orm

OAK RIDGE NATIONAL LABORATORY

ORELA $\begin{gathered}\text { klight Pah } \\ \text { In }\end{gathered}$ Determinations of lis Effective Length ws Energy, Experimental Energies, and Energy Resoluxion Function and Their Uncertainties

D. C. Larson:
N. M. Larson
J. A. Harvey ?

```
Printed in the United States of America. Available from National Technical Information Service
U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 NTIS price codes--Printed Copy: A06; Microfiche A01
```

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Engineering Physics and Mathematics Division

ORELA FLIGHT PATH 1: DETERMINATIONS OF ITS EFFECTIVE LENGTH vs ENERGY, EXPERIMENTAL ENERGIES, AND ENERGY RESOLUTION FUNCTION AND THEIR UNCERTAINTIES

D. C. Larson, N. M. Larson,* and J. A. Harvey

Manuscript Completed: April 15, 1984
Date Published - June 1984
*Computer Sciences

NOTICE This document contains information of a preliminary nature. It is subject to revision or correction and therefore does not represent a final report.

Prepared by the OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37831
operated by
Martin Marietta Energy Systems, Inc.
Under Contract No. DE-AC05-840R21400
for the
Division of Basic Energy Sciences
U.S. DEPARTMENT OF ENERGY

CONTENTS

Abstract 1

1. Introduction and Definitions 1
1.1 Method and Definitions 2
2. General Properties of Flight Path 1 6
3. Properties Associated With the Flight-Path Length 6
3.1 Distribution Function for x_{1} : The Contribution to the Flight-Path Length From the Target 9
3.1.1 Mean Value l_{1} for Distribution of x_{1} 12
3.1.2 Uncertainty in l_{1} 12
3.1.3 Higher Moments of the Target Distribution Function 14
3.1.4 Width ω_{l} of Target Distribution Function 16
3.1.5 Uncertainty on $\omega_{l_{1}}$ 17
3.2 Distribution Function for x_{2} : The Contribution to the Flight-Path Length From the Flight Tube 18
3.3 Distribution Function for x_{3} : The Contribution to the Flight-Path Length From the Detector 19
3.3.1 Mean Value l_{3} for Distribution of x_{3} 20
3.3.2 Uncertainty in l_{3} 20
3.3.3 Higher Moments of the Detector Distribution Function 21
3.3.4 Widths $\omega_{l_{3}}$ of Detector Distribution Function 22
3.3.5 Uncertainty on ω_{l}, 22
3.4 Distribution Function for x : The Total Flight-Path Length 23
3.4.1 Mean Value l for Distribution of x 23
3.4.2 Uncertainty in l 24
3.4.3 Higher Moments of the Flight-Path Length Distribution Function 25
3.4.4 Width ω_{l} of Flight-Path Length Distribution Function 25
3.4.5 Uncertainty on ω_{l} 27
4. Properties Associated With the Flight Time 27
4.1 Distribution Function for t_{1} : The ORELA Pulse Width 28
4.1.1 Mean Value t_{1} for Distribution of τ_{1} 28
4.1.2 Uncertainty in t_{1} 29
4.1.3 Higher Moments of the Pulse Width Distribution Function 29
4.1.4 Width $\omega_{t_{1}}$ of Pulse Width Distribution Function 29
4.1.5 Uncertainty on $\omega_{t_{1}}$ 29
4.2 Distribution Function for t_{2} : The Channel Width 30
4.2.1 Mean Value t_{2} for Distribution of τ_{2} 30
4.2.2 Uncertainty in t_{2} 30
4.2.3 Higher Moments of the Channel Width Distribution Function 30
4.2.4 Width $\omega_{t_{2}}$ of Channel Width Distribution Function 31
4.2.5 Uncertainty on $\omega_{t_{2}}$ 31
4.3 Distribution Function for τ : The Total Flight Time 31
4.3.1 Mean Value t for Distribution of τ 32
4.3.2 Uncertainty in t 32
4.3.3 Higher Moments of the Total Flight-Time Distribution Function 33
4.3.4 Width ω_{t} of Total Flight-Time Distribution Function 34
4.3.5 Uncertainty on ω_{t} 34
5. Properties of the Energy Scale and the Resolution Function 35
5.1 Distribution Function of ϵ : The Energy Scale 35
5.1.1 Mean Value E for Distribution of ϵ 35
5.1.2 Uncertainty in E 37
5.1.3 Higher Moments of the Energy Distribution Function 37
5.1.4 Width ω_{E} of Energy Distribution Function: Identification with the Energy Resolution Function 39
5.1.5 Uncertainty on ω_{E} 40
5.2 Comparison of the Resolution Function with Experiment 41
5.3 Computer Program FLIPI 42
6. Summary and Conclusions 43
Acknowledgements 44
References 44
Appendix A. Moments of Distribution Functions 47
Appendix B. Expectation Values of Negative Powers of τ 51
Appendix C. FORTRAN Listing of FLIP1 53
Appendix D. Output From FLIPI 83

ORELA FLIGHT PATH 1: DETERMINATIONS OF ITS EFFECTIVE LENGTH vs ENERGY, EXPERIMENTAL ENERGIES, AND ENERGY RESOLUTION FUNCTION AND THEIR UNCERTAINTIES

D. C. Larson, N. M. Larson, and J. A. Harvey

Abstract

Flight path 1 at ORELA is nominally 200 m in length and has been extensively used for neutron transmission and scattering measurements. Due to moderation effects in the neutron-producing target and to the finite thickness of the neutron detector, the effective flight-path length is a function of neutron energy. In this report, we determine the effective length as a function of energy, its uncertainty, and time-of-flight energies and their uncertainties. Finally, we determine the resolution function and its uncertainty and compare the width of this resolution function with an experimental determination of this quantity.

1. INTRODUCTION AND DEFINITIONS

Flight path 1 at ORELA has been used for neutron transmission and scattering measurements on many materials and isotopes. It has a nominal length of 200 m , with intermediate flight-path stations at 80 and 18 m . With the recent development of an R-matrix code, SAMMY (LA80), based on Bayes' equations, more in-house data analyses are being performed. Such analyses demand precise information for the flight-path length, timing parameters, and the resolution function, and their uncertainties, in order to obtain reliable resonance parameters and realistic uncertainties. This report is a scoping study to develop this information using approximate analytic models for the neutron-producing target, the NE110 proton recoil detector, the neutron burst shape, and the timing channels. We evaluate energy dependent effects which contribute to the effective flight-path length and resolution function and give a first-order treatment of those which appear to be important. Finally, we note those areas which should be treated in more depth. This report is a companion to our report on the measurement of the total cross section of natural nickel (LA83), and the experimental parameters used in this report are consistent with the experimental configuration used for the nickel measurement.

In Sect. 2 we describe the general properties of flight path 1 , including a description of a recent laser measurement of the drift tube length.

In Sect. 3 we develop distribution functions for components of the flight-path length from the target and the detector, and we use these to evaluate the first moment (mean value of the length) and second moment or width (variance) of the distributions. Uncertainties of the moments are also evaluated.

In Sect. 4 we concern ourselves with properties associated with the flight time. We develop distribution functions for the ORELA pulse width and the channel width of the data-acquisition program. Means and variances of these distributions are computed, along with their uncertainties.

In Sect. 5 the results from Sects. 3 and 4 are combined to develop a distribution function for the time-of-flight ($t-0$-f $)$ energy. The first moment of this energy distribution function gives the mean $t-0$ - f energy, and we identify the second moment with the width of the energy resolution function. Uncertainties of the mean energy and the resolution function parameters are also derived. Finally, in this section we compare parameters of our resolution function with those extracted from a recent analysis of experimental data.

Section 6 is a summary of what we have learned in this scoping study. Also noted are areas where more thorough treatments are called for.

1.1 METHOD AND DEFINITIONS

We approach this problem by developing analytic models for the distribution functions of the flightpath length and flight time. From these distribution functions we obtain the desired results for the energy scale and energy-resolution function and their associated uncertainties. Considering as an example the flight-path length, we identify the length with the mean value of the convolution of the various distribution functions associated with the effective flight-path length. The uncertainty in the length is identified as the uncertainty in the mean value. The contribution to the energy resolution function from the flight path is identified with the widths of the above distributions, and the uncertainties in the resolution functions result from the uncertainties associated with the distribution widths. Quantities associated with the flight time are similarly obtained from the distribution functions for the components of the flight time. Figures 1 and 2 are graphic representations of the various distributions, means and uncertaintics.

In this work we will be dealing with distributions which describe physical properties of the target, detector, and beam from the accelerator. We now explicitly state our definitions and rules for calculating mean values and variances associated with these distributions and uncertainties on the means and variances. We feel that it is important to be very clear on this point. For example, looking ahead we will find that to first order, the expressions for the energy uncertainty ΔE and the resolution function width ω_{E} are identical in form; however, corresponding parameters in the two expressions have very different meanings. For this reason, we consistently apply the following definitions and methods of calculating the various means, variances, and uncertainties.

Each distribution, $\rho(y)$, where y is an arbitrary parameter or set of parameters, will be expressed in an appropriate analytic form utilizing parameters which can be either calculated or estimated. We define the mean value of a quantity (assumed to be the experimentally observed value) as

$$
\begin{equation*}
\langle y\rangle=\int y \rho(y) d y \tag{1.1.1}
\end{equation*}
$$

and the variance of y (which is a measure of the width of the distribution) as

$$
\begin{equation*}
\omega_{y}^{2}=\left\langle(y-\langle y\rangle)^{2}\right\rangle \tag{1.1.2}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\omega_{y}^{2}=\left\langle y^{2}\right\rangle-\langle y\rangle^{2} \tag{1.1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\left\langle y^{2}\right\rangle=\int y^{2} \rho(y) d y \tag{1.1.4}
\end{equation*}
$$

and $\langle y\rangle^{2}$ is obtained from Eq. (1.1.1).

Fig. 1. This figure schematically illustrates the various quantities and their uncertainties associated with the target and detector. l_{1} is the mean distance from the effective point of neutron production to the front face of the Ta target. The distribution is a superposition of a Gaussian for the water and a parabola for the Ta for a neutron energy of 100 keV (see text). l_{2} is the mean distance from the front face of the target to the front face of the detector, and l_{3} is the mean distance from the front face of the detector to the first collision. Widths of the target and detector distributions are also shown. $\omega_{l_{1}}$ is the width of the neutron distribution associated with the target, and $\omega_{l_{3}}$ is the width of the distribution associated with the detector. Uncertainties (standard deviations) for the mean lengths $\Delta l_{1}, \Delta l_{2}$, and Δl_{3}, as well as for the widths $\Delta \omega_{l_{1}}$ and $\Delta \omega_{l_{3}}$, are also illustrated. The Ta contribution to the neutron production is offset from the center of the incident electron beam by s (6 mm for $1-\mathrm{MeV}$ neutrons), the correction for multiple scattering in the Ta (see text).

Fig. 2. This figure schematically serves to define the various times used in this report as well as the time distributions. The ORELA pulse is represented by a Gaussian of width $\omega_{1} \pm \Delta \omega_{1}$ and mean value $t_{1} \pm \Delta t_{1}$ (t_{1} is taken as zero in the text). The flight time t is the flight time of the neutron from the target to the detector. t_{2} is the center of a time channel defined by the data-acquisition program, and ω_{2} is the width (standard deviation) of this channel. t_{n} is the "observed flight time" of a neutron event in the data-acquisition system. Uncertainties in the various times and widths are also illustrated.

As noted earlier, in this work we will develop distribution functions for each component of the flight-path length and flight times. From the mean values of the flight-path length and flight-time distributions, we can calculate the observed mean energy E, and from the widths (and higher moments) of the distributions associated with the flight-path length and flight times we can calculate the width (square root of variance) ω_{E} of the energy resolution function. We can also calculate the uncertainties associated with the energy scale and resolution function, as well as the correlations among the parameters of the distributions, by calculating small increments of E and ω_{E}. In particular, for the energy uncertainty we will generate a small increment δE via the chain rule

$$
\begin{equation*}
\delta E=\sum_{i} \frac{\partial E}{\partial \rho_{i}} \delta p_{i} \tag{1.1.5}
\end{equation*}
$$

where the p_{i} are the values of the parameters in the expression for E, and δp_{i} are small increments of those parameters. The variance ΔE^{2} (squared uncertainty) on E is then given by forming the product

$$
\begin{equation*}
\langle\delta E \delta E\rangle \cong \Delta E^{2} . \tag{1.1.6}
\end{equation*}
$$

The energy and its uncertainty is then given by $E \pm \Delta E$. Similarly, the uncertainty associated with the width of the resolution function is obtained from

$$
\begin{equation*}
\delta\left(\omega_{E}\right)=\sum_{i} \frac{\partial \omega_{E}}{\partial p_{i}} \quad \delta p_{i} \tag{1.1.7}
\end{equation*}
$$

and the standard deviation $\Delta \omega_{E}$ is obtained from

$$
\begin{equation*}
\Delta \omega_{E}=\sqrt{\left\langle\delta \omega_{E} \delta \omega_{E}\right\rangle} \tag{1.1.8}
\end{equation*}
$$

Our evaluation of the quantities $\Delta E, \omega_{E}$, and $\Delta \omega_{E}$ (Sect. 5) involves second, third, and fourth moments of the length- and time-distribution functions as well as the uncertainties of those moments. The rest of this report is concerned with developing approximations for the various distribution functions $p(y)$ and evaluating the means, widths, uncertainties, and higher moments.

Before proceeding to the task of developing the distribution functions, we digress to point out that the term "distribution function" often has another meaning when used in an uncertainty analysis context. We are using the term to refer to a physical property of the experimental system. However, the parameters p_{i} which occur in the analytic expressions for these distributions are also characterized by a mean value and an uncertainty. The parameters p_{i} are distributed according to some probability density function ($p d f$). Nevertheless, when evaluating the parameters p_{i} and their uncertainties Δp_{i}, we need only give the mean values and standard deviations and do not require knowledge of the explicit form of the pdf.

2. GENERAL PROPERTIES OF FLIGHT PATH 1

Flight path 1 is positioned at 90° with respect to the incident electron beam and is perpendicular to the face of the neutron-producing target (see Fig. 3). Three computer-controlled sample changers are available, located at $5 \mathrm{~m}, 9 \mathrm{~m}$, and 10 m from the target. Two changers have five paddles and one has four positions available for filters or samples. Various collimators are inserted at -8 m from the target to view neutrons from only the tantalum target, only the water moderator (above the tantalum), or a combination of the two sources. We treat the latter case in this report. The neutron spectrum from the tantalum has a higher average energy than that from the water moderator. A rectangular (5.4 by 4.8 cm) shadow bar which consists of 2.9 cm uranium, 2.5 cm thorium, and 2.5 cm tantalum is normally located at -4 m from the source. The thickness and composition of the shadow bar have been chosen to reduce the gamma flash from the tantalum to an acceptable intensity, while still allowing neutrons from the tantalum to reach the detector.

The neutron time-of-flight spectrum from the bare tantalum target has been compared to that from the surrounding water moderator (HA75). The spectral comparisons are shown in Fig. 4. After renormalizing those results to collimator sizes, filters, shadow bars, and neutron production as a function of distance from the target center for the nickel measurement (LA83), we find that the neutron intensities from the water moderator and from the tantalum metal are equal at about 300 keV , with the tantalum target producing more neutrons at 1 MeV by a factor of about 10 . The water-moderated neutrons have significantly greater intensity below -100 keV , since the production cross section for neutrons in the tantalum is decreasing with decreasing energy, and multiple scattering is increasing since the tantalum target is >1 mean-free-path thick for neutrons less than $\sim 100 \mathrm{keV}$.

For this report we need an accurate measurement of the length of the $200-\mathrm{m}$ flight path. In March 1983 a Hewlett-Packard electronic distance meter (laser) was used to measure distances along the $200-\mathrm{m}$ flight path. This measurement and analysis is detailed in (LA84). At that time we were not able to measure directly to the target center and had to satisfy ourselves with measurements to various benchmarks along the $200-\mathrm{m}$ flight path and to the $20-\mathrm{m}$ station, which is on line with, but on the other side of, the target from the $200-\mathrm{m}$ flight path. Sufficient measurements were taken to determine the offset of the measuring device, and the statistical uncertainty associated with the measurements. Combining the laser results with results from engineering drawings (HA 69) which give distances from the center of the target room to existing benchmarks allowed us to determine a mean flight-path length from the center of the target room to the east benchmark at the $200-\mathrm{m}$ station. In this analysis, provision was made for the possibility that the target is not located perfectly at the center of the target room. The mean value of this displacement parameter was taken as zero, with an uncertainty of ± 2 mm . An uncertainty analysis using Bayes' equations and including correlations introduced by the measurement process provided the uncertainty. The preliminary result is $201858.6 \pm 4.0 \mathrm{~mm}$.

3. PROPERTIES ASSOCIATED WTHH THE FLIGHT-PATH LENGTH

The total flight-path length l can be separated into three components (see Fig. 1): (1) l_{1}, the mean distance from the point where the neutron is "produced" to the front face of the neutron-producing target; (2) l_{2}, the distance from the face of the target to the face of the detector; and (3) l_{3}, the distance from the face of the detector to the point of the first collision. Each component will be discussed separately in Sects. 3.1, 3.2, and 3.3, and the combined flight-path length is discussed in Sect. 3.4.

Fig. 3. This figure is an illustration of the ORELA Ta target. The 200-m flight path is in the direction of the neutron arrows, perpendicular to the face of the target.

Fig. 4. This figure is an illustration of the measured flux as a function of neutron energy at 200 m from two different areas of the target (Fig. 3) and from a separate Be block target which is not treated in this report. The "Ta target" spectrum results from using a collimator which views only the Ta plates of the target, while the " $\mathrm{H}_{2} \mathrm{O}$ moderator" spectrum results from using a collimator which views only neutrons emanating from the water moderator above the Ta plates. These spectral measurements were done with a different experimental configuration than that treated in the present work; however, the present analysis has been normalized for the different filters, collimator sizes, etc., used for the present work (see text). In particular, for the present analysis we have a larger collimator which views both the Ta and the water moderator, and we used a "thin" shadow bar to reduce the intensity of the gamma flash and neutrons emanating from electrons striking the Ta plates. This figure and analysis served to provide the "crossover energy" E_{m}, where the spectra from the $T a$ and $\mathrm{H}_{2} \mathrm{O}$ have approximately equal intensity. For the present experimental configuration, this was found to be $\sim 300 \pm 90 \mathrm{keV}$.

3.1 DISTRIBUTION FUNCTION FOR x_{1} : THE CONTRIBUTION TO THE FLIGHT-PATH LENGTH FROM THE TARGET

The first component l_{1} of the total flight-path length l is the most difficult to assess since in the experiments of immediate concern we view neutrons both from the tantalum metal target and from the cooling-water moderator surrounding the target. For the nickel measurement, the $7.6-\mathrm{cm}$-diam collimator at 8 m views $45.4 \mathrm{~cm}^{2}$ of the target, of which $20.8 \mathrm{~cm}^{2}$ is the tantalum and the remaining $24.6 \mathrm{~cm}^{2}$ is water moderator. The cross-sectional area of the shadow bar is $25.9 \mathrm{~cm}^{2}$ and thus shadows the tantalum target plus some of the water moderator. Neutrons which emanate from the tantalum target are assumed to be born near the centerline of the target (along the direction of the incident electron beam, see Figs. 1 and 3). For these neutrons, the length $W / 2$ from the center of the tantalum target to the target face (from where l_{1} is measured) is 18.3 mm and is assumed to be energy independent. However, scattering of the primary neutrons in the Ta target changes the distribution of neutrons leaving the exit surface of the Ta target. To estimate these effects, we consider what happens to $1-\mathrm{MeV}$ neutrons produced in the Ta by the electron beam. We assume a value of $\sigma_{T a}=7.56 \mathrm{~b}$ for the following approximate calculation. The unscattered neutrons produced at the center of the Ta target moving in the direction of the detector at 200 m escape with a 47% probability. These primary neutrons have a mean value length of $W / 2=18.3 \mathrm{~mm}$. Numerical analytic calculations have been made to estimate the contributions to the effective flight-path length $q=W / 2+s$ of the scattered neutrons in the Ta target. The intensity of singly scattered neutrons in the direction of the detector is -60% of the unscattered neutron intensity. Combining the unscattered and first scattered neutrons gives a value of s $=3.3 \mathrm{~mm}$. Estimating the contribution of higher order scattering (to eighth order) approximately doubles this correction to 6 mm . In this work we use a value of $s=6 \mathrm{~mm}$ with $\Delta s=30 \%$, giving $q=$ $W / 2+s=24.3 \mathrm{~mm}$. We also note that the correction factor s is expected to be energy dependent; however, that complication is not treated in this work. In addition, the possibility that the electron beam is not centered about $W / 2$ must be considered. For instance, if the electron beam strikes the target between $W / 2$ and the front face, the correction s due to multiple scattering in the Ta may be reduced. To account for this possibility, we add another parameter Z, which we assume has a mean value $Z=0$, but with the uncertainty $\Delta Z= \pm 2 \mathrm{~mm}$. Thus, finally $q=W / 2+s+Z$.

The neutrons which come from the water moderator are also difficult to characterize since the moderation process produces a distribution of neutron delay times. These delay time distributions are conventionally converted to distributions of equivalent moderation distances d, which are the product of delay times and escape velocities. The mean equivalent moderation distance d for the ORELA target is described in (CO83). The quantity d is energy-dependent and increases with energy according to

$$
\begin{equation*}
d(E)=22.8-1.60 \times \ln E+0.283 \times(\ln E)^{2}, \tag{3.1.1}
\end{equation*}
$$

where d is in mm and E in eV . This equation is quoted to be valid for 10 -ev to $1-\mathrm{MeV}$ neutrons which come from the water moderator (CO83). A calculation similar to this should be done for the Ta.

We now see that for the energy region from -1 keV to 1 MeV (a region of interest for resonance parameter analysis) we have an energy-dependent flight-path length, since useful neutrons come from both the tantalum and the water sources. For the case of $300-\mathrm{keV}$ neutrons emerging from the face of the target (recall that both sources contribute about equally at 300 keV), those neutrons coming from the tantalum target have a mean effective flight-path length of 24.3 mm , while those coming from the water moderator have a mean effective flight-path length of 47.6 mm . Thus, for the water-moderated neutrons, the effective flight path is $\sim 23 \mathrm{~mm}$ longer than for the neutrons which come directly from the tantalum.

We now derive a distribution function for the production of neutrons from the target. If we let $\rho_{l}\left(x_{1}\right)$ describe the distribution of neutrons as a function of x_{1}, the distance from the front face of the target measured in the direction away from the detector, we can write

$$
\begin{equation*}
\rho_{l_{1}}\left(E, x_{1}\right)=f_{W}(E) \rho_{W}\left(E, x_{1}\right)+f_{T}(E) \rho_{T}\left(x_{1}\right), \tag{3.1.2}
\end{equation*}
$$

where $f_{W}(E)$ and $f_{T}(E)$ represent the fraction of neutrons originating in the water moderator and in the tantalum target respectively for energy $E . \quad \rho_{W}\left(E, x_{1}\right)$ and $\rho_{T}\left(x_{1}\right)$ represent the effective spatial distributions of neutrons originating in the water and tantalum, respectively. Note that for water the distribution is a function of energy and position, while the distribution from the tantalum is assumed to be independent of energy.

We somewhat arbitrarily specify the energy dependence of the fractions $f_{W}(E)$ and $f_{T}(E)$ as

$$
\begin{equation*}
f_{W}(E)=\frac{2}{1+e^{\frac{E \ln 3}{E_{m}}}}, \tag{3.1.3}
\end{equation*}
$$

with $E_{m}=300 \mathrm{keV}$ and

$$
\begin{equation*}
f_{T}(E)=1 \cdots f_{W}(E) \tag{3.1.4}
\end{equation*}
$$

Note that this choice gives

$$
\begin{gathered}
f_{W}(E=0)=1 \quad, \quad f_{T}(E=0)=0 \\
f_{W}\left(E=E_{m}\right)=0.5 \quad, \quad f_{T}\left(E=E_{m}\right)=0.5, \\
f_{W}(E=1 \mathrm{MeV})=0.05 \quad, \quad f_{T}(E=1 \mathrm{MeV})=0.95 ;
\end{gathered}
$$

i.e., this choice for the two fractions is consistent with the energy dependence of the observed spectra from the tantalum and water (Fig. 4).

For $\rho_{W}\left(E, x_{1}\right)$, we choose a Gaussian distribution centered at $d(E)$, with a standard deviation width $\omega_{W}(E)$. The distributions actually given in (CO83) are slightly asymmetric, and are described by the functional form $x^{2} e^{-x}$, but we ignore that complication in this work. Thus

$$
\begin{equation*}
\rho_{W}\left(E, x_{1}\right)=\frac{1}{\omega_{W} \sqrt{2 \pi}} e^{-\frac{\left(x_{1}-d\right)^{2}}{2 \omega_{W}^{2}}} \tag{3.1.5}
\end{equation*}
$$

where the mean value is calculated from Eq. (1.1.1).

$$
\begin{equation*}
\left\langle x_{1}\right\rangle_{W}=d(E) \tag{3.1.6}
\end{equation*}
$$

with $d(E)$ given in Eq. (3.1.1). The variance of the distribution is calculated from Eq. (1.1.2):

$$
\begin{equation*}
\left\langle\left(x_{1}-\left\langle x_{1}\right\rangle\right)^{2}\right\rangle_{W}=\omega_{W}^{2}(E) \tag{3.1.7}
\end{equation*}
$$

An expression for $\omega_{W}(E)$ was obtained by fitting a curve to the square root of values given in the "Var $\mathrm{d}^{\text {n }}$ column of Table 1 of (CO83):

$$
\begin{equation*}
\omega_{W}(E)=10.0-0.63 \times \ln E+0.112 \times(\ln E)^{2} \quad, \quad E \text { in } \mathrm{eV} \tag{3.1.8}
\end{equation*}
$$

We now develop an expression for $\rho_{T}\left(x_{1}\right)$, the distribution function for neutrons from the tantalum. The electron beam strikes the tantalum target directly. Thus for $\rho_{T}\left(x_{1}\right)$ we assume that a uniform electron beam of radius $r(=9.2 \mathrm{~mm})$ (LE70) is incident on the tantalum plates of the target, and we find

$$
\rho_{T}\left(x_{1}\right)=\left\{\begin{array}{l}
\frac{2}{\pi r^{2}}\left[r^{2}-\left(q-x_{1}\right)^{2}\right]^{1 / 2} \text { for }\left|\mathrm{x}_{1}-\mathrm{q}\right| \leqslant \mathrm{r} \tag{3.1.9}\\
0 \text { otherwise }
\end{array}\right.
$$

where $q=W / 2+s+Z, W$ is the width of the tantalum target ($=36.6 \mathrm{~mm}$), $s(6 \mathrm{~mm})$ is the correction for multiple scattering and attenuation in the tantalum, and Z is the possible offset of the electron beam from the center of the target $(Z=0)$. From this distribution and Eq. (1.1.1) we find the mean value

$$
\begin{equation*}
\left\langle x_{1}\right\rangle_{T}=q, \tag{3.1.10}
\end{equation*}
$$

and from Eq. (1.1.2) the variance

$$
\begin{equation*}
\left\langle x_{1}^{2}\right\rangle_{T}-\left\langle x_{1}\right\rangle_{T}^{2}=\frac{r^{2}}{4}=\omega_{T}^{2} \tag{3.1.11}
\end{equation*}
$$

The distribution function $\rho_{l_{1}}\left(E, x_{1}\right)$ is then given by the weighted sum of the water plus tantalum distributions, as stated in Eq. (3.1.2), with Eqs. (3.1.5) and (3.1.9) for the individual distributions.

3.1.1 Mean Value l_{1} for Distribution of x_{1}

From Eq. (1.1.1) we can write the expression for the mean value of the contribution to the flight path length from the neutron target:

$$
\begin{equation*}
l_{1}=\left\langle x_{1}\right\rangle_{l_{1}}=\int x_{1} \rho_{l_{1}}\left(x_{1}\right) d x_{1}=f_{W}\left\langle x_{1}\right\rangle_{W}+f_{T}\left\langle x_{1}\right\rangle_{T}=f_{W} d+f_{T} q \tag{3.1.12}
\end{equation*}
$$

Replacing q by $W / 2+s+Z$ and f_{T} by $1-f_{W}$, this equation becomes

$$
\begin{equation*}
l_{1}=(d \cdots-W / 2-s-Z) f_{W}+W / 2+s+Z \tag{3.1.13}
\end{equation*}
$$

This contribution to the flight-path length is given as a function of energy in Table 1.

3.1.2 Uncertainty in l_{1}

We now evaluate the uncertainty associated with l_{1}. Taking small increments and using the chain rule for partial derivatives give

$$
\begin{equation*}
\delta l_{1}=\frac{\partial l_{1}}{\partial d} \delta d+\frac{\partial l_{1}}{\partial W} \delta W+\frac{\partial l_{1}}{\partial s} \delta s+\frac{\partial l_{1}}{\partial Z} \delta Z+\frac{\partial l_{1}}{\partial f_{W}} \delta f_{W} \tag{3.1.14}
\end{equation*}
$$

Using Eq. (3.1.3) for f_{W} gives δf_{W} in terms of δE_{m}, which is a parameter of interest,

$$
\begin{equation*}
\delta f_{W}=\frac{\partial f_{W}}{\partial E_{m}} \delta E_{m}=f_{W}^{2} \frac{E \ln 3}{2 E_{m}^{2}} e^{\frac{E \ln 3}{E_{m}}} \delta E_{m} \tag{3.1.15}
\end{equation*}
$$

Table 1. The energy uncertainty ΔE and the total flight-path length l and its uncertainty Δl are given as a function of energy. Also given are the contributions from the target $\left(l_{1}\right)$ and the detector $\left(l_{3}\right)$ to l and their uncertainties. All energies are in eV , lengths are in mm , and uncertainties are one standard deviation.

E	ΔE	$\Delta E / E$	l	Δl	l_{1}	Δl_{1}	l_{3}	Δl_{3}	$l_{1}+l_{3}$	$\Delta\left(l_{1}+l_{3}\right)$	
10.000	0.001	$6.699 \mathrm{E}-05$	201466.604	5.413	20.616	2.062	5.986	0.220	26.602	2.073	
1000.000	0.069	$6.853 \mathrm{E}-05$	201471.238	5.604	25.250	2.521	5.989	0.220	31.239	2.530	
2000.000	0.138	$6.917 \mathrm{E}-05$	201472.984	5.681	26.979	2.689	6.005	0.2 .20	32.984	2.698	
5000.000	0.351	$7.021 \mathrm{E}-05$	201475.703	5.806	29.653	2.943	6.051	0.222	35.704	2.952	
10000.000	0.711	$7.114 \mathrm{E}-05$	201478.055	5.913	31.928	3.149	6.127	0.224	38.055	3.157	
20000.000	1.443	$7.215 \mathrm{E}-05$	201480.592	6.022	34.330	3.349	6.263	0.230	40.592	3.357	
50000.000	3.670	$7.341 \mathrm{E}-05$	201483.910	6.136	37.311	3.548	6.600	0.244	43.911	3.557	
100000.000	7.430	$7.430 \mathrm{E}-05$	201485.699	6.180	38.705	3.623	6.995	0.266	45.700	3.633	
200000.000	15.273	$7.636 \mathrm{E}-05$	201485.490	6.305	38.023	3.830	7.466	0.296	45.489	3.841	
300000.000	23.788	$7.929 \mathrm{E}-05$	201483.803	6.541	35.966	4.205	7.835	0.323	43.802	4.218	
400000.000	32.764	$8.191 \mathrm{E}-05$	201481.605	6.744	33.668	4.513	7.937	0.331	41.604	4.525	
700000.000	59.068	$8.438 \mathrm{E}-05$	201476.617	6.698	28.338	4.442	8.279	0.360	36.618	4.457	
1000000.000	85.044	$8.504 \mathrm{E}-05$	201474.301	6.420	25.823	4.009	8.478	0.377	34.301	4.027	
2000000.000	186.289	$9.314 \mathrm{E}-05$	201473.156	6.318	24.346	3.841	8.811	0.408	33.157	3.862	
5000000.000	578.663	$1.157 \mathrm{E}-04$	201473.375	6.322	24.300	3.845	9.074	0.433	33.374	3.869	
10000000.000	1457.753	$1.458 \mathrm{E}-04$	201473.486	6.323	24.300	3.845	9.186	0.444	33.486	3.870	
20000000.000	3845.079	$1.923 \mathrm{E}-04$	201473.514	6.323	24.300	3.845	9.213	0.447	33.513	3.870	

Note: Insignificant digits have been retained in all tables to facilitate comparisons with future calculations.

Evaluating the partial derivations in Eq. (3.1.14) explicitly from Eq. (3.1.13) gives

$$
\begin{align*}
\delta l_{1}= & f_{W} \delta d+\left(\frac{1-f_{W}}{2}\right) \delta W+\left(1-f_{W}\right)(\delta s+\delta Z) \\
& +\left(d-\frac{W}{2}-s-Z\right)\left(f_{W}^{2} \frac{E \ln 3}{2 E_{m}^{2}} e^{\frac{E \ln 3}{E_{m}}}\right) \delta E_{m} \tag{3.1.16}
\end{align*}
$$

Forming the product $\left\langle\delta l_{1} \delta l_{1}\right\rangle \equiv \Delta l_{1}^{2}$, and assuming all variables are uncorrelated, we find

$$
\begin{align*}
\Delta l_{1}= & \left\{f_{W}^{2} \Delta d^{2}+\left(\frac{1-f_{W}}{2}\right)^{2} \Delta W^{2}+\left(1-f_{W}\right)^{2}\left(\Delta s^{2}+\Delta Z^{2}\right)\right. \\
& \left.+\left(d-\frac{W}{2}-s-Z\right)^{2}\left(f_{W}^{2} \frac{E \ln 3}{2 E_{m}^{2}} e^{\frac{E \ln 3}{E_{m}}}\right)^{2} \Delta E_{m}^{2}\right\}^{1 / 2} \tag{3.1.17}
\end{align*}
$$

for the uncertainty on l_{1}.
We assume values of $\Delta d / d=10 \%, \Delta W / W=2 \%, \Delta s / s=30 \%, \Delta Z=2 \mathrm{~mm}, \Delta r / r=20 \%$, and $\Delta E_{m} / E_{m}=30 \%$. Using these values, we obtain results for Δl_{1} as in Table 1 .

This completes our evaluation of the contribution to the flight-path length from the target end and its uncertainty ($l_{1} \pm \Delta l_{1}$) as a function of neutron energy.

3.1.3 Higher Moments of the Target Distribution Function

Later on this report when we derive expressions for the mean energy and the energy resolution function, we will need higher moments of x_{1}; in particular, the second, third, and fourth moments. We shall evaluate these moments "about the mean" and define ω_{l}^{2} as the second moment about the mean (i.e., the variance),

$$
\begin{equation*}
\omega_{l_{1}}^{2}=\left\langle\left(x_{1}-\left\langle x_{1}\right\rangle_{l_{1}}\right)^{2}\right\rangle_{l_{1}}, \tag{3.1.18}
\end{equation*}
$$

v_{l}^{3} as the third moment,

$$
\begin{equation*}
\nu_{l_{1}}^{3}=\left\langle\left(x_{1}-\left\langle x_{1}\right\rangle_{l_{1}}\right)^{3}\right\rangle_{l_{1}}, \tag{3.1.19}
\end{equation*}
$$

and μ_{l}^{4} as the fourth moment,

$$
\begin{equation*}
\mu_{l_{1}}^{4}=\left\langle\left(x_{1}-\left\langle x_{1}\right\rangle_{l_{1}}\right)^{4}\right\rangle_{l_{1}} \tag{3.1.20}
\end{equation*}
$$

We now evaluate these moments for future reference. The $n^{t h}$ moment about the mean is given by

$$
\begin{equation*}
\left\langle x_{1}^{n}\right\rangle_{l_{1}}=\int\left(x_{1}-\left\langle x_{1}>_{l_{1}}\right)^{n} \rho_{l_{1}}\left(x_{1}\right) d x_{1},\right. \tag{3.1.21}
\end{equation*}
$$

where $\rho_{l}\left(x_{1}\right)$ is given by Eq. (3.1.2) in terms of the water and tantalum distributions. For the water contribution, $\rho_{W}\left(x_{1}\right)$ is a Gaussian with moments given by

$$
\begin{equation*}
\left\langle x_{1}\right\rangle_{W}=d \tag{3.1.22}
\end{equation*}
$$

$$
\begin{gather*}
\left\langle\left(x_{1}-d\right)^{2}\right\rangle_{W}=\omega_{W}^{2}, \tag{3.1.23}\\
\nu_{W}^{3}=\left\langle\left(x_{1}-d\right)^{3}\right\rangle_{W}=0, \tag{3.1.24}
\end{gather*}
$$

and

$$
\begin{equation*}
\mu_{W}^{4}=\left\langle\left(x_{1}-d\right)^{4}\right\rangle_{W}=3 \omega_{W}^{4} \tag{3.1.25}
\end{equation*}
$$

For the tantalum, $\rho_{T}\left(x_{1}\right)$ is given by Eq. (3.1.9). The moments of this distribution are

$$
\begin{gather*}
\left\langle x_{1}\right\rangle_{T}=q \tag{3.1.26}\\
\omega_{T}^{2}=\left\langle\left(x_{1}-q\right)^{2}\right\rangle_{T}=\frac{r^{2}}{4} \tag{3.1.27}\\
\nu_{T}^{3}=\left\langle\left(x_{1}-q\right)^{3}\right\rangle_{T}=0 \tag{3.1.28}
\end{gather*}
$$

and

$$
\begin{equation*}
\mu_{T}^{4}=\left\langle\left(x_{1}-q\right)^{4}\right\rangle_{T}=\frac{r^{4}}{8} \tag{3.1.29}
\end{equation*}
$$

Combining these results, we obtain

$$
\begin{gather*}
l_{1}=\left\langle x_{1}\right\rangle_{l_{1}}=f_{W} d+\left(1-f_{W}\right) q, \tag{3.1.30}\\
\omega_{l_{1}}^{2}=\left\langle\left(x_{1}-l_{1}\right)^{2}\right\rangle_{l_{1}}=f_{W} \omega_{W}^{2}+\left(1-f_{W}\right) r^{2} / 4+f_{W}\left(1-f_{W}\right)(d-q)^{2}, \tag{3.1.31}\\
\nu_{l_{1}}^{3}=\left\langle\left(x_{1}-l_{1}\right)^{3}\right\rangle_{l_{1}} \\
=f_{W}\left(1-f_{W}\right)(d-q)\left[3\left(\omega_{W}^{2}-r^{2} / 4\right)+\left(1-2 f_{W}\right)(d-q)^{2}\right] \tag{3.1.32}
\end{gather*}
$$

(Note that even though the third-order moments about their means are zero, the combined distribution is asymmetric about its mean, and hence the third-order moment is non-zero.)

$$
\begin{align*}
\mu_{l_{1}}^{4} & =\left\langle\left(x_{1}-l_{1}\right)^{4}\right\rangle_{l_{1}} \\
& =f_{W} \mu_{W}^{4}+\left(1-f_{W}\right) \mu_{T}^{4}+6 f_{W}\left(1-f_{W}\right)(d-q)^{2}\left[\left(1-f_{W}\right)^{2} \omega_{W}^{2}+f_{W}^{2} r^{2} / 4\right] \\
& +f_{W}\left(1-f_{W}\right)\left[\left(1-f_{W}\right)^{3}+f_{W}^{3}\right](d-q)^{4} . \tag{3.1.33}
\end{align*}
$$

3.1.4 Width $\omega_{l_{1}}$ of Target Distribution Function

The distribution function $\rho_{l}\left(x_{1}\right)$ is the contribution of the target end of the flight path to the energy resolution function. The width of this distribution function is given by the square root of Eq. (3.1.31). Tabulated values of $\omega_{l_{1}}=\sqrt{\omega_{l_{1}^{2}}^{2}}$ are given as a function of energy in Table 2.

Table 2. The width of the energy resolution function ω_{E} and its uncertainty $\Delta \omega_{E}$ are given as a function of energy. In addition, the contribution of ω_{l} to ω_{E} is given, as well as the components $\omega_{l_{1}}$ and $\omega_{l_{3}}$ of ω_{l}.

All energy widths and uncertainties are in eV , and length widths and uncertainties are in mm. All uncertainties are one standard deviation. The contribution of ω_{t} to ω_{E} is energy independent and not given in the table. $\left(\omega_{t} \pm \Delta \omega_{t}=3.21 \pm 0.21 \mathrm{~ns}\right.$.) See Sect. 3.4.5 for a discussion of why $\Delta \omega_{l}<\Delta \omega_{l_{1}}$;

E	ω_{E}	ω_{E} / E	$\Delta \omega_{E}$	ω_{l}	$\Delta \omega_{l}$	$\omega_{l_{1}}$	$\Delta \omega_{l_{1}}$	$\omega_{l_{3}}$	$\Delta \omega_{l_{3}}$	
10.000	0.001	$1.025 \mathrm{E}-04$	0.000	10.321	0.815	9.143	0.914	4.788	0.191	
1000.000	0.120	$1.198 \mathrm{E}-04$	0.010	11.983	1.009	10.984	1.098	4.790	0.191	
2000.000	0.253	$1.267 \mathrm{E}-04$	0.021	12.613	1.081	11.665	1.166	4.796	0.191	
5000.000	0.693	$1.385 \mathrm{E}-04$	0.058	13.599	1.188	12.718	1.268	4.815	0.193	
10000.000	1.501	$1.501 \mathrm{E}-04$	0.121	14.462	1.277	13.627	1.353	4.844	0.196	
20000.000	3.305	$1.653 \mathrm{E}-04$	0.253	15.429	1.365	14.631	1.438	4.896	0.201	
50000.000	9.716	$1.943 \mathrm{E}-04$	0.655	16.893	1.482	16.132	1.550	5.015	0.213	
100000.000	22.749	$2.275 \mathrm{E}-04$	1.395	18.153	1.625	17.411	1.693	5.136	0.227	
200000.000	54.817	$2.741 \mathrm{E}-04$	3.328	19.263	1.992	18.532	2.069	5.256	0.242	
300000.000	92.245	$3.075 \mathrm{E}-04$	5.857	19.300	2.432	18.549	2.530	5.332	0.252	
400000.000	133.381	$3.335 \mathrm{E}-04$	8.889	18.594	2.933	17.808	3.062	5.350	0.255	
700000.000	276.447	$3.949 \mathrm{E}-04$	18.736	14.596	3.936	13.560	4.236	5.403	0.262	
1000000.000	452.296	$4.523 \mathrm{E}-04$	29.330	10.922	3.403	9.478	3.918	5.428	0.266	
2000000.000	1250.421	$6.252 \mathrm{E}-04$	81.587	7.302	0.710	4.850	1.024	5.459	0.270	
5000000.000	4922.198	$9.844 \mathrm{E}-04$	323.789	7.151	0.628	4.600	0.920	5.475	0.273	
10000000.000	13903.978	$1.390 \mathrm{E}-03$	916.989	7.154	0.628	4.600	0.920	5.479	0.273	
20000000.000	39300.716	$1.965 \mathrm{E}-03$	2595.324	7.155	0.628	4.600	0.920	5.480	0.274	

3.1.5 Uncertainty on $\omega_{l_{1}}$

Eventually we wish to determine the uncertainty associated with the energy resolution function. For this it is necessary to determine the uncertainty on $\omega_{l_{1}}$, which is found by first evaluating the square of the uncertainty on $\omega_{l_{1}}^{2}$, or $\left(\Delta \omega_{l_{1}}^{2}\right)^{2}$. The uncertainty $\Delta \omega_{l_{1}}$ will then be expressed in terms of $\left(\Delta \omega_{l_{1}}^{2}\right)^{2}$.

Our procedure is the same as that used to evaluate $\left(\Delta l_{1}\right)^{2}$ in Sect. 3.1.2. A small increment on $\omega_{l_{1}}^{2}$ can be written as

$$
\begin{align*}
\delta \omega_{l_{1}}^{2}= & \frac{\partial \omega_{l_{1}}^{2}}{\partial f_{W}} \delta f_{W}+\frac{\partial \omega_{l_{1}}^{2}}{\partial \omega_{W}} \delta \omega_{W}+\frac{\partial \omega_{l_{1}}^{2}}{\partial d} \delta d \\
& +\frac{\partial \omega_{l_{1}}^{2}}{\partial r} \delta r+\frac{\partial \omega_{l_{1}}^{2}}{\partial W} \delta W+\frac{\partial \omega_{l_{1}}^{2}}{\partial s} \delta s+\frac{\partial \omega_{l_{1}}^{2}}{\partial Z} \delta Z \tag{3.1.34}
\end{align*}
$$

If the partial derivatives in Eq. (3.1.34) are evaluated directly from Eq. (3.1.31) (remembering that q $=W / 2+s+Z$) and Eq. (3.1.15) is used for δf_{W}, then $\delta \omega_{i_{1}}^{2}$ becomes

$$
\begin{aligned}
\delta \omega_{l_{1}}^{2} & =\left[\omega_{W}^{2}+\left(1-2 f_{W}\right)(d-q)^{2}-r^{2} / 4\right]\left[f_{W}^{2} \frac{E \ln 3}{2 E_{m}^{2}} e^{\frac{E \ln 3}{E_{m}}}\right] \delta E_{m} \\
& +2 f_{W} \omega_{W} \delta \omega_{W}+2 f_{W}\left(1-f_{W}\right)(d-q)[\delta d-\delta s-\delta Z-\delta W / 2] \\
& +\left(1-f_{W}\right) r \delta r / 2
\end{aligned}
$$

Forming the product $\left\langle\delta \omega_{l_{1}}^{2} \delta \omega_{l_{1}}^{2}\right\rangle=\left(\Delta \omega_{l_{1}}^{2}\right)^{2}$ and assuming all parameters are uncorrelated give

$$
\begin{align*}
\left(\Delta \omega_{l}^{2}\right)^{2}= & {\left[\omega_{W}^{2}+\left(1-2 f_{W}\right)(d-q)^{2}-r^{2} / 4\right]^{2}\left[f_{W}^{2} \frac{E \ln 3}{2 E_{m}} e^{\frac{E \ln 3}{E_{m}}}\right]^{2} \Delta E_{m}^{2} } \\
& +\left(2 f_{W} \omega_{W} \Delta \omega_{W}\right)^{2}+\left(\left(1-f_{W}\right) r \frac{\Delta r}{2}\right)^{2} \\
& +\left[2 f_{W}\left(1-f_{W}\right)(d-q)\right]^{2}\left[\Delta d^{2}+\Delta s^{2}+\Delta Z^{2}+\Delta W^{2} / 4\right] \tag{3.1.36}
\end{align*}
$$

To convert from this expression to an uncertainty on ω_{l}, we note that

$$
\begin{equation*}
\delta \omega_{l_{1}}^{2}=2 \omega_{l_{1}} \delta \omega_{l_{1}} \tag{3.1.37}
\end{equation*}
$$

which gives $\left(\Delta \omega_{l}\right)^{2}$ as

$$
\begin{equation*}
\left(\Delta \omega_{l_{1}}\right)^{2}=\left\langle\delta \omega_{l_{1}} \delta \omega_{l_{1}}\right\rangle=\frac{1}{4 \omega_{l_{1}}^{2}}\left\langle\delta \omega_{l_{1}}^{2} \delta \omega_{l_{1}}^{2}\right\rangle \tag{3.1.38}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta \omega_{l_{1}}=\frac{1}{2 \omega_{l_{1}}} \Delta \omega_{l_{1}}^{2} \tag{3.1.39}
\end{equation*}
$$

Thus, the uncertainty on $\omega_{l_{1}}$ is evaluated using Eq. (3.1.39) with the square root of Eq. (3.1.36) for $\Delta \omega_{l_{1}}^{2}$ and the square root of Eq. (3.1.31) for ω_{l}. We assume $\left(\Delta \omega_{W}\right) /\left(\omega_{W}\right)=10 \%$. Values of ω_{l} and $\Delta \omega_{l}$, are tabulated in Table 2.

This completes derivation of the mean flight-path length from the target end [Eq. (3.1.13)], its uncertainty [Eq. (3.1.17)], the width of the distribution [Eq. (3.1.31)], and the uncertainty on the width [Eq. (3.1.39)]. We note that these quantities are all functions of neutron energy.

3.2 DISTRIBUTION FUNCTION FOR x_{2} : THE CONTRIBUTION TO THE FLIGHT-PATH LENGTH FROM THE FLIGHT TUBE

We now evaluate the second component of the flight-path length, l_{2}, measured from the face of the target to the face of the detector. The distance from the center of the neutron-producing target to the east benchmark in the $200-\mathrm{m}$ station was measured to be (preliminary value) $201858.6 \pm 4.0 \mathrm{~mm}$ (LA84). However, since the target flight-path length I_{1} is measured from the front face of the target, we subtract one-half of the tantalum target thickness $W, 18.3 \mathrm{~mm}$, which gives $201840.3 \pm 4.0 \mathrm{~mm}$. The distance from the benchmark to the front face of the NE110 detector was measured to be 400 ± 3 mm , giving a mean value of the flight-path length from the front face of the target to the face of the detector $l_{2} \pm \Delta l_{2}=201440 \pm 5 \mathrm{~mm}$.

No distribution is associated with this component of the flight-path length; i.e., $\omega_{l_{2}}^{2}=0$. Equivalently, we may say that the distribution function is a δ-function:

$$
\begin{equation*}
\rho_{l_{2}}\left(x_{2}\right)=\delta\left(x_{2}-l_{2}\right) \tag{3.2.1}
\end{equation*}
$$

(We note, however, that if the target vibrates back and forth, and we developed a physical model for this phenomenon described by a distribution function $\rho_{l_{2}}\left(x_{2}\right), \omega_{l_{2}}^{2}$ would not be zero. However, we neglect such phenomena in this study.) The mean of this distribution is

$$
\begin{equation*}
\left\langle x_{2}\right\rangle_{l_{2}}=l_{2} \tag{3.2.2}
\end{equation*}
$$

which has uncertainty Δl_{2}. Higher moments about the mean vanish, since

$$
\begin{equation*}
<\left(x_{2}-l_{2}\right)^{m}>_{l_{2}}=\int \delta\left(x_{2}-l_{2}\right)\left(x_{2}-l_{2}\right)^{m} d x_{2}=0 \tag{3.2.3}
\end{equation*}
$$

Explicitly, the second, third, and fourth moments are

$$
\begin{align*}
& \omega_{l_{2}}^{2}=0 \tag{3.2.4}\\
& \nu_{l_{2}}^{3}=0 \tag{3.2.5}
\end{align*}
$$

and

$$
\begin{equation*}
\mu_{l_{2}}^{4}=0 \tag{3.2.6}
\end{equation*}
$$

3.3 DISTRIBUTION FUNCTION FOR x_{3} : THE CONTRIBUTION TO THE FLIGHT-PATH LENGTH FROM THE DETECTOR

The final contribution to the flight-path length is from the 19 -mm-thick NE110 detector. Since the transmission of neutrons through the detector ranges from 9% at 10 keV (2.4 mfp thick) to 82% at 10 MeV (0.2 mfp thick), the effective flight-path length of the neutrons in the detector is a function of energy. The low-energy neutrons will interact in the first few millimeters of the detector, while the high-energy neutrons will interact, on the average, near the center. To estimate the flight-path length in the detector as a function of neutron energy, we calculate the mean-path length l_{3} before the first scattering. This assumes that we detect light from both hydrogen and carbon first-collision recoils in the NE110. The neutron distribution in the detector should be calculated using Monte Carlo techniques to account for multiple scattering effects, but for this work we choose the simpler "distance to first collision" approximation.

We represent the neutron distribution in the detector by

$$
\rho_{l_{3}}\left(x_{3}\right)= \begin{cases}A e^{-\lambda a x_{3}} & \text { for } 0 \leqslant x_{3} \leqslant L \tag{3.3.1}\\ 0 & \text { otherwise }\end{cases}
$$

where $\lambda=0.0047$, the number of molecules per mm•b of NE110 $\left(\mathrm{CH}_{1.104}\right), \sigma(E)$ is the total cross section of $\mathrm{CH}_{1.104}$, with numerical values calculated from ENDF/B-V (EN79), and L is the average thickness of the NE1 10 scintillator, taken as 19 mm . The normalization A is found by setting

$$
\begin{equation*}
\int_{0}^{L} \rho_{l_{3}}\left(x_{3}\right) d x_{3}=1 \tag{3.3.2}
\end{equation*}
$$

giving

$$
\begin{equation*}
A=\frac{\lambda \sigma}{1-e^{-\lambda \sigma L}} \tag{3.3.3}
\end{equation*}
$$

3.3.1 Mean Value l_{3} for Distribution of x_{3}

We can write the mean distance to the first collision as

$$
\begin{equation*}
\left\langle x_{3}\right\rangle_{l_{3}}=A \int_{0}^{L} x_{3} e^{-\lambda \sigma x_{3}} d x_{3} \tag{3.3.4}
\end{equation*}
$$

which gives

$$
\begin{equation*}
l_{3}=\left\langle x_{3}\right\rangle_{l_{3}}=\frac{1}{\lambda \sigma}+\frac{L}{1-e^{\lambda \sigma L}} \tag{3.3.5}
\end{equation*}
$$

This contribution to the flight-path length is given in Table 1.

3.3.2 Uncertainty in l_{3}

We now calculate the uncertainty on l_{3}. Taking small increments gives

$$
\begin{equation*}
\delta l_{3}=\frac{\partial l_{3}}{\partial \lambda} \delta \lambda+\frac{\partial l_{3}}{\partial \sigma} \delta \sigma+\frac{\partial l_{3}}{\partial L} \delta L \tag{3.3.6}
\end{equation*}
$$

which, after evaluating derivatives, becomes

$$
\begin{align*}
\delta l_{3}= & {\left[-\frac{1}{\lambda^{2} \sigma}+\frac{\sigma L^{2} e^{\lambda \sigma L}}{\left(1-e^{\lambda \sigma L}\right)^{2}}\right] \delta \lambda+\left[-\frac{1}{\lambda \sigma^{2}}+\frac{\lambda L^{2} e^{\lambda \sigma L}}{\left(1-e^{\lambda \sigma L}\right)^{2}}\right] \delta \sigma } \\
& +\left[\frac{1}{\left.1-e^{\lambda \sigma L}+\frac{\lambda \sigma L e^{\lambda \sigma L}}{\left(1-e^{\lambda \sigma L}\right)^{2}}\right] \delta L}\right. \tag{3.3.7}
\end{align*}
$$

Forming the product $\left\langle\delta I_{3} \delta I_{3}\right\rangle \equiv \Delta l_{3}^{2}$ and assuming $\langle\delta \lambda \delta \sigma\rangle=\langle\delta \sigma \delta L\rangle=\langle\delta \lambda \delta L\rangle=0$, we obtain

$$
\begin{align*}
\Delta l_{3}= & \left\{\left[-\frac{1}{\lambda^{2} \sigma^{2} L^{2}}+\frac{e^{\lambda \sigma L}}{\left(1-e^{\lambda \sigma L}\right)^{2}}\right]^{2}\left[\left(\frac{\Delta \lambda}{\lambda}\right)^{2}+\left(\frac{\Delta \sigma}{\sigma}\right)^{2}\right]\right. \\
& \left.+\left[\frac{1}{\lambda \sigma L\left(1-e^{\lambda \sigma L}\right)}+\frac{e^{\lambda \sigma L}}{\left(1-e^{\lambda \sigma L}\right)^{2}}\right]^{2}\left(\frac{\Delta L}{L}\right)^{2}\right\}^{1 / 2} \lambda \sigma L^{2} \tag{3.3.8}
\end{align*}
$$

for the uncertainty on l_{3}.
We assume uncertainties of $\Delta \lambda \lambda=2 \%, \Delta \sigma / \sigma=5 \%$, and $\Delta L / L=5 \%$. Results for Δl_{3} are given in Table 1.

3.3.3 Higher Moments of the Detector Distribution Function

We will also need the higher moments of x_{3}, and we present those results here for future convenience. In general,

$$
\begin{equation*}
<\left(x_{3}-l_{3}\right)^{m}>_{l_{3}}=\frac{\int_{0}^{L}\left(x_{3}-l_{3}\right)^{m} e^{-\lambda \sigma x_{3}} d x_{3}}{\int_{0}^{L} e^{-\lambda \sigma x_{3}} d x_{3}} \tag{3.3.9}
\end{equation*}
$$

so that after considerable algebra we find

$$
\begin{gather*}
\omega_{i_{3}}^{2}=\left\langle\left(x_{3}-l_{3}\right)^{2}\right\rangle_{I_{3}}=\frac{1}{(\lambda \sigma)^{2}}-\frac{L^{2} e^{\lambda \sigma L}}{\left(1-e^{\lambda \sigma L}\right)^{2}}, \tag{3.3.10}\\
\nu_{l_{3}}^{3}=\left\langle\left(x_{3}-l_{3}\right)^{3}\right\rangle_{1_{3}}=\frac{2}{(\lambda \sigma)^{3}}+\frac{L^{3} e^{\lambda \sigma L}\left(1-e^{\lambda \sigma L}\right)}{\left(1-e^{\lambda \sigma L}\right)^{3}}, \tag{3.3.11}
\end{gather*}
$$

and

$$
\begin{equation*}
\mu_{l_{3}}^{4}=\frac{9}{(\lambda \sigma)^{4}}-\frac{6 L^{2} e^{\lambda \sigma L}}{(\lambda \sigma)^{2}\left(1-e^{\lambda \sigma L}\right)^{2}}-\frac{L^{4} e^{\lambda \sigma L}\left(1+e^{\lambda \sigma L}+e^{2 \lambda \sigma L}\right)}{\left(1-e^{\lambda \sigma L}\right)^{4}} . \tag{3.3.12}
\end{equation*}
$$

3.3.4 Width ω_{l}, of Detector Distribution Function

The variance of the distribution function for x_{3} is given by Eq. (3.3.10) and is identified with the contribution to the energy resolution function from the detector. Values of the width of the distribution $\omega_{l}=\sqrt{\omega_{l_{3}}^{2}}$ are given in Table 2 as a function of neutron energy.

3.3.5 Uncertainty on ω_{l},

The uncertainty on $\omega_{l,}^{2}$ is found from

$$
\begin{equation*}
\delta \omega_{l_{3}}^{2}=\frac{\partial \omega_{l_{3}}^{2}}{\partial \lambda} \delta \lambda+\frac{\partial \omega_{l_{3}}^{2}}{\partial \sigma} \delta \sigma+\frac{\partial \omega_{l_{3}}^{2}}{\partial L} \delta L \tag{3.3.13}
\end{equation*}
$$

where the partial derivatives may be evaluated from Eq. (3.3.10),

$$
\begin{align*}
\delta \omega_{l_{3}}^{2} & =L\left\{-\frac{2}{\lambda \sigma L}+\frac{1+e^{\lambda \sigma L}}{1-e^{\lambda \sigma L}}\right\} \omega_{l_{3}}^{2}[\sigma \delta \lambda+\lambda \delta \sigma] \\
& +\lambda \sigma\left\{\frac{2}{\lambda \sigma L}+\frac{1+e^{\lambda \sigma L}}{1-e^{\lambda \sigma L}}\right\} \omega_{l_{3}}^{2} \delta L \tag{3.3.14}
\end{align*}
$$

Thus the squared uncertainty on $\omega_{l_{3}}^{2}$ is

$$
\begin{align*}
\left(\Delta \omega_{l_{3}^{2}}^{2}\right)^{2} & =\left\langle\delta \omega_{l_{3}}^{2} \delta \omega_{l_{3}}^{2}\right\rangle \\
& =\left(\omega_{l_{3}}^{2}\right)^{2}\left[\left\{-\frac{2}{\lambda \sigma L}+\frac{1+e^{\lambda \sigma L}}{1 \cdots e^{\lambda \sigma L}}\right\}^{2}\left[L^{2} \sigma^{2}(\Delta \lambda)^{2}+L^{2} \lambda^{2}(\Delta \sigma)^{2}\right]\right. \\
& +\left\{\frac{2}{\lambda \sigma L}+\frac{1+e^{\lambda \sigma L}}{1 \cdots e^{\lambda \sigma L}}\right\}^{2} \lambda^{2} \sigma^{2}(\Delta L)^{2} \tag{3.3.15}
\end{align*}
$$

To convert to the uncertainty on ω_{l}, recall that

$$
\begin{equation*}
\Delta \omega_{l_{3}}=\frac{1}{2 \omega_{l_{3}}} \Delta \omega_{l_{j}}^{2} \tag{3.3.16}
\end{equation*}
$$

in analogy with Eq. (3.1.39). Thus, the uncertainty on the width ω_{l}, is given by

$$
\begin{align*}
\Delta \omega_{l_{3}} & =\frac{\lambda \sigma L}{2}\left[\left\{-\frac{2}{\lambda \sigma L}+\frac{1+e^{\lambda \sigma L}}{1-e^{\lambda \sigma L}}\right\}\left\{\left(\frac{\Delta \lambda}{\lambda}\right)^{2}+\left(\frac{\Delta \sigma}{\sigma}\right)^{2}\right\}\right. \\
& \left.+\left\{\frac{2}{\lambda \sigma L}+\frac{1+e^{\lambda \sigma L}}{1-e^{\lambda \sigma L}}\right\}\left\{\left(\frac{\Delta L}{L}\right)^{2}\right\}\right\}^{1 / 2} . \tag{3.3.17}
\end{align*}
$$

Values for $\Delta \omega_{l_{3}}$ are given in Table 2 as a function of neutron energy. This completes the derivation of the mean flight path length in the detector [Eq. (3.3.5)] and its uncertainty [Eq. (3.3.8)], and the width of the distribution [Eq. (3.3.10)] and its uncertainty [Eq. (3.3.17)]. We note that these quantities are all energy dependent.

3.4 DISTRIBUTION FUNCTION FOR x : THE TOTAL FLIGHT-PATH LENGTH

We now have the necessary results which allow us to calculate the distribution function for the total flight-path length x. Since x is the sum of x_{1}, x_{2}, and x_{3}, the distribution function for x is

$$
\begin{equation*}
\rho_{l}(x)=\int \rho_{l_{1}}\left(x_{1}\right) d x_{1} \int \rho_{l_{2}}\left(x_{2}\right) d x_{2} \int \rho_{l_{3}}\left(x_{3}\right) d x_{3} \delta\left(\left(x_{1}+x_{2}+x_{3}\right)-x\right) \tag{3.4.1}
\end{equation*}
$$

where $\delta(\cdot)$ is the Dirac delta function. By using Eqs. (3.1.2), (3.2.1), and (3.3.1), this expression could be explicitly evaluated to give $\rho_{l}(x)$ in terms of the parameters of the target $\left(d, W, s, Z\right.$, and $\left.f_{W}\right)$, the flight tube (l_{2}), and the detector (λ, σ, and L). However, for this study we will not determine the combined distribution function directly, but will be satisfied with the moments of the distribution.

3.4.1 Mean Value l for Distribution of x

The mean value for the distribution function given in Eq. (3.4.1) is

$$
\begin{align*}
l=\langle x\rangle_{l}= & \int \rho_{l}(x) x d x \\
& =\int \rho_{l_{1}}\left(x_{1}\right) d x_{1} \int \rho_{l_{2}}\left(x_{2}\right) d x_{2} \int \rho_{l_{3}}\left(x_{3}\right) d x_{3} \int x d x \delta\left(\left(x_{1}+x_{2}+x_{3}\right)-x\right) \\
& =\int \rho_{l_{1}}\left(x_{1}\right) d x_{1} \int \rho_{l_{2}}\left(x_{2}\right) d x_{2} \int \rho_{l_{3}}\left(x_{3}\right) d x_{3}\left(x_{1}+x_{2}+x_{3}\right) \\
& =\int \rho_{l_{1}}\left(x_{1}\right) x_{1} d x_{1} \int \rho_{l_{2}}\left(x_{2}\right) d x_{2} \int \rho_{l_{3}}\left(x_{3}\right) d x_{3} \\
& +\int \rho_{l_{1}}\left(x_{1}\right) d x_{1} \int \rho_{l_{2}}\left(x_{2}\right) x_{2} d x_{2} \int \rho_{l_{3}}\left(x_{3}\right) d x_{3} \\
& +\int \rho_{l_{1}}\left(x_{1}\right) d x_{1} \int \rho_{l_{1}}\left(x_{2}\right) d x_{2} \int \rho_{l_{3}}\left(x_{3}\right) x_{3} d x_{3} \\
& =<x_{1}>_{l_{1}}+<x_{2}>_{l_{2}}+<x_{3}>_{l_{3}} \\
& =l_{1}+l_{2}+l_{3} . \tag{3.4.2}
\end{align*}
$$

The final step in Eq. (3.4.2) results from substituting Eq. (3.1.12), (3.2.2), and (3.3.5) for the three individual mean values. Note that the total flight-path length l is energy dependent; i.e.,

$$
\begin{equation*}
l(E)=l_{1}(E)+l_{2}+l_{3}(E) \tag{3.4.3}
\end{equation*}
$$

or, substituting explicit results from Eqs. (3.1.13) and (3.3.5),
$l=\left(d-\frac{W}{2}-s-Z\right) f_{W}+\frac{W}{2}+s+Z+l_{2}+\frac{1}{\lambda \sigma}+\frac{L}{1-e^{\lambda \sigma L}}$.

3.4.2 Uncertainty in l

A small increment in l can be written in terms of small increments in l_{1}, l_{2}, and l_{3} as

$$
\begin{equation*}
\delta l=\delta l_{1}+\delta l_{2}+\delta l_{3} \tag{3.4.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
(\Delta l)^{2}=\langle\delta l \delta l\rangle=\left\langle\left(\delta l_{1}+\delta l_{2}+\delta l_{3}\right)^{2}\right\rangle \tag{3.4.6}
\end{equation*}
$$

Since l_{1}, l_{2}. and l_{3} are independent, the cross terms (e.g., $\left\langle\delta l_{1} \delta l_{2}>\right.$) in Eq. (3.4.6) vanish, yielding for the uncertainty in l :

$$
\begin{equation*}
\Delta l=\left[\Delta l_{1}^{2}+\Delta l_{2}^{2}+\Delta l_{3}^{2}\right]^{1 / 2} \tag{3.4.7}
\end{equation*}
$$

where Δl_{1} and Δl_{3} are evaluated from Eqs. (3.1.17) and (3.3.8) respectively, and Δl_{2} is taken from the measurement process for l_{2}. The total flight-path length and its uncertainty $l \pm \Delta l$ are given in Table 1. We see that there is about a $20-\mathrm{mm}$ variation in the effective flight-path length as a function of energy, and this is larger than the uncertainty at any energy. Figure 5 shows a plot of $l_{1}+l_{3}$ as a function of neutron energy.

3.4.3 Higher Moments of the Flight-Path Length Distribution Function

In evaluating $\langle x\rangle_{1}$ in the previous subsection, we explicitly displayed each step of the process, for clarity's sake. In evaluating the higher moments, those steps shall be implicitly understood. Details are given in Appendix A.

The second moment about the mean is given by

$$
\begin{equation*}
\omega_{l}^{2}=\left\langle(x-l)^{2}\right\rangle_{l}=\omega_{l_{1}}^{2}+\omega_{l_{2}}^{2}+\omega_{l_{3}}^{2}=\omega_{l_{1}}^{2}+\omega_{l_{3}}^{2} \text { since } \omega_{l_{2}}^{2}=0 \tag{3.4.8}
\end{equation*}
$$

The third moment becomes

$$
\begin{equation*}
\nu_{l}^{3}=\nu_{l_{1}}^{3}+\nu_{l_{2}}^{3}+\nu_{l_{3}}^{3}=\nu_{l_{1}}^{3}+\nu_{l_{3}}^{3} \text { since } \nu_{l_{2}}^{3}=0 \tag{3.4.9}
\end{equation*}
$$

Finally, the fourth moment is given by

$$
\begin{align*}
\mu_{l_{1}}^{4} & =\mu_{l_{1}}^{4}+\mu_{l_{2}}^{4}+\mu_{l_{3}}^{4}+6\left(\omega_{l_{1}}^{2} \omega_{l_{2}}^{2}+\omega_{l_{1}}^{2} \omega_{l_{3}}^{2}+\omega_{l_{2}}^{2} \omega_{l_{3}}^{2}\right) \\
& =\mu_{l_{1}}^{4}+\mu_{l_{3}}^{4}+6\left(\omega_{l_{1}}^{2} \omega_{l_{3}}^{2}\right) \text { since } \mu_{l_{2}}^{4}=\omega_{l_{2}}^{2}=0 \tag{3.4.10}
\end{align*}
$$

3.4.4 Width ω_{l} of Flight-Path Length Distribution Function

The width ω_{l} of the distribution function for the total flight-path length is given in Eq. (3.4.8), with values for ω_{l} and $\omega_{l_{3}}$ taken from Sects. 3.1 and 3.3 respectively. Values of ω_{l} as a function of energy are shown in Table 2.

Fig. 5. This figure illustrates the energy dependence of the mean flight-path length as a function of neutron energy. The energy-independent length l_{2} was not included; only the sum $l_{1}+l_{3}$ (and its uncertainty) is shown. We note there is approximately a $20-\mathrm{mm}$ difference in the mean effective flight-path length as a function of neutron energy. Simply adding the measured distance from the center of the Ta target to its face, 18.3 mm , and (arbitrarily) one-third of the detector thickness, 6.3 mm , would give a length of 24.6 mm (shown as dashed line), significantly different from the results found in this report.

3.4.5 Uncertainty on ω_{l}

The uncertainty on ω_{l} is found by using Eqs. (3.1.36) and (3.3.15) and Eq. (3.4.8), which gives

$$
\begin{equation*}
\left(\Delta \omega_{l}^{2}\right)^{2}=\left(\Delta \omega_{l_{1}}^{2}\right)^{2}+\left(\Delta \omega_{l_{3}}^{2}\right)^{2} \tag{3.4.11}
\end{equation*}
$$

The uncertainty $\Delta \omega_{l}$ is then given by

$$
\begin{equation*}
\Delta \omega_{l}=\frac{1}{2 \omega_{l}} \Delta \omega_{l}^{2} \tag{3.4.12}
\end{equation*}
$$

Values for this uncertainty are shown in Table 2. We note that although the uncertainties on $\omega_{l_{1}}^{2}$ and $\omega_{l_{3}}^{2}$ combine quadratically to give $\Delta \omega_{l}^{2}$, this is not true for the uncertainties on $\omega_{l_{1}}$ and $\omega_{l_{2}} \Delta \omega_{l}$ must be obtained using results from Eq. (3.4.12). This is illustrated in Table 2, where $\Delta \omega_{l}$ is observed to be smaller than $\Delta \omega_{l}$, a somewhat surprising result.

4. PROPERTIES ASSOCIATED WITH THE FLIGHT TIME

In order to calculate the neutron energy, we must have information about the flight time as well as the flight-path length. In this section we describe how the neutron flight times are determined. Figure 2 illustrates the various times defined below. For each burst, the time digitizer (clock) is started with a signal from a bare phototube viewing the gamma flash produced when the electron beam strikes the target. $t_{0}{ }^{\prime \prime}$ is the time for the signal to travel from the phototube to the clock. The gamma flash reaches the detector at time l / c, where l is the length of the flight path and c is the speed of light. The gamma-flash signal then leaves the detector and at time $t_{0}{ }^{\prime}$ later is stored in channel C_{γ} (at time t_{γ}) in the data-acquisition computer. Thus

$$
\begin{equation*}
\frac{l}{c}+\left(t_{0}^{\prime}-t_{0}^{\prime \prime}\right)=t_{\gamma} \tag{4.1}
\end{equation*}
$$

Properties of $t_{0}{ }^{\prime}$ and $t_{0}{ }^{\prime \prime}$ need not be developed since we are only interested in the relative time $\boldsymbol{t}_{0}{ }^{\prime}-\boldsymbol{t}_{0}{ }^{\prime \prime}$, so we define a time parameter t_{0} as

$$
t_{0} \equiv t_{0}^{\prime}-t_{0}^{\prime \prime}
$$

or

$$
\begin{equation*}
t_{0}=t_{\gamma}-\frac{l}{c} \tag{4.2}
\end{equation*}
$$

Thus t_{0} is related to the time to process a signal from the detector to the computer and is a constant for a given experiment. To get the flight time t associated with a neutron-induced event, we subtract t_{0} from the time t_{n} the event is observed at the computer. That is,

$$
\begin{equation*}
t=t_{n}-t_{0} \tag{4.3}
\end{equation*}
$$

This time t_{n} can be identified with the difference in the means of two distributions: (1) t_{1}, the mean time at which the neutrons are born, and (2) t_{2}, the mean time at which the neutron is registered in the data-taking computer at channel c_{n}. That is,

$$
\begin{equation*}
t_{n}=t_{2}-t_{1} \tag{4.4}
\end{equation*}
$$

The mean flight time is then given by

$$
\begin{equation*}
t=\left(t_{2}-t_{1}\right)-t_{0} \tag{4.5}
\end{equation*}
$$

The first component, t_{1}, is associated with the pulse width of the ORELA beam and may be described approximately by a Gaussian distribution. The second component represents the finite channel width of the data-acquisition program and is approximated by a square distribution.

4.1 DISTRIBUTION FUNCTION FOR t_{1} : THE ORELA PULSE WIDTH

The ORELA pulse width may be approximated by a Gaussian shape (for pulse widths <10 ns) whose standard deviation is a. For the nickel measurement, the FWHM of the gamma flash pulse width was $7.5 \pm 0.5 \mathrm{~ns}$, corresponding to $a=3.2 \pm 0.2 \mathrm{~ns}$. The distribution may be written as

$$
\begin{equation*}
\rho_{t_{1}}\left(\tau_{1}\right)=\frac{1}{a \sqrt{2 \pi}} e^{-\frac{\tau_{1}^{2}}{2 a^{2}}} . \tag{4.1.1}
\end{equation*}
$$

4.1.1 Mean Value t_{1} for Distribution of τ_{1}

The mean value for the distribution in Eq. (4.1.1) is

$$
\begin{equation*}
t_{1}=\left\langle\tau_{1}\right\rangle_{t_{1}}=\int \tau_{1} \rho_{i_{1}}\left(\tau_{1}\right) d \tau_{1}=0 \tag{4.1.2}
\end{equation*}
$$

4.1.2 Uncertainty in t_{1}

The uncertainty in t_{1} is simply the accuracy with which t_{1} can be determined experimentally, which we will call Δt_{1}. A more complete description is given in Sect. 4.3.2.

4.1.3 Higher Moments of the Pulse Width Distribution Function

The variance and other moments of the Gaussian distribution about the mean ($=0$ for this case) in Eq. (4.1.1) are given by

$$
\begin{align*}
& \omega_{t_{1}}^{2}=a^{2} \tag{4.1.3}\\
& \nu_{t_{1}}^{3}=0 \tag{4.1.4}\\
& \mu_{t_{1}}^{4}=3 a^{4}
\end{align*}
$$

4.1.4 Width $\omega_{t_{1}}$ of Pulse Width Distribution Function

The width, ω_{t}, of the pulse is given by the square root of the variance, or

$$
\begin{equation*}
\omega_{t_{1}}=a \tag{4.1.6}
\end{equation*}
$$

This width is identified with the contribution to the energy resolution function from the neutron burst width.

4.1.5 Uncertainty on $\omega_{t_{1}}$

The uncertainty on this width reflects the accuracy with which a can be determined experimentally; that is

$$
\begin{equation*}
\Delta \omega_{t_{1}}=\Delta a=0.2 \mathrm{~ns} \tag{4.1.7}
\end{equation*}
$$

4.2 DISTRIBUTION FUNCTION FOR t_{2} : THE CHANNEL WIDTH

Neutrons are accumulated in the data acquisition computer in channels of width b (typically 1 ns). Since the time distributions which enter in this work (e.g., $\omega_{p_{1}}$) are large compared with b, this section will be important only if wide channel widths ($>10 \mathrm{~ns}$) are used. It is included here for completeness. This square distribution may be written as

$$
\rho_{t_{2}}\left(\tau_{2}\right)=\left\{\begin{array}{l}
1 / b \text { for }-b / 2 \leqslant \tau_{2}-t_{2} \leqslant b / 2 \tag{4.2.1}\\
0 \text { otherwise } .
\end{array}\right.
$$

4.2.1 Mean Value t_{2} for Distribution of τ_{2}

The 1 -ns-wide channels are probably not square distributions in fact, but trapezoidal or even triangular. However, for wide channels where this section is important, a square distribution is a good approximation. The mean of this distribution is

$$
\begin{equation*}
\left\langle\tau_{2}\right\rangle_{t_{2}}=\frac{1}{b} \quad \int_{t_{2}-b / 2}^{t_{2}+b / 2} \quad \tau_{2} d \tau_{2}=t_{2} \tag{4.2.2}
\end{equation*}
$$

4.2.2 Uncertainty in t_{2}

The uncertainty Δt_{2} reflects the accuracy with which the value t_{2} can be determined experimentally. See Sect, 4.3.2 for a more complete description.

4.2.3 Higher Moments of the Channel Width Distribution Function

The second moment about the mean (i.e., the variance) for the channel width distribution is given by

$$
\begin{equation*}
\omega_{i_{2}}^{2}=\left\langle\left(\tau_{2}-t_{2}\right)^{2}\right\rangle=\frac{1}{b} \int_{t_{2}-b / 2}^{t_{2}+b / 2}\left(\tau_{2}-t_{2}\right)^{2} d \tau_{2}=\frac{b^{2}}{12} . \tag{4.2.3}
\end{equation*}
$$

Similarly the third moment is equal to

$$
\begin{equation*}
\nu_{t_{2}}^{3}=0 \tag{4.2.4}
\end{equation*}
$$

and the fourth to

$$
\begin{equation*}
\mu_{t_{2}}^{4}=b^{4} / 80 \tag{4.2.5}
\end{equation*}
$$

4.2.4 Width $\omega_{i_{2}}$ of Channel Width Distribution Function

The width (square root of variance) $\omega_{t_{2}}$ is given by the full width b of the square distribution divided by $\sqrt{12}$:

$$
\begin{equation*}
\omega_{t_{2}}=b / \sqrt{12} \tag{4.2.6}
\end{equation*}
$$

This width is the contribution to the energy resolution function from the data-acquisition channel width.

4.2.5 Uncertainty on $\omega_{t_{2}}$

The uncertainty on the width $\omega_{t_{2}}$ is simply

$$
\begin{equation*}
\Delta \omega_{t_{2}}=\Delta b / \sqrt{12} \tag{4.2.7}
\end{equation*}
$$

where Δb was estimated by accumulating $-100,000 \mathrm{cts} / \mathrm{ch}$ annel from a random source and looking for deviations from the statistical uncertainty. From this we estimate $\Delta b / b=0.3 \%$.

4.3 DISTRIBUTION FUNCTION FOR τ : THE TOTAL FLIGHT TIME

The mean flight time $t=t_{n}-t_{0}$ (where $t_{n}=t_{2}-t_{1}$) is given by the difference between the mean time t_{2} at which the neutron is registered by the data-acquisition system and the mean time t_{1} at which the neutron left the source, minus the time t_{0} to transfer and process the signal. Thus, the t-o-f distribution is the convolution of the Gaussian and the square distributions. That is, the distribution function for τ is

$$
\begin{equation*}
\rho_{t}(\tau)=\int \rho_{t_{1}}\left(\tau_{1}\right) d \tau_{1} \int \rho_{t_{2}}\left(\tau_{2}\right) d \tau_{2} \delta\left(\left(\tau_{2}-\tau_{1}-t_{0}\right)-\tau\right) \tag{4.3.1}
\end{equation*}
$$

where $\rho_{t_{1}}$ and $\rho_{t_{2}}$ are given in Eqs. (4.1.1) and (4.2.1) respectively.

4.3.1 Mean Value t for Distribution of τ

The mean value t for the distribution given in Eq. (4.3.1) is

$$
\begin{align*}
t=\langle\tau\rangle= & \int_{-\infty}^{\infty} d \tau_{1} \rho_{1}\left(\tau_{1}\right) \int_{t_{2}-b / 2}^{t_{2}+b / 2} d \tau_{2 \rho_{t_{2}}}\left(\tau_{2}\right)\left(\tau_{2}-\tau_{1}-t_{0}\right) \tag{4.3.2}\\
& =t_{2}-t_{1}-t_{0}=t_{n}-t_{0} \tag{4.3.3}
\end{align*}
$$

4.3.2 Uncertainty in t

The uncertainty in the flight time is given by

$$
\begin{equation*}
\left.\delta t=\delta<\tau_{2}-\tau_{1}-t_{0}\right\rangle=\delta t_{n}-\delta t_{0}=\delta\left(t_{n}-t_{0}\right), \tag{4.3.4}
\end{equation*}
$$

so that

$$
\begin{equation*}
(\Delta t)^{2}=\Delta^{2}\left(\tau_{2}-\tau_{1}-t_{0}\right)=\left\langle\delta\left(t_{n}-t_{0}\right)^{2}\right\rangle \tag{4.3.5}
\end{equation*}
$$

To evaluate these terms, we consider the possibility of a scale error in both t_{n} and t_{0} and an absolute error in t_{0}. Thus

$$
\begin{equation*}
t_{n} \rightarrow t_{n} g \quad \text { and } \quad t_{0} \rightarrow t_{0} g \tag{4.3.6}
\end{equation*}
$$

with $\langle g\rangle=1$, so that

$$
\begin{equation*}
\delta t_{n}=t_{n} \delta g \text { and } \delta t_{0}=t_{0} \delta g+g \delta t_{0} \tag{4.3.7}
\end{equation*}
$$

or

$$
\begin{equation*}
\delta\left(t_{n}-t_{0}\right)=\left(t_{n}-t_{0}\right) \delta g-g \delta t_{0} \tag{4.3.8}
\end{equation*}
$$

Squaring and taking expectation values gives

$$
\begin{equation*}
(\Delta t)^{2}=\Delta\left(t_{n}-t_{0}\right)^{2}=\left(t_{n}-t_{0}\right)^{2} \Delta g^{2}+\Delta t_{0}^{2}=t^{2} \Delta g^{2}+\Delta t_{0}^{2} \tag{4.3.9}
\end{equation*}
$$

The standard deviation of the uncertainty in $t_{0}, \Delta t_{0}$, is estimated to be 0.3 ns , based on comparison of the gamma flash centroids in the four bias spectra (LA83).

The scale uncertainty Δg may be identified with uncertainties in the timing clock oscillator. Such uncertainties have been measured for the ORELA clocks and are found to be less than 1 part in 50,000 , i.e., $\Delta g=2 \times 10^{-5}$.

4.3.3 Higher Moments of the Total Flight-Time Distribution Function

We shall define $\omega_{t}^{2}, \nu_{t}^{3}$, and μ_{t}^{4} as the second, third, and fourth moments about the mean, respectively, of the flight-time distribution function. These moments are given by

$$
\begin{align*}
\left\langle(\tau-t)^{m}>_{t}=\right. & \int(\tau-t)^{m} \rho_{t}(\tau) d \tau \\
& =\int \rho_{t_{1}}\left(\tau_{1}\right) d \tau_{1} \int \rho_{t_{2}}\left(\tau_{2}\right) d \tau_{2}\left(\left(\tau_{2}-\tau_{1}-t_{0}\right)-t\right)^{m}, \tag{4.3.10}
\end{align*}
$$

in which we have used Eq. (4.3.1) to replace the integral over τ by the double integrals over τ_{1} and τ_{2} and to replace τ by $\tau_{2}-\tau_{1}-t_{0}$. Since t is equal to $t_{2}-t_{1}-t_{0}$ and t_{1} is zero, Eq. (4.3.10) can be written in the form

$$
\begin{equation*}
\left\langle(\tau-t)^{m}\right\rangle_{t}=\int \rho_{t_{1}}\left(\tau_{1}\right) d \tau_{1} \int \rho_{t_{2}}\left(\tau_{2}\right) d \tau_{2}\left(\left(\tau_{2}-t_{2}\right)-\tau_{1}\right)^{m} \tag{4.3.11}
\end{equation*}
$$

Thus the variance ω_{i}^{2} becomes

$$
\begin{equation*}
\omega_{t}^{2}=\left\langle(\tau-t)^{2}\right\rangle_{t}=\omega_{i_{2}}^{2}+\omega_{t_{1}}^{2}=\frac{b^{2}}{12}+a^{2} \tag{4.3.12}
\end{equation*}
$$

where we have used results from Eqs. (4.1.3) and (4.2.3) for values of $\omega_{i_{2}}^{2}$ and $\omega_{i_{1}}^{2}$.
Similarly, the third moment is

$$
\begin{equation*}
\left.\left.\nu_{i}^{3}=\left\langle(\tau-t)^{3}\right\rangle_{t}=\nu_{i_{2}}^{3}-3 \omega_{t_{2}}^{2}<\tau_{2}\right\rangle_{t_{1}}+3 \omega_{t_{1}}^{2}<\tau_{2}-t_{2}\right\rangle_{t_{2}}-\nu_{i_{1}}^{3}=v_{t_{2}}^{3}-v_{i_{1}}^{3} . \tag{4.3.13}
\end{equation*}
$$

Each of the two terms $\nu_{t_{2}}^{3}$ and $\nu_{t_{1}}^{3}$ are zero [see Eqs. (4.2.4) and (4.1.4)] by virtue of the symmetry of the square and Gaussian distributions. Thus, we have

$$
\begin{equation*}
\nu_{t}^{3}=0 \tag{4.3.14}
\end{equation*}
$$

The fourth moment is

$$
\begin{equation*}
\left.\mu_{i}^{4}=\left\langle(\tau-t)^{4}\right\rangle_{t}=\mu_{t_{2}}^{4}-4 \nu_{t_{2}}^{3}\left\langle\tau_{1}\right\rangle_{t_{1}}+6 \omega_{t} t_{2}^{2} \omega_{t_{1}}^{2} \cdots 4 \nu_{i_{1}}^{3}<\tau_{2}-t\right\rangle_{t_{2}}+\mu_{t_{1}}^{4}, \tag{4.3.15}
\end{equation*}
$$

or, again using the value zero for $\nu_{t_{2}}^{3}$ and $\nu_{i_{1}}^{3}$,

$$
\begin{equation*}
\mu_{i}^{4}=\mu_{t_{2}}^{4}+6 \omega_{i_{2}}^{2} \omega_{t_{1}}^{2}+\mu_{t_{1}}^{4} \tag{4.3.16}
\end{equation*}
$$

Substituting values found in Sect. 4.1 and 4.2 , we find

$$
\begin{equation*}
\mu_{t}^{4}=b^{4} / 80+6\left(b^{2} / 12\right)\left(a^{2}\right)+3 a^{4} \tag{4.3.17}
\end{equation*}
$$

In Sect. 5 we shall require expectation values of powers of $1 / \tau$. These are evaluated in Appendix B in terms of the quantities $\omega_{t}^{2}, \nu_{t}^{3}$, and μ_{t}^{4} whose values we have just derived.

4.3.4 Width ω_{t} of Total Flight-Time Distribution Function

The width ω_{t} of the time-resolution function is the square root of the variance ω_{t}^{2} given in Eq. (4.3.12), or

$$
\begin{equation*}
\omega_{t}=\sqrt{b^{2} / 12+a^{2}} \tag{4.3.18}
\end{equation*}
$$

4.3.5 Uncertainty on ω_{t}

The uncertainty $\Delta \omega_{t}$ may be found directly from Eq. (4.3.18)

$$
\begin{equation*}
\Delta \omega_{t}=(b \Delta b / 12+a \Delta a) \frac{1}{\omega_{t}} \tag{4.3.19}
\end{equation*}
$$

5. PROPERTIES OF THE ENERGY SCALE AND THE RESOLUTION FUNCTION

We now focus our attention on two objects of uitimate interest - the energy scale and the associated energy resolution function. Work done in the preceding two sections can be viewed as prologue, laying the framework for this section.

5.1 DISTRIBUTION FUNCTION OF є: THE ENERGY SCALE

The (non-relativistic) energy ϵ can be written in terms of the time-of-flight length x and travel time τ as

$$
\begin{equation*}
\epsilon=\frac{m}{2}\left(\frac{x}{r}\right)^{2} \tag{5.1.1}
\end{equation*}
$$

where m is the neutron mass. The distribution function for the energy can therefore be written

$$
\begin{equation*}
\rho(\epsilon)=\int \rho_{l}(\tau) d \tau \int \rho_{l}(x) d x \delta\left(\epsilon-\frac{m}{2}\left(\frac{x}{\tau}\right)^{2}\right) \tag{5.1.2}
\end{equation*}
$$

where the time and length distribution functions are given in Eqs. (4.3.1) and (3.4.1) respectively. We do not explicitly evaluate this expression for $\rho(\epsilon)$, but calcuate the first and second moments of the distribution.

5.1.1 Mean Value E for Distribution of ϵ

The mean energy E is found from Eq. (5.1.2) as

$$
\begin{equation*}
E=\left\langle_{\epsilon}\right\rangle=\int \epsilon \rho(\epsilon) d \epsilon=\int \rho_{t}(\tau) d \tau \int \rho_{l}(x) d x \frac{m}{2}\left(\frac{x}{\tau}\right)^{2} . \tag{5.1.3}
\end{equation*}
$$

This expression can be divided naturally into the product form

$$
\begin{equation*}
E=\frac{m}{2}\left\langle\tau^{-2}\right\rangle_{t}\left\langle x^{2}\right\rangle_{1}, \tag{5.1.4}
\end{equation*}
$$

where

$$
\begin{gather*}
36 \\
\left\langle\tau^{-2}\right\rangle_{t}=\int \tau^{-2} \rho_{t}(\tau) d \tau, \tag{5.1.5}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\langle x^{2}\right\rangle_{l}=\int x^{2} \rho_{l}(x) d x \tag{5.1.6}
\end{equation*}
$$

In Appendix A we show that the second moment about the origin is equal to the variance plus the square of the mean; thus Eq. (5.1.6) becomes

$$
\begin{equation*}
\left\langle x^{2}\right\rangle_{l}=\omega_{l}^{2}+l^{2} \tag{5.1.7}
\end{equation*}
$$

where values of ω_{l}^{2} and l^{2} are given in Sect. 3 .
In Appendix B we show that the expression in Eq. (5.1.5) may be expanded about to give the approximate value

$$
\begin{equation*}
\left\langle\tau^{-2}\right\rangle_{t}=t^{-2}\left(1+3 \omega_{t}^{2} t^{-2}+5 \mu_{t}^{4} t^{-4}\right), \tag{5.1.8}
\end{equation*}
$$

where values for the second and fourth moments about the mean ω_{t}^{2} and μ_{t}^{4} are given in Sect. 4 .
Substituting Eqs. (5.1.7) and (5.1.8) into (5.1.4) gives

$$
\begin{equation*}
E=E_{0}\left(l+\omega_{l}^{2} / l^{2}\right)\left(1+3 \omega_{t}^{2} t^{-2}+5 \mu_{l}^{4} t^{-4}\right), \tag{5.1.9}
\end{equation*}
$$

where we have set

$$
\begin{equation*}
E_{o}=\frac{m}{2} \frac{l^{2}}{t^{2}} \tag{5.1.10}
\end{equation*}
$$

Thus, in addition to the usual term E_{0} for the mean energy, we have correction factors which depend on the variances (and higher moments) of the distributions in length and time. We can estimate the magnitude of these correction terms from results previously determined. Values for l and ω_{l} as a function of energy are given in Tables 1 and 2. At $E_{0}=300 \mathrm{keV}$, we see that

$$
\begin{equation*}
\frac{\omega_{l}^{2}}{l^{2}}=1.0 \times 10^{-8} \tag{5.1.11}
\end{equation*}
$$

Likewise, using $\omega_{t}^{2}=a^{2}+b^{2} / 12$ gives

$$
\begin{equation*}
3 \omega_{i}^{2} / t^{2}=4.1 \times 10^{-8} \tag{5.1.12}
\end{equation*}
$$

and a far smaller number for the μ_{t}^{4} term. Therefore, these corrections can be neglected, and the mean energy is well approximated by

$$
\begin{equation*}
E=E_{0}=\frac{m}{2}\left(\frac{l}{t}\right)^{2} \tag{5.1.13}
\end{equation*}
$$

5.1.2 Uncertainty in E

We can now evaluate the uncertainty on the mean energy. Taking small increments gives

$$
\begin{equation*}
\delta E=\frac{\partial E}{\partial l} \delta l+\frac{\partial E}{\partial t} \delta t \tag{5.1.14}
\end{equation*}
$$

Evaluation of the derivatives, using the approximation in Eq. (5.1.13), gives

$$
\begin{equation*}
\delta E=2 E_{0}\left(\frac{\delta l}{l}-\frac{\delta t}{t}\right) \tag{5.1.15}
\end{equation*}
$$

Forming the product $\langle\delta E \delta E\rangle=\Delta E^{2}$, we find

$$
\begin{equation*}
\Delta E=2 E_{0}\left[\left(\frac{\Delta l}{l}\right)^{2}+\left(\frac{\Delta t}{t}\right)^{2}\right]^{1 / 2} \tag{5.1.16}
\end{equation*}
$$

where Δl^{2} is obtained from Table 1 as a function of energy by squaring the standard deviation, and Δt^{2} was evaluated in Sect. 4.3.2. Table 1 contains the energy uncertainty as a function of energy.

5.1.3 Higher Moments of the Energy Distribution Function

We shall evaluate only the second moment of the energy distribution function, since higher moments are not needed. The second moment (the variance) is given by

$$
\begin{equation*}
\omega_{E}^{2}=\left\langle(\epsilon-E)^{2}\right\rangle=\left\langle\epsilon^{2}\right\rangle-E^{2} \tag{5.1.17}
\end{equation*}
$$

where $\left\langle_{\epsilon}^{2}\right\rangle$, the second moment about the origin, is given by

$$
\begin{equation*}
\left\langle\epsilon^{2}\right\rangle=\int \epsilon^{2} \rho(\epsilon) d \epsilon=(m / 2)^{2}\left\langle\tau^{-4}\right\rangle_{t}\left\langle x^{4}\right\rangle_{l} \tag{5.1.18}
\end{equation*}
$$

In Appendix A (Eq. A.9), the fourth moment about the origin $\left\langle x^{4}\right\rangle_{1}$ is shown to be given by

$$
\begin{equation*}
\left\langle x^{4}\right\rangle_{l}=\mu_{l}^{4}+4 v_{l}^{3} l+6 \omega_{l}^{2} l^{2}+l^{4} \tag{5.1.19}
\end{equation*}
$$

Values for μ_{l}^{4}, ν_{l}^{3}, and ω_{l}^{2} are given in Sect. 3.4 and in Table 3.

Table 3. The second, third, and fourth moments of the flight-path length distribution function.

$E(\mathrm{eV})$	$\omega_{l}^{2}\left(\mathrm{~mm}^{2}\right)$	$\nu_{l}^{3}\left(\mathrm{~mm}^{3}\right)$	$\mu_{l}^{4}\left(\mathrm{~mm}^{4}\right)$
10.	106.52	89.77	12944.99
1000.	143.59	90.29	18053.78
2000.	159.08	92.99	20232.67
5000.	184.94	108.80	23968.89
10000.	209.15	150.46	27696.27
20000.	238.05	266.91	32714.38
50000.	285.38	755.24	43905.53
100000.	329.54	1818.09	59994.09
200000.	371.08	4328.43	82187.19
300000.	372.50	6593.78	87614.68
400000.	345.74	7971.24	77657.39
700000.	213.06	6729.15	25648.56
1000000.	119.29	3378.89	4965.63
2000000.	53.32	159.46	5741.62
5000000.	51.13	15.25	6307.69
10000000.	51.18	10.81	6142.88
20000000.	51.19	9.97	6187.93

In Appendix B we show that the inverse fourth moment of the time distribution is approximately

$$
\begin{equation*}
\left\langle\tau^{-4}\right\rangle_{t}=t^{-4}\left(1+10 \omega_{t}^{2} t^{-2}+35 \mu_{t}^{4} t^{-4}\right) \tag{5.1.20}
\end{equation*}
$$

where the various moments are evaluated explicitly in Sect. 4, and where we have set $\nu_{t}^{3}=0$. Combining Eqs. (5.1.18) through (5.1.20) and keeping only terms of fourth order or less gives

$$
\begin{align*}
\left\langle E^{2}\right\rangle= & E_{0}^{2}\left(1+6 \omega_{l}^{2} l^{-2}+4 v_{l}^{3} l^{-3}+\mu_{l}^{4} l^{-4}\right. \\
& \left.\quad+10 \omega_{t}^{2} t^{-2}+35 \mu_{t}^{4} t^{-4}+60 \omega_{l}^{2} l^{-2} \omega_{t}^{2} t^{-2}\right) \tag{5.1.21}
\end{align*}
$$

Similarly, squaring Eq. (5.1.9) and keeping only terms of fourth order or less gives

$$
\begin{equation*}
E^{2}=\langle E\rangle^{2}\left(1+2 \omega_{l}^{2} l^{-2}+\omega_{l}^{4} l^{-4}+6 \omega_{l}^{2} t^{-2}+10 \mu_{t}^{4} t^{-4}+9 \omega_{t}^{4} t^{-4}+12 \omega_{l}^{2} l^{-2} \omega_{t}^{2} t^{-2}\right) .(\tag{5.1.22}
\end{equation*}
$$

Finally, substituting Eqs. (5.1.21) and (5.1.22) into (5.1.17) yields

$$
\begin{align*}
\omega_{E}^{2}= & E_{0}^{2}\left\{\left(2 \omega_{l} l^{-1}\right)^{2}+\left(2 \omega_{t} t^{-1}\right)^{2}+3\left(2 \omega_{l} l^{-1} 2 \omega_{t} t^{-1}\right)^{2}\right. \\
& \left.+4 \nu_{l}^{3} l^{-3}+\left(\mu_{l}^{4}-\omega_{l}^{4}\right) l^{-4}+\left(25 \mu_{l}^{4}-9 \omega_{t}^{4}\right) t^{-4}\right\} \tag{5.1.23}
\end{align*}
$$

for the variance of our energy distribution function.

5.1.4 Width ω_{E} of Energy Distribution Function: Identification with the Energy Resolution Function

The energy distribution function given in Eq. (5.1.2) is precisely the energy resolution function by which experimental data are "broadened" and by which theoretical calculations must be "broadened" prior to comparison with experiments. The broadening width ω_{E} is given by the square root of the variance in Eq. (5.1.23). Note that the first two terms within the brackets correspond to the conventional expression for the width of the energy resolution function while the remaining terms are higher order corrections; i.e., to first order in powers of ω^{2} we can write

$$
\begin{equation*}
\omega_{E}=2 E_{o}\left\{\left(\frac{\omega_{l}}{l}\right)^{2}+\left(\frac{\omega_{t}}{t}\right)^{2}\right\}^{1 / 2} \tag{5.1.24}
\end{equation*}
$$

We note that this expression has the same form as Eq. (5.1.16) for the uncertainty in the mean energy. However, Δl and Δt in Eq. (5.1.16) are the uncertainties in the mean values of the length and time, while ω_{l} and ω_{t} in Eq. (5.1.24) are the standard deviations (widths) of the length and time distributions. It is clear that Δl and ω_{l} are completely different quantities (as are Δt and ω_{t}) as seen from the equations from which they are calculated.

Values for ω_{E} are given in Table 2. These values were generated from Eq. (5.1.23) rather than from the more severe approximation of Eq. (5.1.24).

5.1.5 Uncertainty on ω_{E}

To obtain an expression for the uncertainty on the width given by the square root of Eq. (5.1.23), we first note that a small increment of ω_{E}^{2} can be written in the form

$$
\begin{align*}
\delta\left(\omega_{E}^{2}\right)= & q_{1} \delta\left(\omega_{l}^{2}\right)+q_{2} \delta\left(\omega_{l}^{2}\right)+q_{3} \delta l+q_{4} \delta t \\
& +\left[4 l^{-3} \delta\left(\nu_{l}^{3}\right)+l^{-4} \delta\left(\mu_{l}^{4}\right)+25 t^{-4} \delta\left(\mu_{l}^{4}\right)\right] E_{a}^{2} \tag{5.1.25}
\end{align*}
$$

We shall assume that the quantities within the square brackets in the preceding equation produce negligible effects; these terms will be dropped. Coefficients q_{1}, q_{2}, q_{3}, and q_{4} in Eq. (5.1.25) can be evaluated directly by taking partial derivatives of Eq. (5.1.23):

$$
\begin{gather*}
q_{1}=4 E_{0}^{2} l^{-2}\left(1+12 \omega_{l}^{2} t^{-2}-\omega_{l}^{2} l^{-2} / 2\right), \tag{5.1.26}\\
q_{2}=4 E_{0}^{2} t^{-2}\left(1+12 \omega_{l}^{2} l^{-2}-9 \omega_{l}^{2} t^{-2} / 2\right), \tag{5.1.27}\\
q_{3}=-2 E_{0}^{2} l^{-1}\left(4 \omega_{l}^{2} l^{-2}+48 \omega_{l}^{2} l^{-2} \omega_{l}^{2} t^{-2}+6 \nu_{l}^{3} l^{-3}+2\left(\mu_{l}^{4}-\omega_{l}^{4}\right) l^{-4}\right)+4 \omega_{E}^{2} l^{-1} \tag{5.1.28}\\
q_{4}=-2 E_{0}^{2} t^{-1}\left(4 \omega_{l}^{2} t^{-2}+48 \omega_{l}^{2} t^{-2} \omega_{l}^{2} l^{-2}+2\left(25 \mu_{l}^{4}-9 \omega_{i}^{4}\right) t^{-4}\right)-4 \omega_{E}^{2} t^{-1} \tag{5.1.29}
\end{gather*} .
$$

The square of the uncertainty in the variance is then given by squaring Eq. (5.1.25) and taking expectation values:

$$
\begin{align*}
\left(\Delta\left(\omega_{E}^{2}\right)\right)^{2} & =\left\langle\left(\delta\left(\omega_{E}^{2}\right)\right)^{2}\right\rangle \\
& =q_{1}^{2}\left(\Delta\left(\omega_{l}^{2}\right)\right)^{2}+q_{2}^{2}\left(\left(\Delta\left(\omega_{t}^{2}\right)\right)^{2}+q_{3}^{2}(\Delta l)^{2}+q_{4}^{2}\left(\Delta t_{0}\right)^{2}+2 q_{1} q_{3}<\delta \omega_{l}^{2} \delta l\right\rangle . \tag{5.1.30}
\end{align*}
$$

Only the final term in Eq. (5.1.30) requires explanation. Since l and ω_{l}^{2} are determined from the same set of parameters, the two are not independent. In Sect. 3 of this report we determined the partial derivatives of both ω_{l}^{2} and l with respect to the ten independent parameters $\left(f_{W}, d, W, s, Z, \omega_{W}, r, \lambda\right.$, $\sigma, \mathrm{L})$. Those partial derivatives may be used to evaluate

$$
\begin{equation*}
\left\langle\delta \omega_{i}^{2} \delta i\right\rangle=\sum_{i=1}^{10} \frac{\partial \omega_{l}^{2}}{\partial p_{i}}\left(\Delta p_{i}\right)^{2} \frac{\partial l}{\partial p_{i}}, \tag{5.1.31}
\end{equation*}
$$

where $\{p\}$ represents those ten parameters. Note that the analogous term

$$
\begin{equation*}
2 q_{2} q_{4}\left\langle\delta \omega_{t}^{2} \delta t>\right. \tag{5.1.32}
\end{equation*}
$$

is zero here since ω_{1}^{2} depends only on parameters a and b and not on t_{0} or g. Values of $\Delta \omega_{E}$ are given in Table 2.

5.2 COMPARISON OF THE RESOLUTION FUNCTION WITH EXPERIMENT

To facilitate comparison of our calculated results with an experimental determination of the resolution function, we use the relation

$$
\begin{equation*}
E=(72.3 l / t)^{2} \tag{5.2.1}
\end{equation*}
$$

with l in mm, t in ns, and E in ev, to rewrite Eq. (5.1.23) as

$$
\begin{align*}
\omega_{E}^{2} & =E_{0}^{2}\left\{\left(2 \omega_{l} l^{-1}\right)^{2}+\left(2 \omega_{l} t^{-1}\right)^{2}+\ldots\right\} \\
& =E_{0}^{2}\left\{\left(2 \omega_{l} l^{-1}\right)^{2}+\left(2 \omega_{l} l^{-1} / 72.3\right)^{2} E\right\}, \tag{5.2.2}
\end{align*}
$$

or

$$
\begin{equation*}
\left(\omega_{E} / E\right)^{2}=b_{1}+b_{2} E \tag{5.2.3}
\end{equation*}
$$

where $b_{1}=\left(2 \omega_{l} / l\right)^{2}$ and $b_{2}=\left(2 \omega_{t} / 72.3 l\right)^{2}$.
Since ω_{l} and l are energy dependent, $\left(\omega_{E} / E\right)^{2}$ is a non-linear function of energy. However, the energy dependence of l is weak enough that b_{2} is essentially independent of energy. Table 4 presents results for the parameters b_{1} and b_{2} and their uncertainties and ω_{E}^{2} as a function of energy.

Table 4. Values of b_{1} and b_{2} as a function of energy. Experimental values for the energy range 50 to 500 keV are $b_{1}=(3.25 \pm 0.72) \times 10^{-8}$ and $b_{2}=(1.75 \pm 0.18) \times 10^{-13}$, which are assumed to be independent of energy.

$E(\mathrm{eV})$	$\omega_{E}^{2}\left(\mathrm{c}^{2}\right)$	b_{1}	Δb_{1}	$b_{2}(1 / \mathrm{eV})$	$\Delta b_{2}(1 / \mathrm{eV})$	$b_{1}+b_{2} E$	$\Delta\left(b_{1}+b_{2} E\right)$	$\left(\omega_{E} / E\right)^{2}$
10.	1.050E-06	1.050E-08	1.657E-09	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	$1.050 \mathrm{E}-08$	$1.657 \mathrm{E}-09$	1.050E--08
1000.	$1.434 \mathrm{E}-02$	$1.415 \mathrm{E}-08$	2.384E-09	1.928E-13	$2.550 \mathrm{E}-14$	$1.434 \mathrm{E}-08$	$2.384 \mathrm{E}-09$	1.434E--08
2000.	$6.425 \mathrm{E}-02$	$1.568 \mathrm{E}-08$	$2.686 \mathrm{E}-09$	1.928E-13	$2.550 \mathrm{E}-14$	1.606E-08	$2.686 \mathrm{E}-09$	$1.606 \mathrm{E}-08$
5000.	$4.797 \mathrm{E}-01$	$1.822 \mathrm{E}-08$	$3.185 E-09$	1.928E-13	$2.550 \mathrm{E}-\mathrm{-} 14$	$1.919 \mathrm{E}-08$	$3.187 \mathrm{E}-09$	1.919E-08
10000.	$2.254 \mathrm{E}+00$	$2.061 \mathrm{E}-08$	$3.638 \mathrm{E}-09$	1.928E-13	$2.550 \mathrm{E}-14$	$2.254 \mathrm{E}-08$	$3.647 \mathrm{E}-09$	$2.254 \mathrm{E}-08$
20000.	$1.092 \mathrm{E}+01$	2.346E-08	4.151E-09	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	$2.731 \mathrm{E}-08$	4.182E-09	$2.731 \mathrm{E}-08$
50000.	$9.440 \mathrm{E}+01$	2.812E-08	$4.932 \mathrm{E}-09$	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	$3.776 \mathrm{E}-08$	$5.094 \mathrm{E}-09$	$3.776 \mathrm{E}-08$
100000.	$5.175 \mathrm{E}+02$	3.247E--08	$5.812 \mathrm{E}-09$	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	$5.175 E-08$	$6.347 \mathrm{E}-09$	5.175E-08
200000.	$3.005 \mathrm{E}+03$	$3.656 \mathrm{E}-08$	$7.560 \mathrm{E}-09$	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	7.512E-08	$9.119 \mathrm{E}-09$	7.512E $\cdots 08$
300000.	$8.509 \mathrm{E}+03$	$3.670 \mathrm{E}-08$	$9.251 \mathrm{E}-09$	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-\mathrm{l} 14$	$9.454 \mathrm{E}-08$	$1.200 \mathrm{E}-08$	$9.455 \mathrm{E}-08$
400000.	1.779E+04	$3.407 \mathrm{E}-08$	$1.075 \mathrm{E}-08$	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	$1.112 \mathrm{E}-07$	$1.482 \mathrm{E}-08$	$1.112 \mathrm{E}-07$
700000.	$7.642 \mathrm{E}+04$	2.099E--08	1.132E-08	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	$1.560 \mathrm{E}-07$	$2.114 \mathrm{E}-08$	$1.560 \mathrm{E}-07$
1000000.	$2.046 \mathrm{E}+05$	1.176E-08	$7.325 E-09$	1.928E--13	$2.550 \mathrm{E}-14$	$2.046 \mathrm{E}-07$	$2.653 \mathrm{E}-08$	$2.046 \mathrm{E} \cdots 07$
2000000.	$1.564 \mathrm{E}+06$	$5.254 \mathrm{E}-09$	1.021E-09	1.928E-13	$2.550 \mathrm{E}-14$	$3.909 \mathrm{E}-07$	$5.101 \mathrm{E}-08$	$3.909 \mathrm{E}-07$
5000000.	$2.423 E+07$	$5.039 \mathrm{E}-09$	$8.845 \mathrm{E}-10$	1.928E-13	$2.550 \mathrm{E}-14$	$9.691 \mathrm{E}-07$	$1.275 \mathrm{E}-07$	$9.691 \mathrm{E}-07$
10000000.	$1.933 \mathrm{E}+08$	$5.044 \mathrm{E}-09$	$8.848 \mathrm{E}-10$	1.928E-13	$2.550 \mathrm{E}-14$	$1.933 \mathrm{E}-06$	$2.550 \mathrm{E}-\mathrm{-07}$	$1.933 \mathrm{E}-06$
20000000.	$1.545 \mathrm{E}+09$	5.045E-09	$8.849 \mathrm{E}-10$	$1.928 \mathrm{E}-13$	$2.550 \mathrm{E}-14$	$3.861 \mathrm{E}-06$	$5.100 \mathrm{E}-07$	$3.861 \mathrm{E}-06$

Johnson, Kernohan, and Winters (JO83) have analyzed isolated narrow resonances with a singlelevel R-function code, using a Gaussian resolution function, to obtain values of b_{1} and b_{2} (or equivalently, ω_{l} and ω_{t}). The argon transmission measurement on which their analysis is based was performed immediately following our nickel measurement and utilized the same experimental setup. Based on the analysis of 13 resonances from 50 to 500 keV , they obtained values of $b_{1}=(3.25 \pm$ $0.72) \times 10^{-8}$ and $b_{2}=(1.75 \pm 0.18) \times 10^{-13}$. Averaging our values of b_{1} and b_{2} from Table 4 from 50 to 400 keV , we obtain $b_{1}=(3.36 \pm 0.77) \times 10^{-8}$ and $b_{2}=(1.93 \pm 0.26) \times 10^{-13}$, both values being consistent with their results.

5.3 COMPUTER PROGRAM FLIPI

The computer program FLIP1 was designed to evaluate the various expectation values, variances, higher moments, and uncertainties described in Sects. 3, 4, and 5 of this report. The code is organized in a manner similar to this report: quantities for the individual components of flight-path length are generated first, in subroutines TAH20X (for the tantalum water target, Sect. 3.1 of this report) and DETECT (for the detector end, Sect. 3.3), and the total mean flight-path length l (with other moments and uncertainties) is produced from those individual results in subroutine COMBIN (Sect. 3.4). Quantities for the individual components of time are generated and combined in subroutine TIME (Sect. 4). The energy and its uncertainty and the energy resolution width and its uncertainty are generated from the length and time components in subroutine ENERGY (Sect. 5).

Additional subroutines are included to (1) produce plots of the distribution functions $\rho_{l_{1}}\left(x_{1}\right)$ (subroutine PLOT, Sect. 3.1) and $\rho_{l_{3}}\left(x_{3}\right)$ (subroutine PLTDET, Sect. 3.3), and (2) output both the input parameter values and values of the gencrated quantities. Tables 1 through 4 of this report were generated in subroutine DSPLAY.

No attempt has been made to cast this code into user-friendly format with convenient methods of changing parameter values, since the code is not expected to be used for a series of production runs. However, by isolating each component of length into a separate subroutine, we expect to have facilitated the substitution of more accurate distribution functions, for example.

Appendix C contains a listing of FLIP1; one of the output files produced by the code is given in Appendix D.

6. SUMMARY AND CONCLUSIONS

With the goal of developing expressions for the mean neutron energy and its uncertainty and the energy resolution function and its uncertainty, we have developed approximate analytic forms for the necessary distribution functions from which the desired quantities can be determined. The distribution functions for the neutrons which come from the Ta target and surrounding water moderator and the distribution function for neutrons which interact in the NE110 detector were found to be dependent on the neutron energy. From these results we obtained expressions for the mean energy-dependent flightpath length and its uncertainty and found as much as a $20-\mathrm{mm}$ difference in the mean effective flightpath length, due to the energy dependence. This difference is much larger than the uncertainty in the flight-path length at any energy. From the distribution functions we also calculated the contribution to the width of the energy resolution function from the components of the flight-path length and the uncertainty on the width as functions of energy.

We then developed distribution functions for the $t-o-f$, i.e., expressions for the neutron burst width and the data-acquisition channel width. From these we evaluated the mean t-o-f and its associated uncertainty. We also evaluated the contribution to the width of the energy resolution function from the time distribution functions and the associated uncertainty.

Having developed the above information for the length and time distributions, we then used those results to develop an expression for the energy distribution function $\rho(\epsilon)$. From this expression, we found the mean neutron energy and its uncertainty. In addition to the conventional energy term [Eq. (5.1.10)], our expression for the mean energy contains small correction terms associated with the widths of the length and time distributions. Neglecting the small corrections to the conventional expression for the neutron energy, the expression for the energy uncertainty is the conventional expression [Eq. (5.1.16)], with the usual dependence on the uncertainties Δl and Δt.

We identified the second moment of the energy distribution function about the mean as the width of the energy resolution function, but did not evaluate the expression [Eq. (5.1.2)] for the energy distribution function itself. (Evaluation of that expression would provide the shape of the resolution function.) Comparing our result for the width of the resolution function with that determined from measurement, we find agreement well within the uncertainty.

A number of aspects of this report could be studied in more detail. It is clear to us that we have used too simple a treatment of the neutrons emerging from the Ta target. Multiple scattering and attenuation within the Ta produce an asymmetric tail to $\rho_{T}\left(x_{1}\right)$, and in addition the process is energy dependent. The Ta target neutron emission should properly be ascertained by Monte Cario calculations, similar to the treatment in CO83 for neutrons from the water moderator. Ideally, Monte Carlo calculations should be done for the complete ($\mathrm{Ta}+\mathrm{H}_{2} \mathrm{O}$) target at one time. Proper treatment of the Ta would increase the value of $\omega_{l}{ }_{1}^{2}$, the contribution to the width of the energy resolution function from
the source end, and thus increase the width ω_{E} of the energy resolution function. However, it would probably not have a significant effect on the mean path length l_{1}. A correct treatment of the Ta would simply modify $\rho_{T}\left(x_{1}\right)$ to $\rho_{T}\left(x_{1}, E\right)$ and change its shape, but the formalism we have developed to propagate ρ_{T} would be unaffected.

When a proper treatment of the Ta becomes available, it would be worthwhile attempting to evaluate the intogral for the energy distribution (i.e., resolution) function [Eq. (5.1.2)]. The resulting shape could then be parameterized and used as the resolution function in the computer code SAMMY (LA80) for analysis of resonance parameters. Again, the framework for the $t-0$-f energy and energy resolution function, and their uncertainties, which we have developed would still be valid, although requiring some modification to SAMMY.

One small point should be noted regarding the treatment of the NE110 detector. The face of the detector which matches onto the phototube is curved to match the phototube face. Thus the thickness L of the detector is not a constant 19 mm , but has about a 15% variation in thickness across its face which should be accounted for in the description of the distribution function for the detector [Eq. (3.3.1)]. Also, a Monte Carlo treatment of neutrons in the NE110 would be more correct than our "distance to first collision" approximation; however, these effects are not expected to change the results significantly.

In discussion of resolution functions, references are often made to a correction for broadening due to "electronics." We have not included such a term because our method of identifying $\omega_{i_{1}}$ (Sect. 4.1) with the observed width of the gamma flash automatically includes effects of the incident electron burst width, broadening due to electronics, time dependence of the electron energy during a pulse due to depletion of stored energy in the accelerator cavity, and any contribution to the resolution due to the bremsstrahlung process.

ACKNOWLEDGEMENTS

We wish to thank Francis Perey for useful discussions regarding the uncertainty analysis component of this work, Cleland Johnson for providing the results of the resolution function analysis of their argon data, and Sue Damewood for a careful typing of this report. This work is an extension of work described in report ORNL/TM-8203, and was partially sponsored by the Division of Reactor Research and Technology of the Department of Energy.

REFERENCES

CO83 C. Coceva, R. Simoniai, and D. K. Olsen, "Calculation of the ORELA Neutron Moderator Spectrum and Resolution Function," Nucl. Inst. Meth. 211, 459 (1983).

EN79 ENDF/B Summary Documentation, BNL-NCS-17541 (ENDF-201), 3rd ed. (ENDF/B-V), ed. R. Kinsey, available from the National Nuclear Data Center, Brookhaven National Laboratory, Upton, N. Y. July 1979).
HA69 Engineering Drawing No. EA-023-D, "Flight Tube as-built, Data Sheet No. 2," September 1969 , J. A. Harvey files. This drawing contains measurements from the center of the target room (which is also assumed to be the target center) to various benchmarks in the flight stations.

HA75 J. A. Harvey and N. W. Hill, "Comparison of the Neutron Intensity, Energy Resolution, and Backgrounds of an Unmoderated Tantalum Target, a Light-Water-Moderated Tantalum Target, and a Beryllium Target at the ORELA," p. 169 in ORNL Physics Division 1974 Annual Report, ORNL-5025 (May 1975).

JO83 C. H. Johnson, J. C. Kernohan, and R. R. Winters, "Resolution Function at 200 Meters for January 1981," informal note circulated at ORELA (January 1981).
LA80 N. M. Larson and F. G. Perey, User's Guide for SAMMY: A Computer Model for Multilevel R-Matrix Fits to Neutron Data Using Bayes' Equations, ORNL/TM-7485, ENDF297, Oak Ridge National Laboratory, Oak Ridge, Tenn. (November 1980).

LA83 D. C. Larson, N. M. Larson, J. A. Harvey, N. W. Hill, and C. H. Johnson, Application of New Techniques to ORELA Neutron Transmission Measurements and Their Uncertainty Analysis: The Case of Natural Nickel From 2 keV to 20 MeV , ORNL/TM-8203, ENDF333, Oak Ridge National Laboratory, Oak Ridge, Tenn. (October 1983).
LA84 D. C. Larson, N. M. Larson, J. A. Harvey, and F. G. Perey, "Measurement of the 200, 80, and 18 m Flight Path Lengths and their Uncertainties," ORNL/TM-9097, in preparation.
LE70 T. A. Lewis, "Notes on Target Activation Study" done in 1970. Private communication, 1984.

APPENDIX A. MOMENTS OF DISTRIBUTION FUNCTIONS

In Sects. 3 and 4 of this report, we evaluated the first, second, third, and fourth moments about the mean of the length and time distribution functions, respectively. In this appendix we (1) relate the moments about the origin to the the moments about the mean; and (2) derive the moments of a combined distribution function. It is these moments about the origin of the combined distribution which enter into our determination of the resolution broadening function.

We begin by developing some notations. Let $\rho_{\alpha}(y)$ be an arbitrary distribution function for some variable y. This distribution function has a mean which we shall call Y_{α} and which is given by

$$
\begin{equation*}
Y_{\alpha}=\langle y\rangle_{\alpha}=\int y \rho_{\alpha}(y) d y \tag{A.1}
\end{equation*}
$$

The variance ω_{α}^{2} for this distribution function is the "second moment about the mean," or

$$
\begin{equation*}
\omega_{\alpha}^{2}=\left\langle\left(y-Y_{\alpha}\right)^{2}\right\rangle_{\alpha}=\left\langle y^{2}\right\rangle_{\alpha}-Y_{\alpha}^{2}, \tag{A.2}
\end{equation*}
$$

where $\left\langle y^{2}\right\rangle_{\alpha}$ is the "second moment about the origin," or

$$
\begin{equation*}
\left\langle y^{2}\right\rangle_{\alpha}=\int y^{2} \rho_{\alpha}(y) d y \tag{A.3}
\end{equation*}
$$

In like manner the "third and fourth moments about the mean" are defined:

$$
\begin{equation*}
\left.\nu_{\alpha}^{3}=<\left(y-Y_{\alpha}\right)^{3}\right\rangle_{\alpha}=\int\left(y-Y_{\alpha}\right)^{3} \rho_{\alpha}(y) d y \tag{A.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{\alpha}^{4}=\left\langle\left(y-Y_{\alpha}\right)^{4}\right\rangle_{\alpha}=\int\left(y-Y_{\alpha}\right)^{4} \rho_{\alpha}(y) d y \tag{A.5}
\end{equation*}
$$

Expanding the integrand of Eq. (A.4) gives

$$
\begin{equation*}
\nu_{\alpha}^{3}=\left\langle y^{3}\right\rangle_{\alpha}-3\left\langle y^{2}\right\rangle_{\alpha} Y_{\alpha}+2 Y_{\alpha}^{3} \tag{A.6}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\langle y^{3}\right\rangle_{\alpha}=\nu_{\alpha}^{3}+3 \omega_{\alpha}^{2} Y_{\alpha}+Y_{\alpha}^{3} \tag{A.7}
\end{equation*}
$$

Similarly, Eq. (A.5) becomes

$$
\begin{equation*}
\mu_{\alpha}^{4}=\left\langle y^{4}\right\rangle_{\alpha}-4\left\langle y^{3}\right\rangle_{\alpha} Y_{\alpha}+6\left\langle y^{2}\right\rangle_{\alpha} Y_{\alpha}^{2}-3 Y_{\alpha}^{4} \tag{A.8}
\end{equation*}
$$

or

$$
\begin{equation*}
\left\langle y^{4}\right\rangle_{\alpha}=\mu_{\alpha}^{4}+4 \nu_{\alpha}^{3} Y_{\alpha}+6 \omega_{\alpha}^{2} Y_{\alpha}^{2}+Y_{\alpha}^{4} \tag{A.9}
\end{equation*}
$$

We now wish to convolute two arbitrary distributions to obtain moments of the combined distribution. For example, in Sect. 3.4 we set $x=x_{1}+x_{2}+x_{3}$; in Sect. 4.3 we set $t_{n}=t_{2}-t_{1}$. Let us assume that we have $s=y \pm z$, where $\rho_{\beta}(z)$ is the distribution for variable z. The distribution function for s is then

$$
\begin{equation*}
\rho(s)=\int \rho_{\alpha}(y) d y \int \rho_{\beta}(z) d z \delta(s-(y \pm z)) \tag{A.10}
\end{equation*}
$$

The mean of this distribution is

$$
\begin{equation*}
S=\langle s\rangle=\int s \rho(s) d s=\langle y\rangle_{\alpha} \pm\langle z\rangle_{\beta}=Y \pm Z \tag{A.11}
\end{equation*}
$$

The second moment about the mean is

$$
\begin{align*}
\omega_{s}^{2} & \left.=<(s-S)^{2}\right\rangle=\int \rho_{\alpha}(y) d y \int \rho_{\beta}(z) d z\left(((y \pm z)-(Y \pm Z))^{2}\right) \\
& \left.\left.\left.=<(y-Y)^{2}\right\rangle_{\alpha} \pm 2<y-Y\right\rangle_{\alpha}<z \cdots Z\right\rangle_{\beta}+\left\langle(z-Z)^{2}\right\rangle_{\beta} \\
& =\omega_{\alpha}^{2}+\omega_{\beta}^{2} . \tag{A.12}
\end{align*}
$$

Similarly the third moment is

$$
\begin{equation*}
v_{s}^{3}=\nu_{c}^{3} \pm \nu_{\beta}^{3} \quad, \tag{A.13}
\end{equation*}
$$

and the fourth is

$$
\begin{equation*}
\mu_{s}^{4}=\mu_{\alpha}^{4}+6 \omega_{\alpha}^{2} \omega_{\beta}^{2}+\mu_{\beta}^{2} \tag{A.14}
\end{equation*}
$$

APPENDIX B. EXPECTATION VALUES OF NEGATIVE POWERS OF r

In Sect. 4.3 of this report we described the distribution function for the time of flight and evaluated the mean and variance of that distribution. In this appendix we derive approximate expressions for the expectation values of negative powers of τ. These approximations are needed to evaluate our expression for E as given in Sect. 5 , which involves inverse powers of τ.

The fraction $1 / \tau$ may be written in the form

$$
\begin{equation*}
\frac{1}{\tau}=\frac{1}{t} \frac{1}{1+y} \tag{B.1}
\end{equation*}
$$

where y is given by

$$
\begin{equation*}
y=\frac{\tau-t}{t} \tag{B.2}
\end{equation*}
$$

Thus the expectation value of r^{-m} may be written as

$$
\begin{align*}
\left\langle\tau^{-m}\right\rangle_{t} & =\int \tau^{-m} \rho(\tau) d \tau \\
& =t^{-m} \int \rho_{t_{1}}\left(\tau_{1}\right) d \tau_{1} \int \rho_{t_{2}}\left(\tau_{2}\right) d \tau_{2}\left(1+\frac{\tau_{2}-\tau_{1}-t_{0}-t}{t}\right)^{-m} \tag{B,3}
\end{align*}
$$

or, substituting $t=t_{2}-t_{1}-t_{0}$ into the numerator of the fraction, with $t_{1}=0$,

$$
\begin{equation*}
<\tau^{-m}>_{t}=t^{-m} \int \rho_{t_{1}}\left(\tau_{1}\right) d \tau_{1} \int \rho_{t_{2}}\left(\tau_{2}\right) d \tau_{2}\left(1+\frac{\left(\tau_{2}-t_{2}\right)-\left(\tau_{1}\right)}{t}\right)^{-m} \tag{B.4}
\end{equation*}
$$

Since $\rho_{t_{1}}\left(\tau_{1}\right)$ is large only for small τ_{1}, and $\rho_{t_{2}}\left(\tau_{2}\right)$ is non-zero only for τ_{2} near t_{2}, it is sufficient to replace $1 /(1+y)$ by a value which is correct only for small y. Note that by " y " we now mean

$$
\begin{equation*}
y=\frac{\tau_{2}-t_{2}-r_{1}}{t} \tag{B.5}
\end{equation*}
$$

so that the fraction $1 /(1+y)$ becomes

$$
\begin{equation*}
\frac{1}{1+y}=1-y+y^{2}-y^{3}+y^{4} \tag{B.6}
\end{equation*}
$$

where terms higher than fourth order in y have been dropped. Squaring Eq. (B-6) gives

$$
\begin{equation*}
(1+y)^{-2}=1-2 y+3 y^{2}-4 y^{3}+5 y^{4} \tag{B.7}
\end{equation*}
$$

and squaring Eq. (B.7) gives

$$
\begin{equation*}
(1+y)^{-4}=1-4 y+10 y^{2}-20 y^{3}+35 y^{4} \tag{B.8}
\end{equation*}
$$

The expectation value of τ^{-k}, where k is 2 or 4 , can then be found directly once the expectation values of the powers of y are known. From the definition of y, Eq. (B.2), we see that

$$
\begin{equation*}
\left\langle y^{n}\right\rangle_{t}=\left\langle(\tau-t)^{n}\right\rangle_{t} t^{\cdots n} \tag{B.9}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\langle\tau^{-2}\right\rangle=t^{-2}\left(1-0+3 \omega_{t}^{2} t^{-2}-4 \nu_{t}^{3} t^{-3}+5 \mu_{t}^{4} t^{-4}\right) \tag{B.10}
\end{equation*}
$$

where the ν_{i}^{3} term is retained for the sake of completeness; in this specific case ν_{i}^{3} is zero. Values of ω_{i}^{2} and μ_{t}^{4} are given in Sect. 4. Similarly, we have

$$
\begin{equation*}
\left\langle\tau^{-4}\right\rangle \simeq t^{-4}\left(1-0+10 \omega_{t}^{2} t^{-2}-20 \nu_{t}^{3} t^{-3}+35 \mu_{t}^{4} t^{-4}\right) \tag{B.11}
\end{equation*}
$$

Finally, we note that

$$
\begin{equation*}
\left\langle\tau^{-2}\right\rangle^{2}=t^{-4}\left(1+6 \omega_{t}^{2} t^{-2}-8 \nu_{t}^{3} t^{-3}+10 \mu_{t}^{4} t^{-4}+9 \omega_{t}^{4} t^{-4}\right) \tag{B.12}
\end{equation*}
$$

to fourth order in t^{-1}.

APPENDIX C. FORTRAN LISTING OF FLIP1


```
C ***
C *** D2WZ..
C ***
C *** DW2...
C *** D2W...
C ***
C *** DW....
C ***
C *** PER...
C *** DEL...
C ****
C ***
C *x* CV....
C ***
C ****
C *** SUFFIXES
C *** .....Z,....ZZ,...ZZZ,..ZZZZ
C ***
C ***
C **********************************************************************
C ****
C *** GENERAL NOTES
C ***
C*** ALL DISTANCES ARE IN UNITS OF MILLIMETERS (MM)
C *** ALL TIMES ARE IN NANOSECONDS (NS)
C *** ALL ENERGTES ARE IN ELECTRON-VOLTS (EV)
C ****
```



```
C
C
C
\begin{tabular}{|c|c|c|}
\hline & 1 & FUDGEZ(17), DE \\
\hline * & D2ENZZ (17) & WENZZZ(17), W2ENZ2(17), DWENZZ(17) \\
\hline * & DW2ENZ (17) & D2W2EN(17), WWEL2Z (17), WWTIM2(17) \\
\hline * & WWEL3Z(17), & , WWILM3(17), WWELTI(17), WWEL42(17) \\
\hline * & WWTIM4 (17), & , PW2W2L(17), PW2W2T(17), PW2LZZ(17) \\
\hline & PW2TIM(17) & \\
\hline
\end{tabular}
C
```

```
    COMMON /ELXXXX/ ELZZZZ(17), DLZZZZ(17), D2LZZZ(17),
```

 COMMON /ELXXXX/ ELZZZZ(17), DLZZZZ(17), D2LZZZ(17),
 * WLZZZZ(17), DWLZZZ(17), W2LZZZ(17), DW2LZZ(17),
 * WLZZZZ(17), DWLZZZ(17), W2LZZZ(17), DW2LZZ(17),
 * D2W2LZ(17), v3LZZZ(17), U4LZZZ(17), CVLW2Z(17)
 * D2W2LZ(17), v3LZZZ(17), U4LZZZ(17), CVLW2Z(17)
 C
COMMON /ELLIXX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17),

* FTNZZZ(17), ELLIZZ(17), DLIZZZ(17), D2L1ZZ(17),
* WL1ZZZ(17), DWL1ZZ(17), W2L1ZZ(17), DW2L1Z(17),
* D2W2L1(17), V3L1ZZ(17), 04L1ZZ(17), DFWAZZ(17),
* CVLIW2(17)
C
COMMON /TAWATV/ PERDWA, PERWWA, WATER1, WATER2, WATER3, * WWATRI, WWATR2, WWATR3, JUUUUU, WWWWWW, SSSSSS, * DELUUU, DELWWW, DELSSS, KRRRRR, DELRRR, EMMMMM, * PEREMM, ABSUNC

```
    COMMON /ELL3XX/ CROSSS(1.7), ELL3ZZ(17), DL3ZZZ(17),
* D2L3ZZ(17), WL3ZZZ(17), DWL3ZZ(17), W2L3ZZ(17),
* DW2L3Z(17), D2W2L3(17), V3L3ZZ(17), U4L3ZZ(17),
* CVL3W2(17)
COMMON /DETECV/ ALMBDA, THICKN, PERLMB, PERTHI, PERCRO
    COMMON /TIMER/ TZEROZ, DTZERO, AFWHMZ, DAFWHM, BCHNLZ,
    * DBCHNL, TSCALE
    COMMON /T1XXXX/ T1ZZZZ, DTIZZZ, D2TIZZ, WTIZZZ, DWTIZZ,
    * W2T1ZZ, DW2TlZ, D2W2T1, V3T1ZZ, U4TIZZ, CVT1W2
    COMMON /T2XXXX/ T2ZZZZ, DT2ZZZ, D2T2ZZ, WT2ZZZ, DWT2ZZ,
    * W2T2ZZ, DW2T2Z, D2W2T2, V3T2ZZ, U4T2ZZ, CVT2W2
    COMMON /TIMEXX/ TIMEZZ(17), DTIMEZ(17), D2TIME(17),
    * WTIMEZ, DWTIME, W2TIME, DW2TXM, D2W2TZ, V3TIME,
    * U4TIME, CVTW2Z
    COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHOR'LZ,
    * IEGRID, IPLOT
```

C
LOGICAL SHORTZ
DATA SHORTZ /.TRUE./
C
DATA EEEEEE / 10.0,1000., 2000.,5000.,10000., 20000.,50000.,
* 100000.,200000.,300000.,400000.,700000.,1000000.,
* 2000000.,3000000.,10000000.,20000000. 1
C
DATA IEGRID /17/
DATA IPLOT /3/
C
CALL TAH20
CALL QQQTAH
CALL DETECT
CALI. QQQDET
CALLL COMBIN
CALL QQQCOM
CALL OUTCMP
CALL PLOT13
CALL TIME
CALL ENERGY
CALL QQQTIM
CALL QQQENE
CALL DSPLAY
C
STOP
END
C
C
SUBROUTINE TAH20
C $* * *$ PURPOSE - ORGANIZE TREATMENT OF TANTALUM-WATER TARGET
CALL OUTTAH
CALL TAH20X
CALL PLT
RETURN
END

SUBROUTINE OUTTAH C
C *** PURPOSE -- OUTPUT THE LNPUT FOR TA-HZO CALCUIATION C

COMMON /TAWATV/ PERDWA, PERWWA, WATERI, WATER2, WATER3, * WWATR1, WWATR2, WWATR3, UUUUUU, WWWWWW, SSSSSS,

* DELUUU, DELWWW, DELSSS, RRRRRR, DELRRR, EMMMMM,
* PEREMM, ABSUNC

C
COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,

* IEGRID, IPLOT

LOGICAL SHORTZ
C
W2PLUS $=0.5^{*}$ WWWWWW + SSSSSS
UW2ZZZ = UUUUUU + W2PLUS
RDELWW $=$ DELWWW/WWWWWW* 100.0
RDELRR $=$ DELRRR/RRRRRR*100.0
RDELSS $=$ DELSSS/SSSSSS* 100.0
C
WRITE (25,99999)
WRITE $(25,99998)$ UUUUUU, DELUUU
WRITE $(25,99997)$ WWWWWW
WRITE $(25,99996)$ DELWWW, RDELWW
WRITE $(25,99995)$ SSSSSS
WRITE (25,49994) DELSSS, RDELSS
WR1TE $(25,99993)$ UW2ZZZ
WRITE (25,99992) RRRRRR
WRITE (25,99991) DELRRR, RDELRR
WRITE $(25,99990)$ WATER1, WATER2, WATER3
WRITE $(25,99989)$ WWATR1, WWATR2, WWATR3
WRITE $(25,99988)$ PERDWA
WRITE $(25,49981)$ PERWWA
WRITE (25,99986) ABSUNC
WRITE (25,99985) EMMMMM
WRITE $(25,99984)$ PEREMM
IF (SHORTZ) GO TO 10
C
WRITE $(5,99998)$ UUUUUUU, DELUUU
WRITE $(5,99997)$ WWWWWW
WRITE $(5,99996)$ DELWWW, RDELWW
WRITE (5,99995) SSSSSS
WRITE $(5,99994)$ DELSSS, RDELSS
WRITE $(5,99993)$ UW2ZZZ
WRITE $(5,99992)$ RRRRRR
WRITE (5,99991) DELRRR, KDELRR
WRITE (5,99990) WATER1, WATER2, WATER3
WRITE $(5,99989)$ WWATR1, WWATR2, WWATR3
WRITE $(5,99988)$ PERDWA
WRITE $(5,99987)$ PERWWA
WRITE $(5,99986)$ ABSUNC
WRITE $(5,99985)$ EMMMMM
WRITE $(5,99984)$ PEREMM
C

```
    10 CONTINUE
C
    WRITE (25,99983)
    IF (.NOT.SHORTZ) WRITE (5,99983)
C
    RETURN
99999 FORMAT (/25H *立**** TARGET END ******)
99998 FORMAT (46H UUU = DISTANCE TO SURFACE OF TA TARGET,
    * 15H =, F7.3, 4H +/m, F7.3)
99997 FORMAT (46H WWW = WIDTH OF TA TARGET
    * 15H =, F7.3)
99996 FORMAT (46H DELWWW = ERROR ON WWW
    * 15H =, F/.3, 2H =, Fう.1, 8H PERCENT)
99995 FORMAT (46H SSS = ESTIMATE OF MULTIPLE SCATTERING IN T,
    * 15HA TARGET =, F7.3)
99994 FORMAT (46H DELSSS = ERROR ON SSS
    * 15H =, F7.3, 2H =, Fb.1, 8H PERCENT)
99993 FORMAT (46H UW2 = UUU + WWW/2 + SSS = DISTANCE TO MEAN,
    * 15H OF TA TARGET =, F7.3)
99992 FORMAT (46H RRR = RADIUS OF CIRCULAR DISTRIBUTION IN T,
    * 15HA 'IARGET =, F/.3)
99991 FORMAT (46H DELRRR = ERROR ON RRRRRR
    * 15H =, F7.3, 2H=,F5.l, 8H PERCENT)
99990 FORMAT (/44H DWA(E) = MEAN OF DJSTRIBUTION IN WATER =,
    * F5.1, F6.2, 8H*LN(E) +, F6.3, 9H*LN(E)**2)
99989 FORMAT (44H WWA(E) = STD DEV OF DISTRIBUTION IN WATER =,
    * F5.1, F6.2, 8H*LN(E) +, F6.3, 9H*LN(E)**2)
99988 FORMAT (44H PERDWA = UNCERTAINTY ON MEAN DWA (E) =,
    * F5.1, 8H PERCENT)
99987 FORMAT (44H PERWWA = UNCERTAINTY ON STD DEV WWA (E) =,
    * Fb.l, 8H PERCENT)
99986 FORMAT (/45H ABSUNC = ABSOLUTE UNCERTAINTY ON FRACTION FR,
    * 20HOM TA AND FROM H2O =, F6.2.)
99985 FORMAT (46H EMM = ENERGY AT WHICH THE TWO FRACTIONS AR,
    * 1YHE EQUJAL =, F9.0)
99984 FORMAT (46H PEREMM = RELATIVE UNCERTAINTY IN EMM = DEL(EM,
    * 19HM)/EMM =, F6.1, 8H PERCENT///)
99983 FORMAT (46H ERROR DI,
        * 44HSTANCE WIDTH WIDTH/
        * 49H ON TO ME,
        * 49HAN OF MEAN UF UNCERT. OF UNCE,
        * 3HRT.143H ENERGY FRACTN FRACTN FRACTN ,
        * 49H OF WATER WATER TA+WATER ON TA+WATER,
        # 6H ON/40H (EV) OF TA OF WATER OF WATE,
        * 49HR DISTN DISTN DISTN MEAN DIST,
        * llHN WIDTH, //31H EN FNATR FTA FM, FWA ,
        * 49H DFWA ELWATR WWATR ELLl DLl ,
        END
```

SUBROUTINE TAH2OX
C
C *** PURPOSE -- GENERATE MOMENTS OF WATER-TANTALUM DISTRIBUTION
C
COMMON /ELLIXX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17),

* FTNZZZ(17), ELLIZZ(17), DLIZZZ(17), D2L1ZZ(17),
* WL1ZZZ(17), DWL1ZZ(17), W2L1ZZ(17), DW2L1Z(17),
* D2W2L1(17), V3L1ZZ(17), U4L1ZZ(17), DFWAZZ(17),
* CVLIW2(17)

C
COMMON /TAWATV/ PERDWA, PERWWA, WATER1, WATER2, WATER3,

* WWATR1, WWATR2, WWATR3, UUUUUU, WWWWWW, SSSSSS,
* DELUUU, DELWWW, DELSSS, RRRRRR, DELRRR, EMMMMM,
* PEREMM, ABSUNC

C
COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,

* IEGRID, IPLOT

LOGICAL SHORTZ
D 1 MENSION IPP(17)
DATA IPP / $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 /$
C
DATA WATER1 / 22.8/, WATER2 /-1.60/, WATER3 /0.283/,

* WWATR1 / 10.0/, WWATR2 / -0.63/, WWATR3 /0.112/,
* UUUUUU 10.01 , WWWWWW $136.6 /$, SSSSSS /6.0/. RRRRRR
* /9.20/, DELUUU /2.0/. DELWWW /5.492/, DELSSS /1.8/,
* DELRRR / $1.840 /$, EMMMMM /300000./, PEREMM /30.0/,
* PERDWA / $10.0 /$, PERWWA / $10.0 /$

C
$W 2 P L U S=0.5 * W W W W W W+S S S S S S$
UW2ZZZ = UUUUUU + W2PLUS
PERDWA $=$ PERDWA*0.01
PERWWA $=$ PERWWA $* 0.01$
PEREMM $=$ PEREMM*0.01
C
C
IPL $=1$
DO 10 LE $=1$, IEGRID
C
C *** GENERATE FRACTION FROM TA AND FRACTION FROM H20
$Q Q Q Q Q Q=\operatorname{EEEEEE}(I E) * A L O G(3.0) / E M M M M M$
$\mathrm{EQQQQQ}=\operatorname{EXP}(Q Q Q Q Q Q)$
$F W A Z Z Z(I E)=2.0 /(1.0+E Q Q Q Q Q)$
FTAZZZ (IE) $=1.0-$ FWAZZZ (IE)
DFWAZZ (IE) $=0.5 * F W A Z Z Z(I E) * * 2 * E Q Q Q Q Q * Q Q Q Q Q Q * P E R E M M+$

* ABSUNC

```
C *** DETERMINE PARAMETERS OF WATER DISTRIBUTION
    ELOG = ALOG(EEEEEE(IE))
    DWAZZZ(IE) = WATER1 + WATER2*ELOG + WATER3*ELOG**2
    WWAZZZ(IE) = WWATR1 + WWATR2*ELOG + WWATR3*ELOG**2
    ELWATR = DWAZZZ(IE)
    DLWATR = ELWATR*PERDWA
    W2WATR = WWAZZZ(IE)**2
    DW2WAT = 2.0*W2WATR*PERWWA
    V3WATR = 0.0
    U4WATR = 3.0*WWAZZZ(IE)**4
    FFWATR = FWAZZZ(IE)
    DFWATR = DFWAZZ(IE)
C
C *** DETERMINE PARAMEIERS OF TANTALUM DISTRIBUTION
    ELTNTL = UUUUUUU + WWWWWW/2.0 + SSSSSS
    D2LTNT = DELUUU**2 + DELWWW**2/4.0 + DELSSS**2
    DLTNTL = SQRT(D2LTNT)
    W2TNTL = KRRRRR**2/4.0
    DW2TNT = RRRRRR*DELRRR/2.0
    V3TNTL = 0.0
    U4TNTL = RRRRRR**4/8.0
    FFTNTL = FTNZZZ(IE)
C
C*** COMBINATION OF WATER AND TANTALUM
    FFWFFT = FFWATR*FFTNTL
    FTMNFW = FFTNTL - FFWATR
    ELWATN = ELWATR - ELTNTL
C
C *** GENERATE CONTRJBUTION TO ELL1, W2LI, V3Ll, AND U4Ll FROM
C *** WATER DISTRIBUTION
    ELLIZZ(TE) = FFWATR*ELWATR
    W2L1ZZ(TE) = FFWATR*W2WATR
    V3LIZZ(IE) = FFWATR*V3WATR
    U4L1ZZ(IE) = FFWATR*V4WATR
C
C के* GENERATE CONTRIBUTION FROM TANTALUM DISTRIBUTION
    ELLIZZ(IE) = ELLIZZ(IE) + FFTNTL*ELTNTL
    W2L1ZZ(IE) = W2LlZZ(IE) + FFTNTL*W2TNTL
    V3L1ZZ(IE) = V3L1ZZ(IE) + FETNTL*V3TNTL
    U4LIZZ(IE) = U4LIZZ(IE) + FFTNTL*U4TNTL
C
C *** GENERATE CONTRIBUTION FROM COMBINATION
    W2LIZZ(IE) = W2L1ZZ(IE) + FFWFFT*ELWATN**2
    V3LIZZ(IE) = V3L1ZZ(IE) + FFWFFT*ELWATN*
                        ( 3.0*(W2WATR-W2TNTL) + FTMNFW*ELWATN**2)
        U4LIZZ(IE) = U4LIZZ(IE) + FFWFFT*ELWATN**2*
        * (FFTNTL*W2WATR+FTWATR*W2TNTL) +
    *
    FFWFFT*(FFWATR**3-FFTNTL** 3)*ELWATN**4
    C
```

```
C *** NOW THE ASSOCIATED UNCERTAINTIES
                        PLFWAT = ELWATN
                        PLLWAT = FFWATR
                        PLLTNT = FFTNTL
                                PW2FWA = W2WATR - W2TNTL + FTMNFW*ELWATN**2
                            PW2W2W = FEWATR
                            PW2LWT = FFWFFT*2.0*ELWATN
                PW2W2T = FFTNTL
                D2LIZZ(IE) = (PLFWAT*DFWATR)**2 + (PLLWAT*DLWATR )**2
                        +(PLLTNT*DLTNTL)**2
                            D2W2L1(IE) = (PW2FWA*DFWATR)***2 +(PW2W2W*DW2WAT)**2
                        +(PW2W2T*DW2TNT)**2 +
                        PW2LWT**2*(DLWATR**2+D2LTNT)
            CVLIW2(IE) = PLFWAT*PW2FWA*DFWATR**2 +
                PLLWAT*PW2LWT*DLWATR**2 - PLLTNT*PW2LWT*D2LTNT
C
C *** OBTAIN WIDTH (AND UNCERTAINTIES) FROM VARIANCE
                            WL1ZZZ(IE) = SQRT(W2L1ZZ(IE))
                            DLIZZZ(IE) = SQRT(D2L1ZZ(IE))
                                    DW2LIZ(IE) = SQRT(D2W2L1(IE))
                                    DWL1ZZ(IE) = 0.5*DW2LlZ(IE)/WLIZZZ(IE)
C
C *** WRITE RESULTS
                            WKITE (25,99999) EEEEEE(TE), FTNZZZ(IE), FWAZZZ(IE),
                            * DFWAZZ(IE), DWAZZZ(IE), WWAZZZ(IE), ELLIZZ(IE),
    * DLIZZZ(IE), WLIZZZ(IE), DWLIZZ(IE)
C
C *** PLOT SOME OF THE DISTRIBUTIONS
                        IF (IPP(IPL).NE.IE) GO TO 10
                        CALL PLOT(EEEEEE(IE), FTNZZZ(IE), FWAZZZ(IE),
            * DWAZZZ(IE), WWAZZZ(IE), ELL1ZZ(IE), WLIZZZ(IE),
            * IPL, UUUUUU, WWWWWW, UW2ZZZ, RRRRRR)
            IPL = IPL + 1
        10 CONTINUE
C
            WRITE (25,99998)
            DO 20 IE=1,IEGRID
                        CRL1W2 = 0.0
                        IF (DL1ZZZ(IE)*DW2L1Z(IE).NE.0.0) CRL1W2 =
            *
                                    CVL1W2(IE)/(DLIZZZ(IE)*DW2LIZ(IE))
                            WRITE (25,99997) EEEEEE(IE), D2LIZZ(IE),
            * D2W2LI(IE), CVLLW2(IE), CRLIW2
        20 CONTINUE
C
    RETURN
99999 FORMAT (F10.0, 3F10.4, 6F10.3)
99998 FORMAT (/45H EN D2L1 D2W2L1 CVLIW2 C,
    * 5HRL1W2)
99997 FORMAT (F10.0, 6F10.3)
    END
```

SUBROUTINE DETECT

C

C $* * *$ PURPOSE … GENERATE CONTRJBUTION TO LENGTH FROM DETECTOR C $+\dot{*} * \quad$ END OF FLIGHT PATH
C
COMMON /ELL3XX/ CROSSS(17), ELL3ZZ(17), DL3ZZZ(17), * D2L3ZZ(17), WL3ZZZ(17), DWL3ZZ(17), W2L3ZZ(17), * DW2L3Z(17), D2W2L3(17), V3L3ZZ(17), U4L3ZZ(17), * CVL3W2(17)

COMMON /DETECV/ ALMBDA, THICKN, PERLMB, PERTHI, PERCRO
C
COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ, * IEgrid, iplot

C
LOGICAL SHORTZ
C
DATA ALMBDA /0.0047/, THICKN / 19.0/, PERLMB /0.02/,

* PERTHI /0.05/, PERCRO /0.05/

C
DATA CROSSS / $27.200,27.17,27.02,26.50,29.91,24.69,21.7 /$, * $\quad 18.51,14.80,11.999,11.24,8.72,7.28,4.89,3.02,2.22$,
\% 2.03/
C

CCCC INPUT $\mathbf{~ C ~}$
CCCC
CCCC CROSSS $=$ CROSS SECTION FOR NEIIO AT ENERGY E
CCCC \quad NE110 $=$ CHI. 104
CCCC SSIGMA $=$ CROSS SECTION ALSO
CCCC DSIGMA = UNCERTAINTY ON CROSS SECTION FOR NEIIO
CCCC PERCRO $=$ PERCENT UNCERTAINTY ON CROSS SECTION
CCCC
CCCC THICKN $=$ THICKNESS OF NE 110 IN CM
CCCC DTHICK = UNCERTAINTY ON THICKN
CCCC PERTHI = PERCENT UNCERTATNTY ON THICKN
cCCC
$\operatorname{ccc} \mathrm{C}$
CCCC
CCCC
CCCC
CCCC
cccc outpur cccccccccccccccccccccccccccccccccccccc
CCCC
CCCC ELL $3 Z Z=$ MEAN DISTANCE TO FTRST SCATTER FROM FRONT
CCCC
CCCC DL $3 Z Z Z=$ UNCERTAINTY ON ELIJ3ZZ
CCCC WL3ZZZ $=$ STANDARD DEVIATION OF DISTRIBUTION
CCCC CENTERED ABOUT ELL3ZZ.
CCCC DWL $3 Z Z=$ UNCERTAINTY (STD DEV) ON WL3ZZZ
cccc
CCCC OUYPU' IS IN MILLIMETERS


```
WRITE \((25,99999)\)
```

 DLMBDA \(=\) PERLMB*ALMBDA
 DTHICK \(=\) PERTHI*THICKN
 PPPPPP \(=100.0 *\) PERCRO
 WRITE \((25,99998)\) ALMBDA, DLMBDA
 WRITE \((25,99997)\) THICKN, DTHICK
 WRITE \((25,99994)\) PPPPPP
 WRITE \((25,99996)\)
 Do \(10 \mathrm{IE}=1\), IEGRID
 SSIGMA \(=\) CROSSS (IE)
 RSTZZZ \(=\) ALMBDA*SSIGMA*THICKN
 RST2ZZ \(=\) RSTZZZ**2
 EXPRST \(=\operatorname{EXP}(\operatorname{RSTZZZ})\)
 DENOMN \(=1.0-\) EXPRST
 ELL3ZZ(IE) \(=(1.0 /\) RSTZZZ \(+1.0 / D E N O M N) * T H I C K N\)
 XXXXXX \(=1.0 /\) RST \(2 Z Z-\operatorname{EXPRST} / D E N O M N * * 2\)
 W2L3ZZ(IE) \(=\) XXXXXX*THICKN**2
 WL3ZZZ(IE) \(=\operatorname{SQRT}(X X X X X X) * T H I C K N\)
 PLRSTX \(=-X X X X X X * R S T Z Z Z *\) RICKN
 PLTHXX = ELL3ZZ(IE) + PLRSTX
 D2L3ZZ (IE) \(=\) PLRSTX \(* * 2 *(\) PERLMB \(* * 2+\) PERCRO \(* * 2)+\)
 (PLTHXX*PERTHI) **2
 DL3ZZZ(IE) \(=\operatorname{SQRT}(D 2 L 3 Z Z(I E))\)
 \(\operatorname{XXXXXX}=2.0 /(\operatorname{RST} 2 Z Z * R S T Z Z Z)+\)
 EXPRST* (\(1.0+\) EXPRST)/DENOMN \(* * 3\)
 PW2RST \(=-X X X X X X * R S T Z Z Z * T H I C K N * * 2\)
 PW2THI \(=2.0 \times W 2 L 3 Z Z(I E)+\) PW2RST
 D2W2L3(IE) \(=\) PW2RST**2* (PERLMB**2+PERCRO**2) +
 (PW2THI*PERTHI) **2
 DW2L3Z(IE) = SQRT(D2W2L3(IE))
 DWL3ZZ(IE) \(=\) DW2L3Z(IE)/(2.0*WL3ZZZ(IE))
 CVL3W2(IE) \(=\) PLRSTX \(*\) PW2RST* \(*\) PERLMB \(* * 2+\) PERCRO \(* * 2)+\)
 PLTHXX*PW2THI*PERTHI**2
 V3L3ZZ(IE) \(=\) XXXXXX*THICRN**3
 XXXXXX \(=9.0 /\) RST \(2 Z Z * * 2-6.0 \%\) EXPRST/(RSTZZZ \(2-\) DENOMN) \(* * 2\)
 -EXPRST* \(1.0+\) EXPRST + EXPRST \(* * 2\))/DENOMN \(* * 4\)
 U4L3ZZ (IE) \(=\) XXXXXX*THICKN* \(\because 4\)
 CRL3W2 \(=\) CVL.3W2(IE)/(DL3Z2Z (IE)*DW2L3Z(IE))
    ```
C
    WRITE (25,99995) EEEEEE(IE), SSIGMA, ELL3ZZ(IE),
    * DL3ZZZ(IE), WL3ZZZ(IE), DWL3ZZ(IE),
    * V3L3ZZ(IE), U4L3ZZ(IE), D2L3ZZ(IE),
    * D2W2L3(IE), CVL3W2(IE), CRL3W2
C
            IEE=1E
            CALI. PLTDET(EEEEEE(IE), ELL3ZZ(IE), WL3ZZZ(IE),
            \star
                        CROSSS(IE), ALMBDA, THICKN, IEE)
C
    10 CONTINUE
        RETURN
C
99999 FORMAT (// 27H ******* DETECTOR END ******)
99998 FORMAT (/10H RHO = , F8.6, bH +/- , F8.6)
99997 FORMAT (10H THXCKN = , F8.4, 5H +/- , F8.4)
99994 FORMAT (/10H PERCRO = , F8.4,
    * 37H PERCENT UNCERTAINTY ON CROSS SECTION/)
99996 FORMAT (/45H 年 ENERGY 
    CRL3W2)
99995 FORMAT (F10.0, 6F10.3, 3X, 6G12.5)
    END
```

SUBROUTINE COMBIN
C
C $* * *$ PURPOSE - - COMBINE THE VARIOUS COMPONENTS OF FLIGHT-PAIH C $* * *$ LENGTH AND WRITE THEM ON UNIT 23

COMMON /ELXXXX/ ELZZZZ(17), DLZZZZ(17), DZLZZZ(17), * WLZZZ(17), DWLZZZ(17), W2LZZZ(17), DW2LZZ(17), * D2W2LZ(17), V3LZZZ(17), U4LZZZ(17), CVLW2Z(17) COMMON /ELL1XX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17), * FTNZZZ(17), ELL1ZZ(17), DLIZZZ(17), D2L1ZZ(17), * WLIZZZ(17), DWL1ZZ(17), W2LIZZ(17), DW2LIZ(17), * D2W2L1(17), V3L1ZZ(17), U4L1ZZ(17), DFWAZZ(17), * CVLIW2(17) COMMON /TAWATV/ PERDWA, PERWWA, WATER1, WATER2, WATER3, * WWATR1, WWATR2, WWATR3, UUUUUU, WWWWWW, SSSSSS, * DELUUU, DELWWW, DELSSS, RRRRRR, DELRRR, EMMMMM, * PEREMM, ABSUNC

COMMON /ELL3XX/ CROSSS(17), ELL3ZZ(17), DL3ZZZ(17), * D2L3ZZ(17), WL3ZZZ(17), DWL3ZZ(17), W2L3ZZ(17), * DW2L3Z(17), D2W2L3(17), V3L3ZZ(17), U4L3ZZ(17), * CVL3W2(17)

COMMON /ALILZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,

* IEGRID, IPLOT

LOGICAL SHORTZ
DATA ELL2ZZ / 201440.0/, DL2ZZZ /5.0/
C
WRITE $(25,99999)$
C
DO 10 IE $=1$, IEGRID
$E L Z Z Z Z(I E)=E L L 1 Z Z(I E)+E L L Z Z Z+E L L 3 Z Z(I E)$
$\mathrm{D} 2 \mathrm{LZZZ}(I E)=\mathrm{D} 2 \mathrm{~L} 1 \mathrm{ZZ}(\mathrm{IE})+\mathrm{DL} 2 \mathrm{ZZZ} * * 2+\mathrm{D} 2 \mathrm{~L} 3 \mathrm{ZZ}(\mathrm{IE})$
$D L Z Z Z Z(I E)=S Q R T(D 2 L Z Z Z(I E))$
W2LZZZ (IE) $=W 2 L 1 Z Z(I E)+W 2 L 3 Z Z(I E)$
WLZZZZ(IE) $=$ SQRT(W2LZZZ(IE))
$\mathrm{D} 2 \mathrm{~W} 2 \mathrm{~L}(\mathrm{IE})=\mathrm{D} 2 \mathrm{~W} 2 \mathrm{~L} 1(\mathrm{IE})+\mathrm{D} 2 \mathrm{~W} 2 \mathrm{~L} 3(\mathrm{IE})$
DW2LZZ(IE) $=\operatorname{SQRT}(D 2 W 2 L Z(I E))$
DWLZZZ(IE) $=0.5 * D W 2 I Z Z(I E) / W L Z Z Z Z(I E)$
CVLW2Z(IE) $=$ CVL1W2(IE) + CVL3W2(IE)
$V 3 L Z Z Z(I E)=V 3 L 3 Z Z(I E)+V 3 L 1 Z Z(I E)$
$U 4 \mathrm{LZZZ}(I E)=U 4 L 3 Z Z(I E)+U 4 L I Z Z(I E)+$ * $\quad 6.0 * W 2 \mathrm{~L} 3 \mathrm{ZZ}(\mathrm{IE}) * W 2 \mathrm{LIZZ}(\mathrm{IE})$

C
WRITE $(25,99998)$ EEEEEE(IE), ELZZZZ(IE), DLZZZZ(IE), * WLZZZZ(IE), DWLZZZ(IE)

IF (.NOT.SHORTZ) WRITE $(5,99998)$ EEEEEE(IE), ELZZZZ(IE), DLZZZZ(IE), WLZZZZ(IE), DWLZZZ(IE)
10 CONTINUE
RETURN
C
 * 51H ENERGY EL DL WL DWL)

99998 FORMAT (FIO.0, F12.3, SF10.3)
END

SUBROUTINE OUTCMP
C *** PURPOSE -- WRITE ON UNIT 25 COMPONENTS OF WIDTHS ETC FOR FPL C

COMMON /ELXXXX/ EIZZZZ(17), DLZZZZ(17), D2LZZZ(17),

* WLZZZZ (17), DWLZZZ(17), W2LZZZ(17), DW2LZZ(17),
* D2W2IZ(17), V3LZZZ(17), U4LZZZ(17), CVLW2Z(17)

COMMON /ELLIXX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17),

* FTNZZZ(17), ELLLZZ(17), DLlZZZ(17), D2LIZZ(17),
* WLaZZZ (17), DWL12Z(17), W2L1ZZ(17), DW2L1Z(17),
* D2W2L1(17), V3L1ZZ(17), U4L1ZZ(17), DFWAZZ(17),
* CVLIW2(17)

COMMON /ELLSXX/ CROSSS(17), ELL3ZZ(17), DL3ZZZ(17),

* D2L3ZZ(17), WL3ZZZ(17), DWL3ZZ(17), W2L3ZZ(17),
* DW2L3Z(17), D2W2L3(17), V3L3ZZ(17), U4L3ZZ(17),
* CVL3W2(17)

COMMON /ALLLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,

* IEGRTD, IPLoT

LOGICAL SHORTZ
C
WRITE (25,49999)
WRITE $(25,99998)$
DO $10 \mathrm{IE}=1$, IEGRID
WRITE (25,99997) EEEEEE(IE), ELZZZZ(IE), ELL2ZZ,

* ELLIIZZ(IE), ELL3ZZ(IE)
10 CONTINUE
C
WRITE $(25,49996)$
WRITE (25,99995)
DO 20 IE $=1$,IEGRID
WRITE (25,99994) EEEEEE(IE), ELZZZZ(IE), DLZZZZ(IE),
* DL1ZZZ(IE), DL.2ZZZ, DL3ZZZ(IE)
20 CONTINUE
C
WRITE (25,99993)
WRITE $(25,99992)$
DO 30 IE=1,IEGRID
D2L2ZZ = DL2ZZZ**2
WRITE (25,99994) EEEEEE(IE), ELZZZZ(IE), D2IZZZ(IE),
* D2L1ZZ(IE), D2L2ZZ, D2L3ZZ(IE)

30 CONTINUE
C
WRITE $(25,99991)$
WRITE (25,99990)
DO 40 IE $=1$, , $E G R I D$
WRITE $(25,99989)$ EEEEEE(IE), ELZZZZ(IE), WLZZZZ(IE),

* WLIZZZ(IE), WL3ZZZ(IE)

40 CONTINUE
C
WRITE (25,99988)
WRITE $(25,99981)$
DO $50 \mathrm{TE}=1$, IEGRID
WRITE (25,99986) EEEEEE(IE), ELZZZZ(IE), W2LZZZ(IE),

* W2LlZZ(IE), W2L3ZZ(IE)

50 CONTINUE

```
            WRITE (25,99985)
            WRITE (25,99984)
            DO 60 IE=1,IEGRID
                WRITE (25,99983) EEEEEE(IE), ELZZZZ(IE), WLZZZZ(IE),
                            DWLZZZ(IE)
            *
        6 0 \text { CONTINUE}
C
            WRITE (25,99982)
            WRITE (25,99981)
            DO 70 IE=1,IEGRID
                WRITE (25,99980) EEEEEE(IE), DW2LZZ(IE), DW2L1Z(IE),
            *
                            DW2L32(IE)
    70 CONTINUE
C
    WRITE (25,49979)
    WRITE (25,99978)
    DO 80 IE=1,IEGRID
        WRITE (25,99980) EEEEEE{IE}, CVLW2Z(IE), CVLlW2(IE),
            CVL3W2(IE)
    8U CONTINUE
    RETURN
99999 FORMAT (//44H *** COMPONENTS OF FLIGHT PATH LENGTH EL ***)
99998 FORMAT (/44H ENERGY EL ELL2 ELL1 ,
    * 10H ELL3 )
99997 FORMAT (1X, F10.0, F12.3, F13.3, 2F8.3)
99996 FORMAT (//44H *** COMPONENTS OF UNCERTAINTY ON FLIGHT PAT,
    * 12HH LENGTH ***)
99995 FORMAT (/45H ENERGY EL DL DLI ,
    * 19H DL2 DL3 )
99994 FORMAT (1X, Fl0.0, F12.3, 8F10.3)
99993 FORMAT (//44H *** COMPONENTS (SQUARED) OF UNCERTAINTY ON ,
    * 22HFLIGHT PATH LENGTH ***)
99992 FORMAT (/45H ENERGY EL D2L D2LI ,
    * 19H D2L2 D2L3)
99991 FORMAT (//44H *** COMPONENTS OF WIDTH "WL" OF FLIGHT PATH,
    * 24H LENGTH DISTRIBUTION ***)
99990 FORMAT (/45H ENERGY EL WL WLl ,
    * 7H WL3)
99989 FORMAT (1X, F10.0, F12.3, 3F10.3)
99988 FORMAT (//23H **** DITTO, SQUARED ***)
99987 FORMAT (/45H ENERGY EL W2L W2LI ,
    * 8H W2L3 )
99986 FORMAT (1X, F10.0, F12.3, 3F10.3)
99985 FORMAT (//44H *** UNCERTAINTY ON WIDTH OF FPL DISTRIBUTIO,
    * 5HN ****)
99984 FORMAT (/43H ENERGY EL WL DWL )
99983 FORMAT (1X, F10.0, F12.3, 8F10.3)
99982 FORMAT (//44H *** UNCERTAINTY ON VARIANCE OF FPL DISTRIBU,
    * 8HTION ***)
99981 FORMAT (/46H ENERGY DW2L DW2L1 DW2L3)
99980 FORMAT (1X, F10.0, 8F12.3)
99979 FORMAT (//44H *** COVARIANCE ON FLIGHT PATH LENGTH DISTRI,
    * 6HBUTION)
99978 FORMAT (/47H ENERGY CVLW2 CVL1W2 CVL3W2)
        END
```

SUBROUTINE TTME
C
C w w PURPOSE - GENERATE MOMENTS OF TIME DISTRIBUTIONS
C
COMMON /TIMER/ 'IZEROZ, DTZERO, AFWHMZ, DAFWHM, BCHNLZ,

* DBCHNL, TSCALE

COMMON /TIXXXX/ TIZZZZ, DT1ZZZ, D2T1ZZ, WTIZZZ, DWT1ZZ,

* W2T1ZZ, DW2T1Z, D2W2T1, V3T1ZZ, U4T1ZZ, CVT1W2 COMMON /T2XXXX/ TZZZZZ, DT2ZZZ, D2T2ZZ, WTZZZZ, DWT2ZZ, * W2T2ZZ, DW2T2Z, D2W2T2, V3T2ZZ, U4T2ZZ, CVT2W2 COMMON /TIMEXX/ TIMEZZ(17), DTIMEZ(17), D2TIME(17), * WTIMEZ, DWTIME, W2TIME, DW2TIM, D2W2TZ, V3TIME, * U4TIME, CVTW2Z

C
COMMON /ALIZZZ! EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ, * IEGRID, IPLOT

C
LOGICAL SHORTZ
C
DATA AFWHMZ $17.5 /$, DAFWHM $10.5 /$, BCHNLZ $/ 1.0 /$, DBCHNL

* /0.0010/, DTZERO / $0.288675 /$, TSCALE /0.00002/

C DTZERO IS 1/SQRT(12.0)
C
C
C $* * * T-S U B-1$
$\mathrm{D} 2 \mathrm{~T} 1 \mathrm{ZZ}=0.0$
WT1ZZZ $=\operatorname{AFWHMZ} /(2.0 * \operatorname{SQRT}(2.0 * \operatorname{ALOG}(2.0)))$
$\mathrm{DWT1ZZ}=\operatorname{DAFWHM} /(2.0 * \operatorname{SQRT}(2.0 * \operatorname{ALOG}(2.0)))$
W2T1ZZ $=$ WT1ZZZ*WT1ZZZ
DW2T1Z $=2.0$ *WT1ZZZ*DWT1ZZ
D2W2T1 $=$ DW2T12**2
$\mathrm{V} 3 \mathrm{TlZZ}=0.0$
$\mathrm{U} 4 \mathrm{~T} 1 \mathrm{ZZ}=3.0 \% \mathrm{WT} 12 \mathrm{ZZ}$
C
C $* * *$ PRINTOUT FOR T-SUB-1 AND T-SUB-2
WRITE (25,99999)
WRITE $(25,49998)$ WTIZZZ, DWTIZZ, AFWHMZ, DAFWHM,

* BCHNLZ, DBCHNL, DTZERO, DTZERO, TSCALE, TSCALF,

C
C $\times *:$ T-SUB-2
$\mathrm{D} 2 \mathrm{~T} 2 \mathrm{ZZ}=0.0$
WT2ZZZ $=$ BCHNLZ/SQRT(12.0)
$\mathrm{W} 2 \mathrm{~T} 2 \mathrm{ZZ}=\mathrm{BCHNLZ}$ *BCHNLZ. $/ 12.0$
DWT2ZZ $=$ DBCHNL/SQRT(12.0)
DW2T $2 \%=($ BCHNLZ $/ 6.0) *$ DBCHNL
D2W2T2 $=$ DW2T2Z**2
$\mathrm{V} 3 \mathrm{~T} 2 \mathrm{Z} 2=0.0$
$\mathrm{U} 4 \mathrm{~T} 2 \mathrm{ZZ}=($ BCHNLZ $/ 2.0) * * 4 / 3.0$
C

```
C *** COMBINE THE IWO
        WZTIME = WZT2ZZ + W2TIZZ
        WTIMEZ = SQRT(W2TIME)
        V3TIME = 0.0
        U4TIME = U4T2ZZ + U4T1ZZ + 6.0*W2T2ZZ*W2T1ZZ
        D2W2TZ = D2W2T2 + D2W2T1
        DW2TIM = SQRT(D2W2TZ)
        DWTIME = DW2TIM/(2.0*WTIMEZ)
        CVTW2Z = CVT1W2 + CVT2W2
C
        WRITE (25,y999])
        WRITE (25,99996) WT1ZZZ, DWT^ZZ, W2T1ZZ, DW2T1Z, D2W2T1,
    * V3T1ZZ,04T1ZZ
        WRITE (25,99995) WT2ZZZ, DWT2ZZ, W2T2ZZ, DW2T2Z, D2W2T2,
    * V3T2ZZ, U4T2ZZ
        WRITE (25,99994) WIIMEZ, DWTIME, W2TIME, DW2TIM, D2W2TZ,
    * V3TIME, U4TIME
        RETURN
C
99999 FORMAT (///30H ******* TIME RESOLUTION ******)
99998 FORMAT (/37H ASTD = WIDTH (STD.DEV.) OF BURST =, F8.5,
    * 5H +/-, F8.5/35H AFWHM = WIDTH (FWHM) OF BURST
    * 2H=,F8.5, 〕H +/- , F8.5/23H CHNL = WIDTH OF DETE,
    * 14HCTOR-CHANNEL =, F8.5, 5H +/- , F8.5/10H DTZERO = ,
    * 27HUNCERTAINTY IN TZERO =, F8.5, 2H =, 1PEIO.3/
    * 37H TSCALE = RELATIVE TIME-UNCERTAINTY =, OPF8.5,
    * 2H =, 1PE10.3)
99997 FORMAT (/45H WT WT? DWT? W2T?,
    * 4/H DW2T? D2W2T? V3T? U4'?)
99996 FORMAT (12H ONE , 7G12.4)
99995 FORMAT (12H TWO , 7G12.4)
99994 FORMAT (12H TOTAL , 7G12.4)
        END
```


SUBROUTINE ENERGY

C
C $* * *$ PURPOSE - - GENERATE ENERGY UNCERTAINTY AND MOMENTS OF THE
C $\begin{aligned} \\ \text { 2 } \\ \text {. }\end{aligned}$
C
COMMON /TOTAL/ ENZZZZ(17), FUDGEZ(17), DENZZZ(17),

* D2ENZZ(17), WENZZZ(17), W2ENZZ(17), DWENZZ(17),
* DW2ENZ(17), D2W2EN(17), WWEL2Z(17), WWTIM2(17),
* WWEL3Z(17), WWCLM3(17), WWELTI(17), WWEL4Z(17),
* WWTIM4(17), PW2W2L(17), PW2W2T(17), PW2LZZ(17),
* PWZTIM(17)

C
COMMON /ELXXXX/ ELZZZZ(17), DLZZZZ(17), D2LZZZ(17),

* WLZZZZ(17), DWLZZZ(17), W2IZZZ(17), DW2LZZ(17),
* D2W2IZ(17), V3LZZZ(17), U4LZZZ(17), CVLW2Z(17)

C
COMMON /TIMER/ TZEROZ, DTZERO, AFWHMZ, DAFWHM, BCHNLZ,

* DBCHNL, TSCALE

COMMON /TTMEXX/ TIMEZZ(17), DTIMEZ(17), D2TIME(17),

* WTIMEZ, DWTIME, W2TIME, DW2TIM, D2W2IZ, V3TTME,
* U4TIME, CV'SW2Z

C
COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,

* IEGRID, IPLOT

C
C

```
    WRITE (25,99999)
    WRITE (25,99998)
    DO 30 IE =1, [EGRID
        TMTZER = 72.297*ELZZZZ(IE)/SQRT(EEEEEE(IE))
        TIMEZZ(IE) = TMTZER
        D2TIME(IE) = DTZERO**2 + (TMTZER*TSCALE)**2
        DTIMEZ(IE) = SQRT(D2TIME(IE))
        FUDGE1 = W2LZZZ(IE)/ELZZZZ(IE)**2
        FUDGE2 = 3.0*W2TIME/TMTZER**2
        FUDGE3 = 5.0*U4TIME/TMTZER**4
        FUDGE4=3.0* (W2IZZZ(IE)/ELZZZZ(IE)**2)*
    * (W2TIME/TMTZER**2)
        FUDGEZ(IE) = FUDGE1 + FUDGEZ + FUDGE3 + FUDGE4
        ENZZZZ(IE) = EEEEEE(IE)*(1.0+FUDGEZ(IE))
        TMTZZZ = 72.297*ELZZZZ(IE)/SQRT(ENZZZZ(IE))
```

C
D2ENZZ (IE) $=\operatorname{EEEEEE}(\mathrm{IE}) * * 2 * 4.0 *$
$* \quad(D 2 L Z Z Z(I E) / E L Z Z Z Z(I E) * * Z+\operatorname{D2TIME}(I E) / T M T Z E R * * 2)$
$\operatorname{DENZZZ}(1 E)=\operatorname{SQRT}(D 2 E N Z Z(I E))$

C
AAEL2Z $=2.0 * W L Z Z Z Z(I E) / E L Z Z Z Z(I E)$
WWEL2Z (IE) $=$ AAEL2Z**2
AATIM2 $=2.0 \times$ WJIMEZ $/$ TMTZER
WWTTM2 (IE) $=$ AATIM $2 * * 2$
WWEL $3 Z(I E)=4.0 * V 3 L Z Z Z(I E) / E L Z Z Z Z(I E) * * 3$
AAEL3Z $=$ SQRT(WWEL3Z(IE))
WWTTM3(IE) $=0.0$

```
        AATIM3 = 0.0
        WWELTI(IE) = 3.0*WWEL2Z(IE)*WWTIM2(IE)
        AAELTI = SQRT(WWELTI(IE))
        WWEL4Z(IE) = (U4LZZZ(IE)-W2LZZZ(IE)**2)/ELZZZZ(IE)**4
        AAEL4Z = SQRT(WWEL4Z(IE))
        WWTIM4(IE) = (25.0*U4TIME-9.0*W2TIME**2)/TMTZER**4
        AATIM4 = SQRT(WWTIM4(LE))
        W2ENZZ(IE) = EEEEEE(IE)**2*(WWEL2Z(IE)+WWTTM2(IE)
        +WWEL3Z(IE)+WWELII(IE)+WWTIM3(IE)+WWEL4Z(IE)
        +WWTIM4(IE))
        WENZZZ(IE) = SQRT(W2ENZZ(IE))
C
    *
    *
    * 4.0*W2ENZZ(IE)/ELZZZZ(IE)
    XATIME = -2.0*( WWTIMZ(IE)*(1.0+3.0*WWEL2Z(IE))
        + 2.0*WWTIM4(IE) ) / TMTZER
    PW2TIM(IE) = XATIME*EEEEEE(IE)**Z -
        4.0*W2ENZZ(IE)/TMTZER
C
    * PW2W2T(IE)**2*DW2TIM*** +
    * PW2LZZ(IE)**2*D2LZZZ(IE) +
    * PW2TIM(IE)**2*D2TIME(IE) +
    *
    *
C
    *
    *
XAW2IZ =(1.0+3.0%WWITML(IE)-WWEL2Z(IE)/8.0)
        *4.0/ELZZZZ(IE)**2
        PW2W2L(IE) = XAW2LZ*EEEEEE(IE)**2
        XAW2TI = (1.0+3.0*WWEL2Z(IE)-9.0*WWTIM2(IE)/8.0)
        *4.0/TMTZER**2
    PW2W2T(IE) = XAW2TI*EEEEEE(IE)**2
    XAELZZ = -2.0*( WWEL2Z(IE)*(1.0+3.0*WWTIML(IE))
        +WWELSZ(IE)*1.5 + WWEL4Z(IE)*2.0 )/ ELZZZZ(IE)
    PW2IZZ(IE) = XAELZZ*EEEEEE(IE)**2 +
D2W2EN(IE) = PW2W2L(IE)**2*D2W2LZ(IE) +
        2.0*PW2W2L(IE)*PW2IZZ(IE)*CVLW2Z (IE)
        + 2.0*PW2W2T(IE)*PW2TTM(IE)*CVTW2Z
        DW2ENZ(IE) = SQRT(D2W2EN(IE))
        DWENZZ(IE) = DW2ENZ(IE)/(2.0*WENZZZ(IE))
    WRITE (25,49997) TMTZER, TMTZZZ, FUDGE1, FUDGE2, FUDGE3,
        FUDGE4, AAEL2Z, AATIN2, AAEL3Z, AATIM3, AAELTI,
        AAEL4Z, AATIM4
    30 CONTINUE
C
    WRITE (25,99994)
    DO 40 IE=1,IEGRID
            WRITE (25,49993) EEEEEE(IE), W2ENZZ(IE), WWEL2Z(IE),
    * WWTIM2(IE), WWEL3Z(IE), WWELTI(IE), WWTIM3(1E),
    * WWEL4Z(IE), WWTTM4(TE)
40 continue
```

```
C
    WRITE (25,99996)
    DO 50 IE=1,IEGRID
        XX = DENZZZ(IE)/ENZZZZ(IE)
        YY = WENZZZ(IE)/ENZZZZ(IE)
        ZZ = DWENZZ(IE)/WENZZZ(IE)
                        WRITE (25,99995) EEEEEE(IE), ENZZZZ(IE), FUDGEZ(IE),
        * DENZZZ(IE), XX, WENZZZ(IE), YY, DWENZZ(IE), ZZ
        50 CONTINUE
        RETURN
C
99999 FORMAT (///28H ******* FINAL RESULTS *******)
99998 FORMAT (///43H T-T0 T-T0X FUDGE1 FUDGEL FUD,
    * 49HGE3 FUDGE4 AAEL2 AATIM2 AAEL3 AATIM3 ,
    * 25H AAELTI AAEL4 AATIM4)
99997 FORMAT (1X, 2F9.0, 1P11GG.2)
9 9 9 9 4 ~ F O R M A T ~ ( / / , ~ E N E R G Y ~ W 2 E N ~ W W E L 2 ~ W W T I M L ~ W W ~
    *EL3 WWELTI WWTIM3 WWEL4 WWTIM4')
99993 FORMAT (F10.0, IP&G12.4)
99996 FORMAT (//44H ENERGY ADJ, ENE. FUDGE DEN,
    * 49H DEN/EN WEN DEN/EN DWEN ,
    * 12H DWEN/WEN)
99995 FORMAT (1X, F10.0, F11.0, IP7G12.3)
        END
```

SUBROUTINE DSPLAY
C
C *** PURPOSE - WRITE TABLES FOR TM REPORT
COMMON /TOTAL/ ENZZZZ(17), FUDGEZ(17), DENZZZ(17),
* D2ENZZ(17), WENZZZ(17), W2ENZZ(17), DWENZZ(17),
* DW2ENZ (17), D2W2EN(17), WWEL22(17), WWTIM2(17),
* WWEL3Z(17), WWTIM3(17), WWELTI(17), WWEL4Z(17),
* WWTIM4(17), PW2W2L(17), PW2W2T(17), PW2LZZ(17),
* PW2TIM(17)

C

```
    COMMON /ELXXXXX/ELZZZZ(17), DLZZZZ(17), D2LZZZ(17),
    * WLZZZZ(17), DWLZZZ(17), W21ZZZ(17), DW2LZZ(17),
    * D2W2LZ(17), V3LZZZ(17), U4LZZZ(17), CVLW2Z(17)
```

 COMMON /ELLIXX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17),
 * FTNZZZ(17), ELL1ZZ(17), DL1ZZZ(17), D2L1ZZ(17),
 * WL1ZZZ(17), DWL1ZZ(17), W2L1ZZ(17), DW2L1Z(17),
 * D2W2L1(17), V3L1ZZ(17), U4L1ZZ(17), DFWAZZ(17),
 * CVL1W2(17)
 COMMON /ELL3XX/ CROSSS(17), ELL3ZZ(17), DL3ZZZ(17),
 * D2L3ZZ(17), WL.3ZZZ(17), DWL3ZZ(17), W2L3ZZ(17),
 * DW2L3Z(17), D2W2L3(17), V3L3ZZ(17), U4L3ZZ(17),
 * CVL3W2(17)
 C
C
COMMON /ALLZZZ/ EEEEEE(17), ELI,2ZZ, DL2ZZZ, SHORTZ,
* IEGRID, IPLOT
C
c
* DLZZZZ(IE), ELLIZZ(IE), DLIZZZ(IE), ELL3ZZ(IE),
WRITE (2/,99999)
WRITE (21,99998)
DO $10 \mathrm{IE}=1$, IEGRID
ELIPL3 $=$ ELLIZZ(IE) + ELL3ZZ (IE)
DLIPL3 $=\operatorname{SQRT}(D 2 L 1 Z Z(I E)+D 2 L 3 Z Z(I E))$
DEOE = DENZZZ(IE)/EEEEEE(IE)
WRITE (27,99997) EEEEEE(IE), DENZZZ(IE), DEOE, ELZZZZ(IE),
*
DL3ZZZ(IE), ELIPL3, DLIPL3
10 CONTINUE
C
WR1TE (27,99996)
WRITE (21,99995)
DO 20 IE $=1$, IEGRID
WOE = WENZZZ (IE)/EEEEEE(IE)
WRITE $(27,99994)$ EEEEEE(IE), WENZZZ(IE), WOE, DWENZZ(IE),
* WLZZZZ(IE), DWIZZZ(IE), WLIZZZ(IE), DWLIZZ(IE),
* WL3ZZZ(IE), DWL3ZZ(IE)
20 CONTINUE

```
C
            WRITE (2/,99993)
            WRITE (2/,99992)
            DO 30 IE=1,IEGRID
                WRITE (27,99991) EEEEEE(IE), W2IZZZ(IE), V3LZZZ(IE),
            * U4IZZZ(IE)
        30 CONTINUE
C
        WRITE (27,99990)
        WRITE (27,99989)
        DO 40 IE =1, IEGRID
            Bl = 4.0*W2LZZZ(IE)/ELZZZZ(IE)**2
            D2B1 = B1**2* (D2W2LZ(IE)/W2IZZZ(IE)**2
            * -4.0*CVLW2Z(IE)/(W2LZZZ(IE)*ELZZZZ(IE))+
            * 4.0*D2LZZZ(IE)/ELZZZZ(IE)**2)
        DB1 = SQRT(D2B1)
        B2 = 4.0*W2TIME/(72.297*ELZZZZ(IE))**2
        D2B2 = B2**2* (D2W2TZ/W2TIME**2 +
            * 4.0*D2LZZZ(IE)/ELZZZZ(IE)**Z)
        DB2 = SQRT(D2B2)
        B1PB2E = B1 + B2*EEEEEE(IE)
        D2BBEZ = D2B1 + 16.0/TIMEZZ(IE)**4*
    * (D2W2TZ+4.0*D2TIME(IE)/TIMEZZ(IE)**2)
        DBBEZZ = SQRT(D2BBEZ)
        W2OENL = W2ENZZ(IE)/EEEEEE(IE)**2
        WRITE (27,99988) EEEEEE(IE), W2ENZZ(IE), B1, DB1, B2,
    * DB2, B1PB2E, DBBEZZ, W2OEN2
40 CONTINUE
    RETURN
C
99999 FORMAT (/// 8H TABLE l)
99998 FORMAT (/כ1H ENERGY DELTA E DE/ENERGY L ,
    * 48H DELTA L L1 DELTA L1 L3 DELTA L3,
    * 25H Ll+L3 DELTA (Ll+L3))
99997 FORMAT (F13.3, F11.3, IPG12.3, OPF12.3, 7F10.3)
99996 FORMAT (/// 8H TABLE 2)
99995 FORMAT (//45H ENERGY WEN WEN/ENERGY DWE,
    * 49HN WL DWL WLl DWLl W,
    * 12HL3 DWL3)
99994 FORMAT (F13.3, F11.3, lPG12.3, OP/F10.3)
99993 FORMAT (/// 8H TABLE 3)
99992 FORMAT (/41H ENERGY W2L U3L U4L)
99991 FORMAT (1X, F10.0, 3F10.2)
99990 FORMAT (/// 8H TABLE 4)
99989 FORMAT (/41H ENERGY W2EN B1 ,
    * 48H DB1 B2 DB2 B1+B2%E,
    * 30H D(Bl+B2*E) W2EN/ENERGY**2)
99988 FORMAT (1X, F10.0, lP8E13.3)
    END
```


SUBROUTINE PLT

$$
\mathbf{C}
$$

C $* * *$ PURPOSE - MAKE PLOT FLLES FOR ENERGY -DEPENDENT C. $* * *$ C PARAMETERS OF TANTALUM-WATER DISTRIBUTION

COMMON /ELLIXX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17), * FTNZZZ(17), ELL1ZZ(17), DL1ZZZ(17), D2L1ZZ(17), * WLIZZZ(17), DWL1ZZ(17), W2L1ZZ(17), DW2L1Z(17), * D2W2L1(17), V3L1ZZ(17), U4L1ZZ(17), DFWAZZ(17),
* CVLIW2(17)
COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,
* IEGRID, IPLOT
LOGICAL SHORTZ
C
$I U=21$
INS $=9$
$I F B=3$
MODE $=3$
NDSTRT $=0$
NEW $=1$
CALL ODFIO(IU, 'TAH20.ODF', IFB, NEW, INS, IEGRID, MODE,
* NDSTRT, $-1,0$)
CALL OUTODF (IU, IFB, INS, I, MODE, NDSTRT, l, IEGRID,
* EEEEEE, 1)
CALL OUTODF (IU, IFB, INS, 2, MODE, NDSTRT, 1, IEGRID,
* FTNZZZ, I)
CALL OUTODF (IU, IFB, INS, 3, MODE, NDSTRT, 1, IEGRID,
* FWAZZZ, 1)
CALI OUTODF(IU, IFB, INS, 4, MODE, NDSTRT, 1, IEGRID,
* DWAZZZ, 1)
CALL OUTODF(IU, IFB, INS, b, MODE, NDSTRT, 1, IEGRID,
* WWAZZZ, 1)
CALL OUTODF(IU, IFB, INS, 6, MODE, NDSTRT, 1, IEGRTD,
* ELLIZZ, 1)
CALI OUTODF(IU, IFB, INS, 7, MODE, NDSTRT, 1, IEGRID,
* DLIZZZ, 1)
CALL OUTODF(IU, IFB, INS, 8, MODE, NDSTRT, 1, IEGRID,
* WLIZZZ, 1)
CALL OUTODF (IU, IFB, INS, y, MODE, NDSTRT, I, IEGRID,
* DWLIZZ, 1)
CLOSE (UNIT=21)
RETURN
END

SUBROUTINE PLOT13

C
C $* * *$ PURPOSE - MAKE PLOT FILES FOR ENERGY-DEPENDENT
C $\% \star \ldots$ Ll +L 3 AND UNCERTAINTY THEREON
C
COMMON /ELLIXX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17), * FTNZZZ(17), ELLlZZ(17), DL1ZZZ(17), D2LlZZ(17), * WL1ZZZ(17), DWL1ZZ(17), W2L1ZZ(17), DW2L1Z(17), * D2W2LI(17), V3LIZZ(17), U4L1ZZ(17), DFWAZZ(17),

* CVLIW2(17)

C
COMMON /ELL3XX/ CROSSS(17), ELLL3ZZ(17), DL3ZZZ(17), * D2I3ZZ(17), WL3ZZZ(17), DWL3ZZ(17), W2L3ZZ(17), * DW2L3Z(17), D2W2L3(17), V3L3ZZ(17), U4L3ZZ(17), * CVL3W2(17)

C
COMMON /ALIZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,

* IEGRID, IPLOT

LOGICAL SHORTZ
C
DIMENSION DDUMMY(17)
C
C
$\mathrm{IU}=21$
INS $=3$
$I F B=3$
MODE $=3$
NDSTRT $=0$
NEW $=1$
CALL ODFIO(IU, 'LIPL3.ODF', IFB, NEW, INS, IEGRID, MODE, * NDSTRT, $-1,0$)

C
DO 10 IE=1,IEGRID
DDUMMY(IE) $=$ ELIIIZZ(IE) + ELL3ZZ(IE)
10 CONTINUE
C
CALL OUTODF (IU, IFB, INS, l, MODE, NDSTRT, l, IEGRID, * EEEEEE, 1)

CALI OUTODF(IU, IFB, INS, 2, MODE, NDSTRT, 1, IEGRID,

* DDUMMY, l)

C
DO $20 \mathrm{IE}=1$, IEGRID
DDUMMY(IE) $=$ SQRT(D2LIZZ(IE)+D2L3ZZ(IE))
20 CONTINUE
C
CALL OUTODF(IU, IFB, INS, 3, MODE, NDSTRT, 1, IEGRID, * DDUMMY, 1)

CLOSE (UNIT=21)
RETURN
END

```
        SUBROUTINE PLOT(E, FTNZZZ, FWAZZZ, D, WIA, ELLlZZ,
        * WLIZZZ, IPL, U, W, UW2, R)
C
C *** PURYOSE -- GENERATE ODF FILE FOR TA-WATER DISTRIBUTION
C
        DIMENSION Q(501), RHO(501)
        DOUBLE PRECISION FILE(17)
        DATA EJLE /10HO .ODF, 10H1 .ODF, 10H2 .ODF,
        * 10HS .ODF, 10H10 .ODF, 10H20 .ODF,
        * 10H50 .ODF, 10H100 .ODF, 10H200 .ODF,
        * 10H300 .ODF, 10H400 .ODF, 10H/00 .ODF,
        * 10H1000 .ODF, 10H2000 .ODF, 10H5000 .ODF,
        * 10H10000.ODF, 10H20000 .ODF/
        DATA IQQ / 501/
C
    QMIN = AMIN1(-(U+W),-ELLIZZ-3.*WLIZZZ)
    QMAX = AMAX1(0., -ELLIZZ+3.*WL1ZZZ)
    TYPE 99, QMIN, QMAX
    DELQ = (QMAX-QMIN)/500.
    DO 10 IQ =1,IQQ
        Q(IQ) = -(QMIN+DELQ*(IQ-1))
    10 CONTINUE
C
        AH20 = FWAZZZ/(SQRT(2.*3.141592654)*WTA)
        ATA = FTNZZZ*2./(3.141592654*R*R)
        DEN = 2.*WTA**2
        DO 20 IQ=1,IQQ
                RHO(IQ)=EXP(-(Q(IQ)-D)**2/DEN )*AH2O
                IF (Q(IQ).GE.UW2~R .AND. Q(IQ).LE.UW2+R) RHO(IQ) =
        *
                            RHO(IQ) + ATA*SQRT((R-UW2+Q(IQ))*(R+UW2-Q(IQ)))
    20 CONTINUE
C
        DO 30 IQ =1,IQQ
        Q(IQ)=-Q(IQ)
    30 CONTINUE
C
C
        IU = 22
        INS = 2
        IFB=3
        MODE = 3
        NDSTRT = 0
        NEW = 1
        CALI ODFIO(IU, FILE(IPL), IFB, NEW, INS, IQQ, MODE,
            * NDSTRT, -1, 0)
        CALL OUTODF(IU, IFB, INS, 1, MODE, NDSTRT, 1, IQQ, Q, 1)
        CALL OUTODF(IU, IFB, INS, 2, MODE, NDSTRT, l, IQQ, RHO, 1)
        CLOSE(UNIT=IU)
        RETURN
        END
```

```
    SUBROUTINE PLTDET(E, EL, W, S, R, T, IPL)
C
C *** PURPOSE - - GENERATE ODF FILES FOR DETECTOR-END DISTRIBUTION (L3)
C
        DIMENSION Q(501), RHO(501)
        DOUBLE PRECISION FILE(17)
    DATA FILE /10H0 .DET, 10HI .DET, 10H2 .DET,
    * 10H5 .DET, 10H10 .DET, 10H20 .DET,
    * 10H50 .DET, 10H100 .DET, 10H200 .DET,
    * 10H300 .DET, 10H400 .DET, 10H/00 .DET,
    * 10H1000 .DET, 10H2000 .DET, 10H5000 .DET,
    * 10H10000 .DET, 10H20000 .DET/
    DATA IQQ / 501/
C
    QMIN = EL-3.0%W
    QMAX = EL+3.0*W
C
TYPE y9, QMIN, QMAX
    DELQ = (QMAX-QMIN)/500.
    DO 10 IQ =1,IQQ
                Q(IQ) = (QMIN+DELQ*(IQ-1))
    10 CONTINUE
C
        RS = R*S
        RSII = RS*T
        A = RS/(1.0-EXP(-RST))
        DO 20 IQ =1,IQQ
            IF (Q(IQ).GE.O. .AND. Q(IQ).LE.T)
        * RHO(IQ) = A*EXP(-RS*Q(IQ))
        20 CONTINUE
C
    IU = 22
    INS = 2
    IFB=3
    MODE = 3
    NDSTRT = 0
    NEW = 1
    CALIL ODFIO(IU, FILE(IPL), IFB, NEW, INS, IQQ, MODE,
    * NDSTRT, -1, 0)
    CALL OUTODF(IU, IFB, INS, 1, MODE, NDSTRT, 1, IQQ, Q, 1)
    CALL OUTODF(IU, IFB, INS, 2, MODE, NDSTRT, 1, IQQ, RHO, l)
    CLOSE(UNLT=IU)
    RETURN
    END
```

SUBROUTINE QQQTAH
C WRITE DEBUG-PRINT FOR TANTALUM-WATER ARKAYS
COMMON /ELLIXX/ DWAZZZ(17), WWAZZZ(17), FWAZZZ(17),

* FTNZZZ(17), ELLlZZ(17), DL1ZZZ(17), D2L1ZZ(17),
* WL1ZZZ(17), DWL1ZZ(17), W2L1ZZ(17), DW2L1Z(17),
* D2W2LI(17), V3L1ZZ(17), U4L1ZZ(17), DFWAZZ(17),
* CVLlW2(17)

COMMUN /TAWATV/ PERDWA, PERWWA, WATERI, WATER2, WATER'3,

* WWATR1, WWATR2, WWATR's, UUUUUU, WWWWWW, SSSSSS,
* DELUUU, DELWWW, DELSSS, RRRRRR, DELRRR, EMMMMM,
* PEREMM, ABSUNC

DIMENSION AAAAAA (19)
EQUIVALENCE (AAAAAA (1), PERDWA)
CALL QQQZZZ(6HDWA , 6HWWA , 6HFWA , 6HFTN , DWAZZZ,

* WWAZZZ, FWAZZZ, FTNZZZ)

CALL QQQZZZ 6 HELL1 , 6HDL1 , 6HD2L1 , 6HWL1 , ELLLZZ,

* DL1ZZZ, D2LIZZ, WL1ZZZ)

CALL QQQZZZ (6HDWL1, 6HW2L1, 6HDW2LI, 6HD2W2L1, DWLIZZ,

* W2LlZZ, DW2L1Z, D2W2LI)

C
CALI QQQZZZ (6HV3L1, 6HU4Ll , 6HDFWA , 6HCVLIW2, V3L1ZZ,

* U4LlZZ, DFWAZZ, CVL1W2)

CALL QQQXXX (AAAAAA, 19)
RETURN
END
C
C

C
SUBROUTINE QQQDET
C $* * *$ PURPOSE -- DEBUG-PRINT FOR DETECTOR ARRAYS (L3)
COMMON /ELL3XX/ CROSSS(17), ELLL3ZZ(17), DL3ZZZ(17), * D2L3ZZ(17), WL3ZZZ(17), DWL3ZZ(17), W2L3ZZ(17), * DW2L3Z(17), D2W2L3(17), V3L3ZZ(17), U4L3ZZ(17), * CVL3W2(17)

COMMON /DETECV/ ALMBDA, THICKN, PERLMB, PERTHI, PERCRO DIMENSION AAAAAA(5)
EQUIVALENCE (AAAAAA(1),ALMBDA)
CALL QQQZZZ (6HCROSSS, 6HELL3 , 6HDL3 , 6HD2L3, CROSSS, * ELL3ZZ, DL3ZZZ, D2L3ZZ)

CALL QQQZZZ 6 , HWL 3 , 6HDWL 3 , 6HW2L3, 6HDW2L3 , WL3ZZZ,

* DWL3ZZ, W2L3ZZ, DW2L3Z)

CALL QQQZZZ (6HD2W2L3, 6HV3L3, 6HU4L3 , 6HCVL3W2, D2W2L3,

* V3L3ZZ, U4L3ZZ, CVL3W2)

CALL QQQXXX (AAAAAA, 〕)
RETURN
END

```
            SUBROUTINE QQQCOM
C *** PURPOSE -- DEBUG-PRINT LENGTH ARRAYS
    COMMON /ELXXXX/ ELZZZZ(17), DLZZZZ(17), D21ZZZ(17),
    * WLZZZZ(17), DWLZZZ(17), W2IZZZ(17), DW2LZZ(17),
    * D2W2LZ(17), V3LZZZ(17), U4LZZZ(17), CVLW2Z(17)
    COMMON /ALLZZZ/ EEEEEE(17), ELLL2ZZ, DL2ZZZ, SHORTZ,
    * IEGRID, IPLOT
    DIMENSION AAAAAA(2)
    EQUIVALENCE (AAAAAA(1),ELL2ZZ)
    CALL QQQZZZ(6HEL , 6HDL , 6HD2L , 6HWL , ELZZZZ,
    * DLZZZZ, D2LZZZ, WLZZZZ)
    CALL QQQZZZ(6HW2L , 6HDWL , 6HDW2L , 6HD2W2L , W2IZ2Z,
    * DWLZZZ, DW2LZZ, D2W2LZ)
    CALL QQQXXX(AAAAAA, 2)
    RETURN
    END
C
C
C
    SUBROUTINE QQQTIM
C wr* PURPOSE -- DEBUG-PRINT TIME ARRAYS
    COMMON /TIMER/ TZEROZ, DTZERO, AFWHMZ, DAFWHM, BCHNLZ,
    * DBCHNL, TSCALE
    COMMON /T1XXXX/ TlZZZZ, DTIZZZ, D2T1ZZ, WT1ZZZ, DWT1ZZ,
    * W2T1ZZ, DW2T1Z, D2W2T1, V3T1ZZ, U4T1ZZ, CVT1W2
    COMMON /T2XXXX/ T2ZZZZ, DT2ZZZ, D2T2ZZ, WT\angleZZZ, DWTZZZZ,
    * W2T2ZZ, DW2T2Z, D2W2T2, v3T2ZZ, U4T2ZZ, CVT2W2
    COMMON /TIMEXX/ TIMEZZ(17), DTIMEZ(17), D2TIME(17),
    * WIIMEZ, DWTIME, W2TIME, DW2TIM, D2W2TZ, V3TIME,
    * U4TIME, CVTW2Z
    DIMENSION AAAAAA(6), BBBBBB(11), CCCCCC(11), DDDDDD(8)
    EQUIVALENCE (AAAAAA(1),TZEROZ), (BBBBBB(1),T1ZZZZ),
    * (CCCCCC(1),T2ZZZZ),(DDDDDD(1),WTIMEZ)
    CALL QQQXXX(AAAAAA, 6)
    CALL QQQXXX(BBBBBB, 11)
    CALL QQQXXX(CCCCCC, 11)
    CALL QQQZZZ(6HTIME , 6HDTIME , 6HD)2TIME, 6H , TIMEZZ,
    * DTIMEZ, D2TIME, X)
    CALL QQQXXX(DDDDDD, 8)
    RETURN
    END
```

```
    SUBROUTINE QQQENE
C *** PUKPOSE -- DEBUG-PRINT ENERGY ARRAYS
    COMMON /TOTAL/ ENZZZZ(17), FUDGEZ(17), DENZZZ(17),
    * D2ENZZ(17), WENZZZ(17), W2ENZZ(17), DWENZZ(17),
    * DW2ENZ(17), D2W2EN(17), WWEL2Z(17), WWTMM2(17),
    * WWEL3Z(17), WWTIM3(17), WWELTT(17), WWEL4Z(17),
    * WWTIM4(17), PW2W2L(17), PW2W2T(17), PW2LZZ(17),
    * PW2TIM(17)
    COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,
    * IEGRID, IPLOT
    CALL QQQZZZ(GHEN , 6HFUDGE , 6HDEN , 6HD2EN , ENZZZZ,
                FUDGEZ, DENZZZ, D2ENZZ)
    CALL QQQZZZ(GHWEN, 6HW2EN , 6HDWEN , 6HDW2EN, WENZZZ,
    * W2ENZZ, DWENZZ, DW2ENZ)
    CALL QQQZZZ(6HD2W2EN, 6HWWEL2, 6HWWTIM2, 6HWWEL3 , D2W2EN,
    * WWEL2Z, WWTIM2, WWEL3Z)
    CALL QQQZZZ(6HWWTTM3, 6HWWELTI, 6HWWEL4 , 6HWWTIM4, WWTIM3,
    * WWEITT, WWEL4Z, WWTIM4)
    CALL QQQZZZ(6HPW2W2L, 6HPW2W2T, 6HPW2L , 6HPW2TIM, PW2W2L,
    * PW2W2T, PW2LZZ, PW2MIM)
        RETURN
    END
C
C
C
    SUBROUTINE QQQZZZ(A, B, C, D, E, F, G, H)
C *** PURPOSE -- DEBUG-PRINT ARRAYS
    DOUBLE PRECISION A, B, C, D, BLANK
    COMMON /ALLZZZ/ EEEEEE(17), ELL2ZZ, DL2ZZZ, SHORTZ,
    * IEGRID, IPLOT
    DIMENSION E(IEGRID), F(IEGRID), G(IEGRID), H(IEGRID)
    DATA BLANK /IOH /
    WRITE (26,99999) A, B, C, D
    DO 10 I=1,IEGRID
                IF (D.NE.BLANK) WRITE (26,99998) E(I), F(I),G(I),
                    H(I), E(I), F(I),G(I), H(I)
            IF (D.EQ.BLANK) WRITE (26,99997) E(I), F(I),G(I),
                        E(I), F(I),G(I)
        10 CON'IINUE
        RETURN
99999 FORMAT (/1X, 4(10X, Al0))
99998 FORMAT (1X, 4F20.10, 2X, 1P4G10.2)
99997 FORMAT (IX, 3F20.10, 22X, 1P3G10.2)
    END
C
C
C
    SUBROUTINE QQQXXX(A,N)
C *** PURYOSE -- DEBUG-PRINT VARIABIES
    DIMENSION A(N)
    WKITE (26,99999) A
    RETURN
99999 FORMAT (//SF20.10/, (5F20.10))
    END
```


APPENDIX D. OUTPUT FROM FLIPI

```
******* TARGET END *******
    UUU = DISTANCE TO SURFACE OF TA TARGET }=0.000+/-2.00
    WWW = WIDTH OF TA TARGET }=36.60
DELWWW = ERROR ON WWW }==5.492=15.0
    SSS = ESTIMATE OF MULTIPLE SCATTERING IN TA TARGET }=6.00
DELSSS = ERROR ON SSS = 1.800 = 30.0 %
    UW2 = UUU + WWW/2 + SSS = DISTANCE TO MEAN OF TA TARGET = 24.300
    RRR = RADIUS OF CIRCULAR DISTRIBUTION IN TA TARGET =9.200
DELRRR = ERROR ON RRRRRR = = 1.840 = 20.0%
DWA(E) = MEAN OF DISTRIBUTION IN WATER = 22.8-1.60%LN(E) + 0.283*LN(E)**2
WWA(E) = STD DEV OF DISTRIBUTION IN WATER = 10.0 -0.63*LN(E) + 0.112*LN(E)**2
PERDWA = UNCERTAINTY ON MEAN DWA (E) = 10.0%
PERWWA = UNCERTAINTY ON STD DEV WWA (E) = 10.0%
ABSUNC = ABSOLUTE UNCERTAINTY ON FRACTION FROM TA AND FROM H2O = 0.00
    EMM = ENERGY AT WHICH THE TWO FRACTIONS ARE EQUAL = 300000.
PEREMM = RELATIVE UNCERTAINTY IN EMM = DEL(EMM)/EMM = 30.0%
```

| | | FRACTN | ERROR
 ON | DISTANCE
 TO MEAN | WIDTH
 OF | MEAN OF | UNCER. | WIDTH
 OF | UNCER. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NERGY | FRACIN | OF | FRACTN | OF WATER | WATER | TA+WATER | ON | TA+WATER | ON |
| V) | OF TA | WATR | OF WATER | DI | DISTN | DISTN | MEAN | DISTN | WIDTH |
| EN | FTA | FWA | DFWA | ELWATR | WWATR | ELL1 | DLI | WL1 | DWL. 1 |
| 10. | 0.0000 | 1.0000 | 0.0000 | 20.616 | 9.143 | 20.616 | 2.062 | 9.143 | 0.914 |
| 1000. | 0.0018 | 0.9982 | 0.0005 | 25.252 | 10.992 | 25.250 | 2.521 | 10.984 | 1.098 |
| 2000. | 0.0037 | 0.9963 | 0.0011 | 26.989 | 11.682 | 26.979 | 2.689 | 11.665 | 1.166 |
| 5000. | 0.0092 | 0.9908 | 0.0027 | 29.702 | 12.759 | 29.653 | 2.943 | 12.718 | 1. 268 |
| 10000. | 0.0183 | 0.9817 | 0.0055 | 32.070 | 13.698 | 31.928 | 3.149 | 13.627 | 1.353 |
| 20000. | 0.0366 | 0.9634 | 0.0110 | 34.711 | 14.746 | 34.330 | 3.349 | 14.631 | 1.438 |
| 50000. | 0.0913 | 0.9087 | 0.0272 | 38.618 | 16.295 | 37.311 | 3.548 | 16.132 | 1.550 |
| 100000. | 0.1811 | 0.8189 | 0.0531 | 41.890 | 17.592 | 38.705 | 3.623 | 17.411 | 1.693 |
| 200000. | 0.3507 | 0.6493 | 0.0964 | 45.434 | 18.997 | 38.023 | 3.830 | 18.532 | 2.069 |
| 300000. | 0.5000 | 0.5000 | 0.1236 | 47.633 | 19.868 | 35.966 | 4.205 | 18.549 | 2.530 |
| 400000. | 0.6245 | 0.3755 | 0.1340 | 49.250 | 20.509 | 33.668 | 4.513 | 17.808 | 3.062 |
| 700000. | 0.8569 | 0.1431 | 0.1021 | 52.529 | 21.809 | 28.338 | 4.442 | 13.560 | 4.236 |
| 1000000. | 0.9499 | 0.0501 | 0.0536 | 54.711 | 22.673 | 25.823 | 4.009 | 9.478 | 3.918 |
| 2000000. | 0.9987 | 0.0013 | 0.0029 | 59.158 | 24.436 | 24.346 | 3.841 | 4.850 | 1.024 |
| 5000000. | 1.0000 | 0.0000 | 0.0000 | 65.454 | 26.930 | 24.300 | 3.845 | 4.600 | 0.920 |
| 10000000. | 1.0000 | 0.0000 | 0.0000 | 70.532 | 28.942 | 24.300 | 3.845 | 4.600 | 0.920 |
| 20000000. | 1.0000 | 0.0000 | 0.0000 | 75.883 | 31.062 | 24.300 | 3.845 | 4.600 | 0.920 |

| EN | D2L1 | D2W2L1 | CVLIW2 | CRL1W2 |
| ---: | ---: | ---: | ---: | ---: |
| 10. | 4.250 | 279.534 | -0.001 | -0.000 |
| 1000. | 6.353 | 581.896 | 0.022 | 0.000 |
| 2000. | 7.231 | 739.553 | 0.142 | 0.002 |
| 5000. | 8.663 | 1041.039 | 0.848 | 0.009 |
| 10000. | 9.919 | 1359.711 | 2.770 | 0.024 |
| 20000. | 11.215 | 1770.864 | 8.246 | 0.059 |
| 50000. | 12.590 | 2501.383 | 29.807 | 0.168 |
| 100000. | 13.126 | 3474.905 | 65.523 | 0.307 |
| 200000. | 14.668 | 5881.645 | 119.601 | 0.407 |
| 300000. | 17.684 | 8808.100 | 179.289 | 0.454 |
| 400000. | 20.365 | 11892.838 | 247.042 | 0.502 |
| 700000. | 19.733 | 13193.839 | 241.060 | 0.472 |
| 1000000. | 16.073 | 5516.790 | 79.642 | 0.267 |
| 2000000. | 14.752 | 98.667 | -0.828 | -0.022 |
| 5000000. | 14.781 | 71.639 | -0.000 | -0.000 |
| 10000000. | 14.781 | 71.639 | -0.000 | -0.000 |
| 20000000. | 14.781 | 71.639 | -0.000 | -0.000 |

****** DETECTOR END $* * * * * *$
RHO $=.004700+/-.000094$
THICKN $=19.0000+/-0.9500$
PERCRO $=5.0000 \%$ UNCERTAINTY ON CROSS SECTION

| ENERGY | CRSSCTN | ELL3 | DL3 | WL3 | DWL3 | V3L3 | U4L3 |
| ---: | ---: | ---: | :---: | :---: | :---: | :---: | ---: |
| 10. | 27.200 | 5.986 | 0.220 | 4.788 | 0.191 | 89.786 | 1445.2 |
| 1000. | 27.170 | 5.989 | 0.220 | 4.790 | 0.191 | 89.768 | 1445.7 |
| 2000. | 27.020 | 6.005 | 0.220 | 4.796 | 0.191 | 89.672 | 1448.4 |
| 5000. | 26.600 | 6.051 | 0.222 | 4.815 | 0.193 | 89.381 | 1455.7 |
| 10000. | 25.910 | 6.127 | 0.224 | 4.844 | 0.196 | 88.827 | 1467.4 |
| 20000. | 24.690 | 6.263 | 0.230 | 4.896 | 0.201 | 87.617 | 1486.9 |
| 50000. | 21.770 | 6.600 | 0.244 | 5.015 | 0.213 | 83.459 | 1527.9 |
| 100000. | 18.510 | 6.995 | 0.266 | 5.136 | 0.227 | 76.617 | 1563.9 |
| 200000. | 14.800 | 7.466 | 0.296 | 5.256 | 0.242 | 65.962 | 1593.2 |
| 300000. | 11.999 | 7.835 | 0.323 | 5.332 | 0.252 | 55.985 | 1608.1 |
| 400000. | 11.240 | 7.937 | 0.331 | 5.350 | 0.255 | 53.016 | 1611.2 |
| 700000. | 8.720 | 8.279 | 0.360 | 5.403 | 0.262 | 42.432 | 1619.3 |
| 1000000. | 7.280 | 8.478 | 0.377 | 5.428 | 0.266 | 35.935 | 1622.3 |
| 2000000. | 4.890 | 8.811 | 0.408 | 5.459 | 0.270 | 24.574 | 1624.4 |
| 5000000. | 3.020 | 9.074 | 0.433 | 5.475 | 0.273 | 15.248 | 1606.7 |
| 10000000. | 2.220 | 9.186 | 0.444 | 5.479 | 0.273 | 10.806 | 1435.7 |
| 20000000. | 2.030 | 9.213 | 0.447 | 5.480 | 0.274 | 9.969 | 1479.5 |

| ENERGY | D2L3 | D2W2L3 | CVL3W2 | CRL3W2 |
| ---: | :---: | :---: | :---: | ---: |
| 10. | $0.48246 \mathrm{E}-01$ | 3.3363 | 0.36011 | 0.89758 |
| 1000. | $0.48293 \mathrm{E}-01$ | 3.3423 | 0.36065 | 0.89770 |
| 2000. | $0.48528 \mathrm{E}-01$ | 3.3721 | 0.36340 | 0.89832 |
| 5000. | $0.49209 \mathrm{E}-01$ | 3.4571 | 0.37126 | 0.90013 |
| 10000. | $0.50398 \mathrm{E}-01$ | 3.6010 | 0.38482 | 0.90331 |
| 20000. | $0.55732 \mathrm{E}-01$ | 3.8685 | 0.41079 | 0.90952 |
| 50000. | $0.59736 \mathrm{E}-01$ | 4.5716 | 0.48411 | 0.92639 |
| 100000. | $0.70494 \mathrm{E}-01$ | 5.4406 | 0.58595 | 0.94615 |
| 200000. | $0.87554 \mathrm{E}-01$ | 6.4788 | 0.72783 | 0.96637 |
| 300000. | 0.10454 | 7.2399 | 0.85138 | 0.97863 |
| 400000. | 0.10982 | 7.4353 | 0.88686 | 0.98144 |
| 700000. | 0.12977 | 8.0308 | 1.0091 | 0.98923 |
| 1000000. | 0.14245 | 8.3237 | 1.0809 | 0.99264 |
| 2000000. | 0.16644 | 8.7130 | 1.2004 | 0.99678 |
| 5000000. | 0.18750 | 8.9197 | 1.2917 | 0.99880 |
| 10000000. | 0.19711 | 8.9797 | 1.3296 | 0.99935 |
| 20000000. | 0.19945 | 8.9912 | 1.3384 | 0.99946 |

| ENERGY | EL | DL | WL | DWL |
| ---: | :---: | :---: | :---: | :---: |
| 10. | 201466.604 | 5.413 | 10.321 | 0.815 |
| 1000. | 201471.238 | 5.604 | 11.983 | 1.009 |
| 2000. | 201472.984 | 5.681 | 12.613 | 1.081 |
| 5000. | 201475.703 | 5.806 | 13.599 | 1.188 |
| 10000. | 201478.055 | 5.913 | 14.462 | 1.277 |
| 20000. | 201480.592 | 6.022 | 15.429 | 1.365 |
| 50000. | 201483.910 | 6.136 | 16.893 | 1.482 |
| 100000. | 201485.699 | 6.180 | 18.153 | 1.625 |
| 200000. | 201485.490 | 6.305 | 19.263 | 1.992 |
| 300000. | 201483.803 | 6.541 | 19.300 | 2.432 |
| 400000. | 201481.605 | 6.744 | 18.594 | 2.933 |
| 700000. | 201476.617 | 6.698 | 14.596 | 3.936 |
| 1000000. | 201474.301 | 6.420 | 10.922 | 3.403 |
| 2000000. | 201473.156 | 6.318 | 7.302 | 0.710 |
| 5000000. | 201473.375 | 6.322 | 7.151 | 0.628 |
| 10000000. | 201473.486 | 6.323 | 7.154 | 0.628 |
| 20000000. | 201473.514 | 6.323 | 7.155 | 0.628 |

*** COMPONENTS OF FLIGHT PATH LENGTH EL ***

| ENERGY | EL | ELL2 | ELLL | ELL3 |
| ---: | :---: | :---: | :---: | :---: |
| 10. | 201466.604 | 201440.000 | 20.616 | 5.986 |
| 1000. | 201471.238 | 201440.000 | 25.250 | 5.989 |
| 2000. | 201472.984 | 201440.000 | 26.979 | 6.005 |
| 5000. | 201475.703 | 201440.000 | 29.653 | 6.051 |
| 10000. | 201478.055 | 201440.000 | 31.928 | 6.127 |
| 20000. | 201480.592 | 201440.000 | 34.330 | 6.263 |
| 50000. | 201483.910 | 201440.000 | 37.311 | 6.600 |
| 100000. | 201485.699 | 201440.000 | 38.705 | 6.995 |
| 200000. | 201485.490 | 201440.000 | 38.023 | 7.466 |
| 300000. | 201483.803 | 201440.000 | 35.966 | 7.835 |
| 400000. | 201481.605 | 201440.000 | 33.668 | 7.937 |
| 700000. | 201476.617 | 201440.000 | 28.338 | 8.279 |
| 1000000. | 201474.301 | 201440.000 | 25.823 | 8.478 |
| 2000000. | 201473.156 | 201440.000 | 24.346 | 8.811 |
| 5000000. | 201473.375 | 201440.000 | 24.300 | 9.074 |
| 0000000. | 201473.486 | 201440.000 | 24.300 | 9.186 |
| 20000000. | 201473.514 | 201440.000 | 24.300 | 9.213 |

*** COMPONENTS OF UNCERTAINTY ON FLIGHT PATH LENGTH $* * *$

| ENERGY | EL | DL | DL1 | DL2 | DL3 |
| ---: | :---: | :---: | ---: | ---: | ---: |
| 10. | 201466.604 | 5.413 | 2.062 | 5.000 | 0.220 |
| 1000. | 201471.238 | 5.604 | 2.521 | 5.000 | 0.220 |
| 2000. | 201472.984 | 5.681 | 2.689 | 5.000 | 0.220 |
| 5000. | 201475.703 | 5.806 | 2.943 | 5.000 | 0.222 |
| 10000. | 201478.055 | 5.913 | 3.149 | 5.000 | 0.224 |
| 20000. | 201480.592 | 6.022 | 3.349 | 5.000 | 0.230 |
| 50000. | 201483.910 | 6.136 | 3.548 | 5.000 | 0.244 |
| 100000. | 201485.699 | 6.180 | 3.623 | 5.000 | 0.266 |
| 200000. | 201485.490 | 6.305 | 3.830 | 5.000 | 0.296 |
| 300000. | 201483.803 | 6.541 | 4.205 | 5.000 | 0.323 |
| 400000. | 201481.605 | 6.744 | 4.513 | 5.000 | 0.331 |
| 700000. | 201476.617 | 6.698 | 4.442 | 5.000 | 0.360 |
| 1000000. | 201474.301 | 6.420 | 4.009 | 5.000 | 0.377 |
| 2000000. | 201473.156 | 6.318 | 3.841 | 5.000 | 0.408 |
| 5000000. | 201473.375 | 6.322 | 3.845 | 5.000 | 0.433 |
| 10000000. | 201473.486 | 6.323 | 3.845 | 5.000 | 0.444 |
| 20000000. | 201473.514 | 6.323 | 3.845 | 5.000 | 0.447 |

*** COMPONENTS (SQUARED) OF UNCERTAINTY ON FLIGHT PATH LENGTH ***

| ENERGY | EL | D2L | D2L1 | D2L2 | D2L3 |
| ---: | :---: | ---: | ---: | ---: | ---: |
| 10. | 201466.604 | 29.298 | 4.250 | 25.000 | 0.048 |
| 1000. | 201471.238 | 31.401 | 6.353 | 25.000 | 0.048 |
| 2000. | 201472.984 | 32.279 | 7.231 | 25.000 | 0.049 |
| 5000. | 201475.703 | 33.712 | 8.663 | 25.000 | 0.049 |
| 10000. | 201478.055 | 34.969 | 9.919 | 25.000 | 0.050 |
| 20000. | 201480.592 | 36.268 | 11.215 | 25.000 | 0.053 |
| 50000. | 201483.910 | 37.650 | 12.590 | 25.000 | 0.060 |
| 100000. | 201485.699 | 38.197 | 13.126 | 25.000 | 0.070 |
| 200000. | 201485.490 | 39.755 | 14.668 | 25.000 | 0.088 |
| 300000. | 201483.803 | 42.788 | 17.684 | 25.000 | 0.105 |
| 400000. | 201481.605 | 45.475 | 20.365 | 25.000 | 0.110 |
| 700000. | 201476.617 | 44.863 | 19.733 | 25.000 | 0.130 |
| 1000000. | 201474.301 | 41.215 | 16.073 | 25.000 | 0.142 |
| 2000000. | 201473.156 | 39.918 | 14.752 | 25.000 | 0.166 |
| 5000000. | 201473.375 | 39.968 | 14.781 | 25.000 | 0.187 |
| 10000000. | 201473.486 | 39.978 | 14.781 | 25.000 | 0.197 |
| 20000000. | 201473.514 | 39.980 | 14.781 | 25.000 | 0.199 |

```
*** COMPONENTS OF WIDTH "WL" OF FLIGHT PATH LENGTH DISTRIBUTTON ***
```

| ENERGY | EL | WL | WLI | WL.3 |
| ---: | ---: | ---: | ---: | ---: |
| 10. | 201466.604 | 10.321 | 9.143 | 4.788 |
| 1000. | 201471.238 | 11.983 | 10.984 | 4.790 |
| 2000. | 201472.984 | 12.613 | 11.665 | 4.796 |
| 5000. | 201475.703 | 13.599 | 12.718 | 4.815 |
| 10000. | 201478.055 | 14.462 | 13.627 | 4.844 |
| 20000. | 201480.592 | 15.429 | 14.631 | 4.896 |
| 50000. | 201483.910 | 16.893 | 16.132 | 5.015 |
| 100000. | 201485.699 | 18.153 | 17.411 | 5.136 |
| 200000. | 201485.490 | 19.263 | 18.532 | 5.256 |
| 300000. | 201483.803 | 19.300 | 18.549 | 5.332 |
| 400000. | 201481.605 | 18.594 | 17.808 | 5.350 |
| 700000. | 201476.617 | 14.596 | 13.560 | 5.403 |
| 1000000. | 201474.301 | 10.922 | 9.478 | 5.428 |
| 2000000. | 201473.156 | 7.302 | 4.850 | 5.459 |
| 5000000. | 201473.375 | 7.151 | 4.600 | 5.475 |
| 10000000. | 201473.486 | 7.154 | 4.600 | 5.479 |
| 20000000. | 201473.514 | 7.155 | 4.600 | 5.480 |

*** DITTO, SQUARED ***

| ENERGY | EL | W2L | W2L1 | W2L3 |
| ---: | :---: | ---: | ---: | ---: |
| 10. | 201466.604 | 106.524 | 83.597 | 22.927 |
| 1000. | 201471.238 | 143.592 | 120.653 | 22.940 |
| 2000. | 201472.984 | 159.078 | 136.075 | 23.003 |
| 5000. | 201475.703 | 184.938 | 161.759 | 23.180 |
| 10000. | 201478.055 | 209.154 | 185.686 | 23.469 |
| 20000. | 201480.592 | 238.047 | 214.072 | 23.975 |
| 50000. | 201483.910 | 285.380 | 260.229 | 25.151 |
| 100000. | 201485.699 | 329.538 | 303.158 | 26.380 |
| 200000. | 201485.490 | 371.080 | 343.452 | 27.628 |
| 300000. | 201483.803 | 372.496 | 344.064 | 28.432 |
| 400000. | 201481.605 | 345.737 | 317.111 | 28.626 |
| 700000. | 201476.617 | 213.055 | 183.863 | 29.193 |
| 000000. | 201474.301 | 119.292 | 89.834 | 29.458 |
| 2000000. | 201473.156 | 53.317 | 23.519 | 29.799 |
| 5000000. | 201473.375 | 51.134 | 21.160 | 29.974 |
| 000000. | 201473.486 | 51.183 | 21.160 | 30.023 |
| 0000000. | 201473.514 | 51.193 | 21.160 | 30.033 |

*** UNCERTAINTY ON WIDTH OF FPL DISTRIBUTION $* * *$

| ENERGY | EL. | WL | DWL |
| ---: | :---: | :---: | :---: |
| 10. | 201466.604 | 10.321 | 0.815 |
| 1000. | 201471.238 | 11.983 | 1.009 |
| 2000. | 201472.984 | 12.613 | 1.081 |
| 5000. | 201475.703 | 13.599 | 1.188 |
| 10000. | 201478.055 | 14.462 | 1.277 |
| 20000. | 201480.592 | 15.429 | 1.365 |
| 50000. | 201483.910 | 16.893 | 1.482 |
| 100000. | 201485.699 | 18.153 | 1.625 |
| 200000. | 201485.490 | 19.263 | 1.992 |
| 300000. | 201483.803 | 19.300 | 2.432 |
| 400000. | 201481.605 | 18.594 | 2.933 |
| 700000. | 201476.617 | 14.596 | 3.936 |
| 1000000. | 201474.301 | 10.922 | 3.403 |
| 2000000. | 201473.156 | 7.302 | 0.710 |
| 5000000. | 201473.375 | 7.151 | 0.628 |
| 10000000. | 201473.486 | 7.154 | 0.628 |
| 20000000. | 201473.514 | 7.155 | 0.628 |

*** UNCERTAINTY ON VARIANCE OF FPI DISTRIBUTION $* * *$

| ENERGY | DW2L | DW2L1 | DW2L3 |
| ---: | ---: | ---: | ---: |
| 10. | 16.819 | 16.719 | 1.827 |
| 1000. | 24.192 | 24.123 | 1.828 |
| 2000. | 27.257 | 27.195 | 1.836 |
| 5000. | 32.319 | 32.265 | 1.859 |
| 10000. | 36.923 | 36.874 | 1.898 |
| 20000. | 42.128 | 42.082 | 1.967 |
| 50000. | 50.060 | 50.014 | 2.138 |
| 100000. | 58.994 | 58.948 | 2.333 |
| 200000. | 76.734 | 76.692 | 2.545 |
| 300000. | 93.890 | 93.851 | 2.691 |
| 400000. | 109.088 | 109.054 | 2.727 |
| 700000. | 114.899 | 114.864 | 2.834 |
| 1000000. | 74.331 | 74.275 | 2.885 |
| 2000000. | 10.362 | 9.933 | 2.952 |
| 5000000. | 8.975 | 8.464 | 2.987 |
| 10000000. | 8.979 | 8.464 | 2.997 |
| 20000000. | 8.979 | 8.464 | 2.999 |

*** COVARIANCE ON FLIGHI PATH LENGTH DISTRIBUTION

| ENERGY | CVLW2 | CVLIW2 | CVL.3W2 |
| ---: | ---: | ---: | ---: |
| 10. | 0.360 | -0.001 | 0.360 |
| 1000. | 0.383 | 0.022 | 0.361 |
| 2000. | 0.505 | 0.142 | 0.363 |
| 5000. | 1.219 | 0.848 | 0.371 |
| 10000. | 3.155 | 2.770 | 0.385 |
| 20000. | 8.656 | 8.246 | 0.411 |
| 50000. | 30.291 | 29.807 | 0.484 |
| 100000. | 66.109 | 65.523 | 0.586 |
| 200000. | 120.329 | 119.601 | 0.728 |
| 300000. | 180.140 | 179.289 | 0.851 |
| 400000. | 247.929 | 247.042 | 0.887 |
| 700000. | 242.069 | 241.060 | 1.009 |
| 1000000. | 80.723 | 79.642 | 1.081 |
| 2000000. | 0.372 | -0.828 | 1.200 |
| 5000000. | 1.292 | -0.000 | 1.292 |
| 10000000. | 1.330 | -0.000 | 1.330 |
| 20000000. | 1.338 | -0.000 | 1.338 |

| ASTD | $=$ WIDTH (STD.DEV.) OF BURST |
| ---: | :--- |$=3.18496+/-0.2123301-0.50000$

| $? ?$ | WTR? | DWT? | W2T? | DW2T? | D2W2T? | V3T? | U4T? |
| ---: | ---: | :--- | :---: | :--- | :--- | :--- | ---: | ---: |
| ONE | 3.185 | 0.2123 | 10.14 | 1.353 | 1.829 | 0.0000 | 9.555 |
| TWO | 0.2887 | $0.2887 \mathrm{E}-03$ | $0.8333 \mathrm{E}-01$ | $0.1667 \mathrm{E}-03$ | $0.2778 \mathrm{E}-07$ | 0.0000 | 0.0125 |
| TOTAL | 3.198 | 0.2115 | 10.23 | 1.353 | 1.829 | 0.0000 | 14.64 |

| T-T0 | T-TOX | FUDGE1 | FUDGE2 | FUDGE3 | FUDGE4 |
| ---: | ---: | ---: | :---: | :---: | ---: | ---: |
| 4605994. | 4605994. | $2.62 \mathrm{E}-09$ | $1.45 \mathrm{E}-12$ | $1.63 \mathrm{E}-25$ | $3.80 \mathrm{E}-21$ |
| 460610. | 460610. | $3.54 \mathrm{E}-09$ | $1.45 \mathrm{E}-10$ | $1.63 \mathrm{E}-21$ | $5.12 \mathrm{E}-19$ |
| 325703. | 325703. | $3.92 \mathrm{E}-09$ | $2.89 \mathrm{E}-10$ | $6.50 \mathrm{E}-21$ | $1.13 \mathrm{E}-18$ |
| 205996. | 205996. | $4.56 \mathrm{E}-09$ | $7.23 \mathrm{E}-10$ | $4.06 \mathrm{E}-20$ | $3.29 \mathrm{E}-18$ |
| 145663. | 145663. | $5.15 \mathrm{E}-09$ | $1.45 \mathrm{E}-09$ | $1.63 \mathrm{E}-19$ | $7.45 \mathrm{E}-18$ |
| 103000. | 103000. | $5.86 \mathrm{E}-09$ | $2.89 \mathrm{E}-09$ | $6.50 \mathrm{E}-19$ | $1.70 \mathrm{E}-17$ |
| 65144. | 65144. | $7.03 \mathrm{E}-09$ | $7.23 \mathrm{E}-09$ | $4.06 \mathrm{E}-18$ | $5.08 \mathrm{E}-17$ |
| 46064. | 46064. | $8.12 \mathrm{E}-09$ | $1.45 \mathrm{E}-08$ | $1.63 \mathrm{E}-17$ | $1.17 \mathrm{E}-16$ |
| 32572. | 32572. | $9.14 \mathrm{E}-09$ | $2.89 \mathrm{E}-08$ | $6.50 \mathrm{E}-17$ | $2.64 \mathrm{E}-16$ |
| 26595. | 26595. | $9.18 \mathrm{E}-09$ | $4.34 \mathrm{E}-08$ | $1.46 \mathrm{E}-16$ | $3.98 \mathrm{E}-16$ |
| 23032. | 23032. | $8.52 \mathrm{E}-09$ | $5.78 \mathrm{E}-08$ | $2.60 \mathrm{E}-16$ | $4.93 \mathrm{E}-16$ |
| 17410. | 17410. | $5.25 \mathrm{E}-09$ | $1.01 \mathrm{E}-07$ | $7.97 \mathrm{E}-16$ | $5.31 \mathrm{E}-16$ |
| 14566. | 14566. | $2.94 \mathrm{E}-09$ | $1.45 \mathrm{E}-07$ | $1.63 \mathrm{E}-15$ | $4.25 \mathrm{E}-16$ |
| 10300. | 10300. | $1.31 \mathrm{E}-09$ | $2.89 \mathrm{E}-07$ | $6.50 \mathrm{E}-15$ | $3.80 \mathrm{E}-16$ |
| 6514. | 6514. | $\mathrm{~J}-26 \mathrm{E}-09$ | $7.23 \mathrm{E}-07$ | $4.07 \mathrm{E}-14$ | $9.11 \mathrm{E}-16$ |
| 4606. | 4606. | $1.26 \mathrm{E}-09$ | $1.45 \mathrm{E}-06$ | $1.63 \mathrm{E}-13$ | $1.82 \mathrm{E}-15$ |
| 3257. | 3257. | $1.26 \mathrm{E}-09$ | $2.89 \mathrm{E}-06$ | $6.50 \mathrm{E}-13$ | $3.65 \mathrm{E}-15$ |

AAEL2 AATIM2 AAEL3 AATIM3 AAELTI AAEL4 AATIM4
$1.02 \mathrm{E}-041.39 \mathrm{E}-062.10 \mathrm{E}-07 \quad 0.00 \quad 2.46 \mathrm{E}-10 \quad 9.85 \mathrm{E}-10 \quad 1.13 \mathrm{E}-12$
$1.19 \mathrm{E}-041.39 \mathrm{E}-05 \quad 2.10 \mathrm{E}-07 \quad 0.00 \quad 2.86 \mathrm{E}-09 \quad 1.25 \mathrm{E}-091.13 \mathrm{E}-10$
$1.19 \mathrm{E}-041.39 \mathrm{E}-05 \mathrm{2.10E}-0710.00$
$1.25 \mathrm{E}-04 \quad 1.96 \mathrm{E}-05 \quad 2.13 \mathrm{E}-07 \quad 0.00$
$1.35 \mathrm{E}-04 \quad 3.10 \mathrm{E}-05 \quad 2.31 \mathrm{E}-07 \quad 0.00$
$1.44 \mathrm{E}-044.39 \mathrm{E}-05 \quad 2.71 \mathrm{E}-07 \quad 0.00$
$1.53 \mathrm{E}-046.21 \mathrm{E}-053.61 \mathrm{E}-07 \quad 0.00$
$1.68 \mathrm{E}-04 \quad 9.82 \mathrm{E}-05 \quad 6.08 \mathrm{E}-07 \quad 0.00$
$1.80 \mathrm{E}-041.39 \mathrm{E}-04 \quad 9.43 \mathrm{E}-07 \quad 0.00$
$1.91 \mathrm{E}-041.96 \mathrm{E}-04 \quad 1.45 \mathrm{E}-06 \quad 0.00$
$1.92 \mathrm{E}-04 \quad 2.40 \mathrm{E}-04 \quad 1.80 \mathrm{E}-06 \quad 0.00$
$1.85 \mathrm{E}-042.78 \mathrm{E}-041.97 \mathrm{E}-060.00$
$1.45 \mathrm{E}-04 \quad 3.67 \mathrm{E}-04 \quad 1.81 \mathrm{E}-06 \quad 0.00$
$1.08 \mathrm{E}-044.39 \mathrm{E}-04 \quad 1.29 \mathrm{E}-06 \quad 0.00$
$7.25 \mathrm{E}-05 \quad 6.21 \mathrm{E}-04 \quad 2.79 \mathrm{E}-07 \quad 0.00$
$7.10 \mathrm{E}-05 \quad 9.82 \mathrm{E}-04 \quad 8.64 \mathrm{E}-08 \quad 0.00$
$7.10 \mathrm{E}-051.39 \mathrm{E}-03 \quad 7.27 \mathrm{E}-08 \quad 0.00$
$7.10 \mathrm{E}-05 \quad 1.96 \mathrm{E}-036.98 \mathrm{E}-080.00$
2.86E-09 1.25E-09 1.13E-10
$4.26 \mathrm{E}-091.75 \mathrm{E}-09 \quad 2.26 \mathrm{E}-10$
7.26E-09 2.49E-09 5.65E-10
$1.09 \mathrm{E}-08 \quad 3.12 \mathrm{E}-09 \quad 1.13 \mathrm{E}-09$
$1.65 \mathrm{E}-08 \quad 3.81 \mathrm{E}-092.26 \mathrm{E}-09$
$2.85 \mathrm{E}-084.77 \mathrm{E}-095.65 \mathrm{E}-09$
$4.33 \mathrm{E}-08 \quad 5.43 \mathrm{E}-09 \quad 1.13 \mathrm{E}-08$
$6.50 \mathrm{E}-08$ 5.80E-09 2.26E-08
$7.98 \mathrm{E}-08 \quad 5.57 \mathrm{E}-09 \quad 3.39 \mathrm{E}-08$
$8.88 \mathrm{E}-08 \quad 5.04 \mathrm{E}-094.52 \mathrm{E}-08$
9.22E-08 3.46E-09 7.91E-08
8.25E-08 2.37E-09 1.13E-07
$7.80 \mathrm{E}-08 \quad 1.33 \mathrm{E}-09$ 2.26E-07
$1.21 \mathrm{E}-071.50 \mathrm{E}-09 \quad 5.65 \mathrm{E}-07$
$1.71 \mathrm{E} \sim 071.46 \mathrm{E}-091.13 \mathrm{E}-06$
$2.42 \mathrm{E}-071.47 \mathrm{E}-092.26 \mathrm{E}-06$

W2EN
WWEL2
WWTIM2
WWEL 3
10. $1.0500 \mathrm{E}-06$
$1.0498 \mathrm{E}-08$
1.9283E-12
$4.3914 \mathrm{E}-14$
1000. 1.4343E~02
$1.4150 \mathrm{E}-08$
$1.9282 \mathrm{E}-10$
$4.4161 \mathrm{E}-14$
2000. 6.4247E-02
5000. 0.4797
10000. 2.254
20000. 10.92
50000. $\quad 94.40$
100000. 517.5
200000. 3005.
300000.8509.
400000. $\quad 1.7791 \mathrm{E}+04$
700000. 7.6423E+04
1000000. 2.0457E +05
2000000. 1.5636E+06
5000000. 2.4228E+07
10000000. 1.9332E+08
20000000. 1.5445E+09
$1.5676 \mathrm{E}-08$
$3.8563 \mathrm{E}-10 \quad 4.5485 \mathrm{E}-14$
1.8224E-08
2.0610E-08
$2.3456 \mathrm{E}-08$
$9.6406 \mathrm{E}-10 \quad 5.3212 \mathrm{E}-14$
$1.9281 \mathrm{E}-09 \quad 7.3585 \mathrm{E}-14$
3.8561E-09 1.3054E-13
$2.8119 \mathrm{E}-08 \quad 9.6398 \mathrm{E}-09 \quad 3.6934 \mathrm{E}-13$
$3.2470 \mathrm{E}-08 \quad 1.9279 \mathrm{E}-08 \quad 8.8908 \mathrm{E}-13$
3.6563E-08
3. $6703 \mathrm{E}-08$
$3.8559 \mathrm{E}-08 \quad 2.1167 \mathrm{E}-12$
$5.7839 \mathrm{E}-08 \quad 3.2246 \mathrm{E}-12$
$3.4067 \mathrm{E}-08 \quad 7.7120 \mathrm{E}-08 \quad 3.8983 \mathrm{E}-12$
$2.0994 \mathrm{E}-08$
$1.3497 \mathrm{E}-07 \quad 3.2911 \mathrm{E}-12$
1.1755E-08
$1.9281 \mathrm{E}-07 \quad 1.6526 \mathrm{E}-12$
$3.8563 \mathrm{E}-07 \quad 7.7994 \mathrm{E}-14$
5.2540E-09
5.0389E-09
$9.6408 \mathrm{E}-07 \quad 7.4595 \mathrm{E}-15$
$1.9282 \mathrm{E}-06 \quad 5.2854 \mathrm{E}-15$
$3.8563 \mathrm{E}-06 \quad 4.8759 \mathrm{E}-15$

| ENERGY | WWELTI | WWTIM3 | WWEL4 | WWTIM4 |
| ---: | ---: | ---: | ---: | ---: |
| 10. | $6.0729 \mathrm{E}-20$ | 0.0000 | $9.6976 \mathrm{E}-19$ | $-1.2784 \mathrm{E}-24$ |
| 1000. | $8.1854 \mathrm{E}-18$ | 0.0000 | $-1.5568 \mathrm{E}-18$ | $-1.2783 \mathrm{E}-20$ |
| 2000. | $1.8136 \mathrm{E}-17$ | 0.0000 | $-3.0790 \mathrm{E}-18$ | $-5.1130 \mathrm{E}-20$ |
| 5000. | $5.2707 \mathrm{E}-17$ | 0.0000 | $-6.2105 \mathrm{E}-18$ | $-3.1955 \mathrm{E}-19$ |
| 10000. | $1.1921 \mathrm{E}-16$ | 0.0000 | $-9.7397 \mathrm{E}-18$ | $-1.2781 \mathrm{E}-18$ |
| 20000. | $2.7134 \mathrm{E}-16$ | 0.0000 | $-1.4535 \mathrm{E}-17$ | $-5.1122 \mathrm{E}-18$ |
| 50000. | $8.1319 \mathrm{E}-16$ | 0.0000 | $-2.2777 \mathrm{E}-17$ | $-3.1949 \mathrm{E}-17$ |
| 100000. | $1.8780 \mathrm{E}-15$ | 0.0000 | $-2.9490 \mathrm{E}-17$ | $-1.2779 \mathrm{E}-16$ |
| 200000. | $4.2294 \mathrm{E}-15$ | 0.0000 | $-3.3684 \mathrm{E}-17$ | $-5.1117 \mathrm{E}-16$ |
| 300000. | $6.3686 \mathrm{E}-15$ | 0.0000 | $-3.1030 \mathrm{E}-17$ | $-1.1502 \mathrm{E}-15$ |
| 400000. | $7.8818 \mathrm{E}-15$ | 0.0000 | $-2.5412 \mathrm{E}-17$ | $-2.0448 \mathrm{E}-15$ |
| 700000. | $8.5007 \mathrm{E}-15$ | 0.0000 | $-1.1982 \mathrm{E}-17$ | $-6.2630 \mathrm{E}-15$ |
| 1000000. | $6.7998 \mathrm{E}-15$ | 0.0000 | $-5.6229 \mathrm{E}-18$ | $-1.2782 \mathrm{E}-14$ |
| 2000000. | $6.0784 \mathrm{E}-15$ | 0.0000 | $1.7594 \mathrm{E}-18$ | $-5.1130 \mathrm{E}-14$ |
| 5000000. | $1.4574 \mathrm{E}-14$ | 0.0000 | $2.2414 \mathrm{E}-18$ | $-3.1956 \mathrm{E}-13$ |
| 10000000. | $2.9175 \mathrm{E}-14$ | 0.0000 | $2.1383 \mathrm{E}-18$ | $-1.2782 \mathrm{E}-12$ |
| 20000000. | $5.8362 \mathrm{E}-14$ | 0.0000 | $2.1650 \mathrm{E}-18$ | $-5.1129 \mathrm{E}-12$ |

| ENERGY | ADJ. ENE. | FUDGE | DEN | DEN $/ \mathrm{EN}$ |
| ---: | ---: | ---: | :--- | ---: |
| 10. | 10. | $2.626 \mathrm{E}-09$ | $6.699 \mathrm{E}-04$ | $6.699 \mathrm{E}-05$ |
| 1000. | 1000. | $3.682 \mathrm{E}-09$ | $6.853 \mathrm{E}-02$ | $6.853 \mathrm{E}-05$ |
| 2000. | 2000. | $4.208 \mathrm{E}-09$ | 0.138 | $6.917 \mathrm{E}-05$ |
| 5000. | 5000. | $5.279 \mathrm{E}-09$ | 0.351 | $7.021 \mathrm{E}-05$ |
| 10000. | 10000. | $6.598 \mathrm{E}-09$ | 0.711 | $7.114 \mathrm{E}-05$ |
| 20000. | 20000. | $8.756 \mathrm{E}-09$ | 1.44 | $7.215 \mathrm{E}-05$ |
| 50000. | 50000. | $1.426 \mathrm{E}-08$ | 3.67 | $7.341 \mathrm{E}-05$ |
| 100000. | 100000. | $2.258 \mathrm{E}-08$ | 7.43 | $7.430 \mathrm{E}-05$ |
| 200000. | 200000. | $3.806 \mathrm{E}-08$ | 15.3 | $7.636 \mathrm{E}-05$ |
| 300000. | 300000. | $5.255 \mathrm{E}-08$ | 23.8 | $7.929 \mathrm{E}-05$ |
| 400000. | 400000. | $6.636 \mathrm{E}-08$ | 32.8 | $8.191 \mathrm{E}-05$ |
| 700000. | 700000. | $1.065 \mathrm{E}-07$ | 59.1 | $8.438 \mathrm{E}-05$ |
| 1000000. | 1000000. | $1.475 \mathrm{E}-07$ | 85.0 | $8.504 \mathrm{E}-05$ |
| 2000000. | 2000001. | $2.905 \mathrm{E}-07$ | 186. | $9.314 \mathrm{E}-05$ |
| 5000000. | 5000004. | $7.243 \mathrm{E}-07$ | 579. | $1.157 \mathrm{E}-04$ |
| 10000000. | 10000015. | $1.447 \mathrm{E}-06$ | $1.458 \mathrm{E}+03$ | $1.458 \mathrm{E}-04$ |
| 20000000. | 20000058. | $2.894 \mathrm{E}-06$ | $3.845 \mathrm{E}+03$ | $1.923 \mathrm{E}-04$ |

| ENERGY | WEN | WEN/EN | DWEN | DWEN/WEN |
| ---: | :---: | :---: | :---: | ---: |
| 10 | $1.025 \mathrm{E}-03$ | $\mathrm{I} .025 \mathrm{E}-04$ | $8.088 \mathrm{E}-05$ | $7.893 \mathrm{E}-02$ |
| 1000. | 0.120 | $1.198 \mathrm{E}-04$ | $9.953 \mathrm{E}-03$ | $8.311 \mathrm{E}-02$ |
| 2000. | 0.253 | $1.267 \mathrm{E}-04$ | $2.120 \mathrm{E}-02$ | $8.363 \mathrm{E}-02$ |
| 5000. | 0.693 | $1.385 \mathrm{E}-04$ | $5.752 \mathrm{E}-02$ | $8.305 \mathrm{E}-02$ |
| 10000. | 1.50 | $1.501 \mathrm{E}-04$ | 0.121 | $8.091 \mathrm{E}-02$ |
| 20000. | 3.31 | $1.653 \mathrm{E}-04$ | 0.253 | $7.657 \mathrm{E}-02$ |
| 50000. | 9.72 | $1.943 \mathrm{E}-04$ | 0.655 | $6.746 \mathrm{E}-02$ |
| 100000. | 22.7 | $2.275 \mathrm{E}-04$ | 1.40 | $6.133 \mathrm{E}-02$ |
| 200000. | 54.8 | $2.741 \mathrm{E}-04$ | 3.33 | $6.071 \mathrm{E}-02$ |
| 300000. | 92.2 | $3.075 \mathrm{E}-04$ | 5.86 | $6.349 \mathrm{E}-02$ |
| 400000. | 133. | $3.335 \mathrm{E}-04$ | 8.89 | $6.664 \mathrm{E}-02$ |
| 700000. | 276. | $3.949 \mathrm{E}-04$ | 18.7 | $6.777 \mathrm{E}-02$ |
| 1000000. | 452. | $4.523 \mathrm{E}-04$ | 29.3 | $6.485 \mathrm{E}-02$ |
| 2000000. | $1.250 \mathrm{E}+03$ | $6.252 \mathrm{E}-04$ | 81.6 | $6.525 \mathrm{E}-02$ |
| 5000000. | $4.922 \mathrm{E}+03$ | $9.844 \mathrm{E}-04$ | 324. | $6.578 \mathrm{E}-02$ |
| 10000000. | $1.390 \mathrm{E}+04$ | $1.390 \mathrm{E}-03$ | 917. | $6.595 \mathrm{E}-02$ |
| 20000000. | $3.930 \mathrm{E}+04$ | $1.965 \mathrm{E}-03$ | $2.595 \mathrm{E}+03$ | $6.604 \mathrm{E}-02$ |

INTERNAL DISTRIBUTTON

| 1. L. S. Abbott | 31. R. W. Peelle |
| :---: | :---: |
| 2. H. P. Carter | 32. F. G. Perey |
| 3. J. W. T. Dabbs | 33. R. R. Spencer |
| 4. G. de Saussure | 34. L. W. Weston |
| 5. J. K. Dickens | 35. G. E. Whitesides/ |
| 6. G. F. Flanagan | CS Library |
| 7. R. Gwin | 36. A. Zucker |
| 8-12. J. A. Harvey | 37. P. W. Dickson, Jr. (consultant) |
| 13. D. M. Hetrick | 38. G. H. Golub (consultant) |
| 14. N, W. Hill | 39. H. J. C. Kouts (consultant) |
| 15. C. H. Johnson | 40. D. Steiner (consultant) |
| 16-20. D. C. Larson | 41. Central Research Library |
| 21-25. N. M. Laxson | 42. ORNL Y-12 Technical Library |
| 26. R. L. Macklin | 43. Document Reference Section |
| 27. F. C. Maienschein | 44. Laboratory Records |
| 28. G. S. McNeilly | 45. Laboratory Records-RC |
| 29. B. D. Murphy | 46. ORNL Patent Section |
| 30. D. K. Olsen | |

EXTERNAL DISTRTBUTION

47. Office of Assistant Manager for Energy Research and Development, Department of Energy, Oak Ridge Operations Office, Oak Ridge, TN 37831
48-49. Director, Reactor Research and Development, USDOE, Washington, DC 20545
48. Dr. W. P. Poenitz, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
49. Mr. Philip B. Hemmig, Chief, Physics Branch, Reactor Research and Technology, Office of Energy Technology, U.S. Department of Energy, Washington, DC 20545
50. Dr. R. C. Block, Department of Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12181
51. Dr. Donald L. Smith, Building 314, Applied Physics Division, Argonne National Laboratory, 9700 South Cass Ave., Argonne, IL 60439
52. Dr. S. L. Whetstone, Division of Nuclear Physics, Office of Energy Research, U.S. Department of Energy, Roon G-315, Washington, DC 20545
53. Dr. M. R. Bhat, Building 197D, National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY 11973
54. Dr. G. F. Auchampaugh, Los Alamos Scientific Laboratory, MS 442, P-3, Los Alamos, NM 87545

EXTERNAL DISTRIBUTION (contd)

57. Dr. R. F. Carlton, Middle Tennessee State University, Physics
Department, Box 407, Murfreesboro, TN 37132
58. Dr. E. C. Lynn, Nuclear Physics Division, Atomic Energy Research Establishment, Harwe11, Didcot, Oxon, OX11, ORA, United Kingdom
59. Dr. M. G. Sowerby, Nuclear Physics Division, Bldg. 418, Atomic Energy Research Establishment, Harwell, Didcot, Oxon, OX11, ORA, United Kingdom
60. Dr. Roger White, Lawrence Livermore National Laboratory, P. 0 . Box 808, Livermore, CA 94550
61. Dr. R. R. Wintexs, Physics Department, Denison University, Granvil1e, Ohio 43023
62. Dr. Herman Weigmann, Central Bureau for Nuclear Measurements, Steenweg naar Retie, B-2440, Geel, Belgium
63. Dr. G. L. Morgan, Los Alamos National Laboratory, P. O. Box 1663, Group P-15, MS D406, Los Alamos, NM 87545
64. Dr. C. Coceva, ENEA Comitato Nazionale, Centro Richerche Energie, Ezio Clemental, via G. Maxxini, 2, 40138, Bologna, Italy
65. Dr. 0. A. Wasson, RADP-B119, National Bureau of Standards, Washington, DC 20234
66-92. Technical Information Center
