NUCLEAR DATA AND MEASUREMENTS SERIES

W CONV. UNIT HARSINY OF CHILDREN

3

ARGONNE NATIONAL LABORATORY, ARGONNE, ILLINOIS

Operated by THE UNIVERSITY OF CHICAGO for the U. S. DEPARTMENT OF ENERGY under Contract W-31-109-Eng-38

DTIC QUALITY INSPECTED 1

19980528 068

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

- DISCLAIMER -

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Reproduced from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831 Prices available from (423)576-8401

Available to the public from the National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

ANL/NDM-139 [ENDF-358]

The Simultaneous Evaluation of the Standards and Other Cross Sections of Importance for Technology^a

by

W.P. Poenitz and S.E. Aumeier

Technology Development Division Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403-2528 U.S.A.

September 1997

STANDARDS. ENDF/V-VI. Simultaneous evaluation. Generalized least-squares method. Data evaluation codes. Data compilations. Data files. Data corrections. Differential cross-section data. Spectrum-average cross-section data. Absolute data. Ratio data. Shape data. Sum data. Thermal constants. Neutrons. Nuclear reactions: ⁶Li(n, α), ⁶Li(n,n), ¹⁰B(n, α_0), ¹⁰B(n, α_1), ¹⁰B(n,n), ¹⁹⁷Au(n, γ), ²³⁸U(n, γ), ²³⁵U(n,f), ²³⁹Pu(n,f), ²³⁸U(n,f). ²⁵²Cf neutron spectrum.

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

MASTER

^a This work was supported by the U.S. Department of Energy, Energy Research Programs, under Contract W-31-109-Eng-38.

Nuclear Data and Measurement Series

The Nuclear Data and Measurement Series presents results of studies in the field of microscopic nuclear data. The primary objective is the dissemination of information in the comprehensive form required for nuclear technology applications. This Series is devoted to: a) measured microscopic nuclear parameters, b) experimental techniques and facilities employed in measurements, c) the analysis, correlation and interpretation of nuclear data, and d) the evaluation of nuclear data. Contributions to this Series are reviewed to assure technical competence and, unless otherwise stated, the contents can be formally referenced. This Series does not supplant formal journal publication, but it does provide the more extensive information required for technological applications (*e.g.*, tabulated numerical data) in a timely manner.

Table of Contents

¥

.

٩

Information About Other Issues of the ANL/NDM Series.
Abstract
I. Introduction
II. The Generalized Least-Squares Fit
III. Data Types, Relations and the Data File Structure 14 III.1 Data Types. 14 III.2 Originally Measured Quantities 16 III.3 Uncertainties and Correlations: Data Sets and Data Blocks 16 III.4 Data Selection and Status of GMDATA.CRD 17
IV. Data Reduction with DAT.F
Concluding Note
Appendix A: Data File GMDATA CRD - Structure and Formats
Appendix B: Input Description for RCL
Appendix C: Input Description for DAT
Appendix D: Input Description for GMA
Appendix E: Data File Contents Description .36 Absolute Cross Section Data .36 Cross Section Shape Data .51 Absolute Cross Section Ratios. .57 Cross Section Ratio Shape Data .66 Absolute Data of Sums of Cross Sections .73 Shape Data of Sums of Cross Sections .77 Absolute Ratio Data of Cross Section vs. the Sum of Cross Sections .77 Shape Ratio Data of Cross Section vs. the Sum of Cross Sections .79 Cross Sections Averaged over the ²⁵² Cf Spontaneous Fission .83 Neutron Spectrum .83 Thermal Constants .84
References

Information About Other Issues of the ANL/NDM Series

A list of titles and authors for previous issues appears in each report of the Series. The list for reports ANL/NDM-1 through ANL/NDM-75 appears in ANL/NDM-76. Report ANL/NDM-91 contains the list for reports ANL/NDM-76 through ANL/NDM-90. Report ANL/NDM-128 contains the list for reports ANL/NDM-91 through ANL/NDM-127. Below is the list for ANL/NDM-125 up to the current report. Requests for a complete list of titles or for copies of previous reports should be directed to:

Donald L. Smith Nuclear Data Program Technology Development Division TD-207-DB116 Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439 U.S.A.

ANL/NDM-125 A.B. Smith and P.T. Guenther, *Fast-neutron Scattering Near Shell* Closures: Scandium, August 1992

ANL/NDM-126 A.B. Smith, J.W. Meadows and R.J. Howerton, *A Basic Evaluated Neutronic Data File for Elemental Scandium*, November 1992

ANL/NDM-127 A.B. Smith and P.T. Guenther, Fast-neutron Interaction with Collective Cadmium Nuclei, November 1992

ANL/NDM-128 Donald L. Smith, A Least-squares Computational "Tool Kit", April 1993

ANL/NDM-129 Joseph McCabe, A.B. Smith and J.W. Meadows, *Evaluated Nuclear* Data Files for the Naturally Occurring Isotopes of Cadmium, June 1993

ANL/NDM-130 A.B. Smith and P.T. Guenther, *Fast-neutron Interaction with the Fission Product* ¹⁰³*Rh*, September 1993

ANL/NDM-131 A.B. Smith and P.T. Guenther, Fast-neutron Scattering from Vibrational Palladium Nuclei, October 1993

ANL/NDM-132 A.B. Smith, *Neutron Interaction with Doubly-magic* ⁴⁰*Ca*, December 1993

ANL/NDM-133 A.B. Smith, Neutron Scattering at Z=50:- Tin, September 1994

ANL/NDM-134 A.B. Smith, S. Chiba and J.W. Meadows, *An Evaluated Neutronic File* for Elemental Zirconium, September 1994

ANL/NDM-135 A.B. Smith, Neutron Scattering from Elemental Uranium and Thorium, February 1995
 ANL/NDM-136 A.B. Smith, Neutron Scattering and Models:- Iron, August 1995

ANL/NDM-137 A.B. Smith, Neutron Scattering and Models: - Silver, July 1996

ANL/NDM-138 A.B. Smith, Neutron Scattering and Models:- Chromium, June 1996

The Simultaneous Evaluation of the Standards and Other Cross Sections of Importance for Technology^a

by

W.P. Poenitz and S.E. Aumeier

Technology Development Division Argonne National Laboratory-West P.O. Box 2528 Idaho Falls, Idaho 83403-2528 U.S.A.

Abstract

The simultaneous evaluation of the cross sections of ${}^{6}\text{Li}(n,\alpha)$, ${}^{6}\text{Li}(n,n)$, ${}^{10}\text{B}(n,\alpha_{0})$, ${}^{10}\text{B}(n,\alpha_{1})$, ${}^{10}\text{B}(n,n)$, ${}^{197}\text{Au}(n,\gamma)$, ${}^{238}\text{U}(n,\gamma)$, ${}^{235}\text{U}(n,f)$, ${}^{239}\text{Pu}(n,f)$, and ${}^{238}\text{U}(n,f)$ and the thermal constants was part of the evaluation of these data for ENDF/B-VI. The FORTRAN codes and the data files used for the simultaneous evaluation are documented in the present report. Corrections for some data reported in the literature and the addition of several new data sets results in negligible changes except for the fission cross sections where minor changes occur relative to the evaluation for ENDF/B-VI.

^a This work was supported by the U.S. Department of Energy, Energy Research Programs, under Contract W-31-109-Eng-38.

I. Introduction

Evaluations of interaction cross sections for the Evaluated Nuclear Data File (ENDF)¹ prior to version ENDF/B-VI were often based on subjective judgement about existing experimental data. The technique employed, in some cases, involved drawing a smooth curve through a plot of available experimental values which, more often than not, displayed substantial discrepancies. In addition, these evaluations were hierarchical in nature since the lighter element interaction cross sections were evaluated first and independently of existing ratio measurements to cross sections of heavier elements, for which absolute data existed as well. The prior evaluated light element cross sections were used in order to convert the ratio measurements to additional cross section data for the heavier nuclei evaluations. However, if two experimental values are available, one for a light nuclei interaction cross section (e.g. ¹⁰B(n, α)) and one for a heavy nuclei cross section (e.g. ²³⁵U(n,f)), then an additional measurement of the ratio of the two cross sections should be utilized in an evaluation of these data such that the ²³⁵U(n,f) cross section influences the evaluated ¹⁰B(n, α) cross section and the experimental ¹⁰B(n, α) cross section influences the evaluated ²³⁵U(n,f) cross section.

The history of the ENDF/B-VI evaluation of the standards and other important neutron interaction cross sections goes back to substantial criticism voiced against subjective procedures used in the evaluations of some cross sections for prior versions of ENDF, as indicated above. In response, a conference on 'Nuclear Data Evaluation Methods and Procedures' was held at Brookhaven National Laboratory in 1981². It was demonstrated at this conference that a simultaneous evaluation of interrelated nuclear cross sections of a vector space of ~ 1000 with generalized least-squares (GLS) was feasible with the available computer technology³. However, use of GLS alone for all the standards would have ignored valuable information, specifically data for charged particle channels, angular distributions, and polarization for reactions leading to ⁷Li and ¹¹B, data which are applicable via R-matrix theory⁴. Subsequently it was shown that the results from a GLS evaluation and from separate R-matrix parameter fits of the ⁷Li and ¹¹B systems can be combined in order to derive final results for all cross sections involved⁵ The Standards Subcommittee of the Cross Section Evaluation Working Group (CSEWG) then decided to perform the evaluation of the standards and other important cross sections for ENDF/B-VI by using these objective techniques. This 'Global Evaluation' has been discussed at various occasions (e.g. Refs. 6,7) and is shown in schematic in Fig. 1. The evaluation of the standards was documented in Ref. 8. The present report documents the data base and the FORTRAN codes used in the GLS part of the global evaluation. Program changes and funding restrictions have delayed this documentation for eight years. However, it was considered important to document the data file and the associated programs in order to facilitate later updating of the evaluation resulting from added new and/or corrected experimental data. The various computer programs associated with the evaluation have changed from original punched-card to magnetic-tape to hard-disk based operations.

H(n,p) Ref.11	Thermal Parameters Ref.9 ↓	
GMA - Simultaneous Evaluation Ref.3		EDA R-Matrix Analysis Ref.4
Parameters: ⁶ Li(n,t), ⁶ Li(n,n), ¹⁰ B(n, α_0), ¹⁰ B(n, α_1), ¹⁰ B(n,n), ¹⁹⁷ Au(n, γ), ²³⁸ U(n, γ), ²³⁵ U(n,f), ²³⁸ U(n,f), and ²³⁹ Pu(n,f) cross sections on an energy grid or energy interval averages, thermal constants, and normalization constants of shape data sets. Data: Absolute cross sections and ratios,		 Parameters: Two sets of R-matrix parameters. Data: Total cross sections, angle-integrated and differential cross sections, polarization and inverse reaction data of the ⁷Li and ¹¹B systems.
spectrum integral data		
	ļ	
	Combination Proc Ref 5	cedure
	Cross Section Sm	oothing

Fig. 1. Schematic of the Global Evaluation for ENDF/B-VI

II. The Generalized Least-Squares Fit

The method of least-squares estimation of a number of parameters, over determined by a larger number of experimental data, was devised by Gauss and independently by Legendre nearly 200 years ago. The Gauss-Markov theorem is the proof that the least-squares estimator is an unbiased estimator with minimum variance. The method was extended (generalized) to correlated data by Aitken. The Fortran code developed for the evaluation of the standards and other important cross sections was named after Gauss, Markov and Aitken: **GMA**. Associated codes are **RCL** (which is used to edit, list and expand the basic data file **GMDATA.CRD**) and **DAT** (which is used to reduce the cross section data to a common energy grid). The use of the programs and files is indicated in Figs. 2, 3 and 4.

GMDATA.CRD		RCL.INP
This is the file of the experimental data.		The file which contains options, parameters, and data for editing and listing of, and adding to GMDATA.CRD.
	<u> </u>	↓
	RCL.F	
	Reads, copies, lists GMDATA.CRD	and edits
	↓	
RCL.RES		RCL.LST
This is the modified basic data file which should be renamed GMDATA.CRD.		This is the file which contains listings of data sets, or the data file, as requested with options set in RCL.INP.

Fig. 2. The FORTRAN Code RCL.F and its Input and Output Files.

Fig. 3. The FORTRAN Code DAT.F and its Input and Output Files.

Fig. 4. The FORTRAN Code GMA.F and its Input and Output Files.

These codes were developed for the specific evaluation of the standards and other important cross sections. They evolved during the time of the multiple steps of the global evaluation process outlined in the introduction. Therefore, it may be difficult to use these codes for other least-squares problems, e. g., cross section names and energies were carried along as labels though they are not part of the actual formalism. Provisions were only made for data types which are in the data base (see Table 2). Specific decisions are made in the codes which are valid only for the parameters and measurement types involved in the present evaluation.

II.1 Parameters

The principle objects of the evaluation were the cross sections of ${}^{6}\text{Li}(n,t)$, ${}^{10}\text{B}(n,\alpha_{0})$, ${}^{10}\text{B}(n,\alpha_{1})$, ${}^{197}\text{Au}(n,\gamma)$, and ${}^{235}\text{U}(n,f)$, which are standards, and ${}^{238}\text{U}(n,\gamma)$, ${}^{238}\text{U}(n,f)$, and ${}^{239}\text{Pu}(n,f)$ which are of interest for nuclear energy applications. The latter are often interrelated through measurements with the former and independent measurements are available for them because of their practical importance. (Note that the ${}^{10}\text{B}(n,\alpha_{0})$ cross section is not considered a standard, but ${}^{10}\text{B}(n,\alpha_{0}+\alpha_{1})$ is a standard.⁶) The ${}^{6}\text{Li}(n,n)$ and ${}^{10}\text{B}(n,n)$ cross sections were added to the parameter set in order to utilize total cross section data for these nuclei, and also because of their involvement in the R-matrix fits. Low resolution smooth cross sections. However, the high energy termination of the parameter space differed for the various cross sections. The energy grid was chosen to represent gross structure of the various cross sections in sufficient detail. Decimal energy interval averages of the heavy nuclei cross sections have been used as parameters between 0.1 and 20 keV and labeled with their center interval energy. E. g., 3.5 keV indicates the average over the 3 to 4 keV range. The integral over the 7.8 to 11 eV range of the ²³⁵U(n,f) cross section is involved in the normalization of several measurements and was included as a parameter labeled with 9.4eV. The thermal constants of the fissile nuclei ($\sigma_{n,f}$, $\sigma_{n,\gamma}$, $\sigma_{n,n}$, g_f , g_a , and v-bar of ²³³U, ²³⁵U, ²³⁹Pu, ²⁴¹Pu and the v-bar value of ²⁵²Cf) were included as parameters because many measurements of the fission cross sections of ²³⁵U and ²³⁹Pu were normalized at thermal energy. The results for these parameters and their covariance matrix from an evaluation by Axton⁹ were used as input data for the GLS fit. The normalization constants of all the shape data sets become further parameters of the fit. The parameters are summarized in Table 1.

Cross Se	ections ID		Energies	Number of Parameters
⁶ Li	(n,t) (n,n)	1 2	thermal, 9.4 eV, and 0.00015 to 2.8 MeV	80 80
. ¹⁰ B	(n, α_0) (n, α_1) (n, n)	3 4 5		70 70 70
¹⁹⁷ Au	(n,γ)	6		69
²³⁸ U	(n,γ)	7	thermal and 0.00015 to 2.2 MeV	75
²³⁵ U	(n,f)	8	thermal, 9.4 9.4 eV, and 0.00015 to 20.0 MeV	111
²³⁹ Pu	(n,f)	9	thermal and 0.00015 to 20.0 MeV, not 0.235 MeV	109
²³⁸ U	(n,f)	10	1.0 to 20.0 MeV	42
Thermal Parameters { $\sigma(n,f)$ of ²³⁵ U and ²³⁹ Pu already included above }		thermal	23	
Normalization constants		all energies	136	
Total				935

Table 1. Parameters of the Simultaneous Evaluation (Status for ENDF/B-VI)

II.2 The Basis for GMA

The adjustments on the a priori vector of the parameters are obtained from the normal equations

$$\delta = (\mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{M}}^{-1} \mathbf{A})^{-1} \mathbf{A}^{\mathrm{T}} \mathbf{C}_{\mathrm{M}}^{-1} \mathbf{M}$$

where δ is the adjustment vector, **A** is the coefficient matrix, **C** is the correlation matrix of the measurement vector **M**, superscript T denotes the transpose, and -1 the inverse matrices. The variance-covariance matrix of δ follows from error propagation:

$$C_{\delta} = (A^{T}C_{M}^{-1}A)^{-1}$$

The formalism is given in many textbooks (see e.g. Ref. 13). Specific transformations involved in the code **GMA** are described in detail in Ref.3. The more than 10 000 data values in the experimental data file result in a measurement vector of size m ~5500 after reduction to the chosen energy grid. The covariance matrix has the size m \cdot m, and the coefficient matrix has the size m \cdot n, where n is the number of parameters (935). At the time of the Brookhaven conference², the storage and matrix inversion of such systems appeared near impossible and certainly cost prohibitive. However, it was shown in Ref. 3 that after reordering the data file such that correlated data sets are consecutively arranged in sub-blocks, the correlation matrix consists of smaller squares on the diagonal, with the rest of the matrix filled with zeros. It is well known that the inverse of such matrix has the same structure as the original matrix with the squares on the diagonal consisting of the inverses of the original squares. Thus the product ($A^TC_M^{-1}A$) can be obtained from additive contributions from each correlated data block. This has been discussed in detail in Ref. 3.

III. Data Types, Relations and the Data File Structure

Setting up the coefficient matrix, the correlation matrix and the measurement vector, A, C, and M as defined above, requires that the data file contains certain information. Some of the requirements are discussed below. Data file requirements were also discussed in Ref. 12. The structure and formats of the data file are defined in Appendix A. The content of the data file is given in Appendix E.

III.1 Data Types

Various types of data can be the result of a neutron cross section experiment. The measurement of an 'absolute' cross section at one or more neutron energies requires the determinations of the neutron flux, the sample mass and detection efficiency. A cross section 'shape' is the energy dependence of a cross section with undetermined normalization. Shape data can be arbitrarily normalized for the evaluation without affecting the result. Often cross section ratios have been measured based on the assumption that one of the cross sections was well enough known to

derive the other. The advantage of such measurements is that the determination of the neutron flux is not required. Ratio measurements can be absolute or of the 'shape' type. Other measurements produce the sum of cross sections which again can be absolute or shape data. A transmission measurement results in a total cross section which is the sum of partial cross sections. The advantage of a transmission measurement is that absolute cross section values are obtained without requiring any neutron flux measurements.

Another type of data is an absolute cross section averaged over a neutron spectrum. Such data are useful contributions for the normalization of cross sections if they are insensitive to the shape of the neutron spectrum. This is the case for the neutron induced fission cross sections of ²³⁵U and ²³⁹Pu averaged over the neutron spectrum of the spontaneously fissioning ²⁵²Cf (SF). Such values are valuable additions to the data base because different techniques are applied for the neutron source strength measurements than in other neutron flux determinations. The various types of data used in the GLS evaluation are listed in Table 2. Each data type requires different entries in the coefficient matrix (see Ref. 3), thus the data type ('MT') has been specified in the data file.

MT	Data Type	Example
1	Absolute cross section	$\sigma_{n,f}(^{235}U)$
2	Cross section shape	c∙σ _{n.α} (⁶ Li), c unknown
3	Absolute cross section ratio	$\sigma_{n,f}^{(238}U)/\sigma_{n,f}^{(235}U)$
4	Ratio shape	$c \cdot \sigma_{n,f}^{(239} Pu) / \sigma_{n,\alpha}^{(6} Li)$ c unknown
5	Sum of cross sections	$\sigma_{tot}(^{6}Li) = \sigma_{n,n}(^{6}Li) + \sigma_{n,n}(^{6}Li)$
6	Spectrum averaged cross section	$\sigma_{n,f}(^{239}Pu)$, Av. ²⁵² Cf SF
7	Absolute ratio of cross section vs. sum of cross sections	$\sigma_{n,\gamma}(^{238}\text{U})/\sigma_{n,\alpha}(^{10}\text{B}) \\ \sigma_{n,\alpha} = \sigma_{n,\alpha0} + \sigma_{n,\alpha1}$
8	Shape of type 5 data	
9	Shape of type 7 data	

Table 2. Data Types Used in the Simultaneous Evaluation

III.2 Originally Measured Quantities

Data listed in journal publications and reports or available from nuclear data file libraries are frequently not the originally measured quantities. The experimenters/authors may have measured a cross section ratio but converted it to cross sections using some reference cross section. Data used to derive this reference cross section may also be in the data base. Other cross sections may have used the same reference cross section. Thus the same data (and their errors) would be in the data base more than once and carry undeserved weight. Many reported data were the result of measurements of the shapes of cross sections or cross section ratios including thermal energy. The data were then normalized with the supposedly well known thermal cross sections. However, the normalization should be determined by all absolute data and the associated uncertainty and correlation information. Another common procedure was to measure a cross section or ratio shape in segments and subsequently to normalize these fragments in overlap regions to one-another. However, the normalization of each segment should be determined by all available data and, depending on uncertainties and correlations, might be quite different than that resulting from the procedure used for the reported data.

In order to properly use the data in this database, the originally measured quantities have been reconstructed to the extent possible. Unfortunately not all publications state what reference cross sections or normalizations were used. In case of the normalization of a data set to an external absolute cross section value (e.g. at thermal energy), the simple and exact solution was to declare the data as a shape measurement. However, if an undefined energy dependent reference cross section was involved, the problem was more complex. It occurred most often in the context of measurements relative to the ¹⁰B(n, α) cross section. The assumption was made that a 1/V shape had been used for early measurements and the evaluation by Sowerby¹⁰ was used for later measurements. For more recent measurements, converted with unspecified reference cross sections, the use of standards of ENDF/B versions was assumed. Data measured relative to the H(n,n) cross section were renormalized to the ENDF/B-VI version¹¹.

III.3 Uncertainties and Correlations: Data Sets and Data Blocks

The basic data unit is a data set which consists of one to m data values at different energies which are all of the same data type. A data set also contains associated uncertainty and correlation information and data set specifications. Uncertainties can be 'normalization' uncertainties (e.g. the sample mass), which exist only for absolute data (MT = 1, 3, 5, 6, and 7), or they can be energy dependent uncertainties (e.g. statistics, background, etc.). The values in a data set having more then one value are usually correlated. The normalization uncertainties of absolute data contributes to the correlation coefficients between any two energies with the square of their size, whereas the statistical uncertainty does not contribute to the correlation except that it reduces correlation by contributing to the total uncertainty. Other energy dependent uncertainty components contribute to the correlation between two energies (E₁,E₂) by the product of their sizes and two factors which have been introduced in order to reduce correlations at more distant energies. These factors are determined from three parameters, a, b, and c, given in the file. The factor at E₁ is given by a+b. The factor at E₂ is calculated as a+b(E₂), with b($\frac{1}{2} \cdot c \cdot E_1$ = $\frac{1}{2} \cdot b$. Parameter values of a = b = c = 0.5 are used as default values. A data set is identified with a data set number. Data sets and uncertainty components can be 'tagged' in order to investigate the effect of some classification (e.g., one could tag all preliminary data with one number and then see what effect the down weighting of these data has). However, the tags have not been set in a consistent manner and have not been used for the evaluation of ENDF/B-VI.

Several data sets might be correlated because of the use of common elements in the measurements (e.g. the same sample mass or the same neutron detector). Such correlated data sets are contained in a 'data block'. The cross correlation between the data sets is specified for each data set by identifying the data set number of each preceding correlated data set and the indices of the uncertainty components which are correlated. Factors (≤ 1.0) are given in order to permit a reduction of the strength of these cross correlations.

III.4 Data Selection and Status of GMDATA.CRD

The evaluation of a set of parameters ideally would be based upon all available experimental data for these parameters or combinations thereof. A majority of the data have been included in the data file (see Appendix E). However, problems with the definition of some data sets could not be resolved and they are not yet included. Data for some measurements could not be obtained. Some older measurements were left out, because their large uncertainties would be expected to result in a negligible effect on the outcome. Some data with gross discrepancies were left out as well. Improvements, additions and changes to the data file can easily be made with the data set editing and data addition options of the code RCL F (see Fig. 2 and Appendix B).

Corrected data have been reported for some data sets used in the ENDF/B-VI evaluation since the conclusion of the evaluation. The corresponding data in the file have been replaced. New data available in 1992 have been discussed in Ref. 14 and some of these new data sets have been added to the data file. The more recent resolution of the ²³⁹Pu(n,f) cross section discrepancy^{15,16} has been incorporated by including the new data set of Ref. 15 and by removing the thermal cross section from the older data set. Data replacements and additions are indicated in the comments columns of the tables of Appendix E.

A comparison has been made between the results obtained with the old data file (as used for the evaluation of ENDF/B-VI) and with the current updated data file. The differences are negligible for most cross sections and in most energy regions. The reason is that the updated and new data are outweighed by the large number of other data sets available in these regions. Specifically, there are negligible changes for the ¹⁰B cross sections and the ²³⁹Pu(n,f) cross section below several hundred keV. The new data either agree with the evaluation for ENDF/B-VI or have uncertainties too large to affect the outcome. The changes for the fission cross sections are shown in Figs. 5 - 7. At most energies these changes are minor (small compared with the uncertainties), except for the energy range 13-16 MeV. These changes are caused by major revisions of data, as indicated in Ref. 17, and some new data. The largest change is for ²³⁸U(n,f) at 14.5 MeV which affects ²³⁵U(n,f) and ²³⁹Pu(n,f) due to strong correlations caused by numerous ratio measurements.

IV. Data Reduction with DAT.F

The original file of the experimental data contains cross section measurements made with different energy scales. In order to facilitate the use of ratios (and sums) of cross sections a common energy grid has been used for all cross sections, though not all cross sections are parameters at all energies. The data reduction is achieved with the code DAT.F. The experimental data are extrapolated to the energy grid using the shape of the a priori cross sections. For an energy grid sequence E_{i-1} , E_i , E_{i+1} all data within $(E_{i-1} + E_i)/2$ and $(E_i + E_{i+1})/2$ are extrapolated to E_i . The value of the quantity (cross section, ratio, etc.) and the systematic uncertainty components at the grid energy are obtained as the weighted averages if more than one experimental value contributes. A reduced statistical uncertainty is calculated, based upon assumed counting statistics. The procedure has been described in Ref. 3. The user is requested to specify a multiple of the standard deviations by which an experimental value is permitted to deviate from the a priori until it is down weighed as discrepant. All other input is given in DAT.INP. The file requirements for the code DAT.F are described in Appendix C (see also Fig. 3).

Concluding Note

The data files and the FORTRAN source codes will be available from the National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973; and the Radiation Shielding Information Center, Oak Ridge National Laboratory, P. O. Box 2008, Oak Ridge, TN 38831-6362.

Appendix A: Data File GMDATA.CRD - Structure and Formats

The data base for the simultaneous evaluation of the standards and other important cross sections is the file GMDATA.CRD. Its original structure was determined by the limitations of punched data cards. This format has been retained for the data file now in use, however the card is referred to as a line in the following description. An interpretive listing of the file can be obtained with the code RCL.F. The data file consists of data blocks which end with the line EB. A data block contains one or more data sets. A data set ends with the line ES if it is not at the same time the end of a data block, in which case it ends with EB. The end of the file is indicated with a data set number of 9999. Thus the structure of the file is:

Data set ES Data set EB Data set EB etc. Data set EB 9999

The structure and formats of a data set are as follows:

<u>1. Line</u>

```
NR NY (NQT(l),l=1,12) (NAU(k),k=1,14) (NREF(i),i=1,10)
I4 I4 12A2 14A2 10A2
```

where NR is the data set number

NY is the year of the measurement or publication date

NQT is a label of the type of measured quantity

NAU is a label of the authors of the publication

NREF is a label for the reference of the publication (for a more detailed reference see Appendix E.)

note: NR, NY have or may have operational or reference use and should be correct. NQT,NAU, and NREF are for label purpose only.

2. Line

NQ NT NCO NCS NCCO NO (NID(l),l=1,5) I2 I2 I2 I2 I3 I5 5I3

where	NQ	is a data set tag which may be used for selective purpose
	MT	is the ID for the type of quantity of the data set (see Table 2)
	NCO	is the source of the correlation matrix
	NCS	is the number of preceding data sets for which correlations are given
	NCCO	is the number of comment lines
	NO	is the number of data values
	NID	are the ID's of the parameters involved for the given quantity (see Table 1)

note All entries have or may have operational or reference use and should be correct

Lines 3.01 to max. 3.50 (NCCO Lines)

(NCOM(l,k),l=1,40) 40A2

where NCOM are comments

4. Line (not used for shape data: MT = 2, 4, 8, 9)

(ENF(l),l=1,10) (NENF(l),l=1,10) 10F5.1 10I3

where ENF are the normalization uncertainty components in % NENF are tags for these components

Lines 5.01 to 5.11 and line 5.12

((EPA(l,k),l=1,3),k=1,11) 3F5.2

(NETG(k),k=1,11) 11I3

where EPA are parameters for the energy dependent uncertainty components NETG are tags for the energy dependent uncertainty components

Lines 6.001 to max 6.399 (No. of Lines of data)

E(k) S(k) (F(l,k),l=1,12) E10.4 E10.4 12F5.1

where E(k) is the energy of the k.th data value

- S(k) is the k.th data value
- F are the E-uncertainty, E-resolution, statistical uncertainty, and systematic uncertainties

note E is a dummy entry for spectrum averaged values (NT=6). F(12,k) is the total uncertainty calculated in the programs RCL and GMA.

Lines 7.01 to max 7.20 (NCS Lines), only if more sets than one are in the block

NCST(k) (NEC(1,l,k), NEC(2,l,k),l=1,10) I5 20I2

- where NCST(k) is the data set number of a set preceding the current data set in the same data block with which correlations exist NEC are uncertainty component pair indexes (present set, preceding set) which are correlated
- note The NEC pairs given for the normalization uncertainty components are identical to their indexes, for energy dependent uncertainty component pairs 10 must be added to the index, e. g., if the 4.th energy dependent uncertainty component of the preceding data set correlated with the 5.th of the present data set, the entry for the pair would be 15 14.

(FCFC(l,k),l=1,10) 10F5.1

where FCFC are correlation strength reduction factors for the correlated pairs (≤ 1.0).

Lines 8.01 to max 8.30 (NCO Lines)

(ECOR(k,l),l=1,k) 10f8.5

where ECOR is the lower triangle of a given correlation matrix of the data block, the diagonal 1.00 included.

Last Line NQQ A2

where NQQ is ES or EB as discussed above for terminating a data set or a data block.

.

Appendix B: Input Description for RCL

The FORTRAN program RCL.F can be used to list the basic GMA data file GMDATA.CRD. It also can be used to add data sets and/or data blocks to this file, insert the uncertainty and correlation information and add comments. The program reads the file GMDATA.CRD and lists to the file RCL.LST. The edited and/or appended data file is written to the file RCL.RES which should be renamed as the new file GMDATA.CRD. All listing and/or editing instructions, parameters and data are contained in the file RCL.INP. Control options are given in the following tables.

GM	Reading, Copying and Listing of the GMDATA.CRD File.	
Control Command GM N1 NX (A2,I1,I5)		
GM2 NX	Copy the file to (and including) data set NX (which may be the last set in a data block) and prepare to add one or more data sets to this block.	
GM3 NX	Copy the file from the data set following the set NX (NX excluded) to the end of the file.	
GM4	Copy the file from the first data set to the last data set and prepare to add one or several new data blocks.	
GM5 NX	Copy the file up to data set NX and read the next data set for editing.	
GM6	List the present data set.	
GM7 NX GM7	Find, read, and list the data set NX. If $NX = 0$, all data sets of the file will be listed.	
GM8	List the library (short form of the data set listing) of the file.	
GM9 NX	Write the present data set to the file as one set in a block ($NX = 1$), or as the last set of a block ($NX = 2$).	
Note:	The command EF may be required after some of the GM commands in order to close the file.	

DI	Data input with selected (preprogrammed) formats.
Control Command DI N1 (A2, I1)	
DI1	Data in the ANL76 and ANL83 conference format. Other formats must be programmed for other N1 values.

СО	Input of comments.	
Control Command CO N1 NX (A2, I1, I5)		
CO2	Input a new set of comments. The control command is followed by a maximum of $n = 50$ lines of 40A2. If n<50 the last terminating line should be E*.	
CO3	Add comment lines to previously stored comments.	
CO4 NX	Replace the comment line NX. Note: the file listing provides a numbering of the comments.	

AU	Add/construct uncertainties.
Control Command AU N1 NX (A2, I1, I5)	
AU1 NX	Set or reset the energy dependent uncertainty component NX. The uncertainties are a linear interpolation between the uncertainties at the lowest and highest energies of the data set. The control command must be followed by: T1, T2 (2F5.1) which are the uncertainties at the min./max. energies in percent.
AU2	Input of the normalization uncertainty components, followed by required input: Nr, Tag, % (2I2, F5.2). The maximum is 10 components. If n<10 the terminating line is with Nr = 0.
AU3	Input of energy dependent uncertainty components given as interpolation intervals. Input is Nr, Tag, Three correlation parameters (2I2, 3F5.2) E_1 , % (E8.2, F5.2) E_2 , % E_n , % Terminate with $E_{n+1} = 0.0$. Up to 10 interpolation intervals are permitted for up to 10 uncertainty components. Terminate with Nr = 0 for <10.
AU5 NX	Designates uncertainty component NX as statistical error component.

СС	Cross correlation information input.	
Control Command CC (A2)		
CC	Cross correlations of a data set with other data sets preceding the present set within the same data block can be given. Required input following the control command: Preceding data set Nr, present uncertainty component index, preceding uncertainty component index (I5, 20I3) Correlation strength factors for each pair of uncertainty components. (10f5.1) The latter factors should be ≤ 1.0 and can be used to reduce the correlations as given by the uncertainty components. Correlations with up to 10 preceding data sets can be given for up to 10 uncertainty component pairs. Termination is achieved by setting the preceding data set Nr = 0. Note that the index Nr's for CC are 1 - 10 for the normalization uncertainties and 11 - 21 for the energy dependent uncertainties.	
CC2 NX	Replace or add correlation information with index Nr NX.	
CC3 NX	Replace the correlation strength factors for index Nr NX.	

DS	Data set specifications.
Control Command DS N1 (A2, I1)	
DS1	Input of all data set specifications Data set Nr, Quantity label (I5, 12A2) Year, Tag, Type(Tabl.2), Param. ID's (Tabl. 1) (I5, 7I2) Authors (14A2) Reference (10A2)
DS2	Change of Set Nr, Quantity label (I5, 12A2)
DS3	Change of Year, Tag, Type, Param. ID's (I5, 7I2)
DS4	Change of Authors (14A2)
DS5	Change of Reference (10A2)
Note	DS2 - DS5 are used for editing an existing data set.

Control Commands	Miscellaneous Commands
NS (A2)	Clear all data and data set information. Use before DS.
EF (A2)	Write file-end for RCL.RES.
SP8 (A2, I1)	Stop, provides for orderly termination of the program.
TG N1 (A2, I1)	Reset data set tag to N1.
RN	Input of renormalization constants for shape data sets as determined by GMA.

Example 1

The following example of the file RCL INP will cause RCL to copy GMDATA.CRD up to and including data set 756 (GM2 756), then set up a data set 991 which is correlated with data set 756. First, all data set information is cleared (NS), then the data set specifications established (DS1), then the data are given (DI1), then 3 comment lines are given (CO2), a fourth comment is added (CO3) and the third comment line is replaced by a new comment (CO4 3). Next, the 4.th and 5.th energy dependent error components are established by the given interpolation intervals (AU3). The third energy dependent error component is declared as the statistical uncertainty (AU5 3). Cross correlation with set 756 is between the 4.th error component of set 756 and the 5.th error component of set 991 (CC). The set 991 will be written after set 756 as the last data set in this data block (GM9 2). The rest of the data sets of the original file will then be copied (GM3 756), after which the end of the file will be written (EF) and an orderly exit achieved with SP8.

GM2 756 NS DS1 991B(n,a1)/B(n,a0+a1), shape 1999 2 9 4 3 4 N.M.Doe J.Fantasy 5,629 DI1 0.1435E+010.0000E+000.0000E+000.2053E+010.0200E+000.0100E+00 0.2435E+010.0000E+000.0000E+000.2553E+010.0200E+000.0100E+00 0.3435E+010.0000E+000.0000E+000.3553E+010.0200E+000.0100E+00 0.4435E+010.0000E+000.0000E+000.4053E+010.0200E+000.0100E+00 0.0 CO₂ **UNCERTAINTIES 3 STATISTICS 4 SCATTERING**

```
E*
CO3
5 TESTADD
E*
CO4 3
4 SCATTERING + BACKGROUND
AU3
4 2 0.50 0.50 0.50
0.10E+01 1.20
0.30E+01 2.50
0.50E+01 5.00
0.0
5 2 0.50 0.50 0.50
0.10E+01 1.20
0.30E+01 0.50
0.50E+01 1.00
0.0
0
AU5 3
CC
 756 4 5
 0.8
  0
GM9 2
GM3 756
EF
SP8
```

Example 2

This example of the file RCL.INP will cause the file GMDATA.CRD to be copied in its entirety, and a new data block will be added which consists of one data set with set number 992.

GM4 NS DS1 99210B(n,a1) 1999 2 1 4 N.M.TEST1 REFERENCE DI1 0.1435E+010.0000E+000.0000E+000.2053E+010.0200E+000.0100E+00 0.2435E+010.0000E+000.0000E+000.2553E+010.0200E+000.0100E+00

0.3435E+010.0000E+000.0000E+000.3553E+010.0200E+000.0100E+00 0.4435E+010.0000E+000.0000E+000.4053E+010.0200E+000.0100E+00		
0.0		
UNCERTAINTIES		
3 STATISTICS		
4 SCATTERING		
AU2		
2 1 0.85		
AU3		
4 2 0.50 0.50 0.50		
0.10E+01 1.20		
0.30E+01 2.50		
0.50E+01 5.00		
AUS S GM0 2		
CF CDO		
5го		

.

.

.

31

Appendix C: Input Description for DAT

The purpose of the FORTRAN program DAT.F is to prepare the input file for the generalized least squares fitting program GMA.F. DAT first requests the operator to specify the number of standard deviations any data value is permitted to differ from the a priori. This feature will reduce the effect of discrepant data, improves the χ^2 , and should only be used after substituting the a priori with the result from a prior evaluation step. DAT reads the parameters from the file DAT.INP and transfers those needed by GMA to the file DAT.RES. The first and last values of the a priori of each cross section are not parameters of the evaluation but are needed by DAT for the extrapolation procedure. The controls transfered to the input file for GMA are explained in Appendix D. DAT then reads the data sets from the file GMDATA.CRD and extrapolates the measured cross sections to and averages at the energy grid points as defined by the a priori cross sections. These processed data sets are added to the file DAT.RES with appropriate delimiters for data sets and data blocks.

Appendix D: Input Description for GMA

The input file for the FORTRAN code GMA.FTN is DATA.GMA which is the renamed result of DAT.F. DATA.GMA contains a number of control codes which are copied or produced by DAT.F. The format for these controls is:

CONT MC1 MC2 MC8 A4,815,

where

<u>CONT = APRI</u> indicates the a priori cross sections.

- MC1 = NE is the total number of parameters.
- MC2 = NC is the number of parameter types (cross sections) involved.

APRI is followed by the a priori as transferred by DAT.

- <u>CONT = I/OC</u> is the output control which limits the amount of information written to the result file GMA.RES.
- MC1 $\neq 0$ the a priori cross sections will be listed.
- MC2 $\neq 0$ the input data will be listed.
- MC3 $\neq 0$ the correlation matrices of the data blocks will be listed.
- MC4 \neq 0 the B = A^TC⁻¹A matrix product will be listed.
- MC5 \neq 0 the inverted correlation matrix of a data block will be listed.
- MC6 \neq 0 the correlation matrix of the result will be listed.
- MC7 $\neq 0$ additional information for checking the code will be listed.
- <u>CONT = FIS*</u> controls the fission spectrum required for the fission spectrum averaged cross sections.
- MC1 \neq 0 input of ENFIS(k), FIS(k) (2E13.5), ending with 0.0, where ENFIS are the energies of the a priori of one of the fission cross sections for which data exist and FIS is the product of fission flux and bin width.

MC2	is the average energy of a Maxwellian fission spectrum in keV (for MC1=0).
MC3	is the id of the cross section for which the energy grid is used (for $MC1=0$).
<u>CONT = ELIM</u>	controls the exclusion of data sets from the evaluation.
MC1	number of data sets to be excluded. The data set numbers follow the ELIM with format 1615.
<u>CONT = MODE</u>	controls correlation matrix construction and weighing options.
MC1 = 1 = 2 = 3	input of the correlation matrix. all data are considered uncorrelated (for testing). construction of the correlation matrix from the error components and correlation information given on the file.
MC2 = 0 = 1 =10 >1000	no down weighting of any data set. data sets with data set tag numbers $\neq 1$ will be downweighted. down weighting of specified data sets, the data set numbers follow the MODE line in format 16I5. data sets from a year before the given value will be down weighted.
MC	10*factor for multiplying uncertainties (down weighting, if used). e. g., if down weighting is chosen with MC2 and MC set to 40, all error components will be multiplied with a factor 4.0.
MC4	controls the number of repetitions of the LS fit with the a priori replaced by the result of the previous fit.
<u>CONT = DATA</u>	precedes a data set.
MC1 = NS	is the data set number.
MC2 = MT	is the type of measurement.
$MC = NCOX$ if $\neq 0$, the correlation matrix is given. This is an exception for the thermal constants, where the matrix is given for the data block.	
MC4 = NCT	is the number of cross section types involved in MT.
	MC5,MC6,MC7 are the ID's of the cross sections.
- MC8 = NNCOX uncertainties will be divided by a factor of 10. This is an exception for the thermal constants where the uncertainties had been multiplied by a factor of 10. This procedure was required in order to preserve the exceptional precision of the thermal constants.
- **<u>CONT = BLCK</u>** precede and end a data block.

<u>= EDBL</u>

<u>CONT = END*</u> indicates the end of the data file and initiates the least squares fit.

Appendix E: Data File Contents Description

The following Tables summarize the content of the data file GMDATA.CRD ordered by data type and cross sections involved. Not listed are 'DUMMY' data sets which assure that there is at least one input value for every parameter. Large uncertainties have been assigned to these DUMMIES which assures that they have no effect on the result of the evaluation. Three 'THEORY' cross section shape data sets represent the well known 1/v behavior of the Li and B (n, α) cross sections. These sets were introduced after more and more data sets for Li and B had to be transferred to the R-matrix fit (ERA) in order to stabilize the latter.

Absolute Cross Section Data

⁶Li(n,t)

Set	Reference	Year	Data Values	Energy Range	Comments
238	C. M. Bartle, Nucl. Phys. A330 , p.1.	1979	23	2.2 - 9.7 MeV	
702	W. P. Poenitz, Pre-evaluation based on data collected by N. E. Holden, BNL- NCS-51388, excluding set 707.	1985	1	Thermal	Data of set 707 had to be excluded due to their use in the EDA fit.
707	J. W. Meadows, Symp. on Neutron Standards and Flux Normalization, Argonne National Laboratory, AEC Symposium Series 23, p.129.	1970	1	Thermal	Not used for GMA, but included in the EDA fit.
241	W. P. Poenitz and J. W. Meadows, Panel on Neutron Standards Ref. Data, Vienna, STI/PUB/371, p.95.	1972	23	0.085 - 0.6 MeV	See also Z. f. Physik 268, p.359 (1974). These values were not entered because of resolution problems.
198	H. Condé et al., Arkiv Fysik 29 , p.45.	1964	1	0.1 MeV	

285	J. C. Overley et al., Nucl. Phys. A221 , p.573	1974	25	0.1 - 1.8 MeV	
-----	---	------	----	------------------	--

6<u>Li(n,n)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
210	V. P. Alfimenkov et al., Conf. on Nucl. Data for Science and Technology, Antwerp, p.353.	1982	24	0.7 - 80 keV	See also Sov. J. Nucl. Phys 36 , p.637.
215	H. H. Knitter et al., Euratom Report EUR-5726E.	1977	40	0.22 - 3.0 MeV	
223	A. B. Smith et al., Nucl. Phys. A373 , p.305.	1982	26	1.5 - 4.0 MeV	
178	A. Asami and M. C. Moxon, Conf. on Nucl. Data for Reactors, Helsinki, STI/PUB/259, Vol. I, p. 153.	1970	24	0.9 - 110 keV	
253	R. O. Lane et al., Ann. Phys. 12, p.	1961	18	0.05 - 1.0 MeV	
254	135.		6	0.22 - 0.27 MeV	
255			10	1.1 - 2.2 MeV	
212	H. H. Knitter and M. Coppola, Euratom Report EUR-3454E.	1967	14	1.0 - 2.3 MeV	

 $^{10}\underline{B(n,\alpha_0)}$

Set	Reference	Year	Data Values	Energy Range	Comments
112	R. M. Sealock et al., Nucl. Phys. A357 , p.279.	1981	72	6 - 500 keV	Data derived from the inverse reaction ${}^{7}\text{Li}(\alpha,n){}^{10}\text{B}$ angular distribution measurements obtained from the authors in private communication.
118	M. D. Olson and R. W. Kavanagh, Phys. Rev. C30 , p.1375.	1984	54	8 - 750 keV	Not used for GMA but included in the EDA fit.
114	J. H. Gibbons and R. L. Macklin, Phys. Rev. 114, p.571.	1959	11	99 - 770 keV	Data derived from inverse reaction integral data shown in the publication.
110	R. M. Sealock and J. C. Overley, Phys. Rev. C13, p.2149.	1976	21	0.1 - 0.6 MeV	

•

.

¹⁰<u>**B(n,** α_1)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
107	D. O. Nellis et al., Phys. Rev. C1 , p.847.	1970	30	0.05 - 4.9 MeV	
111	R. M. Sealock and J. C. Overley, Phys. Rev. C13 , p.2149.	1976	22	0.34 - 0.86 MeV	

¹⁰ B('n,n)
		_

Set	Reference	Year	Data Values	Energy Range	Comments
167	F. P. Mooring et al., Nucl. Phys. 82 , p.16.	1966	53	0.01 - 0.5 MeV	
178	A. Asami and M. C. Moxon, Harwell Report AERE-R- 5980, also J. Nucl. Energy 24 , p.85.	1969	30	0.5 - 130 keV	
170	R. O. Lane et al., Phys. Rev. C4, p. 380.	1971	63	0.075 - 2.2 MeV	Not used for GMA but included in the EDA fit.
175	H. B. Willard et al., Phys. Rev. 98 , p.669.	1955	3	0.55 - 1.5 MeV	

¹⁹⁷<u>Au(n,γ)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
332	K. K. Harris et al., Nucl. Phys. 69 , p.37.	1965	15	0.013 - 0.68 MeV	
704	N. E. Holden, Brookhaven National Lab. Report BNL-NCS- 51388.	1981	. 1	Thermal	Pre-evaluated value used as input for simultaneous evaluation. Note that the thermal capture cross section has been used in the evaluation of the thermal constants and it was assumed to be constant.
358	W. P. Poenitz, J. Nucl Energy	1966	1	30 keV	
359	A/B20, p.825.		2	30, 64 keV	

				the second s	
344	S. Joly et al., Nucl. Sci. Eng. 70 , p.53.	1979	5	0.5 - 3.0 MeV	
342 343	C. Le Rigoleur et al., Saclay Report CEA-R-4788.	1976	29 37	0.017 - 0.16 MeV 0.08 - 0.54	
345	E. Fort and C. Le Rigoleur, Conf. on Nucl. Cross Sections and Technology, Washington, DC, NBS Spec. Publ.	1975	9	MeV 0.12 - 0.5 MeV	
348	A. N. Davletshin et al., Sov. J. At. Energy 65 , p. 913.	1988	15	0.17 - 1.2 MeV	New data added to the file.
347	A. N. Davletshin et al., At. Energ. 58 , p.183.	1985	19	0.16 - 1.14 MeV	New data added to the file based on corrected values given in the ref. of data set 348.
350	A. N. Davletshin et al., Sov. J. Atomic Energy 48 , p.97.	1980	8	0.35 - 1.4 MeV	Data replaced with corrected values given in the ref. of set 348.
452	S. Sakamoto et al., Nucl. Sci. Eng. 109 , 215.	1991	2	23, 967 keV	New data added to the file.
355	A. T. G. Ferguson and E. B. Paul, J. Nucl. Energy A10, p.19.	1959	3	0.15 - 1.0 MeV	
335	L. W. Weston and W. S. Lyon, Phys. Rev. 123 , p.948.	1961	2	30, 64 keV	
311	W. P. Poenitz, Nucl. Sci Eng 57, p.300.	1975	1	1 MeV	

330	H. W. Schmitt and C. W. Cook, Nucl. Phys. 20, p.202.	1960	1	22 keV	Monte Carlo Re- interpretations by F. Froehner, Conf. on Nucl. Data for Reactors, Vienna, Vol. 1, p.197 (1970), and by T. T. Semler, private communication (1972) have been used.
337	A. Paulsen et al., Atomkernenergie	1975	14	0.2 - 2.5 MeV 2 - 3 MeV	
370	Chen Ying et al., Conf. on Nucl. Data for Science and Technology, Antwerp, p.462, also Chin. J. Nucl. Phys. 3 , p.52.	1981	4	0.46 - 1.5 MeV	
372	Shengyun et al., Chin. J. Nucl. Phys. 6, p.1.	1984	1	30 keV	
367	T. B. Ryves et al., J. Nucl. Energy 23 , p.205, and 25 , p.557.	1971	2	22, 970 keV	See also J. Nucl. Energy 20, p.249 (1966).
315	H. A. Hussain and S. E. Hunt, Int'l J. Appl. Radiat. Isot. 34 , p.731.	1983	7	2.1 - 3.6 MeV	

.

²³⁸<u>U(n,γ)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
480	G. DeSaussure et al., Oak Ridge National Lab. Report ORNL/TM-6152.	1978	12	0.15 - 3.5 keV	
705	W. P. Poenitz, Pre- evaluated value at thermal energy.	1984	1	Thermal	
464	Yu. G. Panitkin and L. E. Sherman, Sov. J. Atomic Energy 39 , p.591.	1975	1	30 keV	
420	H. O. Menlove and W. P. Poenitz, Nucl. Sci. Eng. 33 , p.24.	1968	1	30KeV	
428	C. Le Rigoleur et al., Conf. on Nucl. Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol. II , p.953.	1975	25	0.017 - 0.53 MeV	
453	E. Quang and G. F. Knoll, Nucl. Sci. Eng. 119, p. 282.	1992	2	23, 967 keV	New data added to the file.
436	A. N. Davletshin et al., Sov. J. Atomic Energy 48 , p.97.	1980	15	0.35 - 1.4 MeV	Data replaced with corrected values given in Sov. J. At. Energy 65, 920 (1988).
432	K. Dietze, Zentralinst. f. Kernforsch. Report, Rossendorf, ZFK- 341.	1977	20	0.25 - 30 keV	

.

435	T. S. Belanova et al., J. Nucl. Energy A/B20, p.411	1966	1	22 keV	The value from the Monte Carlo reinterpretation by L. B. Miller and W. P. Poenitz, NSE 35 , 295(1977), and by K. Dietze (see set 432) was used.
438	Yu. Ya. Stavisskii et al., At. Energia 20 , p.431.	1966	1	22 keV	

²³⁵<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
643	Li Jingwen et al., Conf. on Nucl. Data for Science and Technology, Antwerp, p.55.	1982	1	14.7 MeV	
645	Li Jingwen et al., Int. Nucl. Data Comm. Doc. INDC(CPR)- 009/L.	1986	1	14.2 MeV	
564	M. C. Davis et al., Annals Nucl. Energy 5 , p.569.	1978	4	0.14 - 0.96 MeV	
567	R. K. Smith et al., private communication by G. Hansen, Los Alamos National Lab.	1975	27	2.2 - 20 MeV	
570	O. A. Wasson et al., Nucl. Sci. Eng. 81 , p.196.	1981	37	0.24 - 1.2 MeV	

	······	1			
523	A. D. Carlson et al., Meeting on Nucl. Standard Reference Data, Geel, IAEA- TECDOC-335, p.162.	1984	67	0.3 - 2.8 MeV	
518	G. F. Knoll and W. P. Poenitz, J. Nucl. Energy 21 , p.643.	1967	1	30 keV	
522	N. N. Buleeva et al., Sov. J. At. Energy 65 , p. 920.	1988	13	0.62 - 0.78 MeV	New data added to the file.
520	K. Kari, Kernforsch. Zentr. Karlsruhe Report KFK-2673	1978	121	1.0 - 20 MeV	
581	F. Kaeppeler, Kernforsch. Zentr. Karlsruhe report KFK- 1772.	1973	7	0.55 - 1.2 MeV	
580	D. M. Barton et al., Nucl. Sci. Eng. 60 , p.369.	1976	41	1.0 - 6.0 MeV	
499	P. H. White, J. Nucl. Energy A/B19, p.325	1965	8	0.04 - 0.51 keV	
500	Lifergy Frid ty, p.525.		3	0.51 - 2.2 MeV	
501			2	2.2 - 5.4 MeV	
502			1	14 MeV	
725	J. L. Perkin et al., J. Nucl. Energy A/B19 , p.423.	1965	1	22 keV	
503	I. Szabo et al., Symp. on Neutron Standards and Flux Normalization, Argonne Nat'l Lab., AEC Symposium Series 23, p. 257.	1970	31	0.017 - 1.0 MeV	Data finalized at the Conf. on Fast Neutron Fission Cross Sections, Argonne Nat'l Lab. Report ANL-76-90, p.208.

504	I. Szabo et al., Conf. on Neutron Cross Sections and Technology, Knoxville, CONF-710301, p.573.	1971	15	0.011 - 0.3 MeV	See comment for set 503 above.
505	I. Szabo et al., Conf. on Neutron Physics, Kiev, Vol. 3 , p.27.	1973	35	0.017 - 2.6 MeV	See comment for set 503 above.
506	I. Szabo et al., Conf. on Fast Neutron Fission Cross Sections, Argonne Nat'l Lab. Report ANL-76-90, p.208.	1976	13	2.3 - 5.5 MeV	
596	M. Cancé and G. Grenier, Nucl. Sci. Eng. 68 , p.197.	1978	2	13.9, 14.6 MeV	
597	M. Cancé and G. Grenier, Saclay Report CEA-N-2194.	1981	2	2.5, 4.5 MeV	
598	M. Cancé and G. Grenier, private communication.	1983	1	2.5 MeV	
599	O. A. Wasson et al., Nucl. Sci. Eng. 80 , p.282.	1982	1	14.1 MeV	

591	K. Merla et al., Conf.	1983	1	2.6 MeV	The data are from a collaboration between
592	Science and		1	8.5 MeV	the Technical Univ. of
593	p.510.		1	14.7 MeV	Chlopin Radium Inst. of Leningrad. The given Ref. contains the latest revised
590		1984	1	4.5 MeV	for the ENDF/B-6 evaluation were from V N Dushin et al
587		1985	1	18.8 MeV	Meeting on the ²³⁵ U Fast-Neutron Fission Cross Section, Smolenice, p.53., R. Arlt et al., Meeting on Nucl. Standard Reference Data, Geel, IAEA-TECDOC-335, p.174, and C. M. Herbach et al., Tech. Univ. Dresden Report INDC/GDR/37/G. Two data values (at 14.0 and 14.5 MeV) have been removed, as Merla does not provide corrected
554	W D Despitz Nucl	1077	45	0 19 - 4 4	values.
354	Sci. Eng. 64, p.894.			MeV	
555			18	4.4 - 8.3 MeV	
557	W. P. Poenitz, Nucl.	1974	1	0.8 MeV	
558	501. Eng. 53, p.370.		1	3.5 MeV	
560			1	0.5 MeV	
561			6	0.45 - 0.64 MeV	

528	K. Yoshida et al., Tohoku Univ. Report NETU-44, p.30.	1983	3	13.5 - 15.0 MeV	
738	Yan Wuguang et al., At. En. Sci. Tech. 2 , p.1.	1975	2	0.5, 1.0 MeV	
525	E. A. Schagrov et al., Conf. on Neutron Physics, Kiev, Vol. 3, p.45.	1980	2	0.046, 0.12 MeV	
573	B. C. Diven, Phys. Rev. 105, p.1350.	1957	1	1.3 MeV	
735	W. D. Allen and A. T. G. Ferguson, Proc. Phys. Soc. LXX, p.573.	1957	2	0.55, 1.8 MeV	
878	I. M. Kuks et al., Conf. on Neutron Physics, Kiev, Vol.4, p.18.	1973	1	2.5 MeV	
919	E. J. Axton, Ref. 9.	1986	1	Thermal	This value is part of the evaluation of the thermal constants.
526	C. A. Uttley and J. A. Phillips, Harwell Report AERE- NP/R1996.	1956	1	14 MeV	
584	A. Moat, private communication to J. Nucl. Energy A/B14 , p.85.	1958	1	14 MeV	

²³⁸<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
850	Wu Jingxia et al., Chinese J. Nucl. Phys. 5 , p.158.	1983	4	4.0 - 5.5 MeV	
648	R. K. Smith et al., private communication by G. Hanson, Los Alamos Nat'l Lab., 1975.	1956	43	1.0 - 22 MeV	
809	G. Winkler et al., Conf. on Nuclear Data for Science and Technology, Jülich, p. 514.	1991	1	14.5 MeV	New data added to the file.
812	M. Cancé and G. Grenier, Nucl. Sci. Eng. 68 , p.197.	1978	2	13.9, 14.6 MeV	
811	K. Merla et al., Conf. on Nucl. Data for Science and Technology, Jülich, p.510.	1983	1	14.7 MeV	See comment for set 591 (for ²³⁵ U(n,f)). Only the 14.7 MeV value was available for the ENDF/B-VI evaluation. Four more values are given in this Ref.
810	K. Merla et al., Conf. on Nucl. Data for Science and Technology, Jülich, p. 510.	1991	4	4.8 - 18.8 MeV	New data added to the file.
857	K. Yoshida et al., Tohoku Univ. Report NETU-44, p.30.	1983	3	13.5 - 15.0 MeV	

•

•

,

.

877	I. M. Kuks et al., At. Energia 30 , p.55.	1971	1	2.5 MeV	
869	C. A. Uttley and J. A. Phillips, Harwell Report AERE- NP/R1996.	1956	1	14 MeV	
860	N. N. Flerov et al., At. Energ. 5 , p.657.	1958	1	15 MeV	
861	A. Moat, private communication to J. Nucl. Energy A/B14 , p.85.	1958	1	14 MeV	

²³⁹<u>Pu(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
644	Li Jingwen et al., Conf. on Nucl. Data for Science and Technology, Antwerp, p.55.	1982	1 .	14.7 MeV	
521	K. Kari, Kernforsch. Zentr. Karlsruhe Report KFK-1772.	1978	169	0.99 - 21 MeV	
619	J. L. Perkin et al., J. Nucl. Energy A/B19 , p.423.	1965	1	22 keV	
620	I. Szabo et al., Symp. on Neutron Standards and Flux Normalization, Argonne Nat'l Lab., p.257.	1970	21	0.035 - 0.97 MeV	Data finalized at the Conf. on Fast Neutron Fission Cross Sections, Argonne Nat'l Lab. Report ANL-76-90, p.208.

				the second se	
621	I. Szabo et al., Conf. on Neutron Cross Sections and Technology, Knoxville, CONF-710301, p.573.	1971	15	0.011 - 0.20 MeV	See comment for set 620 above.
622	I. Szabo et al., Conf. on Neutron Physics, Kiev, Vol. 3 , p.27.	1973	20	0.81 - 2.6 MeV	See comment for set 620 above.
623	I. Szabo et al., Conf. on Fast Neutron Fission Cross Sections, Argonne Nat'l Lab. Report ANL-76-90, p.208.	1976	13	2.5 - 5.5 MeV	
612	M. Cancé and G. Grenier, Nucl. Sci. Eng. 68 , p.197.	1978	2	13.9, 14.6 MeV	
611	K. Merla et al., Conf.	1983	1	14.7 MeV	See comments for 235 U(n f) set 501
617	Science and	1983	1	8.65 MeV	O(11,1) Set 331.
615	p.510. (1991).	1985	1	4.9 MeV	
616		1985	1	18.8 MeV	
672	W. D. Allen and A. T. G. Ferguson, Proc. Phys. Soc. LXX, p.573.	1957	2	0.55, 1.5 MeV	
925	E. J. Axton, Ref. 9.	1986	1	Thermal	This value is part of the evaluation of the thermal constants.
628	C. A. Uttley and J. A. Phillips, Harwell Report AERE- NP/R1996.	1956	1	14 MeV	

657	A. Moat, private	1958	1	14MeV	
	communication to J.				
	Nucl. Energy A/B14,		i i i i i i i i i i i i i i i i i i i		
	p.85.				

Cross Section Shape Data

⁶Li(n,t)

<u> </u>	· · · · · · · · · · · · · · · · · · ·				
Set	Reference	Year	Data Values	Energy Range	Comments
226	H. Condé, Conf. on Nucl. Data for Science and Technology, Antwerp, p.447.	1982	16	0.24 - 2.8 MeV	
202	C. Renner, Thesis, Univ. of Sao Paulo, Brasil.	1978	12	0.081 - 0.47 MeV	Data not used for GMA but included in the EDA fit.
280	P. J. Clements and I. C. Rickard, Harwell	1972	20	0.16 - 0.64 MeV	
281	Report AERE-R7075.		25	0.33 - 2.4 MeV	
290	E. Fort and J. P. Marquette, Euro	1972	25	0.014 - 0.17 MeV	⁶ Li content problem of sample remained
291	Amer. Nucl. Data Committee Doc.		20	0.021 - 0.17 MeV	unresolved, therefore data were taken as
292	EANDC(E)-148"U".		73	0.12 - 1.7 MeV	shape data. Increased uncertainty due to flux as changes for fission cross sections were not made for ⁶ Li.
294	E. Fort, Conf. on Nucl. Data for Reactors, Helsinki, Vol. I, p.252.	1970	40	0.082 - 0.52 MeV	See comment for set 290 above.
246	S. J. Friesenhahn et al., Intelcom Radiation Technology Report INTEL-RT7011-001.	1974	151	0.0024 - 1.7 MeV	

205 M. S. Coates et al., Panel on Neutron Standard Reference Data, Vienna, STI/PUB/371 p 105	1972	170	0.001 - 0.4 MeV		
--	------	-----	--------------------	--	--

.

.

,

.

¹⁰<u>B(n, α_0)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
126	R. L. Macklin and J. H. Gibbons, Phys. Rev. 165 , p.1147.	1968	16	0.03 - 0.52 MeV	Data not used for GMA but included in the EDA fit.

¹⁰<u>B(n, α_1)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
105	R. A. Schrack et al., Nucl. Sci. Eng. 68 , p.189.	1978	36	0.005 - 0.63 MeV	
347	R. A. Schrack et al., Nucl. Sci. Eng. 114 , p. 352.	1993	65	0.2 - 4.0 MeV	New data added to the file.
103	S. J. Friesenhahn et al., Intelcom Radiation Technology Report INTEL-RT7011-001.	1974	56	0.02 - 0.98 MeV	
135	G. Viesti and H. Liskien Annals Nucl	1979	7	0.098 - 0.69 MeV	Data not used for GMA but included in
136	Energy 6 , p.13.		11	0.29 - 1.4 MeV	the EDA fit.
137			16	0.51 - 2.2 MeV	

	128	M. S. Coates et al., Panel on Neutron Standard Reference Data, Vienna, STI/PUB/371 p 129	1972	95	0.001 - 0.30MeV	
--	-----	--	------	----	--------------------	--

¹⁹⁷<u>Au(n,γ)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
360	W. P. Poenitz et al., J. Nucl. Energy 22 , p.505.	1968	22	0.025 - 0.47 MeV	
301	M. P. Fricke et al., Conf. on Nuclear Data for Reactors, Helsinki, STI/PUB/259, Vol. 2, p.265.	1970	20	0.069 - 1.1 MeV	
310	W. P. Poenitz, Nucl. Sci. Eng. 57, p.300.	1975	18	0.40 - 3.5 MeV	
371	Chen Ying et al., Conf. on Nuclear Data for Science and Technology, Antwerp, p.462, also Chinese J. Nucl. Phys. 3 , p.52 (1981).	1982	6	0.13 - 0.90 MeV	

²³⁸<u>U(n,γ)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
421	H. O. Menlove and W. P. Poenitz, Nucl. Sci. Eng. 33 , p.24.	1968	9	0.024 - 0.50 MeV	

401	M. P. Fricke et al., Conf. on Neutron Cross Sections and Technology, Knoxville, CONF-710301, Vol. 1, p.252.	1971	21	0.08 - 0.75MeV	
455	T. B. Ryves, J. Nucl. Energy 27 , p.519.	1973	5	0.025eV - 0.62MeV	

4

.

²³⁵<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
586	O. A. Wasson, Nucl. Sci. Eng. 81 , p.196.	1982	22	0.0055 - 0.75 MeV	
588	D. B. Gayther, Conf. on Neutron Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol. 2, p.564.	1975	27	0.0015 - 0.95 MeV	
582	F. Kaeppeler, Kernforschungs- Zentrum Karlsruhe Report KFK 1772.	1973	13	0.51 - 1.2 MeV	
508 509	A. D. Carlson and B. H. Patrick, Conf. on Neutron Physics and Nucl. Data for Reactors and Other Applied Purposes, Harwell, p.880.	1978	13 29	1.2 - 3.1 MeV 2.8 - 6.2 MeV	
524	A. D. Carlson et al., Conf. on Nucl. Data for Science and Technology, Jülich, p. 518.	1991	44	3.0 - 30.0 MeV	New data set added to the file.

	· · · · · · · · · · · · · · · · · · ·	1		
510	J. B. Czirr and G. S. Sidhu, Nucl. Sci. Eng. 57, p.18.	1975	61	3.0 - 20.0 MeV
511	J. B. Czirr and G. S. Sidhu, Nucl. Sci. Eng. 58 , p.371.	1975	27	0.75 - 4.1 MeV
553	W. P. Poenitz, Nucl. Sci. Eng. 64 , p.894.	1977	10	0.22 - 0.31 MeV
556	W. P. Poenitz, Nucl.	1974	39	0.4 - 2.8 MeV
559	SG. Eng. 33, p.370.		52	0.035 - 3.5 MeV
572	B. C. Diven, Phys. Rev. 105 , p.1350.	1957	14	0.40 - 1.6 MeV
568	W. D. Allen and A. T. G. Ferguson, Proc. Phys. Soc. LXX, p.573.	1957	24	0.03 - 3.0 MeV
721	V. M. Pankratov et al., J. Nucl. Energy 16 , p.494.	1962	16	10.5 - 21.4 MeV
722	V. M. Pankratov, Sov. J. At. Energy 14, p.167.	1964	35	6.1 - 25.7 MeV

²³⁸<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
835	B. Adams et al., J. Nucl. Energy A/B 14, p.85.	1961	14	13.0 - 19.0MeV	
839	P. E. Vorotnikov et al., Int'l Nucl. Data Com. Report INDC(CCP)- 66, p. 6.	1975	71	0.16 - 1.6MeV	

873	V. M. Pankratov et al., J. Nucl. Energy 16 , p.496.	1962	16	10.5 - 21.4 MeV	
874	V. M. Pankratov et al., Sov. J. At. Energy 14, p.167.	1964	35	5.1 - 37.0 MeV	
875	P. Kalinin and V. M. Pankratov, Conf. on the Peaceful Uses of Atomic Energy, Geneva, Vol. 16, p.136.	1962	7	3.1 - 6.4 MeV	
881	M. Mangialajo et al., Nucl. Phys. 43 , p.124.	1963	8	14.0 - 15.0 MeV	

²³⁹<u>Pu(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
589	D. B. Gayther, Conf. on Neutron Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol. 2, p.564.	1975	29	0.0015 - 0.95 MeV	
671	W. D. Allen and A. T. G. Ferguson, Proc. Phys. Soc. LXX , p.573.	1957	22	0.03 - 3.0 MeV	

Absolute Cross Section Ratios

$^{10}\underline{\mathbf{B}(\mathbf{n},\alpha_0)}/^{10}\underline{\mathbf{B}(\mathbf{n},\alpha_1)}$

.

,

		Values	Range	Comments
M. L. Stelts et al., Phys. Rev. C19 , p.1159.	1979	3	0.025 eV - 0.024 MeV	Data not used for GMA but included in the EDA fit.
W. P. Poenitz, Meeting on Nuclear Standard Reference Data, Geel, IAEA- TECDOC-335, p.112.	1984	1	Thermal	This is a pre-evaluated value based on the data in the given reference.
E. A. Davis et al., Nucl. Phys. 27, p.448.	1961	81	0.22 - 7.6 MeV	
L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 109 , p. 113.	1991	25	0.02 - 0.96 MeV	New data added to the file.
R. L. Macklin and J. H. Gibbons, Phys. Rev. 165 , p.1147.	1968	8	0.025 eV - 0.51 MeV	Data not used for GMA but included in the EDA fit.
R. L. Macklin and J. H. Gibbons, Phys. Rev. B140 ,p.324.	1965	9	0.025 eV - 0.7 MeV	
G. P. Lamaze et al., Nucl. Sci. Eng. 56 , p.94.	1975	1	0.79 MeV	
B. Petree et al., Phys. Rev. 83 , p.1148.	1951	9 10	0.025 eV - 1.3 MeV 0.95 - 2.6	
	Meeting on Nuclear Standard Reference Data, Geel, IAEA- TECDOC-335, p.112. E. A. Davis et al., Nucl. Phys. 27, p.448. L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 109, p. 113. R. L. Macklin and J. H. Gibbons, Phys. Rev. 165, p.1147. R. L. Macklin and J. H. Gibbons, Phys. Rev. 165, p.1147. G. P. Lamaze et al., Nucl. Sci. Eng. 56, p.94. B. Petree et al., Phys. Rev. 83, p.1148.	Meeting on Nuclear Standard Reference Data, Geel, IAEA- TECDOC-335, p.112. E. A. Davis et al., Nucl. Phys. 27, p.448. L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 109, p. 113. R. L. Macklin and J. H. Gibbons, Phys. Rev. 165, p.1147. R. L. Macklin and J. H. Gibbons, Phys. Rev. 165, p.1147. R. L. Macklin and J. H. Gibbons, Phys. Rev. 165, p.1147. R. L. Macklin and J. H. Gibbons, Phys. Rev. B140,p.324. G. P. Lamaze et al., Mucl. Sci. Eng. 56, p.94. B. Petree et al., Phys. Rev. 83, p.1148.	Meeting on Nuclear 1961 1 Standard Reference Data, Geel, IAEA- 1961 81 TECDOC-335, 1961 81 E. A. Davis et al., 1961 81 Nucl. Phys. 27, 1961 81 p.448. 1991 25 H. Todd, Nucl. Sci. 1991 25 Eng. 109, p. 113. 1968 8 R. L. Macklin and J. 1968 8 H. Gibbons, Phys. 1965 9 H. Gibbons, Phys. 1965 9 Rev. 165, p.1147. 1965 9 H. Gibbons, Phys. 1965 9 H. Gibbons, Phys. 1965 9 Rev. 165, p.1247. 1965 9 B. Petree et al., Phys. 1975 1 B. Petree et al., Phys. 1951 9 Rev. 83, p.1148. 10 10	Mathematical Standard Reference 1961 1 1961 1 Meeting on Nuclear 1961 81 0.22 - 7.6 Data, Geel, IAEA-TECDOC-335, 1961 81 0.22 - 7.6 Method 1961 81 0.22 - 7.6 Nucl. Phys. 27, 1961 81 0.22 - 7.6 Nucl. Phys. 27, 1991 25 0.02 - 0.96 MeV 1991 25 0.02 - 0.96 H. Todd, Nucl. Sci. 1991 25 0.02 - 0.96 Eng. 109, p. 113. 1968 8 0.025 eV - R. L. Macklin and J. 1968 8 0.025 eV - H. Gibbons, Phys. 1965 9 0.025 eV - Rev. 165, p.1147. 1965 9 0.025 eV - R. L. Macklin and J. 1965 9 0.025 eV - H. Gibbons, Phys. 1975 1 0.79 MeV Rev. B140,p.324. 1975 1 0.79 MeV B. Petree et al., Phys. 1951 9 0.025 eV - 1.3 MeV 0.95 - 2.6 MeV 10 0.95 - 2.6

¹⁹⁷<u>Au(n,γ)/⁶Li(n,t)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
312	R. L. Macklin et al., Phys. Rev. C11, p.1270.	1975	54	0.015 - 0.55 MeV	
313	R. L. Macklin, Nucl. Sci. Eng. 79, p.265.	1981	16	0.1 - 1.9 MeV	

$^{197}\underline{\mathrm{Au}(n,\gamma)}^{10}\underline{\mathrm{B}(n,\alpha_1)}$

Set	Reference	Year	Data Values	Energy Range	Comments
380	K. Rimawi and R. E. Chrien, Conf. on Neutron Cross sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol 2 , p.920.	1975	1	0.024 MeV	
340	N. Yamamuro et al., J. Nucl. Sci. Tech. (Japan) 20 , p.797.	1983	1	Thermal	

$^{197}\underline{Au(n,\gamma)}^{235}\underline{U(n,f)}$

Set	Reference	Year	Data Values	Energy Range	Comments
314	R. L. Macklin, Nucl. Sci. Eng. 79 , p.265.	1981	62	0.1 - 1.9 MeV	
302	M. Lindner et al., Nucl. Sci. Eng. 59 , p.381.	1976	23	0.12 - 2.7 MeV	

331	H. A. Grench et al., European-American Nucl. Data Committee Report EANDC-79, also private communication.	1965	12	0.14 - 1.2 MeV	
519	G. F. Knoll and W. P. Poenitz, J. Nucl. Energy A/B21 , p.64.	1967	2	30, 64 keV	
349	A. N. Davletshin et al., Sov. J. At. Energy 65 , p. 913.	1988	11	0.62 - 0.78 MeV	New data added to the file.
320	J. F. Barry, J. Nucl. Energy A/B18 , p.491.	1964	11	0.13 - 1.8 MeV	
363	P. Anderson et al., Nucl. Phys. A443 , p.404.	1985	5	2.0 - 2.9 MeV	The original measurements were relative to the capture cross section of indium. Measurements by D. L. Smith and J. W. Meadows were used to convert to the present ratio.

$^{235}\underline{\mathrm{U}(\mathbf{n,f})}^{10}\underline{\mathrm{B}(\mathbf{n},\alpha_{1})}$

Set	Reference	Year	Data Values	Energy Range	Comments
540	A. V. Mursin et al., Conf. on Neutron Physics, Kiev, Vol. 2 , p.257.	1980	1	24 keV	

238 <u>U(n,\gamma)/⁶Li(n,t)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
482 483	L. E. Kazakov et al., Yadern. Konst. 3 , no. 3, p.37.	1986	33 33	0.0045 - 0.125 MeV 0.0045 - 0.125 MeV	Uncertainty information updated based on available English and German translations of the original Russian

$^{238}\underline{U(n,\gamma)}/^{10}\underline{B(n,\alpha_1)}$

Set	Reference	Year	Data Values	Energy Range	Comments
440	K. Rimawi and R. E. Chrien, Conf. on Neutron Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol. 2, p.920.	1975	1	0.024 MeV	
450	M. C. Moxon, Harwell Report AERE-R6074	1971	23	0.55 keV - 0.095 MeV	
446	Yu. V. Adamchuk et al., Sov. J. At. Energy 65, p. 930.	1988	22	0.1 - 50.0 keV	New data added to the file.
445	Yu. V. Adamchuk et al., Conf. on Neutron Phys., Kiev, Vol. 2 , p.192.	1977	19	0.25 keV - 0.025 MeV	
471	B. L. Quan and R. C. Block, AEC Report COO-2479-14.	1976	6	0.024 - 0.18 MeV	

 $^{238}\underline{\mathrm{U}(\mathbf{n},\boldsymbol{\gamma})}^{197}\underline{\mathrm{Au}(\mathbf{n},\boldsymbol{\gamma})}$

Set	Reference	Year	Data Values	Energy Range	Comments
441	K. Rimawi and R. E. Chrien, Conf. on Neutron Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol. 2, p.920.	1975	1	0.024 MeV	
461	W. P. Poenitz et al., Nucl. Sci. Eng. 78, p.239.	1981	3	0.025 eV - 0.5 MeV	
437	N. N. Buleeva et al., Sov. J. At. Energy 65 , p.920.	1988	2	0.62, 0.78 MeV	New data added to the file.
346	L. E. Kazakov et al., Jadernye Konstanty Vol. 3.	1986	56	0.004 - 0.42 MeV	New data added to the file.
412	W. P. Poenitz, Nucl. Sci. Eng. 57 , p.300.	1975	54	0.02 - 1.2 MeV	,
419	H. O. Menlove and W. P. Poenitz, Nucl. Sci. Eng. 33 , p.24.	1968	1	30 keV	
470	R. C. Block et al., Conf. on New Developments in Reactor Physics and Shielding, Kiamesha Lake, CONF-720901, Vol. 2 , p.1107.	1972	1	24 keV	
430 431	K. Wisshak and F. Kaeppeler, Nucl. Sci. Eng. 66 , p.363.	1978	19 20	0.016 - 0.071 MeV 0.020 - 0.072 MeV	

$^{238}\underline{U(n,\gamma)}^{/235}\underline{U(n,f)}$

Set	Reference	Year	Data Values	Energy Range	Comments
460	W. P. Poenitz et al., Nucl. Sci. Eng. 78 , p.239.	1981	17	0.03 - 3.0 MeV	
406	W. P. Poenitz, Nucl. Sci. Eng. 40 , p.383.	1970	5	0.03 - 0.9 MeV	
443	N. N. Buleeva et al., Sov. J. At. Energy 65 , p. 920.	1988	2	0.62, 0.78 MeV	New data added to the file.
415	J. F. Barry et al., J. Nucl. Energy A/B18 , p.481.	1964	13	0.13 - 7.6 MeV	
410	W. Lindner et al.,Nucl. Sci. Eng. 59 , p.381.	1976.	23	0.12 - 2.7 MeV	
478	G. DeSaussure and L. W. Weston, Oak Ridge Nat'l Lab. Report ORNL-3360, p.51.	1963	2	30, 64 keV	

.

$^{238}U(n,\gamma)/^{239}Pu(n,f)$

Set	Reference	Year	Data Values	Energy Range	Comments
407	W. P. Poenitz, Nucl. Sci. Eng. 40 , p.383.	1970	5	0.40 - 1.4 MeV	

²³⁸<u>U(n,f)</u>/²³⁵<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
853	A. A. Goverdovskii et al., Conf. on Neutron Physics, Kiev, Vol. 2, p.159.	1983	27	5.4 - 10.0 MeV	
854	A. A. Goverdovskii et al., Sov. J. At. Energy 56, p.173.	1984	5	14 - 15 MeV	
863	I. Garlea et al., Int'l Nucl. Data Committee Report INDC(ROM)- 15	1983	1	14.75 MeV	
646	Li Jingwen et al., Int'l Nucl. Data Comm. Report INDC(CPR)- 009/L.	1986	1	14.7 MeV	
816	W. P. Poenitz and R. J. Armani, J. Nucl.	1972	1	2.5 MeV	
817	Energy 26 , p.483.		1	2.5 MeV	
818			1	2.5 MeV	
844	B. I. Fursov et al., At. Energ. 43 , p.181.	1977	4	1.5 - 3.0 MeV	
805	J. W. Behrens and G. W. Carlson, Nucl. Sci. Eng. 63 , p.250.	1977	152	0.14 - 29 MeV	
803	J. W. Meadows, Argonne Nat'l Lab. Report ANL/NDM-83.	1983	69	0.9 - 10 MeV	
865	J. W. Meadows, Argonne Nat'l Lab. Report ANL/NDM-97.	1986	1	14.7 MeV	

				the second s	
815	P. H. White and G. P. Warner, J. Nucl. Energy 21 , p.671.	1967	3	2.2 - 14 MeV	
808	F. C. Difilippo et al., Nucl. Sci. Eng. 68 , p.43.	1978	149	0.15 - 24 MeV	
821	R. W. Lamphere, Phys. Rev. 104, p.1654.	1956	90	0.42 - 3.0 MeV	
822	W. E. Stein et al., Conf. on Nuclear Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 299, Vol. 1, p.627.	1968	14	1.5 - 5.0 MeV	
832	M. Cancé and G. Grenier, Meeting on Fast Neutron Fission Cross Sections, Argonne Nat'l Lab., ANL-76-90, p.141.	1976	9	2.6 - 7.0 MeV	
856	F. Manabe et al., Tohoku Univ. Report NETU-47.	1986	4	13 - 15 MeV	
855	G. A. Jarvis et al., Los Alamos Nat'l Lab. Report LA-1571.	1953	1	2.5 MeV	
848	M. Varnagy and J. Csikai, Nucl. Instr. and Methods 196 , p.465.	1982	6	14 - 15 MeV	
870	A. A. Berezin et al., At. Energ. 5 , p.659.	1958	1	14.7 MeV	
871	R. H. Iyer and R. Sampathkumar, Conf. on Nucl. Phys. and Solid State Phys., Roorkee, Vol. 2 , p.289.	1969	1	14 MeV	

859	O. Sato et al., Tohoku Univ. Report NETU- 41, p.33.	1982	4	4.6 - 6.1MeV	
830	C. Nordborg et al., Meeting on Fast Neutron Fission Cross Sections, Argonne Nat'l Lab., ANL-76- 90, p.128.	1976	23	4.7 - 8.9MeV	

²³⁹<u>Pu(n,f)</u>/²³⁵<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
633	I. Garlea et al., Int'l Nucl. Data Comm. Report INDC(ROM)- 15.	1983	1	14.7 MeV	See also Rev. Roumaine Phys. 26 , p.643.
637	M. Mahdavi et al., Conf. on Nucl. Data for Science and Technology, Antwerp, p.58.	1982	1	14.7 MeV	
653	B. I. Fursov et al., At. Energ. 43 , p.261.	1977	13	0.13 - 7.0 MeV	
600	G. W. Carlson and J. W. Behrens, Nucl. Sci. Eng. 66 , p.205.	1978	107	0.85 keV - 30 MeV	
602	J. W. Meadows, Argonne Nat'l Lab. Report ANL/NDM-83.	1983	75	Thermal - 9.9 MeV	
685	J. W. Meadows, Argonne Nat'l Lab. Report ANL/NDM-97.	1986	1	14.7 MeV	

605	E. Pfletschinger and F. Kaeppeler, Nucl. Sci. Eng. 40 , p.375.	1070	48	5.2 keV - 1.0 MeV	
626	W. P. Poenitz, Nucl. Sci. Eng. 40, p.383.	1970	11	0.15 - 1.4 MeV	
608	P. H. White et al., Conf. on Physics and Chemistry of Fission, Salzburg, Vol. I, p.219.	1965	5	0.04 - 0.51 MeV	
609	P. H. White and G. P. Warner, J. Nucl. Energy 21 , p.671.	1967	4	1.0- 14 MeV	
631	K. D. Zhuravlev et al., At. Energ. 42 , p.56.	1977	5	Thermal - 0.14 MeV	Eng. Trans. in Sov. J. At. En. 42 , p.62.
666	M. Varnagy and J. Csikai, Nucl. Instr. and Methods 196 , p.465.	1982	6	14 - 15 MeV	
668	R. H. Iyer and R. Sampathkumar, Conf. on Nucl. Physics and Solid State Physics, Roorkee, Vol 2, p.289.	1969	1	14 MeV	

Cross Section Ratio Shape Data

6 Li(n, α)/ 10 B(n, α_{1})

Set	Reference	Year	Data Values	Energy Range	Comments
132	M. G. Sowerby et al., J. Nucl. Energy 24 , p.323.	1970	48	0.52 keV - 0.074 MeV	

⁶<u>Li(n,α)</u>/²³⁵<u>U(n,f</u>)

Set	Reference	Year	Data Values	Energy Range	Comments
270	J. B. Czirr and G. S. Sidhu, Nucl. Sci. Eng. 60, p.383.	1976	16	0.085 - 0.67 MeV	
250	W. P. Poenitz and J. W. Meadows, Unpublished.	1976	28	0.059 - 0.54 MeV	
261	D. B. Gayther, Annals Nucl. Energy 4, p.515.	1977	112	0.003 - 0.81 MeV	
288	J. F. Barry, Conf. on Neutron Cross Section Technology, Washington, DC, AEC Report CONF-660303, Vol. 2 , p.763.	1966	4	Thermal - 0.1 MeV	
200	R. L. Macklin et al., Nucl. Sci. Eng. 71, p.205.	-1979	106	0.07 - 3.0 MeV	

⁶Li(n,α)/²³⁸U(n,f)

Set	Reference	Year	Data Values	Energy Range	Comments
282	P. J. Clements and I. C. Rickard, Harwell Report AERE-R7075.	1972	23	1.7 - 3.9 MeV	

$^{10}\underline{\mathbf{B}(\mathbf{n},\alpha_0)}^{/10}\underline{\mathbf{B}(\mathbf{n},\alpha_1)}$

Set	Reference	Year	Data Values	Energy Range	Comments
140	M. G. Sowerby, J. Nucl. Energy 20 ,	1966	23	26 eV - 0.098 MeV	
141	p.135.		19	83 eV - 0.48 MeV	

$^{197}\underline{\mathrm{Au}(\mathbf{n},\boldsymbol{\gamma})}^{10}\underline{\mathrm{B}(\mathbf{n},\boldsymbol{\alpha}_{1})}$

Set	Reference	Year	Data Values	Energy Range	Comments
341	N. Yamamuro et al., J. Nucl. Sci. Tech. (Japan) 20 , p.797.	1983	21	4.5 keV - 0.25 MeV	
352	V. N. Kononov et al., Yad. Fiz. 26 , p.947.	1977	70	0.01 - 0.34 MeV	

$^{197}Au(n,\gamma)/^{235}U(n,f)$

Set	Reference	Year	Data Values	Energy Range	Comments
378	J. B. Czirr and M. L. Stelts, Nucl. Sci. Eng. 52 , p.299.	1973	26	0.89 keV - 0.53 MeV	
325	A. E. Johnsrud et al., Phys. Rev. 116 , p.927.	1959	22	Thermal - 5.4 MeV	

 $^{238}\underline{\mathrm{U}(\mathbf{n},\boldsymbol{\gamma})}^{10}\underline{\mathrm{B}(\mathbf{n},\boldsymbol{\alpha}_{1})}$

Set	Reference	Year	Data Values	Energy Range	Comments
448	K. Kobayashi et al.,Conf. on Nucl. data for Science and Technology, Jülich, p.65.	1991	3	0.024, 0.055, 0.146 keV	New data added to the file.
484 485	L. E. Kazakov et al., Jadernye Konstanty Vol. 3.	1986	42 42	0.03 - 0.46 MeV 0.03 - 0.46 MeV	Data now correctly entered as ratio shape values.
422	N. Yamamuro et al., J. Nucl. Sci. Tech. (Japan) 17, p.583.	1980	15	4.5 keV - 0.073 MeV	

$^{238}\underline{U(n,\gamma)}^{/197}\underline{Au(n,\gamma)}$

Set	Reference	Year	Data Values	Energy Range	Comments
457	R. R. Spencer and F. Kaeppeler, Conf. on Nucl. Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol. II, p.620.	1975	22	0.025 - 0.54 MeV	

$^{238}U(n,\gamma)/^{235}U(n,f)$

Set	Reference	Year	Data Values	Energy Range	Comments
465	Yu. G. Panitkin and V. A. Tolstikov, At. Energ. 33 , p.782.	1972	11	1.2 - 4.0 MeV	

466	Yu. G. Panitkin et al., Conf. on Nucl. Data for Reactors, Helsinki, STI/PUB/259, Vol. 2, p.57.	1971	21	0.024 - 1.1 MeV	See also Conf. on Neutron Physics, Kiev, Vol. 1, p.321.
405	W. P. Poenitz, Nucl. Sci. Eng. 40 , p.383.	1970	14	Thermal - 1.4 MeV	
458	R. R. Spencer and F. Kaeppeler, Conf. on Nucl. Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, Vol. II, p.620.	1975	20	0.025 - 0.54 MeV	
425	G. A. Linenberger et al., Los Alamos Nat'l Lab. Report LA-179.	1944	13	Thermal - 1.3 MeV	

235 <u>U(n,f)/⁶Li(n,\alpha)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
244	J. R. Lemley et al., Nucl. Sci. Eng. 43 , p.281.	1971	16	Thermal - 0.095 MeV	
531 527	F. Corvi, EURATOM, Central Bureau of Nucl. Measurements, Geel, private communication.	1983	33 10	0.15 keV - 0.13 MeV 9.4 eV - 0.95 keV	
271 272	J. B. Czirr and G. W. Carlson, Nucl. Sci. Eng. 64 , p.892.	1977	11 17	Thermal - 0.95 keV Thermal - 0.073 MeV	
585	O. A. Wasson, Nucl. Sci. Eng. 81 , p.196.	1976	11	9.4 eV - 0.025 MeV	
542	C. Wagemans et al., Conf. on Nucl. Cross Sections for Technology, Knoxville, NBS Spec. Publ. 594, p.961.	1979	3	Thermal - 0.15 keV	
-----	---	------	----	-------------------------	--
533	L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 88 , p.567.	1984	27	0.15 keV - 0.095 MeV	
562	W. P. Poenitz, Nucl. Sci. Eng. 53 , p.370.	1974	10	0.034 - 0.25 MeV	

$^{235}\underline{\mathrm{U(n,f)}}^{10}\underline{\mathrm{B(n,\alpha_1)}}$

Set	Reference	Year	Data Values	Energy Range	Comments
538	G. W. Muradian et al., Conf. on Neutron Physics, Kiev, Vol. 3 , p.119.	1977	21	0.15 keV - 0.025 MeV	

²³⁸<u>U(n,f)/</u>²³⁵<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
845	B. I. Fursov et al., At. Energ. 43 , p.181.	1977	39	0.98 - 7.0 MeV	
819	W. P. Poenitz and R. J. Armani, J. Nucl. Energy 26 , p.483.	1972	3	2.0 - 3.0 MeV	

824	S. Cierjacks et al., Meeting on Fast Neutron Fission Cross Sections, Argonne Nat'l Lab. ANL-76-90, p.94.	1976	91	1.4 - 30 MeV	
826	M. S. Coates et al., Conf. on Nucl. Cross Sections for Technology, Washington, NBS Spec. Publ. 425, Vol. II , p.568, also private communication.	1975	224	0.63 - 22 MeV	
828	W. Blons et al., Private communication.	1977	194	0.53 - 4.0 MeV	
836	B. Adams et al., J. Nucl. Energy 14 , p.84.	1961	13	13 - 19 MeV	

$^{239}\underline{Pu(n,f)}^{6}\underline{Li(n,\alpha)}$

Set	Reference	Year	Data Values	Energy Range	Comments
547	C. Wagemans et al., Annals Nucl. Energy 7, p.495.	1980	14	Thermal - 4.5 keV	
535	L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 88 , p.567.	1984	27	0.15 keV - 0.095 MeV	

²³⁹<u>Pu(n,f)/</u>²³⁵<u>U(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
635	W. K. Letho, Nucl. Sci. Eng. 39 , p.361.	1970	27	Thermal - 0.024 MeV	
654	B. I. Fursov et al., At. Energ. 43 , p.261.	1977	79	0.024 - 7.4 MeV	
549	C. Wagemans et al., Annals Nucl. Energy 7, p.495.	1980	8	0.15 keV - 0.015 MeV	
536	L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 84 , p.248.	1983	124	Thermal - 21 MeV	

²³⁹Pu(n,f)/²³⁸U(n,f)

Set	Reference	Year	Data Values	Energy Range	Comments
837	B. Adams et al., J. Nucl. Energy 14, p.85.	1961	13	13 - 19 MeV	

Absolute Data of Sums of Cross Sections

⁶Li(tot)=⁶Li(n,t)+⁶Li(n,n)

Set	Reference	Year	Data Values	Energy Range	Comments
214	H. H. Knitter et al., EURATOM Report EUR-5726E.	1977	222	0.078 - 3.0 MeV	

			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	A CONTRACT OF A
218 219	A. B. Smith et al., Argonne Nat'l Lab. Report ANL/NDM-29.	1977	93 92	0.12 - 0.35 MeV 0.12 - 0.35 MeV	
220 221 222	P. Guenther et al., Argonne Nat'l Lab. Report ANL/NDM-52.	1980	76 60 62	0.55 - 4.7 MeV 0.98 - 4.7 MeV 0.98 - 4.7 MeV	See also Nucl. Phys. A373, 305(1982).
235	C. A. Uttley et al., Symp. on Neutron Standards and Flux Normalization, Argonne Nat'l Lab., p.80.	1970	373	0.1 - 0.88 MeV	
257	C. A. Goulding et al., US Nucl. Data Committee Report USNDC-3, p.161.	1972	122	0.71 - 2.0 MeV	
274 275 276 277	J. Harvey and N. Hill, Conf. on Nucl. Cross Sections and Technology, Washington, DC, NBS Spec. Publ. 425, p.244, and private communication.	1975	108 23 23 23	0.063 - 0.54 MeV 0.63 - 2.8 MeV 0.28 - 6.7 keV 0.011 - 0.24 keV	These data were included in the EDA fit and therefore excluded from the GMA fit.
229	J. W. Meadows and J. F. Whalen, Nucl. Sci. Eng. 48 , p.221.	1972	86	0.1 - 1.5 MeV	

$^{10}\underline{B}(n,\alpha)={}^{10}\underline{B}(n,\alpha_0)+{}^{10}\underline{B}(n,\alpha_1)$

Set	Reference	Year	Data Values	Energy Range	Comments
703	J. W. Meadows, Symp. on Neutron Standards and Flux Normalization, Argonne Nat'l Lab., p.129.	1970	1	Thermal	
708	G. H. Debus and P. J. DeBievre, J. Nucl. Energy 21 , p.373.	1967	1	Thermal	Data not used for GMA but included in the EDA fit.
121	E. A. Davis et al., Nucl. Phys. 27, p.448.	1961	100	0.22 - 7.9 MeV	
115	S. A. Cox and F. R. Pontet, J. Nucl. Energy 21, p.271.	1966	12	0.011 - 0.25 MeV	

${}^{10}\underline{B(tot)}={}^{10}\underline{B(n,\alpha_0)}+{}^{10}\underline{B(n,\alpha_1)}+{}^{10}\underline{B(n,n)}$

Set	Reference	Year	Data Values	Energy Range	Comments
180	G. F. Auchampaugh et al., Nucl. Sci. Eng. 69 , p.30.	1979	274	1.0 - 14 MeV	
181	N. G. Nereson, Los Alamos Nat'l Lab. Report LA-1655.	1954	26	2.8 - 9.7 MeV	
182	C. K. Bockelman et al., Phys. Rev. 84, p.69.	1951	197	0.02 - 3.4 MeV	
183	J. H. Coon et al., Phys. Rev. 88 , p.562.	1952	1	14 MeV	

185	R. L. Becker and H. H. Barschall, Phys. Rev. 102 , p.1384.	1956	67	4.4 - 8.6 MeV	
186	W. Rohrer, private communication, see Ann. Phys. 10 , p.455.	1960	41	3 keV - 0.082 MeV	
187	F. P. Mooring et al., Nucl. Phys. 82 , p.16.	1966	55	0.011 - 0.5 MeV	
188	G. J. Saffort et al., Phys. Rev. 119 , p.1291.	1960	10	0.0046 - 0.1 eV	
189	H. W. Schmitt et al., Nucl. Phys. 17 , p.109.	1960	82	0.019 - 0.04 eV	
191	K. Tsukada and O. Tanaka, unpublished.	1963	59	3.2 - 5.1 MeV	
192 193	R. R. Spencer et al., Nucl. Sci. Eng. 70, p.98.	1979	52 57	0.093 - 0.29 MeV 0.19 - 0.42 MeV	These data sets were included in the EDA fit and therefore excluded from the GMA fit.
194 195 196	K. M. Diment, Harwell Report AERE-R-5224.	1967	14 52 31	6 keV - 0.027 MeV 0.076 keV - 0.027 MeV 0.03 - 0.95	These data sets were included in the EDA fit and therefore excluded from the GMA fit.
190			51	MeV	

Shape Data of Sums of Cross Sections

¹⁰**B(n, \alpha)**

Set	Reference	Year	Data Values	Energy Range	Comments
100	S. J. Friesenhahn et al., Intelcom Radiation Technology Report INTEL-RT-7011-001.	1974	152	0.0024 - 1.7 MeV	
124	H. Bichsel and T. W. Bonner, Phys. Rev. 108, p.1025.	1957	98	0.02 - 4.8 MeV	
130	D. Bogart and L. L. Nichols, Nucl. Phys. A125, p.463.	1969	27	0.029 - 0.82 MeV	

¹⁰<u>B(tot)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
190	D. J. Hughes et al., Report WASH-745, p.9.	1958	49	0.054 keV - 0.013 MeV	

Absolute Ratio Data of Cross Section vs. the Sum of Cross Sections

$^{197}\underline{\mathrm{Au}(\mathbf{n},\boldsymbol{\gamma})}^{10}\underline{\mathrm{B}(\mathbf{n},\boldsymbol{\alpha})}$

Set	Reference	Year	Data Values	Energy Range	Comments
265	V. A. Konks et al., Zh. Eksp. Teor. Fiz. 46, p.80.	1964	3	0.017 - 0.041 MeV	Engl. translation in Sov. Phys. JETP 19 , p.59.

300	M. P. Fricke et al., Conf. on Nuclear Data for Reactors, Helsinki, STI/PUB/259, Vol. 2 , p.265.	1970	33	0.01 - 0.084 MeV	
304	R. Gwin et al., Nucl.	1976	4	0.015 -	
305	Sci. Eng. 59 , p. 79.		4	0.045 MeV 0.045 MeV	

$^{238}\underline{\mathrm{U}(\mathbf{n},\boldsymbol{\gamma})}^{10}\underline{\mathrm{B}(\mathbf{n},\boldsymbol{\alpha})}$

Set	Reference	Year	Data Values	Energy Range	Comments
408	G. DeSaussure et al., Nucl. Sci. Eng. 51, p.385.	1973	27	0.15 keV - 0.095 MeV	
423	N. Yamamuro et al., J. Nucl. Sci. Technology (Japan) 15 , p.637.	1978	1	24 keV	
400	M. P. Fricke et al., Conf. on Neutron Cross Sections and Technology, CONF- 710301, Vol. 1, p.252.	1971	16	1.5 keV - 0.075 MeV	
475	Yu. Ya. Stavisskii et al., Int'l Nucl. Data Committee Report INDC(CCP)-43/L, p.225.	1972	23	1.1 keV - 0.03 MeV	

Shape Ratio Data of Cross Section vs. the Sum of Cross Sections

$^{6}\underline{\text{Li}(n,t)}/^{10}\underline{B}(n,\alpha)$

Set	Reference	Year	Data Values	Energy Range	Comments
297	C. Bastian and H. Riemenschneider, Meeting on Nuclear Standard Reference Data, Geel, IAEA- TECDOC-335, p.118.	1984	101	2.7 eV - 0.4 MeV	
120	J. B. Czirr and A. D. Carlson, Conf. on Nucl. Cross Sections for Technology, Knoxville, NBS Spec. Publ. 594, p.84.	1979	17	1.1 eV - 0.79 keV	
131	M. J. Sowerby et al., J. Nucl. Energy 24 , p.323.	.1970	34	0.01 - 1.2 keV	
160	A. A. Bergman et al., Zh. Eksp. Teor. Fiz. 33 , p.9.	1957	39	9 eV - 2.6 keV	Engl. translation in Sov. Phys. JETP 6, p.6.

$^{235}\underline{\mathrm{U}(\mathbf{n,f})}^{10}\underline{\mathrm{B}(\mathbf{n},\alpha)}$

Set	Reference	Year	Data Values	Energy Range	Comments
732	C. D. Bowman	1963	2	Thermal, 9.4 eV	
731	A. J. Deruytter and C. Wagemans, J. Nucl. Energy 25 , p.263.	1971	2	Thermal, 9.4 eV	

730	G. DeSaussure et al., Conf. on Nuclear Data for Reactors, Paris, Vol. II, p.233.	1966	2	Thermal, 9.4 eV	These values are often quoted as the result of an ORNL/RPI cooperation.
578	See Ref. for set 730 above.	1966	6	0.15 - 4.5 keV	
718	J. Blons, Nucl. Sci. Eng. 51 , p.130.	1973	8	0.15 - 25 keV	
530	T. A. Mostavaya et al., Conf. on Neutron Physics, Kiev, Vol. 3 , p.30.	1980	26	0.15 keV - 0.095 MeV	
710	R. Gwin et al., Nucl. Sci Eng 88 p 37	1984	2	Thermal, 9.4 eV	
711	50. Eng. 66, p.57.		14	Thermal - 0.025 MeV	
712			14	Thermal - 0.025 MeV	
713			2	Thermal, 9.4 eV	
714			2	Thermal, 9.4 eV	
541	C. Wagemans et al.,	1979	3	Thermal -	
543	Sections for Technology, Knoxville, NBS Spec. Publ. 594, p.961.		20	0.15 - 25 keV	
544	C. Wagemans and A. J. Deruytter, Annals Nucl. Energy 3 , p.437.	1976	20	0.15 - 25 keV	
545 546	C. Wagemans and A. J. Deruytter, Meeting on Nuclear Standard Reference Data, Geel, IAEA-TECDOC-335, p.156.	1984	20 2	0.15 - 25 keV Thermal, 9.4 eV	

550	A. A. Bergman et al., Conf. on Neutron	1980	23	Thermal - 0.045 MeV	
552	p.49.		23	0.045 MeV	
532	L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 88 , p.567.	1984	11	Thermal - 0.95 keV	
515	K. D. Zhuravlev et al., At. Energ. 42 , p.56.	1977	5	Thermal - 0.14 MeV	
513	R. B. Perez et al., Nucl. Sci. Eng. 55, p.203.	1974	17	2.5 - 95 keV	
514	R. B. Perez et al., Nucl. Sci. Eng. 52 , p.46.	1973	18	0.15 - 9.5 keV	
728	A. Michaudon et al., J. Phys. Radium 21 , p429.	1960	6	0.15 - 4.5 keV	
727	Van Shi-di et al., Conf. on Physics and Chemistry of Fission, Salzburg, p.287.	1965	25	0.15 - 25 keV	

 $^{239}\underline{Pu(n,f)}^{10}\underline{B(n,\alpha)}$

ŧ

Set	Reference	Year	Data Values	Energy Range	Comments
719	J. Blons, Nucl. Sci. Eng. 51 , p.130.	1973	20	0.15 - 25 keV	
548	C. Wagemans et al., Annals Nucl. Energy 7, p.495.	1980	20	0.15 - 25 keV	
551	A. A. Bergman et al., Conf. on Neutron Physics, Kiev, Vol. 3 p.49.	1980	23	Thermal - 45 keV	

No. of Concession, Name					
534	L. W. Weston and J. H. Todd, Nucl. Sci. Eng. 88 , p.567.	1984	9	0.15 - 0.95 keV	Thermal value eliminated based on NSE115, 164 (1993) and NSE115, 173 (1993).
715	L. W. Weston and J. H. Todd, Nucl. Sci. Eng 115 , p. 164.	1993	10	Thermal - 1.0 keV	New data added to the file.
630	K. D. Zhuravlev et al., At. Energ. 42 , p.56.	1977	5	Thermal - 0.14 MeV	Engl. translation in Sov. J. At. En. 42 , p.62.
660	Yu. V. Ryabov, At.	1971	27	0.15 - 95 IroV	
661	Energ. 46, p.154.		45	0.15 - 92	
662			22	0.15 - 12 keV	
663			38	0.15 - 35 keV	
676	R. Gwin et al., Nucl. Sci. Eng. 61 , p.116.	1976	29 .	Thermal - 0.15 MeV	
677	L. W. Weston and J. H. Todd, private communication to R. Chrien.	1972	18	0.15 - 9.5 keV	
678	L. Bollinger et al., Conf. on Peaceful Uses of Atomic Energy, Geneva, Vol. 15 , p.127.	1958	18	0.15 - 9.5 keV	
679	G. D. James, Conf. on Nuclear Data for Reactors, Helsinki, STI/PUB/259, Vol. I, p.267.	1970	18	0.15 - 15 keV	

680	M. Schomberg et al., Conf. on Nuclear Data for Reactors, Helsinki, STI/PUB/259, Vol. I, p.289.	1970	20	0.15 - 25 keV	
681	R. Gwin et al., Nucl. Sci Eng 45 p 25	1971	18	Thermal - 15 keV	
682	561. Elig. 40, p.20.		20	Thermal - 15 keV	

Cross Sections Averaged over the ²⁵²Cf Spontaneous Fission Neutron Spectrum

²³⁵<u>U(n,f) and</u>²³⁹<u>Pu(n,f)</u>

Set	Reference	Year	Data Values	Energy Range	Comments
565 U 641 Pu	M. C. Davis and G. F. Knoll, Annals Nucl. Energy 5, p.583.	1978	1	Fission Spectrum	
575 U	V. M. Adamov et al., Int'l Nucl. Data Comm. Report INDC(CCP)- 180L.	1982	1	Fission Spectrum	
576 U 674 Pu	H. T. Heaton et al., Memo to G. Grundl, Trans. Amer. Nucl. Soc. 44, p.533.	1982 1983	1	Fission Spectrum	See also Conf on Neutron Cross Sections for Technology, NBS Spec. Publ. 425, pp. 266 and 270 (1975).
517 U 614 Pu	I. G. Schroeder et al, Meeting on Nucl. Standard Reference Data, Geel, IAEA- TECDOC-335, p.320.	1984	1	Fission Spectrum	Also private communication.

Thermal Constants

Set	E. J. Axton, Ref. 9	Year	Data Values	Energy Range	Comments
	Thermal Parameter				
910	<u>g_γ(²³³U)</u>	1986	1	Thermal	
911	g _f (²³³ U)	1986	1	Thermal	
912	$\sigma_{n,n}^{(233)}U)$	1986	1	Thermal	
913	$\sigma_{n.f}^{(233}U)$	1986	1	Thermal	
914	$\sigma_{n,\gamma}(^{233}U)$	1986	1	Thermal	······································
915	v-bar(²³³ U)	1986	1	Thermal	
916	g _y (²³⁵ U)	1986	1	Thermal	
917	g _f (²³⁵ U)	1986	1	Thermal	
918	$\sigma_{n,n}^{(235)}U)$	1986	1	Thermal	
920	$\sigma_{n,\gamma}(^{235}\text{U})$	1986	1	Thermal	
921	v-bar(²³⁵ U)	1986	1	Thermal	
922	$g_{\gamma}(^{239}\text{Pu})$	1986	1	Thermal	
923	g _f (²³⁹ Pu)	1986	1	Thermal	
924	$\sigma_{n,n}^{(239}Pu)$	1986	1	Thermal	
926	$\sigma_{n,\gamma}(^{239}\text{Pu})$	1986	1	Thermal	
927	v-bar(²³⁹ Pu)	1986	1	Thermal	
928	$g_{\gamma}(^{241}Pu)$	1986	1	Thermal	
929	g _f (²⁴¹ Pu)	1986	1	Thermal	
930	$\sigma_{n,n}^{(241}Pu)$	1986	1	Thermal	
931	$\sigma_{n.f}(^{241}Pu)$	1986	1	Thermal	
932	$\sigma_{n,\gamma}(^{241}Pu)$	1986	1	Thermal	
933	v-bar(²⁴¹ Pu)	1986	1	Thermal	
934	v-bar(²⁵² Cf)	1986	1	Thermal	

.

References

1. The Evaluated Nuclear Data File ENDF. For more information contact the National Nuclear Data Center, Brookhaven National Laboratory, Bldg. 197-D, Upton, NY 11973.

2. Proc. Conf. on Nuclear Data Evaluation Methods and Procedures, Brookhaven National Laboratory Report BLN-NCS-51363, Vol. I and II, B.A. Magurno and S. Pearlstein, Editors (1981).

3. W.P. Poenitz, ibid. Ref. 2, Vol. I, p.249 (1981).

4. G.M. Hale, ibid. Ref. 2, Vol. II, p.509 (1981).

5. R.W. Peelle, Memorandum to the Cross Section Evaluation Working Group (1986), see National Institute of Standards and Technology Report NISTIR 5177, Appendix C (1993).

6. A.D. Carlson, W.P. Poenitz, G.M. Hale and R.W. Peelle, Proc. Adv. Group Meeting on Nucl. Standard Reference Data, Int'l Atomic Energy Agency Report IAEA-TECDOC-335, p. 77 (1984).

7. A.D. Carlson, W.P. Poenitz, G.M. Hale, and R.W. Peelle, Proc. Int'l Conf. on Nucl. Data for Basic and Applied Science, P. Young et al. Eds., Gordon and Breach, Vol.2, p. 1429 (1986).

8. A.D. Carlson et al., 'The ENDF/B-VI Neutron Cross Section Measurement Standards', Nat'l Institute of Standards and Technology Report NISTIR 5177 (1993).

9. E.J. Axton, Central Bureau for Nuclear Measurements Report GE/PH/01/86, and private communications (1986).

10. M.J. Sowerby, J. Nucl. Energy 24, 323 (1970).

11. D.C. Dodder and G.M. Hale, private communication to CSEWG (1987).

12. W.P. Poenitz, ibid. Ref. 6, p. 426 (1984).

13. S.L. Meyer, "Data Analysis for Scientists and Engineers", John Wiley and Sons, Inc. (1975).

14. W.P. Poenitz and A.D. Carlson, Int.l Symp. on Nuclear Data Evaluation Methodology, C.L. Dunford, Ed., p. 75 (1992).

15. L.W. Weston et al., Nucl. Sci. Eng. 115, 164 (1993).

16. C. Wagemans et al., Nucl. Sci. Eng. 115, 173 (1993).

17. K. Merla et al., Proc. Conf. on Nucl. Data for Science and Technology, Juelich, p. 510 (1991).

M98004912

Report Number (14) AUL/NDM--139

199700 Publ. Date (11) 9 R Sponsor Code (18) ER DOE UC Category (19)

DOE