OAK RIDGE NATIONAL LABORATORY MANAGED BY UT-BATTELLE

FOR THE DEPARTMENT OF ENERGY

ORNL/TM-2000/372 ENDF-365

R-MATRIX RESONANCE ANALYSIS AND STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS OF 233U IN THE NEUTRON ENERGY RANGE FROM THERMAL TO 600 EV

L. C. LEAL, H. DERRIEN, J. A. HARVEY, K. H. GUBER, N. M. LARSON, AND R. R. SPENCER

March 2001

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge:

Web site: http://www.osti.gov/bridge

Reports produced before January 1, 1996, may be purchased by members of the public from the following source:

National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 *Telephone:* 703-605-6000 (1-800-553-6847) *TDD:* 703-487-4639 *Fax:* 703-605-6900 *E-mail:* info@ntis.fedworld.gov *Web site:* http://www.ntis.gov/support/ordernowabout.htm

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange (ETDE) representatives, and International Nuclear Information System (INIS) representatives from the following source:

Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 *Telephone:* 865-576-8401 *Fax:* 865-576-5728 *E-mail:* reports@adonis.osti.gov *Web site:* http://www.osti.gov/contact.html

> This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

ORNL/TM-2000/372 ENDF-365

Computational Physics and Engineering Division

R-MATRIX RESONANCE ANALYSIS AND STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS OF 233U IN THE NEUTRON ENERGY RANGE FROM THERMAL TO 600 eV

L. C. Leal, H. Derrien, J. A. Harvey, K. H. Guber, N. M. Larson, and R. R. Spencer

March 2001

Prepared by the OAK RIDGE NATIONAL LABORATORY managed by UT-BATTELLE, LLC for the U.S. DEPARTMENT OF ENERGY under contract DE-AC05-00OR22725

Contents

ABSTRACT 1
I- INTRODUCTION
II- GENERAL CONDITIONS AND METHOD OF ANALYSIS
II-1- The ²³³ U nucleus, the spin of the resonances and the fission channels
II-2- The contribution of the external resonances 4
III- THE EXPERIMENTAL DATA BASE 5
IV- THE RESULTS OF THE SAMMY ANALYSIS
IV-1- The thermal energy range
IV-2- The Resolved Resonance Region 11
IV-3- The benchmark testing
V- STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS 24
V-1- Generalities
V-2- The level spacing distribution
V-3- The s-wave neutron strength function
V-4- The neutron width distribution
V-5- The fission widths distribution
V-6- The radiative capture widths
V-7- The recommended values of the average s-wave resonance parameters
VI- CONCLUSION
REFERENCES
APPENDIX. RESONANCE PARAMETERS FOR ²³³ U IN THE ENDF FORMAT

List of Tables

Table 1- Selected measurements of ²³³ U neutron transmission, fission and capture	7
Table 2- Evaluated integral quantities	8
Table 3- The cross sections (barn) at 0.0253 eV	10
Table 4- Fission cross section integrals (b-eV) in the thermal energy range.	11
Table 5- Total cross section integrals (b-eV) in the thermal energy range.	11
Table 6- New ORELA average experimental fission cross sections and calculated cross sections	14
Table 7- Fission cross section integral (barn-eV) in the low energy range.	15
Table 8- Ratio of average experimental fission, capture cross sections and transmission to the	
corresponding calculated values in the energy range 1.0 eV to 600 eV.	15
Table 9- Average cross sections of the present evaluation compared to ENDF/B-VI data	17
Table 10- Features of the ²³³ U thermal critical benchmark experiments	19
Table 11- Features of the ²³³ U thermal critical benchmark experiments ²³³ U-SOL-THERM-003	19
Table 12- Features of the ²³³ U intermediate critical benchmark experiments Falstaff	20
Table 13- Features of the ²³³ U fast critical benchmark experiments	20
Table 14- Test of the ²³³ U evaluation with thermal energy benchmarks using KENOV.a code	21
Table 15- Test of the ²³³ U evaluation with thermal energy benchmarks (²³³ U-SOL-THERM-003) using	
KENO.V code	21
Table 16- Test of the ²³³ U evaluation with intermediate energy benchmarks using KENOV.a code	22
Table 17- Test of the ²³³ U evaluation with fast energy benchmarks using KENO.V code	22
Table 18- Test of the ²³³ U evaluation with intermediate energy benchmarks using KENOV.a code	24
Table 19- Local values of the s-wave neutron strength function.	28
Table 20- Average total fission widths	30
Table 21- Recommended average values of the s-wave resonance parameters	31

List of Figures

Fig. 1- The contribution of the external levels to the scattering cross section in the energy range 0 eV
to 600 eV. The crosses are the cross sections calculated from an external set of resonance parameters
obtained by shifting to the negative energy region and to the region just above 600 eV a preliminary
set of resonances of the energy range 0 to 600 eV. The solid line represents the cross section
calculated by a reduced set of 10 fictitious negative resonances and 10 fictitious resonances in the
energy range above 600 eV. The parameters of these fictitious resonances were obtained from a
SAMMY fit of the data represented by the crosses
Fig. 2- The total cross section in the neutron energy range 0.01 to 1 eV. The experimental data are
represented by the error bars. The solid lines are the data calculated by the resonance parameters.
The experimental cross sections are, from the bottom of the figure, Harvey et al. data, ³³ Moore et al.
data ³² (multiplied by 10) and Pattenden et al. data ³¹ (multiplied by 100)
Fig. 3- The fission and capture cross sections in the energy range from 0.01 eV to 1 eV. The
experimental data points are represented by the error bars. The solid lines are the data calculated
from the resonance parameters. The experimental cross sections are, from the bottom of the figure,
Weston et al. ¹² capture, Weston et al. ¹² fission, Wagemans et al. ²⁷ fission (multiplied by 10) and
Deruyter et al. ²⁵ fission (multiplied by 100)
Fig. 4- Weston et al. ¹² fission and capture cross section in the energy range 1 eV to 20 eV. The solid
lines represent the cross sections calculated from the resonance parameters. The experimental data
are represented by the statistical error bars (the upper curve is the fission cross section) 12
Fig. 5- Total and fission cross sections in the energy range 1 eV to 20 eV. The solid lines represent
the cross sections calculated from the resonance parameters. The experimental data are, from the
bottom of the figure: Weston et al. ¹¹ fission cross section (multiplied by 0.09), Deruyter et al. ²⁵
fission cross section (multiplied by 0.3), ORELA ⁵ fission cross section and ORELA ⁴ total cross
section (multiplied by 3.0) 12
Fig. 6- Total and fission cross section in the energy range 50 eV to 75 eV. The solid lines represent
the cross sections calculated from the resonance parameters. The experimental data are, from the
bottom of the figure: Weston et al. ¹¹ fission (multiplied by 0.09), Blons et al. ²⁶ fission (multiplied by
0.30), ORELA ⁵ fission and ORELA ⁴ total cross sections (multiplied by 3.0). $\dots \dots \dots$
Fig. 7- Total and fission cross sections in the energy range 150 eV to 175 eV. The solid lines
represent the cross sections calculated from the resonance parameters. The experimental data are,
from the bottom of the figure: Weston et al. ¹¹ fission (multiplied by 0.09), Blons et al. ²⁶ fission
(multiplied by 0.30), ORELA ³ fission and ORELA ⁴ total cross sections (multiplied by 3.0). \dots 13
Fig. 8- Total and fission cross sections in the energy range 550 eV to 600 eV. The solid lines
represent the cross sections calculated from the resonance parameters. The experimental data are,
from the bottom of the figure: Weston et al. ¹¹ (multiplied by 0.09), Blons et al. ²⁶ (multiplied by 0.30),
ORELA ³ fission cross sections and ORELA ⁴ total cross section (multiplied by 3.0) 14
Fig. 9- Total and fission cross sections in the energy range 550 eV to 600 eV. The experimental data
are the same as in Fig. 8; the calculated cross sections are from the resonance parameters obtained by
fitting the microscopic cross sections only 16
Fig. 10- The normalized neutron flux to one source neutron in unit of neutron per centimeter for the
Falstaff system. 23
Fig. 11- The number of resonances identified in the energy range 0 to E versus energy E. The upper
part of the figure shows the energy range 0 to 150 eV where most of the maxima in the experimental
cross sections correspond to single resonances; the resonance parameters obtained in the SAMMY
analysis of the experimental data could have a sound physical meaning. The straight line, which

corresponds to a constant level density, shows an increasing loss of resonance above about 50 eV.
The lower part of the figure shows the data in the energy range up to 600 eV. The SAMMY analysis
above 150 eV was aimed to reproduce the shape of the experimental data with about the same level
density as in the 150 eV energy region; the physical meaning of the resonance parameters is
ambiguous and the resonances used to fit the experimental data are more pseudo-resonances than the
real resonances
Fig. 12- Integral distribution of the level spacings in the energy range 0 to 70eV. The histogram is
the experimental distribution. The solid line is the sum of two uncorrelated Wigner distributions in
the ratio of the 2^+ and 3^+ level populations
Fig. 13- Cumulative sum of the reduced neutron widths of the resonances in the energy range 0 to
600 eV
Fig. 14- Integral distribution of the reduced neutron widths of the resonances in the energy range 0 to
70 eV. The histogram is the distribution of the experimental values. The solid line is the Porter-
Thomas distribution normalized to 135 values
Fig. 15- Integral distribution of the total fission widths of the resonances of the energy range 0 to 70

ABSTRACT

The R-matrix resonance analysis of experimental neutron transmission and cross sections of ²³³U, with the Reich-Moore Bayesian code SAMMY, was extended up to the neutron energy of 600 eV by taking advantage of new high resolution neutron transmission and fission cross section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA). The experimental data base is described. In addition to the microscopic data (time-of-flight measurements of transmission and cross sections), some experimental and evaluated integral quantities were included in the data base. Tabulated and graphical comparisons between the experimental data and the SAMMY calculated cross sections are given. The ability of the calculated cross sections to reproduce the effective multiplication factors k_{eff} for various thermal, intermediate, and fast systems was tested. The statistical properties of the resonance parameters were examined and recommended values of the average s-wave resonance parameters are given.

I-INTRODUCTION

In support of the Nuclear Criticality Safety Program (NCSP), the evaluation of the neutron resonance parameters of ²³³U was performed in the neutron energy range up to 600 eV with the Reich-Moore Bayesian code SAMMY.¹ A previous SAMMY resonance analysis of the experimental cross sections of ²³³U was made at the Japan Atomic Energy Research Institute (JAERI, Tokai-Mura, Japan) by one of the authors of the present paper.² Due to the poor experimental resolution of the data available at that time in the high energy range, the analysis was performed only up to 150 eV neutron energy; another limitation of the accuracy of the results was due to the experimental transmission data of Kolar et al.,³ available from the Bureau Central de Mesures Nucleaires (BCMN, Geel, EURATOM, Belgium), but obtained from a sample too thin for an accurate determination of the absolute value of the total cross section. Accurate resonance parameters are needed at higher energies for the calculation of the self-shielding factors of cross sections which show strong fluctuations. To enable a SAMMY analysis at energies above 150 eV, two new high resolution measurements were performed at the Oak Ridge Electron Linear Accelerator (ORELA): (1) neutron transmission measurements of thicker samples cooled to 11K to reduce the Doppler effect, at a fight path of 80 m, by Guber et al.;⁴ (2) fission cross section measurements at a flight path of 80 m by Guber et al.⁵ with an experimental resolution much better than any of the previous measurements. With the results of these two new measurements in the experimental data base, the energy range of the SAMMY resonance analysis has been extended to the neutron energy of 600 eV.

The first multilevel-multichannel resonance analyses of the ²³³U neutron cross sections were performed by Moore and Reich⁶ and by Vogt⁷ in the energy range below 12 eV. Bergen and Silbert⁸ extended the analysis to the energy range of 20 eV to 60 eV. These analyses used both the single level and multilevel-multichannel formalism; it was shown that the variation of α (ratio of the capture cross section to the fission cross section) could not be reproduced by the single level parameters. A more extensive work was performed by Reynolds and Steiglitz⁹ who used the least square fitting code MULTI¹⁰ for the analysis of the fission and capture cross section of Weston et al.^{11,12} in the energy range thermal to 60 keV. The parameters of Reynolds and Steiglitz were converted to Adler-Adler parameters by deSaussure¹³ with the code POLLA¹⁴ for the ENDF/B-V evaluated data file and are still used in the current version of ENDF/B-VI. The single level Breit-Wigner and Adler-Adler analyses were also performed by Kolar et al.,³ Cao et al.¹⁵ and Nizamuddin.¹⁶ The results of the single level analysis of Nizamuddin et al. in the energy range from thermal to 100 eV were used with a large background contribution in the first version of ENDF/B-IV and JENDL-3. None of these evaluations proved to be satisfactory. The JAERI evaluation,² which is used in the current version of the Japanese Evaluated Nuclear Data Library (JENDL) and of the European file JEF, brought a large improvement compared to the previous evaluations by allowing accurate calculation of the cross sections over the energy range up to 150 eV. The present evaluation extends the energy range to 600 eV and improves the accuracy of the parameters, taking advantage of the excellent experimental conditions of the new ORNL neutron transmission and fission data.

In Section II of this report the general conditions and the method of the analysis are presented. The experimental data base is described in Section III. The results of the analysis and the comparison of the calculated cross sections with the experimental data and the results of other evaluations are presented in Section IV. The statistical properties of the resonance parameters and their average values are examined in Section V.

II- GENERAL CONDITIONS AND METHOD OF ANALYSIS

II-1- The ²³³U nucleus, the spin of the resonances and the fission channels

The 233 U nucleus has ground state spin and parity of $5/2^+$. The states of the 234 U compound nucleus excited by the capture of s-wave neutrons in the 233 U nucleus have spin and parity of 2⁺ and 3⁺. When starting a Reich-Moore analysis of the experimental data in the resolved resonance region, the resonances should be partitioned into the two spin states 2^+ and 3^+ . There is no direct measurement of the spin of the ²³³U resonances. Previous evaluations have used the trial-and-error method to find a combination of spin which allowed the best fit of the interferences between resonances; the result depends strongly on the first guess of the combination of spin. Furthermore, according to the theory, the set of partial fission widths when using several fission channels is not unique unless other physical information is available.¹⁷ The strong overlapping of the resonances due to a small average spacing and a rather large average total width render the analysis even more complicated. Some of the asymmetry appearing in the wings of the resonances could be due to unresolved small resonances or multiplets and not to the interferences between resonances. The effect of hidden small resonances in ²³³U cross sections was examined by Koenig and Michaudon¹⁸ and by Nizamuddin and Blons;¹⁶ they concluded that the physical meaning of the resonance parameters, especially of the spin of the resonances, obtained from a multilevel analysis of ²³³U cross sections could be questioned. However, it is important to reproduce the exact shape of the experimental cross section for an accurate calculation of the self-shielding factors; only a multilevel formalism can reproduce the shape of the fission interferences in the fissile nuclei resonances. The physical meaning of the resonance parameters is a separate problem which should be taken into account in the study of the statistical properties and average values of the parameters.

Some information on the 2^+ and 3^+ fission widths could be obtained from the threshold energy of the fission channels and could help to choose the spin of the resonances. By assuming that the sequence of levels of the nucleus highly deformed at fission is similar to that of the nucleus at its stable deformation, the lowest fission channel corresponds to the 2^+ state pertaining to the rotational band of the ground state. The corresponding fission threshold is believed to be at about 1.5 MeV below the neutron binding energy in the 234 U compound nucleus.^{19,20} Some other 2^+ states exist in the low energy region of the collective band structure: gamma and double gamma vibrations, combination of bending and mass asymmetry vibrations,^{21,22} giving another important contribution to the average fission width of the 2^+ resonances. The 3^+ transition states are also present in the K=1⁺ and K=2⁺ collective bands above the 2^+ transition states, and could be completely open for the fission. The number of open or partially open fission channels are expected to lie at lower energy than the 3^+ channels. Therefore, the average fission width of the 2^+ resonances could be a few times larger than that of the 3^+ resonances.

In the SAMMY calculation only two fission channels were used for each spin state because the ENDF/B-VI format allows only two fission channels. Because the number of open or partially open fission channels is likely to be larger than 2, the fission interferences could not be taken properly into account. On average, the fission interference effects decrease when the number of channels increases. Actually, some difficulties were encountered in Ref. 2 in fitting the experimental data due to too strong interference effects with the prior parameters. Some of the difficulties were solved by using nearly orthogonal fission vectors for the neighboring strong resonances of the same spin and, in general, the final configurations were those minimizing the interferences in group of neighboring resonances. This problem was not important in the high energy region of the data where the interference effects are

obscured by the experimental resolution. In the present work, the resonance parameters of Ref. 2 were taken as prior data in the energy range up to 150 eV. At higher energy, an input set of resonance parameters was obtained with the same technique as that used for ²³⁵U, with a randomly assigned sign for the fission width amplitudes.²³

II-2- The contribution of the external resonances

Before starting the analysis, the contribution of the resonances below and above the limits of the energy range analyzed was determined by using the resonance parameters of Ref. 2 with the same technique as that used in Ref. 23 for the evaluation of the resonance parameters of 235 U. The parameters for ten large fictitious bound levels in the energy range E<-5 eV and ten large fictitious unbound levels in the energy range E<-5 eV and ten large fictitious unbound levels in the energy range E>605 eV were determined. These resonances give the energy- dependent contribution of the external levels, a contribution which is particularly important in the scattering cross section: positive at thermal energy, zero near 300 eV and negative at high energy, as it is shown on Fig. 1. The contribution from more distant levels is included in the effective scattering radius R' which is related to the distant level parameter R^{\circ} by R' = $a(1-R^{\circ})$ where a is the channel radius. R' is a constant in the energy range analyzed and can be obtained from the fit of the effective total cross section. Five bound levels in

Fig. 1- The contribution of the external levels to the scattering cross section in the energy range 0 eV to 600 eV. The crosses are the cross sections calculated from an external set of resonance parameters obtained by shifting to the negative energy region and to the region just above 600 eV a preliminary set of resonances of the energy range 0 to 600 eV. The solid line represents the cross section calculated by a reduced set of 10 fictitious negative resonances and 10 fictitious resonances in the energy range above 600 eV. The parameters of these fictitious resonances were obtained from a SAMMY fit of the data represented by the crosses.

the energy range -5 eV to 0 eV contributed to the fit of the thermal range and five levels in the energy range 600 to 605 eV contributed to the fit in the energy range just below 600 eV. Note that the energy dependent contribution of the external levels could be obtained by using only two fictitious broad resonances, according to the prescription of Froehner and Bouland;²⁴ but using a quite large number of fictitious external resonances is more convenient for the fissile nuclei in order to minimize the spurious fission interference effects created by the fictitious external resonances. One of the arguments of Froehner and Bouland is that one should avoid increasing the number of resonances in the evaluated data file due to computer space and time; but that is not an important issue in the modern computer environment.

III- THE EXPERIMENTAL DATA BASE

Since the aim of the present work was to improve the accuracy of the ²³³U resonance data at low energy and to extend the resolved resonance range to higher energy, new high resolution transmission and fission experiments were undertaken at ORELA. The neutron transmission measurements⁴ were performed at a 79.8 m flight path with samples cooled to 11K in order to reduce the width of the resonances by decreasing the Doppler broadening by a factor of 2 compared to the experiments at room temperature; the ²³³U sample was located 9 m from the neutron target. One series of measurements was performed with a sample of 0.00298 at/b (with Cd filter in the beam) in the energy range 0.5 eV to 80 eV, and another series was performed with a sample of 0.0119 at/b (with ¹⁰B filter in the beam) in the energy range 6 eV to 300 keV. The fission cross section measurements⁵ were performed at a 80 m flight path, consisting also of two series of measurements, one in the energy range 0.5 eV to 80 eV with a Cd filter, another in the energy range from 10 eV to 700 keV with a ¹⁰B filter. Due to the length of the flight path and the excellent ORELA resolution, the experimental resolution was much better than any of the previous fission measurements. These new ORELA transmission and fission measurements were the primary data for the present evaluation in the energy range from 0.5 eV to 600 eV.

Most of the previous neutron cross section measurements of ²³³U in the thermal and resolved energy range were performed before 1975. The fission data were reviewed by Deruvter and Wagemans.²⁵ Thev found large discrepancies among the data, with differences of more than 50% on the average cross sections in some energy ranges and concluded that a consistent renormalization of all the data was not possible due to unknown important sources of systematic errors. In Ref. 2, the fission data of Deruyter and Wagemans, Weston et al.¹¹ and Blons²⁶ were included in the experimental data base for the determination of the resonance parameters in the energy range up to 150 eV, and it was shown that a renormalization of the three sets of data was possible with better than 3% accuracy, at least in the energy range analyzed, by taking as reference the result of the most recent fission measurement by Wagemans et al.²⁷ normalized at thermal energy on the standard of Axton.²⁸ The same data of Wagemans et al. was used for the normalization of the new ORELA fission data. ORELA data were obtained with a relatively large quantity of fissile material coated on high-purity aluminum plates; the average cross section needed to be corrected for self-shielding and multiple scattering effects before comparison with Wagemans et al. integral value in the energy range 8.1 eV to 17.6 eV; the correction was performed by SAMMY with the current ²³³U resonance parameters and the current evaluated neutron cross sections of Al.²⁹ There is no information in the publication by Blons on possible corrections for experimental effects. In Weston et al. data, the corrections for the neutrons scattered by Al were performed to the first order, which was considered sufficient by the authors of the experiment. Actually, the corrections for self-shielding and multiple scattering effects are small compared to other unknown sources of errors. The new ORELA data used in the present work were not those corrected for the experimental effects, but the corresponding uncorrected data; the corrections were directly performed by SAMMY when calculating the theoretical cross section in the fitting process.

The data of Weston et al. were the result of a simultaneous measurement of the fission and the capture cross section; the Weston capture cross section data are the only capture data available for the evaluation. The absorption cross section was normalized by Weston¹¹ on the absorption inferred from the total cross section of Pattenden and Harvey³⁰ in the energy range 1.0 eV to 2.75 eV, with an accuracy of about 3%. The evaluation of Ref. 2 has shown that the experimental capture cross sections were too small between resonances due to a possible overestimation of the background correction made by Weston et al. The same conclusion was obtained by Reynolds and Steiglitz.⁹ In the present evaluation, a

background of $1.5/E^{1/3}$ was added to the experimental data prior to the SAMMY calculation; this shape of background correction was suggested by Weston. Actually the statistical accuracy of the capture data was poor compared to the associated fission data. Nevertheless, accurate fits of the capture data were possible in the energy range below about 30 eV. Above this energy the capture were still included in the SAMMY experimental data base because of the presence of strong narrow resonances with enough statistical accuracy at the peaks. The ¹⁹⁵Pt resonances are seen in the original capture data; these resonances were removed prior to the SAMMY fits in the energy range up to 100 eV.

Before the new ORELA transmission experiments, the only high resolution total cross section data were those from Kolar et al.³ taken at Geel Electron Linear Accelerator (GELINA, Geel Euratom Belgium). These data were used in the analysis of Ref. 2 and in a preliminary SAMMY calculation in the present work. The thickness of the sample used by Kolar was 0.0046 at/b, less than half the thickness of the sample in the ORELA experiment. Important normalization and background corrections were needed for consistency with the fission cross sections. Kolar data were not included in the final SAMMY runs in the present evaluation.

Several sets of experimental data are available in the thermal energy range. The total cross sections are from Moore et al.³¹ Pattenden and Harvey,³⁰ Harvey et al.³² The fission cross sections are from Weston et al.,¹² Deruyter and Wagemans²⁵ and Wagemans et al.²⁷ The capture cross sections from Weston et al.¹² The fission and capture data were renormalized according to Axton standard.

Some of the features of the experimental data sets selected for the SAMMY final runs are given in Table 1. The data were obtained using the time-of-flight (TOF) technique with a pulsed neutron source. The accuracy of the neutron energy depends mainly on the accuracy of the flight path length and of the timing of the neutron pulse. Therefore, the resonances could be slightly shifted when comparing independent measurements. The energy scale of the ORELA high resolution transmission was chosen as energy standard. The energy correction applied to the other data is given by the relation $aE+bE^{3/2}$, where *a* corresponds to the accuracy on the length of the flight path and *b* to the accuracy on the neutron time of flight. These parameters were obtained directly from a SAMMY adjustment or from graphical comparison of the peak energy of selected resonances.

The experimental resolution parameters and the Doppler broadening parameters are needed for an accurate description of the shape of the experimental data by SAMMY. The parameters are found in the literature or obtained directly from the authors of the measurements. The accuracy of the resolution parameters was checked in the high energy part of the data where the width of the resolution function contributes to a significant portion of the observed width of the resonance or cluster of resonances. The effective temperature of the samples, for the calculation of the Doppler broadening, was settled at 300K, with an accuracy of about 10%, for all the data taken at room temperature. For the data taken at liquid nitrogen temperature (Blons fission data) and at 11K (ORELA neutron transmission data) the effective temperatures were those recommended by the authors of the measurements, i.e. 101K and 70.6 K respectively. Since the evaluation included a large number of uncorrelated experimental data of different nature (transmission, fission and capture) it is unlikely that the errors on the temperature and resolution parameters could have a large effect on the accuracy of the resonance parameters. The most sensitive parameter is the capture width of the resonances for which one expects an accuracy of about 8% on the average value.

Author	Energy Range Analyzed(eV)	Main Features
Moore et al., 1960 ³²	0.020-15.0	Transmission; chopper, TOF 15.7 m Sample 0.0037 and 0.0213 at/b
Pattenden and Harvey, 1963 ³¹	0.080-15.0	Transmission; chopper, TOF 45 m Sample 0.00057, 0.00308, 0.01219 at/b
Weston et al., 1968 ¹¹	1.0-600.0	Simultaneous measurement of Capture and Fission, Linac, TOF 25.2 m
Weston et al., 1970 ¹²	0.020-1.0	Simultaneous measurement of Capture and Fission, Linac, TOF 25.6 m
Blons, 1973 ²⁶	4.0-600.0	Fission, Linac, TOF 50.1 m, Sample at Liquid Nitrogen Temperature
Deruyter and Wagemans, 1974 ²⁵	0.020-15.0	Fission, Linac, TOF 8.1 m
Harvey et al., 1979 ³³	0.020-1.2	Transmission, Linac, TOF 17.9 m Sample 0.00605 and 0.0031 at/b
Wagemans et al., 1988 ²⁷	0.002-1.0	Fission, Linac, TOF 8.1 m
Guber et al., 1998 ⁴	1.0-80.0	Transmission, Linac, TOF 80 m
		Cd filter, Sample Temperature 11K
		Sample Thickness 0.00298 at/b
Guber et al., 1998 ⁴	7.0-600.0	Transmission, Linac, TOF 80 m
		¹⁰ B filter, Sample Temperature 11K
		Sample Thickness 0.0119at/b
Guber et al., 1999 ⁵	1.0-80.0	Fission, Linac, TOF 80 m
		Cd filter
Guber et al., 1999^5	7.0-600.0	Fission, Linac, TOF 80 m
		¹⁰ B filter

Table 1- Selected measurements of ²³³U neutron transmission, fission and capture

In addition to the microscopic or differential data (from TOF transmission or cross section measurements) a variety of "integral quantities" are available within SAMMY. These integral quantities are calculated by integrating over the microscopic absorption, fission and capture cross sections, and thus are a function of the resonance parameters. The derivatives of the integral quantities with respect to the

resonance parameters are also calculated by SAMMY. The Maxwellian average cross sections at thermal energies are important for the interpretation of the thermal benchmarks. They are particularly used for the calculation of the Wescott g_w factors and the K_1 parameter, defined respectively as

$$g_w = 2\sigma_x / \pi^{1/2}\sigma_{0x}$$

where w stands for fission (g_f) , absorption (g_a)

and

 $K_1 = \nu \sigma_{0f} g_f - \sigma_{0a} g_a$,

where σ_x and σ_{0x} are the Maxwellian-averaged cross sections and the cross sections at 0.0253 eV, respectively. Other important integral parameters are the fission and the capture resonance integrals I_c and I_f and their ratio $\alpha = I_c/I_f$. The resonance integral is defined as

$$I_{x} = \int_{0.5 \ eV}^{20 \ MeV} \sigma_{x} / E \, dx$$

Some evaluated ²³³U integral data are given in Table 2.

Table 2-	Evaluated	integral	quantities
----------	-----------	----------	------------

Quantity	ENDF/B-VI Standard ³³	Axton Standard ²⁸	BNL ³⁴	Present Work
g _a	0.9996 ± 0.0011	0.9995 ± 0.0011	0.9996 ± 0.0015	1.00325
g _f	0.9955 ± 0.0014	0.9955 ± 0.0014	0.9955 ± 0.0011	1.00045
I _a			897 ± 20	917.45
I _f			760 ± 17	777.82
K ₁	742.60 ± 2.40	742.25 ± 2.37	738.0	746.77
ν	2.4946 ± 0.0040	2.4950 ± 0.0040	2.493 ± 0.004	2.4946

IV- THE RESULTS OF THE SAMMY ANALYSIS

The resonance parameters file obtained from the SAMMY analysis of the experimental data in the energy range from thermal region to 600 eV neutron energy contains 769 resonances, 738 in the energy range analyzed and 31 external resonances. The resonance parameter file is given in the Appendix of this report. All the resonances were considered as induced by s-wave neutrons. Small corrections should be applied to the calculated local s-wave strength function to take into account the effect of the non-identified small p-wave neutron resonances. The average spacing of the 738 resonances is 0.81 eV which is much larger than the expected value. The meaning of the resonance parameters in the high energy

range of the data, i.e., parameters of true or pseudo-resonances, will be discussed in the section on the statistical properties of the parameters.

IV-1- The thermal energy range

The cross sections in the thermal energy range must be calculated with the best accuracy possible at all energies. This accuracy was obtained in the earlier evaluation by using the cross sections evaluated directly from the experimental values since the single level or multilevel Breit-Wigner resonance parameters are not able to reproduce the shape of the experimental data where the interferences due to the fission channels are important. That is the case for 233 U in the energy range near the 0.17 eV resonance. The Reich-Moore formalism of SAMMY is able to reproduce with high accuracy the shape of the fission interferences. In the ²³³U experimental data, the resonance at 0.17 eV appears as a well defined resonance in the experimental capture cross sections, but is seen in the experimental total and fission cross section as a small interference deformation; the neutron width is very small. The interference shape cannot be reproduced from only the positive energy resonances; important contributions come from the first bound levels. Some difficulties were encountered by Reynolds and Steiglitz⁹ and in Ref. 2 to find a resonance configuration which could give a good description of the fission and capture cross sections. In the present work, another configuration was found which avoided the use of a resonance with an unrealistic small value of the capture width (capture width of 1 meV at 0.67 eV by Reynolds and Steiglitz and of 0.9 meV at 0.44 eV in Ref. 2). The resonance capture near 0.20 eV is considered as a doublet at energies 0.17 eV and 0.23 eV, and a very small resonance at 0.58 eV has a capture width of 25 meV. The results of the fit of the experimental data are given in Figs.2-3.

Fig. 2- The total cross section in the neutron energy range 0.01 to *I eV*. The experimental data are represented by the error bars. The solid lines are the data calculated by the resonance parameters. The experimental cross sections are, from the bottom of the figure, Harvey et al. data,³³ Moore et al. data³² (multiplied by 10) and Pattenden et al. data³¹ (multiplied by 100).

The values of the cross sections calculated from the resonance parameters at 0.0253 eV are compared to the Axton standard and to ENDF/B-VI values in Table 3. The excellent agreement between Axton and the present calculation is due to the renormalization of the experimental fission and capture data to this standard, prior to the SAMMY fit; a scattering cross section file was also created in a small energy range

near 0.0253 eV according to the scattering cross section of Axton. The experimental total cross sections were not renormalized since they were the results of absolute measurements.

Table 3- The cross sections (barn) at 0.0253 eV

	Present Results SAMMY 300K	Axton Standard ²⁸	ENDF/B-VI Standard ³⁴
Fission	530.70	530.70±1.34	531.14±1.33
Capture	45.22	45.52±0.70	45.51±0.68
Scattering	12.18	12.19±0.67	12.13±0.66

The calculated cross section integrals are compared to the corresponding experimental values in Tables 4 and 5 for energy ranges below 1eV. Good agreement is evident between the experimental and calculated fission data. Good agreement is also evident between Harvey et al. experimental total cross sections and the calculated values. Note that the total cross section of Harvey et al. was the result of an absolute measurement performed with an accuracy better than 1% in order to check the accuracy of earlier data. Actually, the earlier data of Moore et al. and of Pattenden and Harvey are smaller by about 2%.

Table 4- Fission cross section integrals (b-eV) in the thermal energy range. The calculated values are those obtained at 300K from the resonance parameters. The experimental fission data were normalized at 0.0253 eV according to Axton standard. The experimental and the calculated fission integrals agree within 0.8%; the accuracy of Axton standard at 0.0253 eV is 0.25%.

Energy Range eV	Wagemans ²⁷ b-eV	Deruyter ²⁵ b-eV	Weston ¹² b-eV	Calculated b-eV
0.01-0.020	6.92			7.01
0.020-0.050	13.89	13.92	13.95	13.91
0.050-0.400	71.43	71.69	71.79	71.07
0.400-1.000	78.46	77.58	77.81	76.93

Table 5- Total cross section integrals (b-eV) in the thermal energy range. The calculated values are those obtained at 300K from the resonance parameters.

Energy Range eV	Harvey ³² b-eV	Moore ³¹ b-eV	Pattenden ³⁰ b-eV	Calculated b-eV
0.020-0.050	15.789	15.663		15.733
0.050-0.400	81.468	80.789		82.300
0.400 0.900	90.244	88.809	89.519	90.751

IV-2- The Resolved Resonance Region

Examples of SAMMY fits in some energy ranges are given in Figs. 4-8. Due to high experimental resolution, the new ORELA fission cross section and neutron transmission data were essential for the identification of the resonances in the high energy part of the analysis. A detailed comparison between the ORELA average fission cross section and the results of the SAMMY fits is given in Table 6. The experimental effects on the average fission cross sections, mainly due to the self-shielding of the U sample and the multiple scattering on the Al plates, were obtained by comparing the calculated uncorrected cross sections and the calculated corrected cross sections. The accuracy of the normalization of the experimental fission cross sections was determined by comparison with the integral value recommended by Wagemans et al.²⁷ in the energy range 8.1 and 17.6 eV as shown in Table 7. The agreement with Wagemans standard is better than 0.2% for Weston et al. and Deruyter et al. The ORELA value obtained by using the uncorrected data and applying the SAMMY correction is 0.5% smaller. The value calculated from the resonance parameters is 1.4% smaller. However, the Deruyter data, available with a good experimental resolution in the energy range 0.02 eV to 27 eV, normalized on Axton standard at 0.0253 eV should be considered as the best reference for the ²³³U fission measurements up to about 30 eV. The fission integral calculated from the resonance parameters in the energy range 0.02 eV to 27 eV

agrees with Deruyter value within 0.3%. The ratios of the average experimental fission cross section, capture cross section and transmission to the corresponding calculated values are given in Table 8 in 15 intervals in the neutron energy range 1 eV to 600 eV. Up to the neutron energy of about 100 eV there is a quite good agreement between the calculated cross sections and all the experimental values. Above 150 eV ORELA average fission is about 7% larger than the calculated values; in this energy range the SAMMY fit is close to the Weston data. The fit to the ORELA transmission data is very good over all the energy range of the analysis. Differences of more than 30% are seen in some energy ranges in the capture cross section; these differences, which are mainly seen in the low values, are not considered significant because of the large errors in the capture measurements.

Fig. 4- Weston et al.¹² fission and capture cross section in the energy range 1 eV to 20 eV. The solid lines represent the cross sections calculated from the resonance parameters. The experimental data are represented by the statistical error bars (the upper curve is the fission cross section).

Fig. 5- *Total and fission cross sections in the energy range 1 eV to 20 eV*. The solid lines represent the cross sections calculated from the resonance parameters. The experimental data are, from the bottom of the figure: Weston et al.¹¹ fission cross section (multiplied by 0.09), Deruyter et al.²⁵ fission cross section (multiplied by 0.3), ORELA⁵ fission cross section and ORELA⁴ total cross section (multiplied by 3.0).

Fig. 6- *Total and fission cross section in the energy range 50 eV to 75 eV*. The solid lines represent the cross sections calculated from the resonance parameters. The experimental data are, from the bottom of the figure: Weston et al.¹¹ fission (multiplied by 0.09), Blons et al.²⁶ fission (multiplied by 0.30), ORELA⁵ fission and ORELA⁴ total cross sections (multiplied by 3.0).

Fig. 7- *Total and fission cross sections in the energy range 150 eV to 175 eV.* The solid lines represent the cross sections calculated from the resonance parameters. The experimental data are, from the bottom of the figure: Weston et al.¹¹ fission (multiplied by 0.09), Blons et al.²⁶ fission (multiplied by 0.30), ORELA⁵ fission and ORELA⁴ total cross sections (multiplied by 3.0).

Fig. 8- Total and fission cross sections in the energy range 550 eV to 600 eV. The solid lines represent the cross sections calculated from the resonance parameters. The experimental data are, from the bottom of the figure: Weston et al.¹¹ (multiplied by 0.09), Blons et al.²⁶ (multiplied by 0.30), ORELA⁵ fission cross sections and ORELA⁴ total cross section (multiplied by 3.0).

Table 6- New ORELA average experimental fission cross sections and calculated cross sections. The percentage deviation between the corrected experimental and calculated data is given in the last column of the table in parenthesis.

15 grien m	is given in the fast column of the faste in parenthesis.						
Energy	Experimental	Calculated	Calculated	Experimental	Experimental		
Range	uncorrected	uncorrected	corrected	effect %	corrected		
eV							
0.40-1.00	128.16	126.46	127.48	-0.8	129.19 (1.3%)		
1.00-2.10	369.21	375.57	388.92	-3.6	382.36 (1.7%)		
2.10-2.75	199.01	199.48	206.73	-3.6	206.24 (0.2%)		
2.75-3.00	56.82	50.08	50.24	-0.3	57.00 (14%)		
3.00-15.0	103.65	102.64	104.25	-1.6	105.28 (1.0%)		
15.0-30.0	93.55	94.45	94.75	-0.3	93.85 (1.0%)		
30.0-50.0	41.96	40.97	40.73	0.6	41.71 (2.2%)		
50.0-75.0	42.19	41.35	41.25	0.2	42.09 (1.9%)		
75.0-100	37.59	37.00	36.91	0.2	37.50 (1.1%)		
100-125	38.88	38.40	38.23	0.4	38.71 (1.0%)		
125-150	22.73	21.33	21.09	1.1	22.47 (6.5%)		
150-200	22.74	21.09	20.98	0.5	22.62 (7.8%)		
200-300	24.14	23.13	23.03	0.4	24.04 (4.4%)		
300-400	19.49	18.38	18.24	0.8	19.34 (6.0%)		
400-500	12.17	11.13	11.01	1.1	12.04 (9.4%)		
500-600	14.57	13.57	13.48	0.7	14.47 (7.3%)		

Table 7- Fission cross section integral (barn-eV) in the low energy range. Weston et al. and Deruyter et al. values are those obtained after normalization on Axton standard. The ORELA value was obtained from the raw fission data corrected by SAMMY for the experimental effects.

Energy Range eV	Calculated value	ORELA ⁵ Exp. Cor.	Weston ¹¹	Deruyter ²⁵	Wagemans ²⁷ recommended
8.1 - 17.6	951.49	960.19	966.31	962.94	965.2
0.02 - 27.0	3230.0			3239.8	

Table 8- Ratio of average experimental fission, capture cross sections and transmission to the corresponding calculated values in the energy range 1.0 eV to 600 eV.

Energy Range eV	Weston ¹¹ Fission	Weston ¹¹ Capture	Blons ²⁶ Fission	Deruyter ²⁵ Fission	ORELA⁵ Fission	ORELA ⁴ Transmission
1.00 - 2.10	1.009	1.010		0.982	0.983	0.981
2.10 - 2.75	1.003	1.001		0.997	0.998	1.000
2.75 - 3.00	1.044	0.957		1.034	1.135	0.999
3.00 - 15.0	1.006	0.987		1.007	1.010	1.003
15.0 - 30.0	1.005	0.990	0.998		0.991	1.021
30.0 - 50.0	0.987	0.917	0.988		1.024	1.007
50.0 - 75.0	0.985	0.840	0.980		1.020	1.002
55.0 - 100	0.964	0.990	0.991		1.016	1.009
100 - 125	0.971	1.002	0.968		1.013	0.991
125 - 150	1.009	0.895	0.961		1.065	0.993
150 - 200	1.006	0.790	0.966		1.078	0.991
200 - 300	0.997	0.908	0.971		1.044	0.994
300 - 400	1.004	0.660	0.981		1.060	0.999
400 - 500	1.023	0.824	0.976		1.094	0.999
500 - 600	1.016	1.162	0.964		1.073	1.000
1.0 - 15.0	1.007	1.033		1.003	1.004	1.002
15.0 - 600	0.998	1.195	0.980		1.044	0.998

The experimental fission cross sections in Figs.4-8 show large discrepancies particularly in the minima of the cross sections. These discrepancies are due to experimental effects which could not be taken into account when calculating the theoretical data from the resonance parameters, because of the lack of information from the authors of the measurements. The quality of the fits could be improved by allowing background and normalization corrections in the SAMMY analyses. Attempts were made to search on the background and normalization coefficients; however, the interpretaion of the results is difficult because the background and normalization corrections are strongly correlated with each other and with the large fission widths. In this way a good fit of all the experimental data could be purely artificial. Figures 8 and 9 show the data in the upper energy range of the analysis. In Fig. 8 the theoretical cross sections were calculated with the final set of resonance parameters, i.e. after considering the results of the benchmark tests of the intermediate energy range (see **IV-3** below, with more weight on Weston et al. data). The average calculated fission cross section is about 7% smaller than the ORELA experimental value. In Fig. 9, the theoretical cross sections were calculated by the parameters obtained by fitting the

Fig. 9- Total and fission cross sections in the energy range 550 eV to 600 eV. The experimental data are the same as in Fig. 8; the calculated cross sections are from the resonance parameters obtained by fitting the microscopic cross sections only.

microscopic data only. In the sequential SAMMY fit, ORELA experimental data have the highest weight (much better experimental conditions), resulting in a good representation of the data with the resonance parameters. In this case, the average experimental fission cross section value agrees with the one calculated from the resonance parameters to within 0.5%.

The calculated average cross sections are compared to ENDF/B-VI data in Table 9. Large differences are seen above 60 eV neutron energy corresponding to an unresolved resonance region for ENDF/B-VI. Extending the resolved resonance range up to 600 eV improved the accuracy of the calculated cross section compared to the statistical calculation from inaccurate average resonance parameters.

The fission resonance integral and the capture resonance integral are 776.64 b and 139.66 b respectively, which compare to 756.92 b and 136.67 b in ENDF/B-VI, and 760 \pm 17 b and 137 \pm 6 b by Mughabghab.³⁴

Energy	Total		Fission		Capture	
Range eV	Present	ENDF/B-VI	Present	ENDF/B-VI	Present	ENDF/B-VI
0.001- 0.020	1073.49	1067.81	979.24	971.62	81.98	83.
0.020- 0.050	513.60	512.74	461.63	460.02	39.81	40.21
0.050- 0.400	234.64	234.57	201.85	202.63	208.43	203.59
0.400- 1.000	151.02	147.04	127.69	126.91	11.94	9.95
1.000- 2.100	466.58	456.59	388.97	378.56	66.25	67.38
2.100- 2.750	332.56	322.95	206.67	198.02	111.58	112.00
2.750- 3.000	70.61	69.59	49.84	50.45	7.92	7.48
3.000- 15.00	133.93	130.47	104.26	101.26	17.63	17.65
15.00- 30.00	120.84	117.69	94.76	91.79	13.48	13.27
30.00- 50.00	58.61	57.33	40.73	38.86	5.65	5.46
50.00- 75.00	58.51	58.63	41.24	41.20	5.67	4.61
75.00- 100.0	58.07	50.66	36.89	33.73	8.94	4.35
100.0- 125.0	56.59	46.44	38.24	29.97	6.00	3.88
125.0- 150.0	37.04	38.21	21.09	22.12	3.71	3.54
150.0-200.0	35.84	37.08	20.97	21.34	3.13	3.18
200.0- 300.0	38.63	35.17	23.02	19.87	3.59	2.72
300.0- 400.0	33.06	31.56	18.24	16.66	2.50	2.33
400.0- 500.0	24.27	27.79	11.01	13.17	1.42	2.08
500.0- 600.0	27.39	27.86	13.47	13.40	2.05	1.90

Table 9- Average cross sections of the present evaluation compared to ENDF/B-VI data. The average cross sections were calculated with NJOY constant flux and infinite dilution.

IV-3- The benchmark testing

An assessment of the ²³³U resonance evaluation presented in this work regarding the calculation of critical benchmark systems was performed. The evaluations were used to calculate various benchmark systems in the thermal energy region, intermediate energy region , and high energy region. In addition to the calculations using the present ²³³U evaluation, calculations were also done with cross section data generated with the evaluations available in the ENDF/B and JENDL libraries. The ²³³U library were

obtained by replacing the resonance region evaluation of a previous ²³³U evaluation done at ORNL³⁵ with the present ²³³U resonance evaluation. The library obtained will be referred to as the ORNL library. Benchmark calculations were performed using the ORNL, ENDF and JENDL data libraries and the multiplication factors (k_{eff}) were obtained. The selected energy group structure used in the calculations is the 199-group VITAMIN-B6 cross-section library.³⁶ The data libraries were processed using the NJOY code system, whereas the benchmark calculations were performed with the Monte Carlo code KENO.Va. A total of 37 benchmark calculations, namely, 16 benchmarks in the thermal region, 11 benchmarks in the intermediate energy region and 10 benchmarks in the fast energy region, were performed. Of the 16 thermal benchmarks, 6 are benchmarks available from the Cross Section Evaluation Working Group (CSEWG) and 10 are the International Criticality Safety Benchmark Experiments Program (ICSBEP). The CSEWG thermal benchmarks, the ORNL series, are unreflected spheres of ²³³U. A general description of these thermal benchmarks is given in Table 10. The ICSBEP thermal benchmarks, the ²³³U-SOL-THERM-003 series,³⁷ are paraffin reflected cylinders of ²³³U uranyl fluoride solutions. A general description of the ²³³U-SOL-THERM-003 is given in Table 11. The logbook experiment number of these benchmarks are given in the first column in Table 11. The 11 benchmarks in the intermediate energy region, the ²³³U-SOL-INTER-001 series also known as *Falstaff*, are from the ICSBEP. They are aqueous solutions of ²³³U in form of uranyl-fluoride in spheres with reflectors of Be, CH2 and BeCH2 composites. The Falstaff were done in the late1950's using 8 types of stainless steel spheres of inner radius varying from 7.87 cm to 12.45 cm. A general description of these intermediate benchmarks is given in Table 12. The first column in Table 12 is the sphere number as it appear in the benchmark validation documents for this system. The 10 fast critical benchmark experiments are the 9 CSEWG ²³³U-MET-FAST in which the ²³³U-MET-FAST-001 is known as JEZEBEL-23 and the FLATTOP-23 benchmark. A general description of these fast benchmarks is given in Table 13.

The calculated k_{eff} obtained with the KENO.Va code are shown from Table 14 to Table 17 for the ORNL, ENDF and JENDL libraries. The results of the k_{eff} for the thermal critical benchmark experiments are displayed in Table 14 and Table 15. The results shown in these tables indicate that the calculations using the 3 libraries are compatible, with the ENDF results being a little low for the ORNL thermal benchmarks. The k_{eff} results for the intermediate energy critical experiments, *Falstaff* systems, are shown in Table 16. The normalized neutron flux to one source neutron in unit of neutron per centimeter for the *Falstaff* system is shown in Fig. 10 as a function of energy for the 199-group structure. The upper limit of the ORNL resonance evaluation is 600 eV and above 600 eV the unresolved resonance representation was used. The unresolved resonance region is important to the calculation of the k_{eff} for intermediate energy benchmark as shown in Fig. 10. Work is underway to revise and reevaluate the ²³³U unresolved resonance region. The resulting k_{eff} shown in Table 16 are very close for the three cross section libraries used, namely, ENDF, ORNL and JENDL data library. The results of the k_{eff} for the fast critical benchmark experiments are displayed in Table 17, which indicates that the k_{eff} calculated using the ORNL evaluation are greatly improved relative to both ENDF and JENDL results.

Benchmark	H/U atom ratio	wt % ²³³ U	U density (g/cm3)	Geometry	Reflector
ORNL-5	1533	97.70	-	sphere	none
ORNL-6	1470	97.70	-	sphere	none
ORNL-7	1417	97.70	-	sphere	none
ORNL-8	1369	97.70	-	sphere	none
ORNL-9	1324	97.70	-	sphere	none
ORNL-11	1986	97.70	-	sphere	none

Table 10- Features of the ²³³U thermal critical benchmark experiments

Table 11- Features of the ²³³U thermal critical benchmark experiments ²³³U-SOL-THERM-003

Logbook Experiment #	H/U atom ratio	wt % ²³³ U	U density (g/cm3)	Geometry	Reflector
40	74.1	98.7	0.332	Cylinder	Paraffin
41	74.1	98.7	0.332	Cylinder	Paraffin
42	74.1	98.7	0.332	Cylinder	Paraffin
55	39.4	98.7	0.600	Cylinder	Paraffin
45	45.9	98.7	0.519	Cylinder	Paraffin
57	154	98.7	0.165	Cylinder	Paraffin
58	250	98.7	0.102	Cylinder	Paraffin
61	329	98.7	0.078	Cylinder	Paraffin
62	396	98.7	0.065	Cylinder	Paraffin
65	775	98.7	0.033	Cylinder	Paraffin

Sphere No.	H/U atom ratio	wt % ²³³ U	U density (g/cm3)	Geometry	Reflector
1	24.3	98.562	0.866	Sphere	Be
2	24.3	98.562	0.866	Sphere	Ве
3	24.3	98.562	0.866	Sphere	Be
3	24.3	98.562	0.866	Sphere	$Be + CH_2$
4	24.3	98.562	0.866	Sphere	Be
4	24.3	98.562	0.866	Sphere	$Be + CH_2$
5	24.3	98.562	0.866	Sphere	Be
5	24.3	98.562	0.866	Sphere	CH ₂
5	24.3	98.562	0.866	Sphere	$Be + CH_2$
6	24.3	98.562	0.866	Sphere	Ве
6	24.3	98.562	0.866	Sphere	$Be + CH_2$

Table 12- Features of the ²³³U intermediate critical benchmark experiments Falstaff

Table 13- Features of the ²³³U fast critical benchmark experiments

Benchmark	H/U atom ratio	wt % ²³³ U	U density (g/cm3)	Geometry	Reflector
²³³ U-MET-FAST-001 (JEZEBEL-23)	-	98.2	18.424	sphere	none
²³³ U-MET-FAST-002-a	-	98.2	18.621	sphere	HEU
²³³ U-MET-FAST-002-b	-	98.2	18.644	sphere	HEU
²³³ U-MET-FAST-003-a	-	98.2	18.621	sphere	NU
²³³ U-MET-FAST-003-b	-	98.2	18.644	sphere	NU
²³³ U-MET-FAST-004-a	-	98.2	18.621	sphere	W
²³³ U-MET-FAST-004-b	-	98.2	18.644	sphere	W
²³³ U-MET-FAST-005-a	-	98.2	18.621	sphere	Be
²³³ U-MET-FAST-005-b	-	98.2	18.644	sphere	Ве
FLATTOP-23	-	98.2	18.419	sphere	NU

199-group (VITAMIN/B-6)				
Benchmark	JENDL	ENDF/B-6	ORNL	
ORNL-5	0.9988 +/- 0.0008	0.9964 +/- 0.0008	1.0006 +/- 0.0009	
ORNL-6	0.9989 +/- 0.0007	0.9962 +/- 0.0009	0.9997 +/- 0.0008	
ORNL-7	0.9988 +/- 0.0008	0.9948 +/- 0.0008	0.9996 +/- 0.0008	
ORNL-8	0.9990 +/- 0.0008	0.9963 +/- 0.0008	1.0000 +/- 0.0009	
ORNL-9	0.9982 +/- 0.0008	0.9950 +/- 0.0008	0.9998 +/- 0.0007	
ORNL-11	0.9959 +/- 0.0006	0.9951 +/- 0.0005	0.9987 +/- 0.0006	

Table 14- Test of the ²³³U evaluation with thermal energy benchmarks using KENOV.a code

Table 15- Test of the ²³³U evaluation with thermal energy benchmarks (²³³U-SOL-THERM-003)using KENO.V code

199-group (VITAMIN/B-6)			
Benchmark	JENDL	ENDF/B-6	ORNL
1	0.9978 +/- 0.0003	0.9976 +/- 0.0003	0.9970 +/- 0.0003
2	1.0019 +/- 0.0003	1.0073 +/- 0.0003	1.0075 +/- 0.0003
3	0.9931 +/- 0.0003	0.9850 +/- 0.0003	0.9910 +/- 0.0003
4	0.9989 +/- 0.0003	1.0003 +/- 0.0003	0.9970 +/- 0.0003
5	1.0064 +/- 0.0003	1.0017 +/- 0.0003	1.0011 +/- 0.0003
6	1.0196 +/- 0.0003	1.0143+/- 0.0003	1.0184 +/- 0.0003
7	1.0074 +/- 0.0003	1.0085 +/- 0.0003	1.0124 +/- 0.0003
8	1.0121 +/- 0.0003	1.0040 +/- 0.0003	1.0067 +/- 0.0003
9	1.0061 +/- 0.0003	1.0013 +/- 0.0003	1.0074 +/- 0.0003
10	1.0048 +/- 0.0003	1.0006 +/- 0.0003	1.0090 +/- 0.0003

199-group (VITAMIN/B-6)			
Sphere No.	JENDL	ENDF/B-6	ORNL
1	0.9913 +/- 0.0003	0.9899 +/- 0.0003	0.9908 +/- 0.0003
2	0.9865 +/- 0.0003	0.9855 +/- 0.0003	0.9858 +/- 0.0003
3	0.9879 +/- 0.0003	0.9859 +/- 0.0003	0.9866 +/- 0.0003
3	0.9970 +/- 0.0003	0.9946 +/- 0.0003	0.9963 +/- 0.0003
4	0.9906 +/- 0.0003	0.9892 +/- 0.0003	0.9898 +/- 0.0003
4	0.9896 +/- 0.0003	0.9884 +/- 0.0003	0.9894 +/- 0.0003
5	0.9878 +/- 0.0003	0.9858 +/- 0.0003	0.9874 +/- 0.0003
5	1.0046 +/- 0.0003	1.0019 +/- 0.0003	1.0032 +/- 0.0003
5	0.9847 +/- 0.0003	0.9831 +/- 0.0003	0.9834 +/- 0.0003
6	0.9850 +/- 0.0003	0.9823 +/- 0.0003	0.9842 +/- 0.0003
6	0.9850 +/- 0.0003	0.9833 +/- 0.0003	0.9842 +/- 0.0003

Table 16- Test of the ²³³U evaluation with intermediate energy benchmarks using KENOV.a code

Table 17- Test of the ²³³U evaluation with fast energy benchmarks using KENO.V code

199-group (VITAMIN/B-6)				
Benchmark	JENDL	ENDF/B-6	ORNL	
²³³ U-MET-FAST-001 (JEZEBEL-23)	1.0078 +/- 0.0011	0.9983 +/- 0.0010	0.9974 +/- 0.0010	
²³³ U-MET-FAST-002-a	1.0129 +/- 0.0011	0.9931 +/- 0.0008	0.9997 +/- 0.0010	
²³³ U-MET-FAST-002-b	1.0066 +/- 0.0010	0.9939 +/- 0.0010	0.9979 +/- 0.0009	
²³³ U-MET-FAST-003-a	1.0087 +/- 0.0010	0.9956 +/- 0.0010	0.9979 +/- 0.0011	
²³³ U-MET-FAST-003-b	1.0068 +/- 0.0009	0.9946 +/- 0.0010	0.9977 +/- 0.0010	
²³³ U-MET-FAST-004-a	1.0075 +/- 0.0009	0.9961 +/- 0.0010	0.9999 +/- 0.0011	
²³³ U-MET-FAST-004-b	1.0087 +/- 0.0009	0.9952 +/- 0.0009	0.9985 +/- 0.0009	
²³³ U-MET-FAST-005-a	1.0074 +/- 0.0009	1.0022 +/- 0.0010	0.9969 +/- 0.0009	
²³³ U-MET-FAST-005-b	1.0169 +/- 0.0010	1.0024 +/- 0.0010	1.0037 +/- 0.0010	
FLATTOP-23	1.0162 +/- 0.0009	1.0024 +/- 0.0010	1.0048 +/- 0.0010	

Fig. 10- The normalized neutron flux to one source neutron in unit of neutron per centimeter for the Falstaff system.

A preliminary evaluation was based only on the microscopic neutron transmission and cross section data. In this evaluation the average capture width was 41 meV, and ORELA fission data were reproduced with an accuracy better than 2% in the energy range above 100 eV. However, the total cross section was significantly higher than the value obtained from ORELA transmission data. The values of k_{eff} calculated from the preliminary evaluation were improved compared to the current ENDF/B-VI file, but better results were obtained with JENDL-3 and ORNL-revised JENDL-3.³⁵ The fission and capture integrals of the preliminary evaluation were also large compared to the recommended BNL value.³⁴ Comparison of the average cross sections of the different files showed that improvement of k_{eff} could be obtained: (1) for intermediate energy spectra by decreasing the average fission cross section in the resolved resonance range above 100 eV, which means that the fit to the experimental fission cross section should be performed closer to Weston et al. data than to ORELA data in this energy range; (2) for thermal energy spectra by decreasing the capture cross section in the low energy range. In the last step of the evaluation the integral quantities of Table 2 were introduced in the experimental data base, more weight was put on Weston et al. fission data and the average radiative capture width was constrained to a value of 39 meV which is 5% lower than the value obtained in the preliminary evaluation, within an estimated experimental error of 8%. Table 18 displays the values of k_{eff} for the intermediate energy benchmarks obtained by using the preliminary evaluation and the proposed final evaluation. The discrepancies between Weston et al. fission data and the new ORELA fission data in the hundred eV energy ranges is disturbing. As a matter of fact, the ORELA fission cross section is in very good agreement with the ENDF/B-VI evaluation in the energy range above 1.5 keV. The evaluation in the unresolved energy range above 600 eV, which is in progress, will help to understand the discrepancies between Weston et al. data and the new ORELA fission data.

	199-group (VITAMIN/B-6)				
Benchmark	ORNL (Guber Fission)	ORNL (Evaluation)			
1	0.9871 +/- 0.0003	0.9908 +/- 0.0003			
2	0.9832 +/- 0.0003	0.9858 +/- 0.0003			
3	0.9831 +/- 0.0003	0.9866 +/- 0.0003			
4	0.9833 +/- 0.0003	0.9963 +/- 0.0003			
5	0.9876 +/- 0.0003	0.9898 +/- 0.0003			
6	0.9864 +/- 0.0003	0.9894 +/- 0.0003			
7	0.9840 +/- 0.0003	0.9874 +/- 0.0003			
8	1.0004 +/- 0.0003	1.0032 +/- 0.0003			
9	0.9811 +/- 0.0003	0.9834 +/- 0.0003			
10	0.9810 +/- 0.0003	0.9842 +/- 0.0003			
11	0.9810 +/- 0.0003	0.9842 +/- 0.0003			

 Table 18- Test of the ²³³U evaluation with intermediate

 energy benchmarks using KENOV.a code

V- STATISTICAL PROPERTIES OF THE RESONANCE PARAMETERS

V-1- Generalities

The study of the statistical properties of the resonance parameters is useful for testing some aspects of the nuclear reaction theory particularly concerning the Wigner distribution of the resonance spacings, the Porter-Thomas distribution of the reaction widths, the nuclear level density theories and the multiplicity of reaction channels. The average values and the law of distribution of the resonance parameters obtained from the statistical study are also the basis for the evaluation of the cross section data in the unresolved resonance energy range just above the resolved energy range. They are also used in the high energy range for optical model or statistical model calculations. The accuracy achieved on the average values depends on the size and the quality of the resonance sample. The number of resonances used in the present evaluation for the description of the data in the energy range 0 eV to 600 eV is 738. All of the resonances of the sample should be considered as s-wave resonances since the penetrability factor of the p-wave neutrons is very small at 600 eV compared to the s-wave neutrons. The variation of the number of resonances versus energy E identified in the energy range 0 to E is shown in the staircase histogram of Fig 11. Since the level density should be constant over such a small energy range, the variation should correspond to a straight line with a slope equal to the average s-wave resonance spacing. Actually, the slope begins to deviate from its original value at about 70 eV. The observed average spacing is 0.7 eV in the energy range 0 to70 eV and increases to 0.82 eV in the energy range 550 to

Fig. 11- The number of resonances identified in the energy range 0 to E versus energy E. The upper part of the figure shows the energy range 0 to 150 eV where most of the maxima in the experimental cross sections correspond to single resonances; the resonance parameters obtained in the SAMMY analysis of the experimental data could have a sound physical meaning. The straight line, which corresponds to a constant level density, shows an increasing loss of resonance above about 50 eV. The lower part of the figure shows the data in the energy range up to 600 eV. The SAMMY analysis above 150 eV was aimed to reproduce the shape of the experimental data with about the same level density as in the 150 eV energy region; the physical meaning of the resonance parameters is ambiguous and the resonances used to fit the experimental data are more pseudoresonances than the real resonances.

600 eV. In the high energy part of the data the maxima in the experimental cross sections correspond to multiplets of n resonances and n could be as large as 5. The energy of the resonances were determined by means of statistical tests, mainly Δ_3 statistic of the level spacing distribution.³⁸ The solution is not unique and the statistical properties of those pseudo-resonances could be different from the properties of the resonances at low energy. Moreover, due to the strong overlapping of the resonances, even at low energy the identification of the small resonances is doubtful. Koenig and Michaudon¹⁸ found that about 30% of the resonances (small resonances) were not observed in cross sections calculated with resonance parameters obtained by Monte-Carlo sampling with the expected statistical properties of the ²³³U resonances. The same result was obtained by Nizamuddin and Blons.¹⁶ In conclusion, the best sample for the study of the statistical properties of the parameters should be restricted to the resonances in the energy range below 70 eV where the number of missing levels is the smallest. This sample contains 95 observed resonances. Nevertheless, some information concerning the behavior of the s-wave strength function and of the total fission widths could be obtained from the entire sample of resonances.

V-2- The level spacing distribution

The distribution of the resonance spacings in the energy range up to 70 eV is given in Fig. 12. The experimental distribution is compared to the sum of two uncorrelated Wigner distributions in the ratio of the populations of the s-wave spin states, normalized to the number of observed spacings. The agreement between the experimental and theoretical distribution is better than expected since the number of missing levels could be large. The results could be compared to those obtained in the evaluation of Ref. 2 where a strong disagreement was observed. It is likely that the accuracy of the resonance energies is better in the present work due to the better experimental resolution of the ORELA transmission data and fission data.

Fig. 12- Integral distribution of the level spacings in the energy range 0 to 70eV. The histogram is the experimental distribution. The solid line is the sum of two uncorrelated Wigner distributions in the ratio of the 2^+ and 3^+ level populations.

V-3- The s-wave neutron strength function

The variation of the sum of the reduced neutron widths $2g\Gamma_n^{0}$ versus neutron energy is shown on Fig.13 in the energy range 0 to 600 eV. On the average, the histogram has a linear behavior over the entire energy range. The s-wave neutron strength function, which is the sum of the reduced neutron widths divided by the energy interval, is given by the slope of the histogram. The value is $(0.88\pm0.13)10^{-4}$ in the energy range 0 to 70 eV and $(0.895\pm0.047)10^{-4}$ in the energy range 0 to 600 eV; the error is the sampling error $(2/N)^{\frac{1}{2}}$, N being the number of resonance in the sample. The pseudo-resonance analysis in the high energy part of the data allows the determination of an accurate value of the strength function, since accurate values of the average total cross section were obtained from the SAMMY fits. The local values of the strength function are given in Table 19. One observes a small value in the energy range 400 to 500 eV which is not statistically compatible with the other local values and with the value over the entire energy range. Statistically incompatible local values of the strength function were also observed for other heavy nuclei, such as 239 Pu, 240 Pu and 238 U, and have not been explained.

Fig. 13- Cumulative sum of the reduced neutron widths of the resonances in the energy range 0 to 600 eV.

V-4- The neutron width distribution

The integral distribution of the reduced neutron widths of the resonances in the energy interval 0 to 70 eV is shown in Fig. 14. It is evident that many small resonances are missing in the experimental distribution. The missing resonances have reduced neutron width values smaller than about 25% of the observed average value of 0.130 meV. The largest values are roughly fit by a Porter-Thomas distribution normalized to a total number of 135 resonances. The sum of the reduced neutron widths of the missing resonances is about 5% of the sum of the measured values. However, the effect of the missing resonances does not need to be taken into account in the evaluation of the strength function accuracy since the parameters obtained by the SAMMY analysis allows the accurate representation of the shape of the experimental data; the measured neutron widths are representative of the total area of single resonances, multiplets or resonances containing small hidden resonances. The values of the strength functions listed in Table 19 contain little bias due to the effect of the missing resonances.

If one assumes that the number of resonances in the energy range up to 70 eV is 135, the average swave level spacing is 0.52 eV instead of the observed value of 0.74 eV, which is only a rough estimation from the neutron width distribution of Fig. 13. The same kind of estimation was also performed by Reynolds and Steiglitz who deduced a value of 0.56 eV from their analysis in the energy range thermal to 60 eV. These results are consistent with the conclusions of Koenig and Michaudon, and of Nizamuddin and Blons who found that about 40% of the resonances are not observed in Monte-Carlo simulated data. The errors on these kinds of estimations could be10-15%, mainly due to the error on the estimation of the number of missing levels.

Energy range eV	Srength Function
	10-4
0- 70	0.880±0.128
0-100	0.949±0.117
100-200	0.862±0.113
200-300	1.048±0.139
300-400	0.981±0.122
400-500	0.648 ± 0.094
500-600	0.909±0.113
0-600	0.895 ± 0.047

 Table 19- Local values of the s-wave neutron strength function.

V-5- The fission widths distribution

The integral distribution of the total fission widths in the energy range 0 to 70 eV is given in Fig. 15. In the SAMMY analysis, the spin and parity 2^+ were assigned to 41 resonances and the spin and parity 3^+ to 54 resonances; the corresponding average fission widths are 760 meV and 296 meV, respectively. The experimental distribution of Fig. 14 is compared to a sum of two χ^2 distributions P(v,x) with a number of degrees of freedom v equal to 5 and 4, average fission widths of 760 meV and 296 meV, and normalized

Fig. 15- Integral distribution of the total fission widths of the resonances of the energy range 0 to 70 eV. The crosses represent the experimental distribution. The dashed lines are two χ^2 distributions normalized to 51 resonances with an average value of 272 meV (long dashed), and to 44 resonances with an average value of 729 meV (short dashed), respectively. The solid line is the sum of the two distributions.

to a number of resonances of 41 and 54, respectively. The agreement between the experimental and the theoretical distribution is excellent. This agreement suggests that the way the SAMMY analysis was carried out had, on average, a sound physical meaning. The number of channels contributing to the fission in the s-wave resonances is quite large, and the 2⁺ average fission width is much larger than the 3⁺ average fission width, as it was suggested at the beginning of this report. However, the agreement between the experimental and the theoretical distribution could be spurious, since about 30% of the resonances are missing in the experimental sample. But one should also note that in the theory of the nuclear reactions induced by low energy neutron there is no correlation between the neutron channels and the exit channels. In the experimental sample the missing resonances have small neutron widths but not necessarily small fission widths. The missing fission widths should have the same statistical properties as the observed widths. The lack of small fission widths in the experimental distribution is a strong indication of a relatively large number of open fission channels.

Another interpretation of the results is to consider the effective number of fission channels obtained from the ratio of the average fission width to the average level spacing by the relation:

$$N_{eff} = 2\pi \frac{\langle \Gamma_f \rangle}{\langle D \rangle}$$

for a given fission channel spin. One finds $N_{eff} = 4.0$ for the 2⁺ channels and $N_{eff} = 2.0$ for the 3⁺ channels, which is consistent with the experimental distribution of the fission widths if one assumes that some of the fission channels (particularly the 3⁺ channels) could be partially open with the consequence that N_{eff} is smaller than the number of degree of freedom of the distributions.

The average total fission widths in energy bins of 100 eV are given in Table 20 for the two groups of resonances used in the SAMMY calculation. Group 1 contains the assigned 2^+ resonances and group 2 the assigned 3^+ resonances. The spin assignment was made randomly. Apart from the interpretation given above of the data in the 0 to 70 eV energy range, the average values in each group have no physical

meaning. Note that the average values calculated from all the resonances (mixed) do not deviate too much from the average value of the energy range 0 to 70 eV.

Energy Range	Average Fission Widths meV				
ev	Group 1	Group 2	Mixed		
0 - 70	760.0	296.0	496		
0 - 100	839.2	317.5	532		
100 - 200	625.3	422.8	509		
200 - 300	538.1	442.0	484		
300 - 400	744.2	746.5	745		
400 - 500	841.7	561.2	673		
500 - 600	539.2	401.5	459		

Table 20- Average total fission widths

V-6- The radiative capture widths

Neutron capture is a process involving a large number of channels which are the primary transitions of the compound nucleus to all the available intermediate states. The distribution of the total capture widths should be a χ^2 distribution with a large number of degrees of freedom, i.e., small fluctuations around the average value. The quite large fluctuations observed generally on the experimental values obtained from the analysis of experimental data including measured capture cross sections are mainly due to the inaccuracy of the experimental cross section data. In the present work the only capture cross section data available were those from Weston et al. The capture width was obtained for 59 resonances from the SAMMY fit of the entire experimental microscopic data base in the low energy region or by trial-and-error method in the higher energy range. The variance of the distribution is 41.3 meV^2 corresponding to a number of degree of freedom of 84. The average value is 41.6 meV with an estimated systematic error of 8% (mainly due to the errors on the resolution and Doppler broadening parameters and to the inaccuracy of the experimental capture cross sections). This value is in agreement with previous results.^{2,9} In the SAMMY analysis, the capture width of the other resonances was kept at a constant value of 41 meV which was the prior estimation obtained from Refs. 2 and 9. As mentioned above, in the last step of the evaluation (which consisted of introducing the integral data and the results of benchmark testings) the average value of the capture widths decreased by about 5%, within the error bar obtained from the analysis of the microscopic data.

V-7- The recommended values of the average s-wave resonance parameters

Examination of the properties of the observed resonance parameters performed above has shown that even in the low energy part of the data the resonance sample is far from complete. From the distribution of the reduced neutron widths it is clear that most of the resonances with reduced neutron width smaller than 25% of the observed average value are missing. This is probably because they are hidden by the overlap of the observed wide resonances or misinterpreted as interference effects of the two fission channel Reich-Moore formalism used in the SAMMY analysis of the experimental data. Therefore, the interpretation of the statistical properties of the observed parameters is difficult. The shape of the distribution of the reduced neutron widths suggests that 30% of the resonances are missing and the corrected average level spacing should be (0.52 ± 0.08) eV, corresponding to (1.19 ± 0.12) eV and (0.92) ± 0.10) eV for the 2⁺ and 3⁺ level, respectively (with a value of 6 for the spin cut-off parameter). Assuming that there is no correlation between the neutron widths and the fission widths, the missing fission width values should have the same average properties as the observed values. These properties could be obtained by fitting the experimental distribution of the observed fission widths. The recommended average values of the s-wave resonance parameters are given in Table 21. The values are similar to those given in Ref. 2. Better accuracy is obtained on the strength function because the evaluation was done on a wider energy range.

J	Average Spacing eV	Strength Function 10 ⁴	Fission Width meV	Neff	Capture Width meV
mixed	0.52 ± 0.08	0.895 ± 0.047	496		39.0 ± 3.0
2+	1.19 ± 0.12		760 ± 60	4.0	
3+	0.92 ± 0.10		296 ± 30	2.0	

Table 21- Recommended average values of the s-wave resonance parameters

VI- CONCLUSION

The Reich-Moore parameters of the resonances induced by the s-wave neutron on the ²³³U nucleus in the incident neutron energy range thermal to 600 eV were obtained from the SAMMY analysis of a large experimental data base. The extension to a neutron energy range much larger than in previous similar analyses was possible because of the recent time-of-flight high resolution neutron transmission and fission cross section measurements performed at ORELA. Extending the resolved resonance range to higher energies could be more efficient than the statistical methods using the average parameters in the unresolved range for the calculation of the self-shielding factors. In fact, the resonances used in the upper region of the analysis are pseudo-resonances with properties different from those of the low energy region. Concerns have been raised as to whether the pseudo-resonance representation is adequate for the calculation of accurate self-shielding factors or for other purposes. This question was recently assessed by Guimareas et al.³⁹ who showed that the pseudo-resonance representation in the keV range for ²³⁵U was adequate for accurate calculation of self-shielding parameters; the results could be extended to any of the fissile nuclei. Integral data and results of benchmark calculations were used in the last step of

the evaluation allowing an additional adjustment of the average capture width. The ability of the calculated cross sections to reproduce the effective multiplication factors k_{eff} for various thermal, intermediate and fast systems was tested. The performances of the new evaluation are improved compared to the current ENDF/B-VI evaluation. The discrepancy between the ORELA average fission cross section and the data of Weston et al. and Blons in the energy range above 100 eV was not understood. The results of the present evaluation were kept close to the values of Weston et al. in order to obtain better agreement with the multiplication factor k_{eff} of the intermediate energy systems.

Transmission measurements of a thicker sample of ²³³U are in progress at ORELA, in order to obtain accurate values of the total cross section in the unresolved resonance region. The set of average resonance parameters obtained in the present work will be used as prior data for a SAMMY analysis of the new total cross section and for a reevaluation of the partial cross sections in the unresolved range. It is also expected that the better accuracy achieved on the total cross section could help in understanding the discrepency among the experimental fission cross sections.

REFERENCES

1. N. M. Larson, *Updated User' Guide for SAMMY: Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations*, ORNL/TM-9179/R4 (December 1998). See also ORNL/TM-9170/R5.

2. H. Derrien, J. of Nuc. Sci.and Tech., 31, 5, 379, May 1994.

3. W. Kolar, G. Carraro and G. Nastri, Proc. 2nd Int. Conf. On Nuclear Data for Reactors, Helsinki, June 15-19, 1970, Vol.1, p.387 (1970).

4. K. H. Guber, R. R. Spencer, L. C. Leal, P. E. Koehler, J. A. Harvey, R. O. Sayer, H. Derrien, T. E. Valentine, D. E. Pierce, V. M. Cauley, and T. A. Lewis, submitted to *NuclearScience and Engineering* (2000).

5. K. H. Guber, R. R. Spencer, L. C. Leal, J. A. Harvey, N. W. Hill, G. Dos Santos, R. O. Sayer, and D. C. Larson, *Nuc. Sci. Eng.* **135**, 1(2000).

6. M. S. Moore and C. W. Reich, Phys. Rev. 118, 718(1960).

7. E. Vogt, Phys. Rev. 118, 524(1960).

8. D. W. Bergen and M. G. Silbert, Phys. Rev., 166, 1178(1960).

9. J.T. Reynolds and M.G. Steiglitz, Knolls Atomic Power Laboratory Report KAPL-M-7323 (1973).

10. G. F. Auchampaugh, MULTI, A FORTRAN Code for Least-Squares Shape Fitting of Neutron Cross Section Data Using the Reich-Moore Multilevel Formalism, LA-5473-MS, Los Alamos Scientific Laboratory, 1974.

11. L. W. Weston, R. Gwin, G. De Saussure, R. R. Fullwood, R. W. Hockenbury, *Nucl. Sci. Eng.*, 34, 1 (1968).

12. L. W. Weston, R. Gwin, G. De Saussure, R. W. Ingle, J. H. Todd, C. W. Craven, R. W. Hockenbury, R. C. Block, *Nuc. Sci. Eng.* 42, 143 (1970).

13. G. De Saussure, Evaluated Nuclear Data File (ENDF) Version V, Material Number 9222, Brookhaven National Laboratory, 1978.

14. G. De Saussure, R.B. Perez, ORNL/TM-2599 (1969).

15. M. G. Cao, E. C. Migneco, J. P. Theobald and M. Merla, *Proc. 2nd Int. Conf. On Nuclear Data for Reactors, Helsinki, June 15-19, 1970*, Vol.1, p.419 (1970).

16. S. Nizamuddin, J. Blons, Nucl. Sci. Eng., 54, 116 (1974).

17. N. J. Pattenden, N. Posma, Phys. Rev., A 167, 225 (1971).

18. R. Koenig, A. Michaudon, J. Nucl. Energy, 25, 273 (1971).

19. J. E. Lynn, *Proc. Int. Conf. on the Study of Nuclear Structure with Neutrons*, p. 441, North-Holland Publ., Amsterdam (1966).

20. S. Bjormholms, J. E. Lynn, Rev. Mod. Phys., 52,725 (1980).

21. J. J. Griffin, Proc. Symp. on Physics and Chemistry of Fission, Salzbourg, March 22-26, 1965, Vol.1, p. 23 (1965).

22. J. R. Huizenga, Int. Nucl. Phys. Conf., p. 261, Academic Press. New York (1967).

23. L. C. Leal, H. Derrien, N. M. Larson, R. Q. Wright, Nucl. Sci. Eng., 131, 230 (1999).

24. F. Froehner and O. Bouland, to be published in Nucl. Sci. Eng. (2000).

25. A. J. Deruyter and C. Wagemans, Nucl. Sci. Eng., 54, 423 (1974).

26. J. Blons, Nucl. Sci. Eng., 51, 130 (1973).

27. C. Wagemans, P. Shillebeeckx, A. J. Deruyter and R. Barthelemy, *Proc. Int. Conf. on Nuclear Data for Science and Technology, Mito, May 30-June 3, 1988, p. 91 (1988).*

28. E. J. Axton, BCMN Rep. GE/PH/01/86 (1986).

29. R. Q. Wright, L. C. Leal, H. Derrien, N. M. Larson, and W. C. Jordan, "Data Testing of the ORNL Aluminum Evaluation," *TANSA082*, 2000 Annual Meeting, San Diego, June 4-8, 2000.

30. N. J. Pattenden and J. A. Harvey, Nuc. Sci. Eng., 17, 404 (1963).

31. M. S. Moore, M. G. Miller and O. D. Simpson, Phys. Rev., 118, 714 (1960).

32. J. A. Harvey, C. L. Moore, N. W. Hill, *Proc. Int. Conf. on Neutron Cross Section for Technology, Knoxville, Oct.* 22-26, 1979, NBS Special Publication 594, p. 690 (1980).

33. A. D. Carlson, W. P. Poenitz, G. M. Hale, R. W. Peelle, D. C. Dodder and C. Y. Fu, *The ENDF/B-VI* Neuton Cross Section Measurement Standards, NISTIR-DRAFT, ENDF-35.

34. S. F. Mughabghab, Neuton Cross Sections, Vol. I, Part B (1985).

35. L. C. Leal and R. Q. Wright, Assessment of the Available ²³³U Cross Section Evaluation in the Calculation of Critical Benchmark Experiments, ORNL/TM-13313, October 1996.

36. J. E. White, R. Q. Wright, D. T. Ingersoll, R. W. Roussin, N. M. Greene, and R. E. MacFarlane, "VITAMIN-B6: A Fine-Group Cross Section Library Based on ENDF/B-VI for Radiation Transport Applications," pp. 733-36 in *Nuclear Data for Science and Technology: Proceedings of the International Conference, Gatlinburg, Tennessee, May 9-13, 1994*, ed., J. K. Dickens, Oak Ridge National Laboratory, 1995.

37. *International Handbook of Evaluated Criticality Safety Benchmark Experiments*, NEA/NSC/DOC (95) 03, Nuclear Energy Agency, Organization for Economic Cooperation and Development (Sep. 1999).

38. F. J. Dyson and M. L. Metha, J. Math. Phy., 104, 483 (1956).

39. F. B. Guimaraes, L. C. Leal, H. Derrien, and N. M. Larson, "Test of "Pseudo" Resonance Representation in the keV Range for ²³⁵U for Self-Shielding Parameter Calculations," *Trans. ANS* 83, 223-224 (2000).

APPENDIX. RESONANCE PARAMETERS FOR ²³³U IN THE ENDF FORMAT

9.22330+ 4	2.31038+ 2	0	0	1	09222	2151	1
9.22330 + 4	1.00000+0	0	1	2	09222	2151	2
1 00000 - 5	6 00000+ 2	1	3	0	09222	2151	3
250000+0	9 62000- 1	-	0	1	19222	2151	4
2.3000010		0	0	1620	7700222	2151	5
1060 00000	2 000	1 524000+0	1 00000 2 2	4020 600000 1	2 270000 10222	2151	5
-1000.00000	3.000	1 215000+0	4.000000-2 2	120000 1	2.370000-19222	2101	0 7
-800.000000	2.000	1.315000+0	4.000000-2 3	.120000-1-	2.250000-19222	2151	/
-5/5.000000	3.000	8.0/9000-1	4.000000-2-2	.550000-1	2.400000-19222	2151	8
-387.500000	2.000	5.888000-1	4.000000-2 2	.825000-1-	2.420000-19222	2151	9
-237.500000	3.000	3.885000-1	4.000000-2-2	.850000-1-	2.300000-19222	2151	10
-137.500000	2.000	1.954000-1	4.000000-2 3	.120000-1	2.150000-19222	2151	11
-77.5000000	3.000	1.106000-1	4.00000-2-3	.340000-1	2.480000-19222	2151	12
-40.000000	2.000	4.306000-2	4.00000-2-2	.530000-1-	3.520000-19222	2151	13
-17.9130000	3.000	3.031000-2	4.00000-2 3	.400000-1-	2.040000-19222	2151	14
-7.79660000	2.000	3.010000-4	4.00000-2-1	.228000-1	5.123000-29222	2151	15
-4.53180000	2.000	1.766000-5	4.000000-2-2	.252000+0	1.625000-39222	2151	16
-3.32780000	2.000	2.653000-5	4.471000-2.1	.755000+0	1.328000-39222	2151	17
-3 05440000	3 000	9 165000-4	6 374000-2-4	607000-1	1 818000+09222	2151	18
-2 45840000	3 000	1 907000-4	8 530000-2 1	065000-2	5 637000-59222	2151	19
1 75650000	2 000	1 967000 4	2 762000 2 2	166000+0	0 E00000 E0000	2151	20
-1.75050000	3.000	1 201000 7	2 950000 2 4	216000 2	1 421000-09222	2101	20
-0.9931/000	2.000	1.281000-7	2.850000-2 4	.316000-2-	1.421000+09222	2151	21
0.1659//000	3.000	1.001000-7	8.298000-2 1	.881000-2-	2.639000-49222	2151	22
0.232443000	2.000	3.177000-8	4.848000-2 1	.397000-3	6.553000-49222	2151	23
0.576819000	2.000	6.288000-7	2.519000-2 3	.424000-1	3.388000-29222	2151	24
1.451663000	2.000	2.007000-4	3.830000-2 3	.934000-4-	5.557000-19222	2151	25
1.767321000	3.000	2.579000-4	3.999000-2-1	.455000-1	5.685000-29222	2151	26
2.303152000	3.000	1.525000-4	3.743000-2 5	.437000-2	6.901000-69222	2151	27
3.509805000	2.000	1.813000-4	3.896000-2 5	.875000-1	4.431000-49222	2151	28
3.633436000	3.000	5.447000-5	3.589000-2 8	.323000-2	2.594000-59222	2151	29
4,457119000	2.000	3.787000-4	3.449000-2-7	.006000-5-	1.149000+09222	2151	30
5.805104000	3,000	1.004000 - 4	3,90000-2,3	519000-1-	1.855000-49222	2151	31
6 638419000	2 000	3 430000-4	3 900000-2 8	468000-6	5 560000-19222	2151	32
6 825227000	3 000	6 894000-4	3 488000-2-1	051000-1-	1 008000-29222	2151	22
7 475214000	3 000	3 342000-5	3 900000-2 4	163000-2	1 444000-19222	2151	34
8 70214000	2 000	1 807000-5	3 900000 2 4	788000_1	7 635000-49222	2151	35
0.702149000	2.000	2 202000 4	3.900000-21	./62000-1	1 601000 + 00222	2151	26
0.171721000	2.000	5.293000-4 C 771000 F	5.900000-2-4	.403000-3-	1 1 5 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2101	20
9.1/1/21000	3.000	6.//IUUU-5	5.023000-2 2	.0/8000-1	1.155000-29222	2151	37
10.37642000	3.000	1.413000-3	4./11000-2-2	.568000-1	1.65/000-59222	2151	38
11.28210300	3.000	2.486000-4	3.900000-2-4	.186000-2-	4.206000-19222	2151	39
11.69787900	2.000	9.985000-5	3.900000-2-5	.314000-1-	3.455000-29222	2151	40
12.78735900	3.000	1.329000-3	4.011000-2 4	.803000-2-	2.524000-19222	2151	41
13.44897700	3.000	1.259000-4	3.900000-2 2	.523000-1	5.118000-49222	2151	42
13.67799900	2.000	3.243000-4	3.408000-2-2	.134000-1	5.421000-29222	2151	43
15.32828200	3.000	6.386000-4	4.158000-2-4	.198000-4-	1.534000-19222	2151	44
15.49745500	3.000	6.308000-5	3.900000-2 1	.405000-2-	5.924000-39222	2151	45
16.20449400	3.000	7.174000-4	3.900000-2 3	.365000-1	8.093000-29222	2151	46
16.57316000	3.000	5.396000-4	3.310000-2-2	.677000-2	1.499000-19222	2151	47
17.40082900	2.000	2.308000-6	3.900000-2 1	.901000+0-	2.458000-29222	2151	48
18,12481500	2.000	2.989000 - 4	3.507000 - 2.4	.340000-1	5.711000-49222	2151	49
18 53646900	3 000	2 754000-4	3 900000-2-2	366000-1	7 504000-39222	2151	50
18 94038000	3 000	1 589000-3	4 081000-2-1	137000-1-	1 634000-19222	2151	51
20 60368200	3 000	5 901000-1	3 677000_2 2	355000_1_	7 031000-29222	2151	52
20.00300200	2 000	1 151000 - 4	5.077000-2 2	742000 4	2 417000 10222	2151	52
21.80505500	3.000	2 254000 2	3.059000-2-8	.743000-4		2101	53
22.19509100	2.000	3.354000-3	3.260000-2 2	.021000-2	5.749000-19222	2151	54
22.61046800	2.000	1.809000-3	3.900000-2 2	.0//000+0	1.319000-29222	2151	55
23.06308600	2.000	8.306000-4	4.154000-2 2	.464000-4-	6.953000-19222	2151	56
23.69115300	3.000	5.120000-4	3.228000-2 1	.918000-1-	3.405000-19222	2151	57
24.22588900	3.000	3.213000-4	3.429000-2 1	.328000-1	4.592000-19222	2151	58
25.29045100	3.000	4.580000-4	2.931000-2-1	.561000-3-	1.759000-19222	2151	59
25.40437900	2.000	1.740000-3	3.900000-2 1	.667000-1	1.475000+09222	2151	60
26.64010800	3.000	2.624000-4	4.703000-2 2	.199000-2	1.542000-19222	2151	61
27.84484500	3.000	3.342000-4	3.90000-2-3	.546000-1	6.837000-19222	2151	62
28.33003000	2.000	1.029000-4	4.499000-2-9	.334000-2	3.867000-29222	2151	63
28.50161600	3.000	3.781000-6	3.900000-2-5	.122000-4-	7.785000-29222	2151	64
29.14697500	3.000	1.087000-3	2.539000-2 2	.097000-3-	3.812000-19222	2151	65
29.71129000	3.000	1.156000-4	2.570000-2 2	.348000-7	1.596000-19222	2151	66

30.59799800	2.000	8.068000-5	3.900000-2 6.064000-2-1.038000-19222 2	151 67
30.74366600	3.000	7.261000-4	3,900000-2-3,274000-1 1,705000-59222 2	151 68
31 23666000	3 000	2 374000-4	<i>A</i> 370000_2_2 552000_1_1 503000_19222 2	151 60
31.23000000	3.000	2.374000-4	1. 570000-2-2. 552000-1-1. 505000-19222 2	151 09
32.11016100	3.000	8./34000-4	3.393000-2 1.858000-1-1.991000-29222 2	151 /0
33.01308800	3.000	5.707000-4	4.845000-2-1.380000-1-5.964000-19222 2	151 71
33.70376200	2.000	3.729000-5	3.900000 - 2 - 1.014000 + 0 1.659000 - 19222 2	151 72
34 69792900	3 000	3 329000-4	3 855000-2 3 295000-2 3 106000-19222 2	151 73
	2.000	5.525000 f		151 73
34.85900500	2.000	6.116000-3	4./58000-2 2.302000-3-3.504000+09222 2	151 /4
36.60663600	3.000	5.450000-4	2.829000 - 2 - 3.999000 - 3 8.883000 - 29222 2	151 75
37.45711100	2.000	9.107000-4	3.361000-2 4.183000-1 1.257000-39222 2	151 76
39 06912200	2 000	1 007000-3	3 900000-2-5 481000-1-3 680000-19222 2	151 77
20.02040400	2.000	1 200000 4	3.900000 2 3.101000 1 3.000000 19222 2	151 70
39.82040400	3.000	1.396000-4	3.900000-2 2.785000-1-2.340000-19222 2	151 78
40.51632700	2.000	9.311000-4	3.900000-2 $7.342000-1$ $1.722000-39222$ 2	151 79
41.12420300	3.000	3.362000-4	3.832000-2-2.030000-2 9.743000-29222 2	151 80
41,96471800	2.000	2.542000 - 4	3,900000-2-6,498000-1-1,008000-19222 2	151 81
42 69442700	3 000	6 986000-4	4 148000-2 1 350000-1-1 348000-29222 2	151 82
42.00442/00	2.000	2 022000 4		151 02
43.5516/800	3.000	3.033000-4	3.830000-2 1.129000-1 7.241000-29222 2	151 83
44.74190500	2.000	2.871000-4	3.900000-2 $4.978000-1$ $3.808000-49222$ 2	151 84
45.49447600	3.000	1.746000-4	3.900000-2-2.591000-2 1.090000+09222 2	151 85
46 16280400	3 000	4 494000-4	4 459000-2 4 629000-2 6 029000-29222 2	151 86
17 22647500	2 000	6 402000 4		151 07
47.33047500	2.000	0.402000-4	3.900000-2 3.470000-1-7.189000-49222 2	151 07
47.38238500	2.000	6.162000-4	3.900000-2-5.9/8000-4 6.//4000-19222 2	151 88
48.76984400	3.000	2.020000-3	5.196000-2-5.208000-2 7.152000-29222 2	151 89
49.22656600	2.000	5.012000-4	3.900000-2-5.742000-4-3.890000-19222 2	151 90
50 46915400	2 000	1 164000-3	3 900000-2 9 729000-1 3 137000-39222 2	151 91
E1 04800400	2.000	7 004000 5	2 000000 2 5.725000 1 5.157000 55222 2	151 00
51.04600400	3.000	7.084000-5	3.900000-2-5.355000-2 3.376000-19222 2	151 92
52.06592600	2.000	9.156000-5	3.900000-2-2.222000-2-4.025000-19222 2	151 93
52.57382200	3.000	1.293000-5	3.900000-2 7.544000-2-1.858000-19222 2	151 94
53.09166700	2.000	6.264000-4	3.900000-2 1.721000-1 1.918000-29222 2	151 95
53 41194500	3 000	8 508000-4	3 900000-2-1 929000-1-4 060000-19222 2	151 96
E4 0E177200	2 000	1 450000 2	2 00000 2 1.929000 1 1.000000 19222 2	151 07
54.051//300	2.000	1.459000-5	3.900000-2 9.524000-3-3.381000-19222 2	151 97
54.86128200	3.000	9.604000-4	3.900000-2-1.448000-1 2.037000-29222 2	151 98
56.13304900	2.000	4.245000-3	3.900000-2-1.968000-3 7.545000-19222 2	151 99
56.47739400	2.000	1.877000-5	3.900000-2 6.215000-1-2.834000-39222 2	151 100
56 48740800	3 000	8 372000-4	3 900000-2-2 270000-1 3 206000-29222 2	151 101
50.10710000	2 000	2 701000 2	2 00000 2 2.270000 1 5.200000 29222 2	151 101
57.00331500	2.000	5.701000-5	3.900000-2-7.950000-1-5.007000-49222 2	151 102
58.61512400	3.000	1.181000-3	3.900000-2 2.272000-1 1.587000-19222 2	151 103
58.90311800	3.000	1.111000-5	3.900000-2 1.175000-1 3.567000-39222 2	151 104
61.24837900	2.000	1.418000-3	3.900000-2-4.204000-3-8.924000-19222 2	151 105
61 52597000	3 000	1 212000 - 3	3 900000-2 1 043000-1-2 518000-19222 2	151 106
62 7004E400	2 000	1 205000 2	2 9E9000 2 7 421000 2 4 121000 20222 2	151 100
02.70945400	3.000	1.395000-3	3.838000-2 7.431000-2 4.131000-39222 2	151 107
64.165/3300	2.000	5.350000-4	3.900000-2 1.749000-1-1.605000-19222 2	151 108
64.17161600	2.000	9.276000-4	3.900000-2 2.146000-1 3.320000-19222 2	151 109
64.54566200	3.000	1.100000-3	3.524000-2-1.450000-2 1.419000-19222 2	151 110
65 21469100	3 000	3 014000-4	3 900000-2 1 452000-1-1 152000-29222 2	151 111
CE EE042400	2 000	0 605000 4	2 000000 2 1.152000 1 1.152000 25222 2	151 110
05.55043400	3.000	9.005000-4	5.900000-2-2.015000-1-0.045000-19222 2	151 112
66.46149400	2.000	7.875000-4	3.900000 - 2 - 6.253000 - 1 3.994000 - 19222 2	151 113
68.11140400	3.000	2.997000-4	3.900000-2-1.971000-1 2.160000-29222 2	151 114
69.12326800	2.000	4.391000-4	3.900000-2 3.297000-1 1.086000-19222 2	151 115
69 70410200	2 000	1 922000-3	3 900000-2-4 704000-3-8 617000-19222 2	151 116
70 27044500	2 000	1 770000 2		161 117
70.37044500	3.000	1.779000-3	3.900000-2 4.184000-2 4.308000-19222 2	151 110
/1.92445400	3.000	2.068000-4	3.900000-2-8.745000-2 2.092000-19222 2	151 118
72.47860700	2.000	2.232000-3	3.900000-2 1.779000+0-3.986000-29222 2	151 119
73.58017700	3.000	1.895000-3	4.551000-2-1.040000-1 2.297000-49222 2	151 120
74 15590700	3 000	4 268000-3	3 900000-2 2 891000-2 4 020000-19222 2	151 121
75 14120600	2 000	6 260000 /		151 122
75.14129600	2.000	0.309000-4	3.900000-2-1.404000-1-1.377000-39222 2	
75.62130700	3.000	2.842000-3	4.292000-2-2.727000-1-4.567000-49222 2	151 123
76.79238900	2.000	2.093000-4	3.900000-2 4.222000-3 5.997000-19222 2	151 124
78.26606800	3.000	1.324000-3	3.900000-2-4.387000-1-1.135000-19222 2	151 125
79.16773200	2.000	4.025000-3	3.900000-2 3.729000+0-7 567000-19222 2	151 126
70 000/1700	2 000	1 055000 - 3	2 000000 2 4 624000 1 6 227000 20222 2	161 107
/	5.000	1.90000-3	5.500000-2 4.024000-1-0.33/000-39222 2	
81.90089400	2.000	4.248000-4	3.900000-2-3.630000-1-1.376000-19222 2	151 128
82.38294200	3.000	1.897000-3	3.900000-2-9.499000-1 1.457000-29222 2	151 129
83.00556200	3.000	2.366000-3	3.747000-2 2.350000-4-3.545000-29222 2	151 130
83 98070500	3 000	1 874000-6	3 900000-2 1 022000-2 2 391000-29222 2	151 121
	2.000	2 647000 4	3.500000 2 1.022000 - 2 2.591000 - 29222 2	161 120
04.00/2000	2.000	5.04/000-4	5.900000-2 4.531000-1 6.706000-29222 2	151 132
85.49575000	2.000	1.153000-3	3.900000 - 2 - 2.034000 - 1 $2.875000 - 19222$ 2	133 ISI
85.88575000	3.000	1.003000-5	3.900000-2-2.414000+0 2.375000-29222 2	151 134
85.99845100	3.000	2.675000-4	3.900000-2-5.823000-4-5.384000-19222 2	151 135

87.41108700	3.000	2.586000-4	4.433000-2 4.736000-2 1.003000-19222 2	151 136
88.22151900	3.000	6.140000-6	3.900000-2 6.543000-2-3.664000-29222 2	151 137
89.12325300	3.000	1.697000-3	4.655000-2 2.480000-1 2.906000-39222 2	2151 138
89.54427300	2.000	8.028000-5	3.900000-2 1.239000-1-8.070000-29222 2	2151 139
89.71704100	3.000	3.988000-6	3.900000-2 4.402000-3-1.022000-29222 2	2151 140
90.27468900	2.000	3.836000-3	3.900000-2-8.071000-4-1.689000+09222 2	2151 141
90.76654800	3.000	6.225000-3	4.450000-2-1.095000-1 3.043000-39222 2	2151 142
92.94860800	3.000	1.084000-3	3.900000-2 3.940000-1-1.046000-39222 2	2151 143
93.40112300	2.000	5.753000-4	3.900000-2-4.661000-1-1.593000-39222 2	2151 144
94.02144600	3.000	1.455000-3	3.410000-2-4.196000-2 7.677000-49222 2	2151 145
95.40694400	3.000	1.279000-3	3.348000-2-9.268000-2 2.859000-49222 2	2151 146
96.67964900	3.000	7.233000-4	3.800000-2 5.392000-1 3.637000-39222 2	2151 147
98.06576500	3.000	4.531000-3	4.425000-2 2.350000-5-5.145000-29222 2	2151 148
98.07736200	2.000	6.785000-3	3.900000-2 1.949000+0 7.708000-39222 2	2151 149
98.84347500	3.000	1.078000-3	3.900000-2-8.633000-2 2.423000-29222 2	2151 150
99.57963600	2.000	1.208000-3	3.900000-2-2.637000-3-4.203000-19222 2	2151 151
100.1721040	3.000	1.856000-3	3.900000-2-1.317000-1-2.419000-19222 2	151 152
102.6457210	2.000	1.544000-4	3.900000-2-2.070000+0 4.304000-29222 2	2151 153
103.1489640	3.000	1.363000-3	3.900000-2 7.547000-2-1.499000-19222 2	2151 154
104.6022640	3.000	5.594000-5	3.900000-2-7.820000-2 4.374000-29222 2	151 155
105.0160140	3.000	3.578000-4	3.900000-2 1.644000-3 8.478000-39222 2	2151 156
105.1759800	2.000	2.295000-3	3.900000-2 5.213000-1-1.827000-19222 2	151 157
106.1806640	3.000	1.887000-3	3.900000-2 8.983000-2 8.546000-39222 2	2151 158
106.7266390	3.000	4.436000-3	3.900000-2-1.784000-1 4.225000-19222 2	2151 159
107.2892460	3.000	1.295000-3	3.900000-2-4.327000-2-3.876000-29222 2	2151 160
108.1607740	2.000	1.879000-3	3.900000-2-1.745000-1-1.808000-19222 2	2151 161
108.1839900	2.000	1.906000-4	3.900000-2 4.063000-2-3.922000-19222 2	2151 162
109.6455000	3.000	3.153000-3	3.900000-2-1.452000-1-1.848000-19222 2	2151 163
110.3611450	2.000	1.027000-3	3.900000-2-4.763000-2 2.301000-19222 2	2151 164
111.1451720	3.000	4.833000-3	3.900000-2-2.466000-3-3.331000-19222 2	2151 165
112.4924550	2.000	1.623000-3	3.900000-2 1.082000-1 7.954000-19222 2	2151 166
114.1084900	2.000	4.484000-3	3.952000-2-9.025000-2-9.281000-19222 2	2151 167
114.8259810	3.000	3.585000-3	3.900000-2 2.294000-1-1.885000-19222 2	2151 168
116.0898820	3.000	3.519000-4	3.900000-2 3.621000-2-4.146000-29222 2	2151 169
116.9778750	2.000	8.635000-5	3.900000-2 4.254000-1 8.304000-29222 2	2151 170
118.2135930	3.000	6.450000-3	3.900000-2 2.922000-1-9.459000-39222 2	2151 171
118.6746440	2.000	2.678000-3	3.900000-2 2.170000-1-1.308000+09222 2	2151 172
119.7424930	3.000	1.468000-3	3.900000-2 8.911000-4-7.992000-29222 2	2151 173
120.0770870	2.000	3.054000-4	3.900000-2 $3.571000-3-6.017000-29222 2$	2151 174
121.5881040	3.000	1.755000-3	3.900000-2 6.074000-1 9.465000-39222 2	151 175
122.4034120	3.000	1.189000-3	3.900000-2 9.251000-2 2.835000-29222 2	151 1/6
122.8800740	3.000	1.260000-3	3.900000-2 8.607000-1 1.671000-29222 2	151 1//
123.1610110	2.000	5.240000-4	3.900000-2 2.208000-1 1.706000-29222 2	151 178
123.5650480	3.000	2.040000-3	3.900000-2 1.736000+0 4.279000-29222 2	151 1/9
124.4403000	3.000	4.558000-3	5.623000-2 3.622000-4 1.386000-19222 2	151 180
126.5704040	3.000	8.224000-4	3.900000-2-2.706000-1 7.941000-69222 2	151 181
127.6703190	3.000	2.554000-4	3.900000-2 1.102000-1 2.572000-39222 2	151 182
128.1125030	2.000	5.235000-5	3.900000-2-5.027000-1-1.801000-39222 2	151 183
120.01/0930	2.000	2.000000-3	3.900000-2 0.020000-1 1.901000-19222 2	151 104 151 105
130.7512470	2.000	2.090000-5	3.900000-2-4.313000-2-1.365000-29222 2	151 105
121 1465200	2 000	2.1/5000-4	3.900000-2-2.419000-1-1.241000-19222 2	151 100 151 107
122 2014050	2 000	2.369000-5	3.900000-2-4.235000-2-2.005000-29222 2	151 107
122.3914950	2.000	2.347000-4	3.900000-2 $4.1/2000-2$ $0.424000-19222$ 2 2 000000 2 2 024000 1 2 120000 20222 2	151 100
122 5162200	2.000	1.208000-3	3.900000-2-3.924000-1-2.120000-29222 2	151 109
124 2200520	2 000	2.4/4000-3	3.900000-2 $2.048000-1-1.880000-29222 2$	151 190 151 101
125 7066900	2.000	2 9/2000 2	3.900000-2 $1.107000-1$ $1.190000+09222$ 2 2 000000 2 2 006000 1 6 752000 20222 2	151 191
126 /216710	2 000	1 012000 5	3.900000-2-2.900000-1-0.752000-39222 2	151 192 151 102
126 026000	2.000	7 205000 4	3.900000-2-7.645000-2 $1.004000-29222$ 2	151 193
127 2514400	2 000	6 151000 4	3.900000-2 $3.075000-1-3.107000-29222 2$	151 19 4 151 105
120 8/76260	2.000	g gg1000 4	3.900000-2 $9.400000-4$ $0.000000-19222$ 2 2 000000-2 9.400000-4 0.000000-19222 2	151 10C
141 2260520	2 000	3.351000-4 3.312000 3	3 900000-2-9.040000-2 0 000/000-192222 2 3 900000-2-1 006000-2 0 000000 10000 0	151 107
142 1954100	2.000	2 757000-2	3 900000-2-1.000000-3 9.093000-19222 2	151 100
143 2580110	3 000	2 937000-3	3.811000-2-7.000000-3.5.525000-192222.2	151 100
144 2651120	2 000	1 70000-3	3.011000-2-3.203000-2 2.002000-492222 2 3.000000-2-1 1320001-0 2.002000-492222 2	151 200
145 8087020	2 000	1 055000-3	3 972000-2-2 014000-2 2.20000-12222 2	200 2151 200
145 8343350	3 000	4 542000-4	$3.9,2000 \ge 2.014000-2-3.920000-392222 \ge$ $3.900000-2-6.759000-2.4.00000-392222 \ge$	201
147 3250430	3 000	7 136000-3	3 900000-2-5 689000-1-6 980000-19222 2	2151 202
147.8011930	3.000	5.916000-5	3.900000-2 1.453000-3 1.798000-39222 2	151 204

148.4740750	2.000	1.177000-4	3.900000-2-1.666000-1-4.012000-29222 215	51 205
149.6748200	3.000	2.993000-3	3.900000-2 2.090000-2 4.740000-19222 21	51 206
151 4862210	2 000	5 088000-3	3 900000-2 2 784000+0 6 155000-29222 21	51 207
152 0120210	2.000	1 117000 2	2 0 0 0 0 0 2 2 0 0 0 0 0 0 0 0 0 0 0 0	51 207
152.0130310	2.000	4.11/000-3	3.900000-2-3.954000-4 5.707000-19222 21:	DI 200
152.7658390	3.000	6./18000-4	3.900000-2 7.861000-2 6.515000-59222 215	51 209
153.1922300	2.000	6.452000-4	3.900000-2 $7.923000-2$ $2.198000-49222$ 215	51 210
154.1130220	2.000	5.683000-4	3.900000-2-3.290000-5-7.567000-29222 21	51 211
154.4530180	3.000	6.844000-4	3.900000-2 1.361000-1 2.030000-19222 215	51 212
156.0574800	3.000	1.712000 - 3	3,900000-2, 2,680000-1-1,196000-49222, 21	51 213
157 2714690	2 000	3 286000-3	3 900000-2 4 142000-1 2 837000-29222 21	51 214
157 4776000	2.000	7 506000 5	2 0 0 0 0 0 2 4.142000 1 2.057000 20222 21.	51 01E
157.4776000	3.000	7.596000-5	3.900000-2 8.985000-3 2.848000-29222 21	
157.7889710	2.000	5.546000-5	3.900000-2 3.626000-1 4.305000-19222 21	DI 216
158.6630860	3.000	9.970000-5	3.900000-2 3.718000-2 3.907000-19222 215	51 217
159.2951970	2.000	1.044000-4	3.900000-2 9.736000-3 2.779000-19222 21	51 218
159.7277680	3.000	3.219000-5	3.900000-2-1.549000-1-4.949000-29222 215	51 219
161,4946290	2.000	5.326000 - 4	3.900000-2 6.153000-1-1.325000-39222 21	51 220
162 2589260	3 000	3 193000-3	3 900000-2 2 589000-1-1 051000-19222 21	51 221
162.0721140	2.000	4 010000 3	2 000000 2 4 246000 1 4 107000 20222 21	1 221
162.3731140	2.000	4.010000-3	3.900000-2 4.345000-1-4.187000-39222 21	
163.7254640	3.000	1.1/5000-3	3.900000-2 1./3/000-2 /.225000-19222 21	
165.0680540	2.000	7.581000-4	3.900000-2-7.919000-2-9.956000-29222 21	51 224
165.7014470	2.000	8.061000-3	3.585000-2 1.765000-3 1.809000-19222 215	51 225
165.8666690	2.000	1.943000-3	3.900000-2 6.717000-3 2.564000-19222 215	51 226
166.0017550	3.000	7.219000-5	3.900000-2 2.250000-2-1.923000-29222 215	51 227
167 1339260	3 000	6 249000-5	3 900000-2 1 905000-2-2 060000-29222 21	51 228
167 8084260	3 000	2 18/000_3	3 000000_2 3 468000_1 1 211000_30222 215	1 220
160 0004200	3.000	2.104000-3	3.900000-2 $5.400000-1$ $1.211000-39222$ $21.$	1 229
168.2339780	3.000	2.198000-3	3.897000-2 5.438000-2-3.127000-29222 21	
169.0607150	2.000	3.361000-3	4.026000-2 $5.708000-2-2.114000-29222 219$	51 231
169.4864810	3.000	7.821000-4	3.900000-2 3.346000-1-2.393000-19222 215	51 232
170.0177150	3.000	1.298000-3	3.900000-2-4.580000-1 8.889000-39222 215	51 233
171.2037510	3.000	3.854000-5	3.900000-2 8.510000-1-1.537000-29222 215	51 234
171.5621340	3.000	2.819000 - 3	3,900000-2, 3,885000-3-6,543000-19222,21	51 235
171 7207180	3 000	6 942000-5	3 900000-2 8 064000-1-2 518000-19222 21	1 236
172 2405250	3.000	1 767000 2	3.900000-2 $0.004000-1-2.510000-19222 21.$	1 230
173.2405550	2.000	1.707000-3	3.900000-2-8.288000-1-7.515000-19222 21	
1/3.4123540	2.000	6.381000-4	3.900000-2 9.601000-4-1.019000+09222 21	DI 238
173.9606170	3.000	5.012000-4	3.900000-2-1.688000-2 6.435000-19222 215	51 239
174.5259400	3.000	1.152000-5	3.900000-2-1.258000-2-9.645000-39222 215	51 240
175.7093810	2.000	5.756000-3	3.900000-2 1.532000-1 7.030000-19222 215	51 241
176,2808230	3.000	8.033000-4	3,900000-2, 3,006000-2, 7,299000-39222, 21	51 242
177 0656430	2 000	2742000-4	3 000000_2_7 682000_3 7 721000_10222 21	51 2/2
170 7515110	2.000	2.742000-4	3.900000-2-7.002000-3 $3.721000-19222$ 21.	1 243
178.7515110	3.000	1.789000-3	3.900000-2-6.910000-4-8.883000-19222 21	
178.7629700	3.000	2.398000-4	3.900000-2 3.519000-2-1.181000-19222 21	51 245
179.5363310	3.000	3.497000-4	3.900000-2-2.479000-1 5.125000-49222 215	51 246
181.3894500	3.000	2.937000-4	3.900000-2 5.565000-2-6.211000-19222 215	51 247
181.8340610	2.000	7.947000-4	3.900000-2 5.461000-2 1.345000-29222 215	51 248
183,3075560	3.000	1.143000 - 3	3,900000-2-6,155000-4-9,311000-29222,21	51 249
184 4087520	2 000	1 219000 - 4	3 900000-2-3 862000-1-2 375000-29222 21	51 250
104 9560100	2.000	1 472000 - 4	3.900000-2-3.002000-1-2.3750000-29222 21	51 250 51 251
184.8560180	2.000	1.4/2000-5	3.900000-2-7.752000-1-2.780000-39222 21	251
185.1811680	3.000	1./26000-4	3.900000-2 1.041000-2 1.994000-39222 21	51 252
185.1976470	3.000	1.169000-3	3.900000-2 $6.406000-1$ $6.299000-29222$ 219	51 253
186.2226410	2.000	1.768000-3	3.900000-2-1.152000-2-7.323000-19222 215	51 254
188.3270720	2.000	5.694000-3	3.900000-2 7.124000-1 8.098000-29222 215	51 255
189.6862950	2.000	5.786000-5	3.900000-2 3.221000-2-7.391000-29222 21	51 256
189 8433070	2 000	1 094000-2	3 900000-2 4 338000-1-7 303000-19222 21	51 257
101 /080050	2.000	3 579000_3	3 900000 2 1.330000 1 7.303000 19222 21	51 259
	2.000	3.579000-3	3.900000-2-1.324000-0-3.772000-19222 213	1 250
191.8484950	3.000	2.698000-4	3.900000-2-4.828000-7 2.232000-19222 21	51 259
192.9308930	3.000	1.039000-2	3.900000-2 $2.070000+0-1.658000+09222$ 21	51 260
193.5537410	3.000	5.939000-4	3.900000-2 7.657000-1-1.514000-29222 215	51 261
195.1757510	3.000	1.630000-3	3.900000-2 1.374000+0 5.018000-29222 215	51 262
196.1625370	2.000	5.215000-4	3.900000-2 7.976000-1-1.991000-29222 215	51 263
197.3134000	2.000	1.734000-3	3.900000-2-3.988000-1 3 172000-29222 21	51 264
198 1350100	3 000	3 947000-2	3 900000_2_1 045000_1 / 101000_20222 21	51 26F
100 7027060	2.000	1 = 1 < 0 0 0 - 3	3.900000-2-1.0+9000-1 4.191000-29222 21:	
190.103/960	3.000	T.2T0000-3	3.900000-2-2.942000-3-4.555000-19222 21	
199.4364620	2.000	2.905000-3	3.900000-2-2.532000-1-1.731000-39222 21	o⊥ 267
199.9831090	2.000	3.652000-5	3.900000-2-3.692000-4 6.405000-39222 215	51 268
200.2901460	2.000	5.242000-4	3.900000-2 3.704000-1 1.249000-29222 215	51 269
200.7856450	3.000	3.686000-5	3.900000-2-1.350000-1 9.623000-29222 21	51 270
200.7865600	3.000	2.806000-3	3.900000-2-1.464000-4-3.823000-19222 21	51 271
201 1547090	2 000	5 179000-5	3 900000-2-6 195000-4-9 303000-29222 21	51 272
202 4462420	2 000	7 005000-2	3.900000 = 2.0.190000 = 9.000000 = 20222 = 21.	51 070
202.JIV2JV	2.000		J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.J.	, <u> </u>

203.3189850	2.000	2.267000-4	3.900000-2 3.640000-2 6.657000-19222 2	2151 274
204 2838440	3 000	2 554000-4	3 900000-2 2 462000-2-5 203000-19222 2	2151 275
201.2030110	2.000	1.551000 1		0151 076
204.6609190	2.000	4.668000-6	3.900000-2-4.240000-4-6.025000-19222 2	2151 2/6
204.6697850	2.000	1.242000-3	3.900000-2 2.020000-1 8.053000-29222 2	2151 277
204 7917330	3 000	1 247000-3	3 900000-2-4 737000-2 5 000000-39222 2	2151 278
201.7917550	5.000	1.21/000 3	5.900000 Z 1.757000 Z 5.000000 39222 Z	0151 070
205.88/4660	2.000	3./02000-3	3.900000-2-1.120000-3 2.292000-19222 2	2151 279
206.2124790	2.000	3.381000-4	3.900000-2 3.410000-3-1.902000-39222 2	2151 280
206 8053280	3 000	3 131000-3	3 900000_2_3 908000_1_1 110000_19222 3	2151 201
200.0055200	3.000	3.431000-3	5.900000-2-5.900000-1-1.110000-19222 2	21J1 201
207.3474270	3.000	4.183000-5	3.900000-2 $8.144000-1$ $3.522000-39222$ 2	2151 282
208.7859950	2.000	1.503000 - 2	3.900000 - 2 - 1.075000 + 0 - 7.680000 - 49222	2151 283
209 6629330	3 000	1 832000-3	3 900000-2 2 429000-1 8 931000-29222 2	2151 284
209.0029330	2.000	I.052000 J	3.900000 2 2.129000 1 0.991000 29222 2	0151 201
210.1/49420	2.000	5.609000-4	3.900000-2-1.219000-1-2.248000-19222 2	2151 285
211.0041200	3.000	1.379000-3	3.900000-2 $1.828000-2-1.407000-19222$ 2	2151 286
211.8183290	2.000	2.241000-3	3.900000-2 7.618000-2 3.374000-19222 2	2151 287
213 6461330	2 000	1 136000-3	3 900000-2 6 864000-1 2 406000-29222 2	2151 288
213.0401330	2.000	F. 00000 J	3.900000 2 0.004000 1 2.400000 29222 2	2151 200
214.9560700	3.000	5.969000-4	3.900000-2-2.435000-1 5.102000-19222 2	2151 289
216.2603300	3.000	1.070000-3	3.900000-2 3.579000-2-1.366000+09222 2	2151 290
217,1866300	2.000	7.954000-4	3,900000-2-9,090000-1-1,954000-19222 2	2151 291
	2 000	1 110000 2		01E1 000
217.0520950	2.000	1.110000-2	3.900000-2-9.387000-2-2.031000-19222 2	2101 292
217.7962800	2.000	4.289000-3	3.900000-2-6.410000-4-8.280000-19222 2	2151 293
218.5834050	3.000	6.818000-3	3.900000-2-4.931000-2-1.704000-19222 2	2151 294
218 7939150	3 000	3 885000-4	3 900000-2-1 084000-2 2 847000-39222 2	2151 295
210.0406250	2 000	2 221000 2	3 000000 2 2.001000 2 2.017000 39222 2	01F1 00C
219.8496250	3.000	3.321000-3	3.900000-2 2.925000-1-4.326000-39222 2	2151 290
220.4467010	2.000	9.601000-4	3.900000-2-2.793000-1 9.055000-19222 2	2151 297
220.8644410	3.000	2.665000 - 3	3.900000 - 2 - 1.067000 + 0.3.775000 - 19222	2151 298
223 0008000	3 000	3 383000-3	3 900000_2_1 834000_2 3 555000_19222 3	2151 200
223.0990990	3.000	2.303000-3	3.900000-2-1.034000-2 3.555000-19222 2	6151 299
223.6290740	3.000	9./45000-3	3.900000-2 1.150000-1 1.779000-29222 2	2151 300
224.8071140	2.000	1.991000-3	3.900000-2 4.030000-1-1.478000-19222 2	2151 301
226 4473880	3 000	6 535000-4	3 900000-2-9 627000-1-1 443000-19222 2	2151 302
220, 11, 2000	2 000	1 477000 4	2 000000 2 4 200000 1 2 E02000 E0222 2	01E1 202
227.5714110	2.000	1.4//000-4	5.900000-2-4.389000-1-3.503000-59222 2	2151 505
229.6437840	3.000	1.597000-3	3.900000-2 6.835000-3-6.391000-19222 2	2151 304
230.2747960	3.000	2.419000-3	3.900000-2 2.008000-1-1.668000-19222 2	2151 305
231 0520020	2 000	2721000 - 3	3 900000-2 1 021000-4-9 800000-19222 2	2151 306
221 6061200	2.000	E 70E000 4		01E1 207
231.3051290	3.000	5.705000-4	5.900000-2 4.020000-3-7.049000-29222 2	2151 507
233.3213350	3.000	1.612000-3	3.900000-2 3.878000-1-1.744000-29222 2	2151 308
233.8712620	3.000	5.628000-3	3.900000-2-2.560000-1 9.804000-49222 2	2151 309
234 0365600	3 000	3 133000-5	3 900000-2 1 823000-2-1 675000-39222 2	2151 310
231.0303000	2 000	0 202000 5	3.000000 2 4.020000 2 2.000000 00000	01F1 010
234.3928680	3.000	8.392000-5	3.900000-2 4.6/9000-2 3.802000-29222 2	2151 311
235.3230900	3.000	1.407000-3	3.900000-2 2.353000-1-3.441000-29222 2	2151 312
235.6108550	2.000	3.236000-3	3.900000 - 2 - 1.330000 + 0.6.268000 - 39222 2	2151 313
236 4986720	3 000	2 875000-3	3 900000-2 1 306000-3 4 385000-29222 2	2151 314
230.4900720	3.000	2.073000-3	3.900000-2 1.500000-3 4.505000-29222 2	51J1 J17
237.3383480	2.000	5.994000-3	3.900000-2 $2.544000-3$ $4.440000-19222$ 2	2151 315
239.1576390	2.000	7.411000-4	3.900000-2 1.557000+0-1.041000-19222 2	2151 316
239.3848570	2.000	1.711000 - 3	3,900000-2 2,664000-3-1,227000-19222 2	2151 317
220 7170870	3 000	1 354000-5	3 900000-2 2 485000-3-8 226000-29222 2	2151 219
239.7170070	3.000	1.334000-3	3.900000-2 2.403000-3-0.220000-29222 2	51J1 J10
240.232/580	3.000	1.389000-4	3.900000-2 1.834000-1-1.432000+09222 2	2151 319
240.6851040	3.000	3.135000-3	3.900000-2 2.451000-1-2.934000-19222 2	2151 320
241,2271270	2.000	4.407000 - 4	3,900000-2, 1,832000-1-2,769000-49222, 2	2151 321
242 8173370	2 000	1 089000_2	3 900000-2 8 233000-1 7 748000-19222 2	2151 222
242.01/33/0	2.000	1.009000-2	3.900000-2 0.233000-1 7.740000-19222 2	51J1 J22
243.21/8340	3.000	8.299000-4	3.900000-2 1.707000-1 1.443000-39222 2	2151 323
244.4183040	3.000	4.925000-5	3.900000-2 1.034000-3 1.989000-19222 2	2151 324
244.5261230	3.000	1.071000 - 3	3.900000-2 4.094000-1 3.837000-49222 2	2151 325
244 8303070	3 000	1 059000_3	3 900000-2 6 800000-3-6 109000-19222 2	2151 226
244.8303070	3.000	1.059000-3	3.900000-2 0.800000-3-0.109000-19222 2	2101 320
244.8306580	2.000	8./01000-5	3.900000-2-1.351000-4-4.570000-39222 2	2151 327
247.2600710	3.000	7.070000-4	3.900000-2 6.780000-1-1.663000-69222 2	2151 328
247.9514920	3.000	4.944000-3	3,900000-2,4,843000-1,6,284000-39222,2	2151 329
	2 000	1 0 2 0 0 0 2	$3.900000 \pm 1.013000 \pm 0.201000 \pm 2.222 \pm 2.00000 \pm 0.0000 \pm 0.00000 \pm 0.00000 \pm 0.00000 \pm 0.00000 \pm 0.000000 \pm 0.000000 \pm 0.0000000 \pm 0.00000000$	01E1 020
	5.000	1.020000-3	3.900000-Z-3.29000-I 3.000000-29222 2	7101 200
250.0757450	2.000	4.616000-3	3.900000-2 $2.460000-2-3.257000-19222 2$	2151 331
250.3893280	2.000	8.584000-4	3.900000-2-6.035000-2 1.720000-19222 2	2151 332
250,6663970	3,000	5.818000-3	3.900000-2 7.217000-2-2.597000-19222 2	2151 333
252 1504000	2 000	1 261000 0	2 0 0 0 0 0 2 2 251000 2 2.007000 10222 2	2151 224
	2.000	1.301000-Z		5151 554 0151 55-
253.1783750	3.000	5.794000-3	3.900000-2 $4.492000-3$ $1.342000+09222$ 2	⊿⊥5⊥ 335
254.4503170	3.000	3.272000-3	3.900000-2 3.301000-1-1.011000-39222 2	2151 336
255,0098110	3,000	2,498000-3	3.900000-2 5.040000-1-3.317000-39222 2	2151 337
256 86/3/00	2 000	2 618000 2	3 00000_2_5 072000 1 2 024000 40222 2	2151 220
	2.000	2.010000-3		5TOT 220
258.1229550	3.000	4.1/8000-4	3.900000-2-2.092000-2-3.973000-19222 2	∠⊥5⊥ 339
258.9213560	2.000	1.130000-3	3.900000-2 1.660000-2 4.429000-19222 2	2151 340
260.1318360	2.000	3.078000-4	3.900000-2 4.103000-1-2.388000-19222 2	2151 341
260 5021970	3 000	7 095000-4	3 900000-2-2 912000-1 4 703000-10222 3	2151 240
	2.000	· • • • • • • • • • • • • • • • • • • •		コエッエ フェム

262.0762630	3.000	8.673000-4	3.900000-2 3.907000-2-1.270000-19222	2151 34	43
262 5140380	2 000	2 398000-3	3 900000-2-1 710000-1 1 464000-19222	2151 34	44
202.3140300	2.000	2.320000 3	3.900000 2 1.710000 1 1.404000 19222	2151 5	1 -
263.0616150	2.000	1.041000-3	3.900000-2 2.870000-2-3.626000-19222	2151 34	1 5
263.7485350	2.000	2.501000-3	3.900000-2 $9.717000-4$ $8.821000-19222$	2151 34	46
264.8937990	3.000	1.508000-3	3.900000-2 4.264000-1-8.229000-29222	2151 34	47
266 4602050	3 000	2 937000-3	3 900000-2-3 599000-1-3 410000-19222	2151 34	48
200.1002050	2 000	2.007000 0	3.00000 2 3.399000 1 3.110000 19222	2151 5	10
268.0810850	3.000	2.613000-3	3.900000-2 1.280000-2-2.315000+09222	2151 34	1 9
268.3950810	3.000	1.860000-3	3.900000-2 9.768000-2-1.414000-19222	2151 3!	50
268.5542600	2.000	2.274000 - 3	3.900000-2 7.920000-2-2.230000-19222	2151 3	51
269 8081970	3 000	6 945000-4	3 900000-2 1 176000-1 8 003000-49222	2151 31	52
200.0001070	2.000	4 471000 4	$3.900000 \ge 1.170000 \pm 0.000000 \pm 9222$	2151 5.	52
2/2.09826/0	3.000	4.4/1000-4	3.900000-2-1.562000-1-6.743000-29222	2151 3:	55
272.1065980	2.000	9.844000-4	3.900000-2 $9.059000-2$ $3.745000-29222$	2151 3	54
273.8734130	2.000	7.017000-3	3.900000-2 $2.694000-2$ $2.487000-19222$	2151 3!	55
275 0857540	2 000	4 550000-3	3 900000-2 1 829000-1 1 064000-19222	2151 31	56
275 2445000	2.000	2 0 2 0 0 0 0 1	2,000000 = 2,00000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,0000000 = 1,00000000 = 1,00000000 = 1,00000000 = 1,00000000 = 1,00000000 = 1,0000000000	01E1 01	50
275.2445960	3.000	3.920000-4	3.900000-2-2.270000-4 5.055000-09222	ZICI C	57
276.3366390	2.000	8.644000-3	3.900000-2 1.736000-1-8.571000-19222	2151 3	58
276.7619630	3.000	3.970000-4	3.900000-2 $2.752000-1$ $1.194000-19222$	2151 3!	59
276.8070370	3.000	3.515000-3	3,900000-2, 1,657000-1-6,683000-39222	2151 36	60
277 7027000	2 000	1 275000 2		2151 20	61
277.7027890	2.000	4.375000-3	3.900000-2 9.082000-2-2.071000-29222	2151 30	2 T
278.6449280	3.000	4.932000-3	3.900000-2 $2.103000-1-2.045000-29222$	2151 36	52 2
279.9904480	3.000	9.168000-4	3.900000-2 2.501000-1 1.180000-19222	2151 36	63
280,9208680	2.000	5.496000 - 3	3.900000 - 2 $1.653000 - 2$ $2.053000 - 19222$	2151 36	64
281 6975710	2 000	3 102000_3	3 900000_2_7 /17000_2_2 028000_19222	2151 30	65
201.09/3/10	2.000	5.192000-3	3.900000-2-7.417000-2-2.020000-19222	2151 50	55
283.3602290	3.000	6.0/4000-3	3.900000-2-9.814000-2 3.923000-19222	2151 30	56
283.6874390	3.000	4.599000-4	3.900000-2-3.650000-2 6.677000-19222	2151 36	67
284.7664790	3.000	4.557000-3	3.900000-2 1.341000-1-3.607000-19222	2151 36	68
285 6385190	3 000	1 671000-3	3 900000-2 5 517000-1 6 309000-29222	2151 30	69
203.0303100	5.000	I.071000 J	3.900000 2 3.317000 1 0.309000 29222	2151 30	70
287.3207400	2.000	5.5/6000-3	3.900000-2-1./1/000-1 2./40000-19222	2151 3	/0
289.2819520	3.000	5.361000-3	3.900000 - 2 - 1.636000 - 1 2.958000 - 19222	2151 3	71
291.4002690	2.000	1.585000-3	3.900000-2 $1.469000+0$ $6.897000-39222$	2151 3'	72
293,2084050	3.000	3,256000-3	3,900000-2, 3,835000-2-6,581000-19222	2151 3	73
29/ 8277590	2 000	1 150000-2	3 900000_2_3 948000_1 4 371000_19222	2151 2'	71
294.02/7590	2.000	1.139000-2	3.900000-2-3.940000-1 4.371000-19222	2151 5	7 -
295.3149/20	2.000	6./91000-4	3.900000-2 9.747000-3 2.513000-29222	2151 3	15
295.4678040	3.000	9.473000-4	3.900000-2 $4.908000-2-1.497000-19222$	2151 3	/6
295.6871030	2.000	1.186000-5	3.900000-2 4.092000-1-3.141000-19222	2151 3'	77
298.0653080	3.000	1.490000 - 2	3,900000-2-6,119000-2 3,008000-19222	2151 3	78
298 6224370	2 000	2 434000-2	3 900000-2-2 661000-1-1 108000+09222	2151 3'	79
200.0224570	2.000	4 210000 2	$3.900000 \ Z \ Z.001000 \ I \ I.100000 \ 09222$	2151 5	
290.0200520	3.000	4.210000-3	3.900000-2 5.213000-2 8.205000-39222	2151 50	50
299.8304440	3.000	6.383000-4	3.900000 - 2 - 1.457000 - 1 $3.219000 - 49222$	2151 38	31
300.8513790	3.000	6.313000-4	3.900000-2-3.695000-1-6.745000-19222	2151 38	32
302.0327760	3.000	4.605000 - 3	3,900000-2 2,564000-1-3,175000-49222	2151 38	83
302 5158080	2 000	1 264000-3	3 900000_2 3 038000_1_2 322000_19222	2151 39	Q /
202.7125240	2.000	1 5204000 3	$3.900000 \ge 3.030000 \pm 2.322000 \pm 2222$	2151 50	
303.7125240	2.000	1.532000-3	3.900000-2-1.518000+0-1.385000-19222	2151 30	35
304.8706360	3.000	3.700000-4	3.900000-2 $1.013000+0-3.448000-29222$	2151 38	36
306.2876590	2.000	7.576000-5	3.900000-2 9.101000-2-2.225000-19222	2151 38	37
307 5131530	3 000	5 097000-4	3 900000-2 1 573000-3-1 202000+09222	2151 38	88
207 6429200	2 000	1 050000 2	2 000000 2 6 744000 1 1 712000+00222	2151 20	00
307.0430290	2.000	1.030000-3	3.900000-2 0.744000-1-1.715000+09222	2151 50	22
307.7376400	3.000	2.500000-5	3.900000-2 9.122000-1-5.406000-19222	2151 39	90
308.3189390	3.000	1.859000-4	3.900000-2 $1.023000+0-1.858000-19222$	2151 39	91
311.1489870	2.000	2.776000-3	3.900000-2 $7.008000-1$ $1.088000-39222$	2151 39	92
311,1575320	3.000	3.275000 - 4	3,900000-2-5,145000-2-8,660000-59222	2151 30	93
311 4859620	3 000	1 244000-3	3 900000-2-9 242000-1 2 624000-39222	2151 30	94
212 0206000	2.000	7 000000 5	$3.900000 \ z \ 9.242000 \ 1 \ 2.024000 \ 39222$	2151 5.	
312.0306090	3.000	7.999000-5	3.900000-2-1.030000+0-7.292000-19222	2151 33	15
313.2040100	3.000	1.473000-3	3.900000-2 $2.016000+0-7.528000-29222$	2151 39	96
313.3140260	2.000	2.138000-7	3.900000-2 6.711000-1 8.376000-39222	2151 39	97
314 1444090	2 000	9 746000-3	3 900000-2 3 197000-1 3 975000-19222	2151 30	98
214 6095470	2 000	6 224000 4	2 0 0 0 0 0 2 6 121 0 0 2 1 126000 10222	2151 20	00
	4.000	4 551000-4		21J1 33	ノク へへ
313.0283200	2.000	4.551000-3	3.900000-2 6.23/000-1-8.595000-29222	∠⊥5⊥ 40	JU
316.0512080	3.000	1.625000-5	3.900000-2-3.645000-2 1.847000-19222	2151 40	J1
316.1418150	3.000	2.002000-3	3.900000-2 1.211000+0-1.743000-19222	2151 40	02
316,2317500	3,000	1.397000-5	3,900000-2 9,466000-3-2 390000-39222	2151 40	03
316 2900700	3 000	2 003000-2	3 900000-2 1 692000-2 5 420000-20222	2151 40	n /
	3.000		3.500000-2 $1.052000-2$ $3.420000-29222$		
51/.5946960	2.000	1.010000-4	5.900000-Z 1.0/9000+0 4./1/000-29222	∠⊥⊃⊥ 4(72
317.8667300	3.000	9.970000-4	3.900000 - 2 - 1.819000 - 1 1.006000 - 49222	2151 40	JG
318.6033630	3.000	3.389000-4	3.900000-2-3.767000-3 7.419000-19222	2151 40	07
319.3588260	3.000	1.189000-3	3.900000-2 5.841000-4-2.019000-19222	2151 40	08
319 9644780	2 000	3 485000-2	3 00000-2 1 813000-4 3 000000-10222	2151 40	na
	2.000	1 0/5000-3	2 000000 2 1.013000 - 1.0 032000 - 192222	01E1 4	ノブ 1 へ
32U.628U21U	3.000	1.045000-3	3.900000-2-1.339000-1 2.633000-39222	∠⊥5⊥ 4.	τU
321.4626460	2.000	4.529000 - 3	3.90000-2-4.428000-2-1.227000-19222	2151 4.	11

321.8971560	3.000	7.235000-4	3.900000-2 9.196000-1 1.427000-29222 2	2151 412
322 3918150	2 000	2 105000 - 3	3 900000 - 2 1 182000 + 0 - 1 019000 - 19222 3	2151 413
222.3910130	2.000	1 407000 4	2 000000 2 1.102000 2 7 051000 10222 7	
322.882/820	3.000	1.40/000-4	3.900000-2-4.882000-3 7.051000-19222 2	2151 414
323.1616520	3.000	9.801000-4	3.900000-2 3.773000-1-9.425000-39222 2	2151 415
324 3387450	3 000	4 950000-3	3 900000-2 1 389000+0-4 313000-19222 (2151 416
201 2050560	5.000	1.950000 9	3.900000 2 1.909000+0 1.919000 19222 2	
324.3859560	2.000	2.052000-4	3.900000-2-8.144000-2-5.267000-19222 2	2151 417
325.5752260	3.000	1.040000-5	3.900000-2-2.881000+0-2.033000-29222	2151 418
326 3453980	3 000	1 664000-2	3 000000_2 3 870000_2 5 541000_10222 (2151 /10
320.3433300	5.000	1.004000 2	5.500000 2 5.070000 2 5.541000 19222 2	
326.4139400	3.000	4.192000-3	3.900000-2 1.537000+0 3.537000-19222 2	2151 420
326.9008180	2.000	2.241000-3	3.900000-2 9.405000-2 1.763000-29222 2	2151 421
228 117/020	3 000	2 133000-3	3 900000_2_7 154000_6_4 889000_19222 (2151 /22
320.1174930	3.000	2.133000-3	3.900000-2-7.134000-0-4.009000-19222 2	21J1 722
329.5779110	2.000	4.696000-3	3.900000-2 1.191000-1 6.977000-39222 2	2151 423
329.6366580	3.000	1.534000-5	3.900000-2-3.840000-2 2.316000-19222 2	2151 424
330 3293760	3 000	2 801000-3	3 000000_2_1 100000+0_0 468000_30222 4	2151 /25
330.3293700	3.000	2.094000-3	3.900000-2-1.109000+0-9.400000-39222 2	21J1 72J
330.8267820	3.000	1.525000-3	3.900000-2-1.549000-2 6.315000-19222 2	2151 426
331.0244450	2.000	1.690000-3	3.900000-2-3.167000-4 2.356000+09222 2	2151 427
332 8115230	2 000	1 635000-3	3 900000-2-1 168000-2 2 708000+09222 2	2151 428
222.0110200	2.000	1 1 2 C 0 0 0 F		0151 400
333.2522280	3.000	2.130000-5	3.900000-2-2.981000-1-7.296000-39222	2151 429
333.8092650	3.000	4.228000-6	3.900000-2-2.933000-2 1.296000-39222 2	2151 430
333,8600160	3,000	6.424000 - 3	3.900000-2.2.118000+0-9.191000-19222	2151 431
222 0057720	2 000	0 000000 2	2 000000 2 2 021000 1 2 054000 10222 (2151 /22
333.0037730	2.000	0.009000-3	3.900000-2 2.931000-1-2.954000-19222 2	ZIJI 43Z
334.0715330	2.000	1.390000-3	3.900000-2 2.897000-2-2.017000+09222 2	2151 433
335.3597410	2.000	1.063000-3	3.900000-2-2.960000-8 2.037000+09222 2	2151 434
337 2432250	3 000	1 824000-3	3 900000-2 1 223000-4 3 477000-19222 3	2151 435
220 600200	5.000	1 110000 0	5.500000 Z 1.ZZ5000 4 5.477000 15ZZZ Z	21J1 4JJ
338.6809390	2.000	1.118000-2	3.900000-2 /.591000-1-3.828000-39222 2	2151 436
339.7452090	2.000	8.847000-3	3.900000-2-1.427000-2-9.887000-29222 2	2151 437
341,1223140	2.000	4.970000 - 3	3,900000-2, 2,473000-1,9,711000-19222,2	2151 438
242 6254690	2 000	4 520000 2	2 00000 2 1 60600 2 4 66000 00000 00000 00000 000000 000000 0000	01E1 420
342.0354000	2.000	4.536000-3	5.900000-2 1.090000-3 4.509000+09222 2	2151 459
342.8487550	3.000	2.481000-3	3.900000-2-1.751000-2 3.584000-19222 2	2151 440
343.0379330	3.000	1.810000-3	3.900000-2-5.329000-1-6.368000-29222	2151 441
343 1170040	2 000	2 140000 - 5	3 900000-2 7 851000-4 3 908000-49222 (2151 442
343.1170040	2.000	2.140000 3	5.500000 Z 7.051000 4 5.5000000 45222 Z	21J1 442
343.6232910	2.000	2.83/000-3	3.900000-2 8.103000-1 1.604000-29222 2	2151 443
344.1145320	2.000	1.689000-5	3.900000-2-1.789000-1 2.235000-29222 2	2151 444
344.3256230	3.000	7.344000-4	3,900000-2,6,809000-1,8,624000-39222,2	2151 445
244 6155000	2 000	2 102000 2		2151 446
344.0133090	3.000	2.493000-3	3.900000-2 2.749000-1-7.849000-39222 2	2131 440
345.5438230	3.000	3.484000-3	3.900000-2 $3.897000-2$ $2.684000-19222$ 2	2151 447
347.7736820	2.000	1.263000-3	3.900000-2 2.358000-1-6.665000-39222 2	2151 448
348 9990840	3 000	2 302000-4	3 900000-2-2 025000-2 1 560000-19222 1	2151 449
	2.000	1 561000 4	2 000000 2 2.025000 2 1.500000 19222 2	2151 4F0
349./892460	3.000	1.561000-4	3.900000-2 1.3/5000-1-1.914000+09222 2	2151 450
349.9252930	2.000	1.905000-4	3.900000-2-8.718000-2-9.949000-29222 2	2151 451
350,0031740	2.000	2.761000 - 3	3,900000-2-2,470000-3-1,377000+09222	2151 452
250 2042970	2 000	1 470000 4	2 00000 2 9 65000 2 1 64000 00000 00000 00000 000000 000000 0000	0161 460
350.3942070	3.000	1.4/9000-4	3.900000-2-0.052000-2 1.545000+09222 2	2151 455
351.7815250	3.000	4.434000-3	3.900000-2-4.245000-1-1.143000+09222 2	2151 454
351,9896550	2.000	1.434000 - 3	3,900000-2 5,820000-2-8,634000-29222	2151 455
352 2809750	3 000	1 127000-3	3 900000_2_1 395000_1_1 018000_49222 (2151 /56
352.2009750	3.000	1.521000-3	3.900000-2-1.393000-1-1.010000-49222 2	2151 450
353.9006040	2.000	1.531000-3	3.900000-2 $8.010000-2$ $2.4/6000-39222$	2151 457
354.8145450	2.000	4.374000-3	3.900000-2-6.159000-3 1.815000+09222 2	2151 458
355 1598210	2 000	2726000 - 3	3 900000-2 1 162000-1 3 430000-39222 3	2151 459
256 0406770	2 000	1 554000 5		01E1 460
350.9490//0	4.000	1.004000-5	5.900000-Z Z.490000-I-I.099000-Z9222 Z	2101 40U
357.7019650	2.000	1.814000-3	3.900000-2-3.092000-1-3.129000-39222	2151 461
357.8959050	3.000	2.427000 - 3	3.900000-2 8.677000-1 3.122000-19222 2	2151 462
358 7976070	3 000	1 062000-3	3 900000-2-5 774000-2 8 695000-29222 (2151 463
350.7570070	5.000	1 11002000 3	5.900000 Z 5.774000 Z 0.095000 Z9ZZZ Z	2151 405 0151 464
359.4332890	2.000	1.11/000-3	3.900000-2-1.961000-2-3.448000-19222	2151 464
359.5982060	3.000	5.241000-4	3.900000-2 6.508000-2 3.374000-39222 2	2151 465
363,1383670	2.000	5.516000 - 4	3.900000-2 1.710000-4 2.845000-19222 2	2151 466
262 7055220	2 000	2 570000 2		2151 467
303.7933320	2.000	2.570000-3	3.900000-2 3.377000-1-3.085000-29222 2	2131 407
363.8435360	3.000	3.102000-3	3.900000-2 7.037000-1-4.388000-39222 2	2151 468
363.9150390	3.000	4.364000-4	3.900000-2-4.366000-2 2.196000-19222 2	2151 469
365,6514890	2.000	1.977000-2	3,900000-2,7,598000-1-8,004000-29222 1	2151 470
265 051 1000	2.000	1 404000 2	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
002.2266.606	3.000	1.404000-3	5.900000-2 5.931000-2 1.290000-49222 2	
366.0369260	2.000	4.120000-3	3.900000-2 1.028000+0 9.403000-29222 2	2151 472
367.1147160	3.000	3.960000-4	3.900000-2-2.373000-1 9.474000-19222 2	2151 473
367 2204500	2 000	2 996000-2	3 900000-2-2 556000-1 9 074000-20222 (2151 171
	2.000	2.220000-3		5151 474 0151 455
307.8256230	3.000	0.298000-3	3.900000-2-1.8/5000-2-1.129000+09222 2	∠⊥5⊥ 475
368.9576420	3.000	8.159000-3	3.900000-2 9.044000-1-1.837000+09222 2	2151 476
371.6235050	2.000	1.169000-2	3.900000-2-2.382000-2-5.873000-19222	2151 477
371 7967530	3 000	4 448000-2	3 900000-2-3 983000-3 8 882000-28222	2151 170
3/1./90/330	5.000	1.110000-3		ATOT 4/8
312.3031720	3.000	4.92/000-4	3.900000-2 1.150000+0 1.164000-29222 2	∠⊥5⊥ 479
372.4078670	3.000	9.160000-3	3.900000-2-4.876000-2-5.231000-19222	2151 480

372.7641600	3.000	1.376000-3	3.900000-2-1.720000-1 1.332000-59222	2151 481
374,4830630	3.000	1.057000 - 2	3,900000-2,4,908000-2,2,004000-19222	2151 482
374 8549800	2 000	1 229000-3	3 900000-2-2 824000-1-1 284000-29222	2151 483
374.0349000	2.000	I.ZZ9000-3	3.900000-2-2.024000-1-1.204000-29222	21J1 40. 21F1 40/
375.9198610	2.000	5.4/5000-3	3.900000-2 6.041000-1-1.3/5000-19222	2151 484
3/5.956/8/0	3.000	4.513000-4	3.900000-2-5.590000-2-2.493000-29222	2151 485
376.3995670	2.000	3.535000-3	3.900000-2 8.461000-2 2.192000-29222	2151 486
378.2778320	3.000	2.812000-3	3.900000-2-6.875000-2-7.401000-19222	2151 487
379,6386410	2.000	1.595000 - 4	3,900000-2-1,060000-1-1,942000-29222	2151 488
380 2320860	3 000	4 297000-4	3 900000-2-3 924000-1-1 876000-29222	2151 480
201 0502070	3.000	1.227,000 1	3.900000 2 3.921000 1 1.070000 29222	2151 102
301.0303070	3.000	4.022000-3	3.900000-2-8.300000-1 9.233000-29222	2151 490
383.311/680	3.000	4.396000-3	3.900000-2-2.412000-3-4.777000-19222	2151 491
383.3118590	3.000	1.017000-4	3.900000-2-5.514000-1-5.825000-49222	2151 492
384.9407960	2.000	2.744000-3	3.900000-2-1.647000-1-3.114000-19222	2151 493
385.0328670	3.000	5.445000-3	3.900000-2 3.489000+0 4.129000-29222	2151 494
385,4856260	2.000	3.430000 - 3	3,900000-2 2,367000-1 3,358000-29222	2151 495
385 9262080	3 000	3 427000-4	3 900000-2 2 264000-1-7 871000-39222	2151 496
207 /010210	2 000	7 672000 1	2 0 0 0 0 0 2 7 4 0 6 0 0 2 7 6 0 6 0 0 2 0 2 2 2 2 0 1 0 0 0 1 7 6 0 6 0 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2	2151 100
307.4910210	3.000	7.072000-4	3.900000-2 7.490000-2 7.000000-29222	2151 497
388.60/8800	3.000	2.324000-4	3.900000-2 2.360000-1-3.703000-59222	2151 498
389.0961300	3.000	7.080000-5	3.900000-2 $3.701000-1$ $1.675000-29222$	2151 499
389.5949400	3.000	5.797000-4	3.900000-2-3.730000-1-8.449000-29222	2151 500
390.6167910	2.000	9.972000-3	3.900000-2 1.383000-5-5.244000-19222	2151 501
391,7633360	3.000	1.084000 - 3	3,900000-2-3,685000-2,1,580000-59222	2151 502
392 5050350	3 000	7 032000-3	3 900000-2-1 438000+0-1 815000-39222	2151 503
202 2690660	2 000	2 966000 2	2 000000 2 1.130000+0 1.013000 39222 1.200000 2 1.114000+0 6 422000 10222	2151 502
393.2000000	2.000	2.900000-2	3.900000-2 $1.114000+0-0.422000-19222$	21J1 JU- 2151 505
393.4799800	2.000	1.102000-4	3.900000-2-7.495000-1-4.101000-49222	2151 505
395.5353090	3.000	3.321000-3	3.900000-2 $2.436000-2$ $1.059000-19222$	2151 506
395.5481260	3.000	8.753000-5	3.900000-2 7.360000-2 6.588000-39222	2151 507
396.0282590	2.000	3.086000-3	3.900000-2 6.664000-5-1.958000-19222	2151 508
396.5132140	3.000	2.929000 - 3	3.900000-2 7.068000-5-3.338000-19222	2151 509
399,2849430	2.000	1.479000 - 3	3,900000-2-7,990000-3 1,509000-19222	2151 510
399 4244380	3 000	2 201000 - 3	3 900000-2 1 453000+0 8 241000-39222	2151 511
401 8168950	3 000	6 458000-4	3 00000-2 2 061000-2-1 464000+09222	2151 512
401 0270260	2 000	2 201000 F	2 00000 2 1 00000 2 1.000000000000000000	2151 512
401.9378300	2.000	3.391000-3	3.900000-2 1.104000-2-2.811000-39222	2151 513
402.6235350	2.000	1.05/000-3	3.900000-2 5.524000-1-9.784000-19222	2151 514
403.6440120	3.000	5.189000-4	3.900000-2 1.997000-3-1.429000-39222	2151 515
403.7287600	3.000	6.841000-4	3.900000-2-2.512000-2-5.979000-19222	2151 516
404.8075260	3.000	1.126000-4	3.900000-2 3.010000-2 3.956000-29222	2151 517
404.8144840	2.000	4.264000-3	3.900000-2-6.685000-1 9.323000-19222	2151 518
404.9761960	3.000	5.576000-5	3.900000-2 6.543000-2 1.039000-29222	2151 519
406.4278870	3.000	2.766000 - 3	3.900000-2-9.245000-1 7.551000-29222	2151 520
407.2587890	3.000	2.018000 - 4	3.900000-2-2.654000-2-1.413000-19222	2151 521
407 7957150	2 000	2 394000-3	3 900000-2-6 158000-1 7 265000-29222	2151 522
107.7557150	2.000	1 1 2 0 0 0 2	2 000000 2 6 965000 1 1 206000 10222	2151 522 2151 522
409.1110030	2.000	1.120000-3	3.900000-2 0.805000-1-1.5800000-19222	2101 023 0151 50/
409.5939330	3.000	1.61/000-3	3.900000-2-1.316000-1-2.987000-19222	2151 524
410.8568730	2.000	1.398000-4	3.900000-2-4.248000-2 4.109000-19222	2151 525
411.6763310	3.000	2.972000-3	3.900000-2 $1.524000-1-1.372000+09222$	2151 526
412.6054380	2.000	7.234000-4	3.900000-2 3.865000-4 6.864000-19222	2151 527
415.7254030	2.000	8.230000-3	3.900000-2-7.079000-1-3.634000-39222	2151 528
416.4072880	3.000	2.297000-3	3.900000-2 3.132000-4-9.641000-29222	2151 529
417.2262880	3.000	3.115000 - 3	3,900000-2-4,910000-1 9,239000-39222	2151 530
418 0498350	3 000	8 241000-5	3 900000-2-4 055000-4-2 575000-19222	2151 531
419 7281490	3 000	1 573000 - 3	3 900000-2 4 308000-1 5 087000-29222	2151 532
410 0742000	2 000	E 614000 4	2,000000 2 = 4.500000 1 5.007000 25222 1	2151 552 2151 522
419.0/42900	3.000	5.014000-4	3.900000-2 5.495000-1-0.252000-29222	2151 553 0151 533
421.2154540	2.000	3.895000-3	3.900000-2 9.129000-1-4.198000-19222	2151 534
421.6728820	3.000	9.730000-4	3.900000-2 4.260000-2 1.171000-19222	2151 535
422.3768310	2.000	2.306000-5	3.900000-2 $1.528000+0$ $2.871000-19222$	2151 536
423.3842770	3.000	1.569000-3	3.900000-2 9.339000-3 6.845000-29222	2151 537
424.2949830	2.000	7.403000-3	3.900000-2-6.607000-1 5.907000-29222	2151 538
425.8171390	3.000	7.941000-4	3.900000-2 1.059000-4 7.273000-29222	2151 539
426.4813230	2.000	9.113000-4	3.900000-2 2.365000+0 1.533000-29222	2151 540
427 1704410	2 000	1 054000-3	3 900000-2-5 365000-1 7 638000-29222	2151 541
407 5752560	3 000	3 00000-3	3,900000-2-7,704000-1,1,425000-29222	2151 541
400 00000	2 000	3.090000-3 3.160000-3	2 000000 - 2 - 7 .70 + 000 - 1 1.423000 - 592222 .	2151 542 0151 542
	3.000		3.900000-2-1.094000-2 5.903000-29222	ATOT 243 0151 543
420.4094520	∠.000	1.192000-3	3.900000-2 7.335000-1 5.150000-39222	∠⊥⊃⊥ 544
429.126/400	3.000	1.426000-3	3.900000-2 1.098000+0 6.199000-39222	2151 545
431.0347600	2.000	1.370000-3	3.900000-2 3.278000-1 6.372000-29222	2151 546
431.8247680	3.000	2.129000-4	3.900000-2-3.768000-1-4.681000-29222	2151 547
432.4534300	2.000	1.567000-3	3.900000-2 5.464000-3 2.052000+09222	2151 548
434.0336610	2.000	2.357000 - 3	3.900000 - 2 1.234000 + 0 4.857000 - 39222	2151 549

435.5986940	3.000	1.664000-3	3.900000-2-1.	.945000+0-1	1.128000-39222	2151	550
436,0892030	3.000	6.365000 - 3	3.900000-2-8	976000-4	1.601000-19222	2151	551
437 1308900	2 000	5 539000-3	3 900000-2 1	081000-2	6 565000-19222	2151	552
437.1300900	2.000	2.02000-3	3.900000-21		4 070000 10000	2151	552
437.8075870	2.000	3.938000-3	3.900000-2-1	.514000-3	4.8/9000-19222	2151	553
439.1/54150	3.000	2.1/3000-3	3.900000-2-6	.564000-2	2.024000-19222	2151	554
439.7783810	2.000	3.310000-4	3.900000-2 5.	.012000-1-	1.810000-19222	2151	555
440.5309450	3.000	2.239000-3	3.900000-2 1.	.344000-2	6.527000-19222	2151	556
442.5426940	3.000	4.523000-4	3.900000-2 1.	277000-1	8.907000-29222	2151	557
442 6353150	3 000	2567000 - 3	3 900000-2-7	544000 - 1	6 765000-49222	2151	558
112.0555150	2 000	7 502000 4		014000 1	2 000000 10222	2151	550
443.1089170	3.000	1 502000-4	3.900000-2-2.	914000-1	3.098000-19222	2151	559
444.1186830	3.000	1.502000-4	3.900000-2 1.	.885000-1	9.6/2000-29222	2151	560
445.1184080	3.000	9.553000-5	3.900000-2-4	.724000-2-	9.813000-29222	2151	561
445.7210690	3.000	1.513000-3	3.900000-2-7.	.721000-1	9.347000-49222	2151	562
446.4141540	2.000	1.100000-2	3.900000-2-2.	.854000-1	6.486000-39222	2151	563
446.9773250	2.000	2.703000 - 3	3,900000-2-1	337000-2	1.433000-19222	2151	564
448 1232600	2 000	2 655000-3	3 900000-2 4	638000-1	5 902000-49222	2151	565
140 1047520	2.000	A 647000 5	2 0 0 0 0 0 2 1	1200001	2 616000 20222	2151	565
449.1047550	2.000	4.047000-5	3.900000-2 1.	128000+0	2.010000-29222	2151	500
449.6719970	2.000	3.65/000-3	3.900000-2 8.	.219000-2-	2.049000-19222	2151	567
449.8509220	3.000	5.225000-6	3.900000-2 1.	.610000-2-	1.493000-39222	2151	568
450.3265690	3.000	5.757000-4	3.900000-2-1.	.823000-1	4.234000-29222	2151	569
451.9442750	2.000	1.226000-3	3.90000-2-3	.562000-5-	6.577000-29222	2151	570
451,9637450	2.000	1.108000 - 3	3,900000-2-1	110000-2-	1.655000 + 09222	2151	571
454 0481570	3 000	2 234000 - 4	3 900000-2 2	163000-1	7 057000-59222	2151	572
151 1782100	3 000	2 932000-3	3 000000 2 2	745000-6	$2 565000 \pm 00222$	2151	573
456, 2022020	2 000	1 0 0 0 0 0 2	3.900000-2.9	140000 1		2151	575
450.3233030	3.000	1.068000-3	3.900000-2 8.	.148000-1	4.536000-49222	2151	5/4
456.4440610	3.000	7.409000-4	3.900000-2 9.	.636000-6	1.221000+09222	2151	575
457.4725040	2.000	7.481000-4	3.900000-2 1.	.009000+0-	1.341000-49222	2151	576
458.4309690	3.000	3.164000-3	3.90000-2-4	.636000-3-	1.250000+09222	2151	577
458.8349910	3.000	3.544000-3	3.900000-2 3.	.795000-1	3.344000-49222	2151	578
459.0490420	2.000	3.658000-3	3.900000-2-8	375000-2-	2.329000-39222	2151	579
459,6672360	2.000	1.910000 - 3	3,900000-2 1	827000+0-	3.120000-39222	2151	580
460 8037410	3 000	2 888000-3	3 900000-2-1	127000+0	2 526000-49222	2151	581
162 1/09910	3 000	3 164000-4	3 000000 2 1	421000-2	2 724000-19222	2151	582
462 5409020	2 000	1 000000 1	2 000000 2 1	610000 1	1 027000 20222	2151	502
402.5408020	3.000	4.900000-4	3.900000-2 4	019000-1	1.027000 - 39222	2151	202
464.1565690	2.000	1.9//000-3	3.900000-2-9	.001000-3	4.023000-19222	2151	504
464.9882810	3.000	4.45/000-3	3.900000-2-1	.500000-4-	6.376000-19222	2151	585
465.0819400	3.000	8.561000-5	3.900000-2 2.	.655000-2-	7.579000-39222	2151	586
465.6567990	2.000	1.877000-4	3.900000-2 1.	.834000+0-	2.987000-29222	2151	587
466.0416560	3.000	2.659000-3	3.90000-2 5.	.951000-1	5.426000-29222	2151	588
467.0345760	2.000	1.593000-3	3.900000-2-7	.126000-1-	4.252000-29222	2151	589
467.3515930	3.000	4.149000-3	3.900000-2-2	158000-2	1.303000-19222	2151	590
467.7280270	3.000	1.982000 - 4	3,900000-2-3	064000-1	3 520000-19222	2151	591
468 9101260	3 000	3 736000-3	3 900000-2-1	203000+0-	1 091000 - 19222	2151	592
460.1065270	2 000	2 691000 2	2 000000 2 1			2151	502
409.1005570	2.000	2.001000-3	3.900000-2 1.	202000 1	3.008000-49222	2151	595
470.3383790	3.000	3.514000-3	3.900000-2 4.	.303000-1-	7.404000-19222	2151	594
471.8125000	2.000	1.370000-3	3.900000-2 6	.656000-2	2.914000-19222	2151	595
472.2028200	3.000	1.999000-3	3.900000-2-1	.012000-3	2.889000-19222	2151	596
473.4596250	3.000	2.562000-4	3.900000-2 4.	.688000-1-	2.385000-39222	2151	597
474.6535030	2.000	6.049000-3	3.90000-2-1.	.457000-1-	7.062000-19222	2151	598
474.8303530	3.000	2.385000-3	3.900000-2 2.	954000-1-	1.245000-49222	2151	599
475.5053100	3.000	3.191000-3	3.900000-2-2	414000-2	2.803000-19222	2151	600
475,5863650	2.000	8.005000-5	3,900000-2,2	559000-1	8.111000-29222	2151	601
476 2060240	3 000	1 873000-3	3 900000-2-3	408000-1-	3 270000-39222	2151	602
170.2000210	3 000	1 484000-3	3 900000 2 3	790000_1	1 171000-49222	2151	602
477 2150040	2 000	1 400000 3	3.900000-2 1.	1950000-1	= 272000 - 49222	2151	604
477.3130940	2.000	1.400000-3	3.900000-2-2.	105000-3	5.372000-19222	2151	604
4//.4483340	3.000	1.221000-4	3.900000-2 1.	.390000-2	8.861000-59222	2151	605
478.0569760	3.000	4.371000-3	3.900000-2 7	.121000-2-	5.307000-19222	2151	606
479.2830510	3.000	1.505000-3	3.900000-2-2	.516000-1-	2.146000-39222	2151	607
479.4642640	3.000	4.836000-5	3.90000-2-7.	.923000-4	2.609000-19222	2151	608
480.7246090	2.000	1.636000-3	3.90000-2-4	.513000+0	1.153000+09222	2151	609
480.8701780	3.000	1.049000-2	3.90000-2 5.	.266000-1	7.367000-59222	2151	610
483.0910950	3.000	5.181000-3	3.900000-2-2	883000-1-	1.177000-19222	2151	611
483,2182310	3,000	4 152000-3	3.900000-2-1	121000+0-	5.991000-19222	2151	612
484 3275760	3 000	1 494000-3	3 900000-2 1	632000-4	7 782000-19222	2151	612
485 0696720	2 000	5 063000-3	3 900000 2 1	511000_1	4 030000 19222	2151	611
405.0090/20		2 661000 - 3	2 000000-2-9	002000 /	2 012000 10222	2151 2151	615
105.1200000		5.001000-3			3.013UUU-19222	∆⊥⊃⊥ >1 ⊑ 1	015
400.0009100	3.000	0.109000-4	3.900000-2-1.	.134000-1	2.111000-19222	∠⊥5⊥ 0151	010
408./453610	2.000	o.122000-5	3.900000-2-8	828000-2	2.595000-29222	2151 01-1	6Τ.\
488.9569090	2.000	3.253000-2	3.900000-2-6	.1/2000-1	8.581000-19222	2151	618

491.1155400	3.000	6.623000-4	3.900000-2 $5.984000-1-1.427000-19222$	2151	619
491,7305910	2.000	3.151000-5	3,900000-2-9,384000-3,7,314000-39222	2151	620
492 7715450	3 000	2 218000 - 3	3 900000_2_1 933000_2 6 554000_19222	2151	621
402 0120550	2.000	4 605000 4	$3.900000 \ 2 \ 1.93000 \ 2 \ 0.334000 \ 19222$	2151	621
492.9130550	3.000	4.695000-4	3.900000-2 9.372000-1-1.388000-39222	2151	022
493.0981/50	2.000	3.554000-3	3.900000-2-7.817000-1-2.103000-19222	2151	623
493.8456420	3.000	4.917000-4	3.900000-2 $5.222000-1-7.895000-29222$	2151	624
494.7491150	2.000	2.479000-3	3.900000-2 $8.209000-2$ $1.375000-49222$	2151	625
494.8835450	3.000	5.015000 - 3	3,900000-2, 1,322000-1, 3,919000-39222	2151	626
495 4532470	2 000	3 076000-4	3 900000-2-5 148000-4 3 616000-19222	2151	627
195.1952170	2.000	2 244000 4	2 00000 2 1 11000 0 1 5.010000 19222	2151	620
490.1040020	3.000	2.344000-4	3.900000-2-1.111000+0 5.002000-19222	2151	020
496.9263000	2.000	2./84000-3	3.900000-2 3.201000-1-1.151000-39222	2151	629
498.8504940	3.000	2.080000-3	3.900000 - 2 - 9.590000 - 1 5.959000 - 19222	2151	630
500.9974980	2.000	3.877000-3	3.900000-2-5.531000-4-1.330000+09222	2151	631
501.7352910	2.000	3.467000-3	3.900000-2 1.532000-1-1.823000-29222	2151	632
502.4535220	3.000	6.659000 - 3	3.900000 - 2 - 2.220000 - 1 $9.918000 - 29222$	2151	633
502 7362980	3 000	2371000-3	3 900000-2 6 607000-2 5 535000-59222	2151	634
E02 1000E10	2 000	4 467000 2	2 0 0 0 0 0 2 5 610 0 0 1 1 202000 20222	2151	625
503.1999510	2.000	4.407000-3	3.900000-2 5.018000-1 1.282000-39222	2151	635
503.7575990	2.000	1.699000-4	3.900000-2 3.045000-1 5.52/000-19222	2151	636
504.0048830	3.000	1.315000-3	3.900000-2 2.981000-1 8.665000-59222	2151	637
504.6596980	2.000	1.549000-3	3.900000-2-9.500000-5-3.346000-19222	2151	638
505.3873600	3.000	1.633000-3	3.900000-2 5.098000-1-1.618000-49222	2151	639
506.3453370	2.000	8,486000-3	3.900000 - 2 $9.065000 - 6$ $9.173000 - 19222$	2151	640
506 9351200	3 000	1 10000-3	3 900000-2-2 965000-1-8 040000-39222	2151	641
507 7797550	3 000	1 677000-3	3 900000_2 2 628000_1 4 745000_29222	2151	612
507.7797550	3.000	1.077000-3	3.900000-2 2.028000-1 4.745000-29222	2151	642
508.0952760	2.000	1.519000-5	3.900000-2 1.769000-1 7.911000-49222	2151	643
508.7084050	2.000	4.649000-3	3.900000 - 2 - 3.932000 - 3 - 1.294000 + 09222	2151	644
509.1345830	3.000	4.673000-4	3.900000-2 $1.069000-1$ $2.141000-19222$	2151	645
510.9393620	3.000	2.359000-3	3.900000-2-7.981000-2-1.264000-19222	2151	646
511.1509090	3.000	2.524000-3	3.900000-2-2.434000-1 3.010000-59222	2151	647
512.1041260	2.000	8.371000-4	3.900000-2-2.059000-1-1.346000-29222	2151	648
513,2894900	3.000	6,609000-3	3,900000-2,8,511000-2-8,458000-19222	2151	649
514 0601200	3 000	7 062000-4	3 900000-2 1 822000-1 3 360000-39222	2151	650
514 0783690	2 000	/ 813000-3	3 900000_2_3 093000_1 3 070000_29222	2151	651
E14 0E20010	2.000	1 105000 2	2 00000 2 3.00000 1 3.070000 20222	2151	652
514.9528810	2 000	2.00000-3	3.900000-2-2.812000-4-2.970000-19222	2151	652
514.9724120	3.000	2.050000-4	3.900000-2 1.190000-2-7.757000-39222	2151	655
515.9849240	3.000	9.988000-4	3.900000-2 7.18/000-1 6.42/000-29222	2151	654
517.5136720	2.000	2.111000-5	3.900000-2 $1.710000-1-2.927000-29222$	2151	655
517.6594850	3.000	2.294000-3	3.900000 - 2 - 5.978000 - 2 $3.735000 - 19222$	2151	656
518.1552120	3.000	3.255000-3	3.900000 - 2 - 1.924000 - 19.688000 - 39222	2151	657
518.6279910	2.000	2.878000-3	3.900000-2 $1.491000-1$ $5.924000-49222$	2151	658
519.0580440	3.000	9.245000-3	3.900000-2-5.435000-1-2.905000-19222	2151	659
520.5567020	3.000	3,971000-3	3,900000-2, 2,787000-1-1,437000-19222	2151	660
520 8569340	2 000	8 225000-4	3 900000-2 6 744000-1 2 458000-39222	2151	661
521 6702270	3 000	6 480000-3	3 900000_2_5 342000_4 1 114000_19222	2151	662
	2.000	C. 1C0000-3	3.900000-2-5.542000-4 $1.114000-19222$	2151	662
522.1913450	2.000	5.152000-3	3.900000-2 5.715000-1 1.489000-19222	2151	003
522.5449830	3.000	6.286000-4	3.900000-2 8.699000-2-2.276000-39222	2151	664
523.6097410	3.000	2.048000-3	3.900000-2 $5.894000-1-1.045000-29222$	2151	665
523.9064940	2.000	1.019000-3	3.900000-2-7.752000-3-1.206000-19222	2151	666
525.0569460	3.000	1.620000-3	3.900000-2-4.074000-1-3.939000-39222	2151	667
525.8012700	2.000	5.298000-3	3.900000-2 6.282000-2 8.051000-19222	2151	668
527.1856080	3.000	4.626000-3	3.900000-2-1.136000-2 5.335000-19222	2151	669
527,7811890	3.000	1.719000 - 3	3,900000-2,1,989000-1,1,935000-19222	2151	670
528 1374510	2 000	5 099000-4	3 900000-2-2 551000-1 5 785000-29222	2151	671
529 2017210	3 000	7 165000-3	3 000000 2 5 488000-2-0 320000-10222	2151	672
	2 000	0 007000 5	3.900000-2 $3.400000-2-9.529000-19222$	2151	672
529.2237550	3.000	9.007000-5	3.900000-2 8.950000-3-6.818000-29222	2151	673
530.3688960	3.000	3.183000-3	3.900000-2-3.158000-1 5.18/000-39222	2151	6/4
530.4372560	3.000	6.239000-4	3.900000 - 2 - 3.321000 - 2 $8.523000 - 29222$	2151	675
530.5993650	3.000	1.464000-3	3.900000-2-3.085000-1-8.377000-29222	2151	676
530.7484740	2.000	1.510000-4	3.900000-2 3.661000-2-1.272000-19222	2151	677
531.8240970	3.000	4.202000-3	3.900000-2 3.507000-1-8.796000-29222	2151	678
532.1403810	3.000	9.928000-4	3.900000-2-4.865000-2-2.773000-19222	2151	679
533.2679440	2.000	3.142000-4	3.900000-2-2.428000-1 1.915000-19222	2151	680
534.8096920	3,000	2.450000-3	3.900000-2 6.445000-2 2 297000-19222	2151	681
535 6312260	2 000	1 206000-2	3 900000-2 2 019000-3-1 325000+09222	2151	682
537 0616460	3 000	3 936000-2	3 900000_2_6 580000_3 9 7/8000_10222	2151	682
537.0010400 527 0064500	2.000	1 062000 - 3	2 0 0 0 0 0 - 2 - 0.30000 0 - 3 0.740000 - 19222	2151 2151	601
	2.000		3.900000-2 4.000000-1 4.001000-39222	4101 0151	004
JJJ.4JJJJJU	2.000	5-0000al.c	5.900000-Z-4.099000-I-I.353000-I9222	∠⊥⊃⊥ 21 ⊑ 1	005
540.5662840	3.000	2.4//000-4	3.900000-2 1.591000-1-4.17/000-19222	2151 0151	686
541.1183470	2.000	2.618000-3	3.900000-2 6.625000-1 1.910000-39222	2151	687

541.4168090	3.000	1.246000-3	3.900000-2-1	.344000-1 6	5.823000-29222	2151	688
542.3155520	2.000	3.149000-4	3.900000-2-2	631000-1-7	1,234000 - 19222	2151	689
543 0183720	3 000	5 592000-4	3 900000-2 2	728000-1-1	2 331000-29222	2151	690
	2.000	0 076000 4	3.000000 2 2	720000 1 2		2151	C 0 1
544.5852660	3.000	9.8/6000-4	3.900000-2 2	./30000-1	L.5/5000-19222	2151	691
545./246090	2.000	1.266000-2	3.900000-2-6	.268000-4	1.105000-19222	2151	692
546.5064090	2.000	2.087000-3	3.900000-2 1	.692000-1 4	1.343000-49222	2151	693
546.8144530	2.000	1.365000-2	3.900000-2 4	.011000-1-8	3.602000-49222	2151	694
547.5278930	3.000	1.527000-3	3.900000-2 1	.193000-1 2	2.402000-29222	2151	695
548 4600220	3 000	6 917000 - 3	3 900000-2-6	119000-2 4	4 238000-19222	2151	696
E10 6E72000	2 000	1 201000 2	2 000000 2 0	000000 2	450000 10222	2151	607
548.0572880	3.000	1.361000-3	3.900000-2-4	.082000-2 .			097
549.6866460	2.000	3.152000-3	3.900000-2-6	.465000-4	3./59000-19222	2151	698
550.5368040	2.000	3.385000-3	3.900000-2 7	.331000-1	5.125000 - 39222	2151	699
551.0574950	3.000	2.356000-4	3.900000-2-4	.633000-2 2	2.025000-19222	2151	700
551.5380250	3.000	1.553000-4	3.900000-2 7	.504000-2-2	L.579000-19222	2151	701
551,9283450	2.000	3.329000-4	3,900000-2-5	.050000-2-2	2.845000-19222	2151	702
552 0281980	3 000	2 532000-3	3 900000-2-1	211000-1-6	5 873000-19222	2151	703
552.0201900 552.1020440	2 000	2.352000 3	2 000000 2 5	010000 2	1 607000 10222	2151	703
555.1650440	2.000	3.205000-3	3.900000-2 5	.010000-2 -	1.007000-19222		704
553.3268430	2.000	1.213000-3	3.900000-2 3	.853000-3-5	5.048000-29222	2151	705
555.2955320	3.000	1.078000-3	3.900000-2-8	.599000-1 1	L.227000-29222	2151	.706
555.3964840	2.000	4.119000-4	3.900000-2-2	.970000-3 2	2.495000-29222	2151	707
556.8771360	3.000	3.546000-3	3.900000-2-2	.538000-2 6	5.318000-19222	2151	708
558,2915040	2.000	3.210000 - 3	3,900000-2-7	.820000-1-4	4.880000-49222	2151	709
559 4789430	2 000	1 049000-2	3 900000-2-4	004000-3-	7 446000-19222	2151	710
560 0474240	2 000	2 304000-4	3 900000 2 1	992000_1	195000 - 19222	2151	711
	2.000	2.304000-4	2 000000-2 2	.992000-1		2151	710
560.552/340	3.000	6.204000-3	3.900000-2 2	.829000-1 6	5.201000-19222	2151	/12
561.3218990	3.000	1.758000-3	3.900000-2 3	.451000-2-3	3.008000-19222	2151	713
561.3526000	3.000	1.070000-4	3.900000-2 1	.389000-1 3	3.740000-39222	2151	714
563.4725340	3.000	2.324000-4	3.900000-2 1	.540000-1 2	2.680000-29222	2151	715
564.6986690	3.000	5.923000-3	3.900000-2-9	.811000-2 5	5.455000-19222	2151	716
565,2492070	2.000	1.048000 - 3	3,900000-2 5	817000-1-2	2,177000-19222	2151	717
565 4230350	3 000	1 842000-3	3 900000-2 1	302000-1-2	2 113000-29222	2151	718
566 3696900	3 000	2 635000-3	3 900000 2 1	283000_1_4	5 967000-29222	2151	710
EC7 2672710	2 000	E 117000 3	2 000000 2 0	202000 1 3	105000 20222	2151	720
567.5073710	2.000	2 404000 2	3.900000-2-2	.282000-1 .		2151	720
567.5972290	2.000	2.404000-3	3.900000-2 8	.41/000-2 .	L.390000-19222	2151	721
567.9648440	3.000	3.029000-3	3.900000-2-2	.6/6000-1 :	5.016000-29222	2151	122
569.0419310	2.000	3.633000-3	3.900000-2-7	.045000-3	L.251000-29222	2151	723
569.0975340	2.000	7.649000-3	3.90000-2-5	.858000-1 1	L.144000-19222	2151	724
570.4381710	3.000	3.932000-3	3.900000-2 7	.102000-1 4	1.496000-19222	2151	725
571.9951170	2.000	3.327000-3	3.900000-2 4	.312000-1 4	1.514000-19222	2151	726
572.4937740	2.000	4.125000-3	3.900000-2 1	.884000-2-9	9.596000-39222	2151	727
572.8836670	3.000	6.057000-3	3,900000-2-4	.292000-1	5.832000-49222	2151	728
573 2032470	3 000	3 410000-4	3 900000-2 1	263000-2-4	1 026000-29222	2151	729
573 8492430	3 000	9 947000-3	3 900000-2 4	687000-3	1790000 - 19222	2151	730
575.0452450	2 000	2 275000 2	2 000000 2 4	E12000 2 1		2151	730
574.4059690	2.000	2.375000-3	3.900000-2-9	.513000-2-1	100000-39222		731
5/5.2/55130	3.000	1./94000-3	3.900000-2-1	.952000-1-5	5.126000-49222	2151	/32
575.3969730	2.000	6.179000-4	3.900000-2 5	.630000-3 2	2.588000-19222	2151	733
578.2866820	2.000	5.341000-3	3.900000-2 6	.422000-1-1	L.407000+09222	2151	734
579.7527470	3.000	1.965000-3	3.900000-2-4	.762000-1-0	5.562000-19222	2151	735
580.5004270	3.000	2.834000-3	3.90000-2 2	.347000-1-9	9.988000-39222	2151	736
580.5530400	2.000	2.385000-3	3.900000-2-6	.403000-1-2	L.432000-19222	2151	737
583.1872560	3.000	1.799000-2	3.900000-2-6	.079000-1 1	L.106000+09222	2151	738
583,2970580	3.000	7.681000-4	3,900000-2 5	494000-4-2	2,481000-29222	2151	739
583 8336790	3 000	4 456000-5	3 900000-2-2	536000-1	721000-29222	2151	740
	2 000	2 946000 2		462000 1 2		2151	740
564.4556520	2.000	5.640000-3	3.900000-2 0	.402000-1 .		2151	741
584.5654300	3.000	5.519000-6	3.900000-2 9	.6/3000-3 4	2.553000-29222	2151	742
584./2/0510	2.000	2.105000-5	3.900000-2 4	.021000-1-9	9.150000-19222	2151	/43
585.6956180	3.000	2.097000-5	3.900000-2 6	.189000-2-3	3.848000-29222	2151	744
586.3541870	2.000	9.056000-3	3.900000-2-1	.599000-1 0	5.340000-19222	2151	745
588.1375730	2.000	1.500000-2	3.90000-2 1	.084000+0 2	2.128000-39222	2151	746
588.4763790	3.000	4.722000-3	3.90000-2 4	.181000-3 8	3.169000-49222	2151	747
589.4441530	2.000	9.879000-5	3.900000-2-5	.941000-1-2	L.548000-39222	2151	748
590.2399900	3,000	2.555000-3	3.900000-2-6	.829000-4-1	3.380000-19222	2151	749
590 7285160	3 000	1 740000-3	3 900000-2-4	371000-1 4	454000-39222	2151	750
592 1222520	3 000	1 120000 -3	3 900000 2-4	598000 1 7	574000_20222	2151	750
272.1233320	2 000	£ 202000 - Z	2 000000-2 I	206000-I-	L 5/1000-39444	2151 2151	751
	2.000	0.293000-3	3.900000-2-6	170000 1	1 450000-19222	∆⊥⊃⊥ 0151	152
593.9044800	3.000	4.255000-3	3.900000-2-4	. 1/9000-1 4	±.452000-39222	∠⊥5⊥ 0151	/53
594.5325320	3.000	2.032000-3	3.900000-2-1	.096000+0 8	3.964000-49222	2151	754
597.7540280	2.000	7.120000-4	3.900000-2 7	.308000-1 4	1.857000-39222	2151	755
598.3619380	3.000	3.304000-3	3.90000-21	.489000+0 2	2.769000-39222	2151	756

598.8729860	2.000	6.790000-4	3.900000-2-1.891000-3-1.406000-19222	2151	757
598.9274900	3.000	1.103000-3	3.900000-2 2.631000-5-1.686000-29222	2151	758
599.2932130	3.000	2.075000-3	3.900000-2-5.716000-2 7.075000-39222	2151	759
600.2182620	3.000	3.035000-3	3.900000-2-2.131000-1-2.941000-19222	2151	760
601.7735600	2.000	2.170000-3	3.900000-2-2.818000-1 2.321000-29222	2151	761
602.6976320	3.000	2.519000-3	3.900000-2-1.837000-3-6.106000-19222	2151	762
603.3949580	3.000	1.613000-4	3.900000-2-2.356000-2 4.168000-29222	2151	763
604.3577270	3.000	1.916000-4	3.900000-2 8.162000-2 4.407000-39222	2151	764
605.8305050	3.000	8.317000-3	3.900000-2 $3.733000-1$ $1.599000-49222$	2151	765
607.4863890	2.000	1.964000-2	3.900000-2-1.870000-1 1.180000-19222	2151	766
617.2789920	3.000	1.086000-1	4.000000-2 3.400000-1-2.040000-19222	2151	767
640.0000000	2.000	1.439000-1	4.000000-2 2.530000-1 3.520000-19222	2151	768
677.5000000	3.000	2.227000-1	4.000000-2-3.340000-1 2.480000-19222	2151	769
737.5000000	2.000	3.811000-1	4.000000-2-3.120000-1-2.150000-19222	2151	770
837.5000000	3.000	6.570000-1	4.000000-2 2.850000-1 2.300000-19222	2151	771
987.5000000	2.000	9.758000-1	4.000000-2 2.825000-1-2.420000-19222	2151	772
1175.000000	3.000	1.272000+0	4.000000-2-2.550000-1-2.400000-19222	2151	773
1400.000000	2.000	1.900000+0	4.000000-2 3.120000-1 2.250000-19222	2151	774
1660.000000	3.000	2.134000+0	4.000000-2 2.600000-1 2.370000-19222	2151	775

INTERNAL DISTRIBUTION

- 1. Laboratory Records
- 2-3. Laboratory Records (OSTI)
- 4. Bryan L. Broadhead
- 5-9. Herve Derrien
- 10. Felix C. Difilippo
- 11. Michael E. Dunn
- 12. Chia Y. Fu
- 13. Norman Maurice Greene
- 14-18. Klaus H. Guber
 - 19. Francisco Braga Guimaraes
 - 20. J. A. Harvey
 - 21. Calvin M. Hopper
 - 22. Daniel T. Ingersoll
 - 23. Bernadette Lugue Kirk
 - 24. Paul Edward Koehler

- 25. Michael A. Kuliasha
- 26. Duane C. Larson
- 27-31. Nancy M. Larson
- 32-36. Luiz C. Leal
 - 37. Cecil V. Parks
 - 38. S. Raman
 - 39. Royce O. Sayer
 - 40. Michael Scott Smith
 - 41. R. R. Spencer
 - 42. Timothy E. Valentine
 - 43. Robert Michael Westfall
 - 44. John E. White
 - 45. R. R. Winters
- 46-50. RSICC

EXTERNAL DISTRIBUTION

- 51. S. M. Austin, NSCL/Cyclotron Lab, Michigan State University, East Lansing, MI 48824
- 52. C. Bastien, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
- 53. P. Blaise, DER/SPRC/LEPH, Batiment 230, Centre d'Etudes de CADARACHE, 13108 Saint Paul-lez-Durance, France
- 54. A. Brusegan, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
- 55. J. Burke, Gaerttner LINAC Laboratory Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
- 56. D. Cabrilla, U.S. Department of Energy, NE-40, 19901 Germantown Road, Germantown, MD 20874-1290
- D. E. Carlson, U.S. Nuclear Regulatory Commission, Reactor and Plant System Branch, Division of System Research, Office of Nuclear Regulatory Research, MS T-10 G6, RM T-10, 17, Washington, DC 20555-0001
- R. F. Carlton, Middle Tennessee State University, Department of Chemistry and Physics, Murfreesboro, TN 37132
- 59. E. Caro, Lockheed Martin Corporation, P.O. Box 1072, Schenectady, NY 12301-1072
- Daniel L. Castro, California Community Colleges Phys. Ed. Eng. Education Dept. Instr. & Trng Fac, 1120 Cotton Street, San Diego, CA 92102-3639
- 61. M. B. Chadwick, Los Alamos National Laboratory, MS B243 T-16, Los Alamos, NM 87545
- 62. J. Chang, Korea Atomic Energy Research Inst., Nuclear Data Evaluation Lab., P. O. Box 105, Yusung, Taejon 305-600, Korea
- D. E. Cullen, Lawrence Livermore National Laboratory MS L-298, P. O. Box 808, Livermore, CA 94550

- 64. Y. Danon, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
- 65. C. Dunford, Brookhaven National Laboratory, Bldg 197D, National Nuclear Data Center, Upton, NY 11973
- 66. J. R. Felty, U.S. Department of Energy, DP-311, Washington, DC 20585
- P. Finck, Argonne National Laboratory, Reactor Analysis Division, Bldg 208, Argonne, IL 60439
- 68. E. Fort, DER/SPRC/LEPH, Batiment 230, Centre d'Etudes de CADARACHE, 13108 Saint Paul-lez-Durance, France
- 69. N. Francis, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
- 70. C. M. Frankle, Los Alamos National Laboratory, NIS-6MS J562, Los Alamos, NM 87545
- 71. S. C. Frankle, X-TM, MS B226, Los Alamos National Laboratory, Los Alamos, NM 87545
- 72. F. Froehner, Kernforschungszentrum Karlsruhe, Institut f. Neutronenphysik und Reacktortechnik, Postfach 336 40, D-76021, Karlsruhe, Germany
- 73. W. Furman, Frank Laboratory of Neutron Physics, JINR, Dubna, Russia
- 74. S. Ganesan, Head, Nuclear Data Section, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamilnadu, India
- 75. C. Gould, North Carolina State University, Physics Dept. Box 8202, Raleigh, NC 27695-8202
- 76. F. Gunsing, Centre D'Etudes De Saclay, F-Saclay 91191, Gif-sur-Yvette Cedex, France
- 77. G. M. Hale, Los Alamos National Laboratory, T-2, MS B243, Los Alamos, NM 87545
- 78. A. Hasagawa, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan
- R. N. Hwang, Argonne National Laboratory, Reactor Analysis Division, Bldg 208, Argonne, IL 60439
- 80. R. P. Jacqmin, DER/SPRC/LEPH, Batiment 230, Centre d'Etudes de CADARACHE, 13408, Saint Paul-lez-Durance, France
- 81. M. Jaeger, Inst. F. Strahlenphysik, Allmandring 3, Stuttgart D-70569, Germany
- 82. N. Janeva, Bulgarian Academy of Sciences, 72, Boul, Tzarigradsko shosse, Sofia 1784, Bulgaria
- H. C. Johnson, U.S. Department of Energy, EM-21 Forrestal, 1000 Independence Ave. SW, Washington, DC 20585
- 84. Lambros Lois, U.S. Nuclear Regulatory Commission, 08 E23, 11555 Rockville Pike, Rockville, MD 20852-2746
- G. Leinweber, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Dept. of Environmental and Energy Engineering, Troy, NY 12180-3590
- 86. R. Little, Los Alamos National Laboratory, X-TM, MS B226, Los Alamos, NM 87545
- M. Lubert, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
- 88. C. Lubitz, Knolls Atomic Power Laboratory, P. 0. Box 1072, Schenectady, NY 12301
- 89. R. E. MacFarlane, Los Alamos National Laboratory, T-2, MS B243, Los Alamos, NM 87545
- 90. C. Mounier, CEN Saclay, DMT/SERMA/LENR, 91191 Gif Sur Yvette Cedex, France
- 91. M. C. Moxon, 3 Hyde Copse, Marcham, Abingdon, Oxfordshire, England
- 92. S. F. Mughabghab, Brookhaven National Laboratory, Advanced Technology Building 197d, Upton, NY 11973-5000
- 93. D. Muir, IAEA Nuclear Data Section, Wagramerstr. 5, P. 0. Box 100, A-1400, Wien, Austria
- C. Nordborg, OECDNEA, Le Seine St-Germain 12, Boulevard Iles, 92130, Issy-les-Moulineaux, France

- 95. A. Nouri, OECD/NEA Data Bank, Le Seine Saint Germain 12 Bd des Iles, 92130 Issy-les-Moulineaux, France
- 96. S. Y. OH, Nuclear Data Evaluation Lab. Korea Atomic Energy Research Institute, P. O. Box 105, Yusung Taejon, 305-600 Korea
- 97. A. Popov, Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, RU-141980 Dubna, Moscow Region, Russia
- 98. C. Raepsaet, CEN Saclay, DMT/SERMA/LEPP, 91191, Gif Sur Yvette Cedex, France
- 99. M. Salvatores, DRN/P, Batiment 707, C. E. CADARACHE, 13108, Saint Paul-lez-Durance, France
- E. Sartori, OECDNEA, Le Seine St-Germain 12, Boulevard Iles, 92130, Issy-les-Moulineaux, France
- 101. O. A. Shcherbakov, Petersburg Nuclear Physics Institute, 18 8 3 5 0 Gatchina, Leningrad District, Russia
- 102. R. Shelley, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
- 103. K. Shibata, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai-mura Naka-gun, Ibaraki-ken 319-11, Japan
- R. Slovacek, Gaerttner LINAC Laboratory, Rensselaer Polytechnic Institute, Department of Environmental and Energy Engineering, Troy, NY 12180-3590
- 105. A. B. Smith, Argonne National Laboratory, TD 362 D216, Argonne, IL 60544
- 106. D. L. Smith, Argonne National Laboratory, TD-360-L106, Argonne, IL 60544
- 107. H. Takano, Nuclear Data Center, Japan Atomic Energy Research Institute, Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan
- C. Wagemans, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
- 109. J. J. Wagschal, Racah Institute of Physics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
- 110. H. Weigmann, Central Bureau for Nuclear Measurements, Steenweg op Retie, 2240 Geel, Belgium
- 111. J. P. Weinman, Lockheed Martin Corporation, P.O. Box 1072, Schenectady, NY 12301-1072
- 112. C. Werner, Rensselaer Polytechnic Institute, Residence Hall, 1999 Burdette Ave, Troy, NY 12180-3711
- 113. R. White, Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94550
- 114. M. Williams, Louisiana State University, Nuclear Science Center, Baton Rouge, LA 70803
- K. Yoo, Korea Atomic Energy Research Inst., Nuclear Data Evaluation Lab., P. O. Box 105, Yusung, Taejon 305-600, Korea
- 116. Phillip G. Young, Los Alamos National Laboratory, MS B243 T-16, Los Alamos, NM 87545