shielded pointwise or multigroup values.

[^4]: ${ }^{2}$ These energies are the limits to be used in calculating cross sections from the parameters. Some resolved resonance levels, for example, bound levels, will have resonance energies outside the limits.

[^5]: ${ }^{3}$ Formerly used for radius expressed as a table of energy, radius pairs.

[^6]: ${ }^{1}$ Processing codes should sum the cross section, as shown, from $l=0$ to $l=$ NLS -1 , including any "empty" or "nonresonant" channels, in order to get the potential-scattering contribution. If higher l-values contribute to the scattering in the resonance region, it is the responsibility of the evaluator to provide a suitable File 3 contribution. (See Sections 2.4.23 and 2.4.24, which are not reproduced in this report.)

[^7]: ${ }^{2}$ The channel radius, strictly speaking, involves $\mathrm{A}^{1 / 3}$ (the target mass in amu), and not (AWRI) ${ }^{1 / 3}$, but as long as the mass of the incident particle is approximately unity, as it is for neutrons, the difference is not important. AWRI $=A / m_{n}$, where m_{n} is the neutron mass (see Appendix H of ENDF-102, which is not reproduced in this report).

[^8]: ${ }^{3}$ Including footnote on page D. 1 (page 53 of this report).

