ORNL-5499 ENDF-273

Cross Sections for the Cu(n,xn) and $Cu(n,x\gamma)$ Reactions Between 1 and 20 MeV

G. L. Morgan

OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION · FOR THE DEPARTMENT OF ENERGY

Printed in the United States of America. Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road, Springfield, Virginia 22161 Price: Printed Copy \$4.50; Microfiche \$3.00

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, contractors, subcontractors, or their employees, makes any warranty, express or implied, nor assumes any legal liability or responsibility for any third party's use or the results of such use of any information, apparatus, product or process disclosed in this report, nor represents that its use by such third party would not infringe privately owned rights.

ORNL-5499 ENDF-273 Dist. Category UC-34c

Contract No. W-7405-eng-26

Ż

Engineering Physics Division

CROSS SECTIONS FOR THE Cu(n,xn) AND Cu(n,x γ) REACTIONS BETWEEN 1 AND 20 MeV

G. L. Morgan

Date Published: February, 1979

OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY

ABSTRACT

Differential cross sections for the production of secondary neutrons and gamma rays from neutron interactions in natural copper have been measured at 130 deg. (lab) for incident neutron energies in the range 1 to 20 MeV. An electron linac was used as a pulsed, white neutron source. Incident neutron energies were determined using time-of-flight techniques for a source-to-sample distance of 48 m. Secondary spectra were determined by unfolding the pulse-height distributions observed in a NE-213 scintillation counter. The results are compared to the current evaluated nuclear data file (ENDF/B-IV, MAT 1295).

.

~

INTRODUCTION

In recent years it has become clear that copper will be a major constituent of practical fusion reactors. Most conceptual design studies (see for example Ref. 1) use the evaluated nuclear data files (e.g. ENDF/B) as the source of basic microscopic cross-section data.

The interaction of neutrons in a structural material can profoundly affect the neutron spectrum and can give rise to secondary gamma radiation. Thus the accuracy of the prediction of design criteria such as tritium breeding ratios, radiation damage, and neutron-induced heating is dependent on the accuracy of the evaluated data for energies up to the primary energy of 14 MeV.

The existing experimental data on copper cross sections have been assembled, evaluated, and supplemented with model calculations by Drake and Fricke² to form the most recent data file for this nuclide (ENDF/B-IV, MAT 1295). The purpose of the measurements reported here was to provide data to test some aspects of this evaluated cross-section file in the MeV region. The work was performed as part of a program at the Oak Ridge National Laboratory³⁻¹⁵ to check evaluated files for those elements that are important in applied problems dealing with weapons radiation, reactor shielding, and fusion technology.

The technique used here has the global testing power of an integral experiment, yet retains a sufficiently differential character to allow localization of discrepancies. The data presented here provide some important tests of evaluated cross sections over wide ranges of incident and secondary energies. Of particular value for copper are data on the large cross sections for the production of low-energy secondary

neutrons produced by incident neutrons with energies above 8 MeV. Measurements with the more conventional neutron sources such as Van de Graaff accelerators are difficult, if not impossible, in this region (except near 14 MeV).

Differential cross sections are presented for the Cu(n,xn) and $Cu(n,x_{\gamma})$ reactions as a function of the incident neutron energy at an average scattering angle of 130 deg. (lab). The data cover the incident-neutron energy range from 1 to 20 MeV. Comparisons are presented with cross sections obtained from the evaluation.

EXPERIMENTAL PROCEDURE

The experimental procedure used in this work has been described in detail elsewhere¹⁶ and is only briefly outlined here. The Oak Ridge Electron Linear Accelerator (ORELA) was used as a white neutron source. An electron-beam pulse width of 20 nsec at a repetition rate of 800 sec⁻¹ was employed. A beam time of 200 h was necessary for completion of the measurement.

The scattering sample was located 47.8 m from the neutron source and consisted of 1872 g of copper (> 99% purity) formed in an annular ring about 25 cm in o.d., 15 cm in i.d., and with a thickness of 0.65 cm (= 0.0548 atom/b). Secondary radiation from the sample was detected by an NE-213 scintillation counter¹⁷ located on the axis of the ring at a position corresponding to an average scattering angle of 130 deg. A shadow bar shielded the detector from the direct neutron beam.

The energy of the incident neutron was determined by the time after the electron pulse at which the neutron-induced radiation from the sample

was detected. Each event in the detector was identified as either a neutron or gamma ray by pulse-shape discrimination techniques. The event was then recorded in a two-parameter array of pulse height versus timeof-flight (one each for secondary neutrons and secondary gamma rays).

Backgrounds were determined by measurement with the sample removed. For secondary gamma-rays the background was everywhere less than 10%. For secondary neutrons the background was worst at the highest incident neutron energies where it varied from 10% at the lowest pulse heights to about 50% at the highest pulse heights (corresponding to elastically scattered neutrons).

The neutron flux incident on the sample was measured with the NE-213 detector using one-parameter time-of-flight techniques. The sample and shadow bar were not in place for these measurements. A flux monitor consisting of a small plastic scintillator located in the edge of the neutron beam 30 m from the source was used to normalize the flux measurement to the actual cross-section measurement. The flux determination had an absolute uncertainty of $\sim 10\%$ and is the largest source of systematic error in the cross sections reported here.

DATA REDUCTION

Two methods of data reduction were employed, each intended to make use of the available counting statistics to provide a maximum of information about a particular aspect of the cross section. In the first, the neutron or gamma-ray pulse-height spectra were integrated over intervals of neutron time-of-flight to form pulse-height spectra for specific incident neutron energy ranges. These intervals ranged in width

from $\Delta E_{inc} = 0.25$ MeV at $E_{inc} = 1$ MeV to $\Delta E_{inc} = 2.5$ MeV at $E_{inc} = 20$ MeV. The pulse-height spectra so formed were then converted to neutron or gamma-ray energy distributions by unfolding with the FERD code¹⁸ using the measured neutron or gamma-ray response functions of the NE-213 detector. These distributions were then normalized to cross sections using the measured neutron flux, average sample-to-detector distance, and sample thickness.

Both neutron and gamma-ray results were corrected for finite sample effects. These corrections consisted of three terms: 1) the average transmission of the incident neutron flux, 2) the average transmission out of the sample by the secondary neutrons or gamma-rays, and 3) the fraction of events reaching the detector due to multiple interactions in the sample. The magnitudes of these corrections were calculated using a Monte Carlo method. Neutron cross sections for this calculation were generated from the evaluated data² by the AMPX code system.¹⁹

Forty neutron groups were used in this calculation covering neutron energies from 0.5 to 20 MeV. Twenty gamma-ray group cross sections were generated from the data of Ref. 20 covering gamma-ray energies from 0.3 to 10 MeV. Both neutron and gamma-ray group widths were varied so as to maintain about a 10% relative width. The gamma-ray total interaction cross sections were taken from the tables of Ref. 21.

The calculated transmissions depend only on the total cross sections and the accuracy for these terms in the correction is better than 3% since the total cross sections are accurately known. The uncertainty in the multiple scattering correction is dependent on how well the evaluated data describe the neutron interactions. To allow for any inaccuracies in

the evaluation, an uncertainty of 10% was assigned to the multiple scattering component and this error was then propagated through the succeeding analysis.

The unfolded data described above provide detailed information about the secondary neutron and gamma-ray spectra, but because the unfolding technique requires good statistical accuracy, the data must be binned over rather large incident energy intervals. Therefore, a second type of data reduction, pulse-height weighting,^{16,22} was also used. This technique provided only integral information about the secondary spectra (i.e., total yield and average energy), but because the demands on statistical accuracy are less severe, it allowed better resolution in the incident neutron energy. For this work, the pulse-height weighting analysis was applied to spectra formed by integration over time-of-flight intervals corresponding to $\Delta E_{inc} = 0.05$ MeV at $E_{inc} = 1$ MeV and increasing to $\Delta E_{inc} = 0.5$ MeV at $E_{inc} = 20$ MeV. The finite sample effects described above were also applied to these data. The final results of this analysis are total yield of secondary neutrons and secondary gamma rays and their average energies as a function of incident neutron energy.

DISCUSSION

The work reported here provides data to test the evaluated secondary cross sections over a wide range of energies. The experimental resolution in the incident energy (\sim 0.4 nsec/m contributed by electron pulse width and sample-to-detector time lag) is very good, so resolution in the final data is limited only by the bin widths necessary for adequate statistical accuracy. Energy resolution for the secondary spectra is due to the NE-213

detector's pulse-height resolution and is rather poor. This resolution does not permit unique identification of the various reactions contributing to the secondary spectra. Because of this inability to completely resolve the different contributions to the secondary spectra, results have been obtained only as laboratory-system cross sections. These data are shown in Figs. 1-14. The uncertainties shown do not include an estimated 10% uncertainty in overall normalization.

The incident neutron energy spread, the secondary energy resolution, and the angular spread are much broader in this measurement than in the more standard types of differential cross-section measurements. This has the advantage of allowing a comprehensive check of the cross sections in a mode that is compatible with the averaging generally used to produce group cross sections for practical applications. However, it complicates and sometimes makes impossible the comparison of the present results with previous measurements. To correctly average over the experimental spreads, one needs a complete prescription for cross sections as a function of incident energy, scattering angle, Q-value, etc. The evaluated file provides this information and reflects previous measurements to the extent that the evaluators base their results on existing data.

Secondary neutron and gamma-ray spectra were generated from the $evaluation^2$ by suitably weighted averages over the incident energy interval and angular spread. This was accomplished using group cross sections generated with the AMPX code system. The group structure was chosen to provide about 3 groups per resolution width with a P_{12} expansion of the neutron cross sections and a P_o expansion for the gamma-ray production cross sections. The resulting secondary spectra were then smeared by

a Gaussian function corresponding to the resolution of the detector. For neutrons, the Gaussian had a resolution width defined as

$$R = \sqrt{300 + 800/E_n}$$

where R =fractional FWHM in percent and E_n is neutron energy in MeV. For gamma rays the corresponding resolution was

$$R = \sqrt{170 + 288/E_{\gamma}}$$
.

Curves for comparison to the pulse-height weighting results were produced by integration of secondary neutron or gamma-ray spectra calculated as described above for the smaller incident energy intervals used in the pulse-height weighting analysis.

Several cautions are in order in regard to any comparison of evaluation and measurement. The gamma-ray emission specified in the evaluation is isotropic. For a medium-weight nuclide such as copper this is undoubtedly very close to the real angular dependence. Thus a comparison of the evaluation with differential measurements taken at 130 deg. checks the gamma-ray production data of the evaluation rather well. In the case of the neutron emission spectra, the test may not be as rigorous, especially with respect to the elastic scattering cross sections. Because of the strong anisotropy of the elastic angular distribution with its energy dependent diffraction pattern, a single differential measurement covering a large angular range (the angular resolution function is approximately triangular with a base 28 deg. in width) provides little or no check on the validity of the elastic scattering cross section in the evaluation. However, for neutron emission through processes other than

elastic scattering, the situation is much better since most such emissions are only weakly anisotropic, particularly when averaged over the broad incident neutron energies of this experiment.

SUMMARY

Measurements have been made of the secondary neutron and gamma-ray production cross sections for natural copper. The data were taken at 130 deg. and cover incident neutron energies from 1 to 20 MeV. Comparisons between the measurement and evaluation are shown in Figs. 1-14. Numerical values of the measured cross sections are given in Tables 1-3.

ACKNOWLEDGEMENTS

The author wishes to thank J. W. McConnell and J. G. Craven for their assistance with electronics and data acquisition computers and H. A. Todd and the ORELA staff for operation of the accelerator. Special thanks are due W. E. Ford for his help with generation of the multigroup cross sections using AMPX.

REFERENCES

- D. E. Bartine, R. G. Alsmiller, Jr., E. M. Oblow, and F. R. Mynatt, Nucl. Sci. Eng. <u>53</u>, 304 (1974).
- M. K. Drake and M. P. Fricke, Copper Evaluation, ENDF/B-IV MAT 1295, SAI Report DNA 3356F (1974).
- 3. G. L. Morgan, T. A. Love, and F. G. Perey, "Integral Neutron Scattering Measurements on Carbon from 1 to 20 MeV," ORNL-TM-4157, Oak Ridge National Laboratory (1973).
- G. L. Morgan, T. A. Love, and F. G. Perey, "Integral Neutron Scattering Measurements on Iron from 1 to 20 MeV," ORNL-TM-4193, Oak Ridge National Laboratory (1973).
- 5. G. L. Morgan, "Measurement of Secondary Neutrons and Gamma Rays Produced by Neutron Bombardment of Water over the Incident Energy Range 1 to 20 MeV," ORNL-TM-5018, Oak Ridge National Laboratory (1975).
- G. L. Morgan, "Measurement of Secondary Neutrons and Gamma Rays Produced by Neutron Interactions with Nitrogen and Oxygen over the Incident Energy Range 1 to 20 MeV," ORNL-TM-5023, Oak Ridge National Laboratory (1975).
- 7. S. N. Cramer and E. M. Oblow, Nucl. Sci. Eng. 58, 33 (1975).
- 8. G. L. Morgan, "Measurement of Secondary Neutrons and Gamma Rays Produced by Neutron Interactions in Silicon Dioxide over the Incident Energy Range 1 to 20 MeV," ORNL-TM-5024, Oak Ridge National Laboratory (1975).
- 9. G. L. Morgan and F. G. Perey, Nucl. Sci. Eng. <u>61</u>, 337 (1976).
- S. N. Cramer and E. M. Oblow, "Analysis of Neutron Scattering and Gamma-Ray Production Integral Experiments on Nitrogen for Neutron Energies from 1 to 15 MeV," ORNL-TM-5220, Oak Ridge National Laboratory (1976).
- S. N. Cramer and E. M. Oblow, "Analysis of a Neutron Scattering and Gamma-Ray Production Integral Experiment on Oxygen for Neutron Energies from 1 to 15 MeV," ORNL-TM-5535, Oak Ridge National Laboratory (1976).
- 12. S. N. Cramer and E. M. Oblow, "Analysis of a Neutron Scattering Integral Experiment on Iron for Neutron Energies from 1 to 15 MeV," ORNL/TM-5548, Oak Ridge National Laboratory (1977).
- G. L. Morgan, "Secondary Neutron Spectra from Neutron Interactions in a Thick Carbon Sample," ORNL/TM-5814, Oak Ridge National Laboratory (1977).

- G. L. Morgan and F. G. Perey, "Cross Sections for the Nb(n,xn) and Nb(n,xγ) Reactions Between 1 and 20 MeV," ORNL/TM-5829, Oak Ridge National Laboratory (1977).
- 15. G. L. Morgan, "Cross Sections for the ⁷Li(n,xn) and ⁷Li(n,n[^]Y) Reactions Between 0.5 and 20 MeV," ORNL/TM-6247, Oak Ridge National Laboratory (1978).
- G. L. Morgan, T. A. Love, and F. G. Perey, Nucl. Instrum. Methods <u>128</u>, 125 (1975).
- 17. The NE-213 scintillation counters are available from Nuclear Enterprises, Palo Alto, California.
- W. R. Burrus and V. V. Verbinski, Nucl. Instrum. Methods <u>67</u>, 181 (1969).
- N. M. Greene <u>et al</u>., "AMPX-A Modular Code System to Generate Coupled Multigroup Neutron-Gamma Cross Sections from ENDF/B," ORNL-TM-3706, Oak Ridge National Laboratory (1974).
- 20. G. T. Chapman, "The $Cu(n,x_{\gamma})$ Reaction Cross Section for Incident Neutron Energies Between 0.2 and 20.0 MeV," ORNL/TM-5299 (April 1976).
- 21. E. Storm and H. I. Israel, Nuclear Data Tables A7, 565 (1970).
- 22. Frances Pleasonton, Robert L. Ferguson, and H. W. Schmitt, Phys. Rev. C 6, 1023 (1972).

Fig. 3. Secondary gamma-ray spectra versus gamma ray and incident neutron energy.

Fig. 4. Secondary gamma-ray spectra versus gamma ray and incident neutron energy.

Fig. 5. Secondary gamma-ray spectra versus gamma ray and incident neutron energy.

(VeM\ns\d)

TABLE 1. CU(N,XM) LABORATORY CROSS SECTIONS AT 130 DEGREES. THE NUMBERS IN PARENTHESIS ARE STATISTICAL UNCERTAINTIES (IN THE SAME UNITS AS THE DATA). THE OVERALL UNCERTAINTY IN NORMALIZATION IS ABOUT 10%.

INCIDENT ENERGY=	17.50-19.96	15.05-17.50	12.55-15.05	10.01-12.55	8.99-10.01	8.01- 8.99	7.01- 8.01
SECONDARY ENERGY (MEV)	CROSS SECTION (HE/SR/HEV)	CROSS SECTION (NB/SR/NEV)	CROSS SECTION (NB/SR/NEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (NB/SR/NEV)	CROSS SECTION (NB/SR/MEV)
0.909 1.013 1.114 1.212 1.310 1.611 1.611 1.709 1.807 1.938 2.112 2.310 2.499 2.693 2.693 3.102 3.102 3.505 3.712 3.901 4.147 4.457 4.754 5.057 5.360 5.936 6.551 6.551 6.551 6.551 6.551 6.551 6.551 1.227 9.242 9.718 10.233 10.747 11.259 11		$\begin{array}{c} 57.0 & (\ 2.5) \\ 59.6 & (\ 2.3) \\ 59.6 & (\ 2.3) \\ 59.6 & (\ 2.3) \\ 57.7 & (\ 2.0) \\ 54.0 & (\ 1.8) \\ 50.3 & (\ 1.7) \\ 47.5 & (\ 1.7) \\ 47.5 & (\ 1.7) \\ 47.5 & (\ 1.7) \\ 47.5 & (\ 1.7) \\ 47.5 & (\ 1.7) \\ 47.5 & (\ 1.6) \\ 43.2 & (\ 1.5) \\ 33.2 & (\ 1.6) \\ 33.7 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 33.2 & (\ 1.6) \\ 15.3 & (\ 0.6) \\ 15.3 & (\ 0.6) \\ 15.3 & (\ 0.6) \\ 15.3 & (\ 0.6) \\ 13.1 & (\ 0.7) \\ 15.3 & (\ 0.6) \\ 13.1 & (\ 0.7) \\ 15.3 & (\ 0.6) \\ 13.1 & (\ 0.7) \\ 15.3 & (\ 0.6) \\ 13.1 & (\ 0.7) \\ 15.3 & (\ 0.6) \\ 13.4 & (\ 0.6) \\ 3.4 & (\ 0.6) \\ 3.4 & (\ 0.6) \\ 3.4 & (\ 0.6) \\ 3.4 & (\ 0.6) \\ 1.4 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.3 & (\ 0.6) \\ 1.4 & (\ 0.6) \\ 1.5 & ($	$ \begin{array}{c} 52,9 & (\ 2.3) \\ 51,7 & (\ 2.0) \\ 49,9 & (\ 2.0) \\ 47,0 & (\ 1.6) \\ 47,0 & (\ 1.6) \\ 43,6 & (\ 1.5) \\ 38,8 & (\ 1.5) \\ 38,8 & (\ 1.5) \\ 38,8 & (\ 1.5) \\ 38,8 & (\ 1.5) \\ 38,8 & (\ 1.5) \\ 38,8 & (\ 1.6) \\ 22,8 & (\ 1.6) \\ 22,8 & (\ 1.6) \\ 22,8 & (\ 1.2) \\ 22,8 & (\ 1.6) \\ 22,8 & (\ 1.6) \\ 22,8 & (\ 1.6) \\ 22,8 & (\ 1.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 22,8 & (\ 0.6) \\ 24,8 & (\ 0.6) \\ 11,5 & (\ 0.6) \\ 14,9 & (\ 0.7) \\ 14,0 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1 & (\ 0.6) \\ 15,1 & (\ 0.7) \\ 15,1$	$\begin{array}{c} 31,3 & (1,0)\\ 31,8 & (1,7)\\ 31,8 & (1,7)\\ 31,8 & (1,7)\\ 31,2 & (1,6)\\ 31,2 & (1,5)\\ 30,9 & (1,3)\\ 30,9 & (1,3)\\ 30,9 & (1,3)\\ 30,9 & (1,3)\\ 30,9 & (1,3)\\ 30,9 & (1,3)\\ 30,9 & (1,3)\\ 30,9 & (1,3)\\ 21,9 & (1,0)\\ 25,8 & (1,0)\\ 24,2 & (0,8)\\ 24,2 & (1,0)\\ 25,8 & (1,0)\\ 24,2 & (0,8)\\ 24,2 & (0,8)\\ 24,2 & (1,0)\\ 25,8 & (1,0)\\ 24,2 & (0,8)\\ 24,2 & (0,8)\\ 24,2 & (1,0)\\ 25,8 & (1,0)\\ 24,2 & (0,8)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 24,2 & (1,0)\\ 17,9 & (1,0)\\ 24,2 & (1,0)\\ 17,9 & (1$	$\begin{array}{c} 30.6 & (1.9) \\ 32.4 & (1.7) \\ 33.9 & (1.6) \\ 34.2 & (1.5) \\ 33.2 & (1.8) \\ 33.8 & (1.3) \\ 31.8 & (1.3) \\ 31.0 & (1.2) \\ 30.6 & (1.2) \\ 30.6 & (1.2) \\ 30.6 & (1.2) \\ 30.6 & (1.2) \\ 30.6 & (1.2) \\ 21.8 & (1.2) \\ 22.5 & (0.9) \\ 22.5 & (0.9) \\ 22.5 & (0.9) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (1.2) \\ 23.8 & (0.9) \\ 23.8 & (0.9) \\ 3.8 & (0.9) \\ 5$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40.8 { 2.1} 41.5 { 1.9} 41.3 { 1.8} 41.3 { 1.71} 40.2 { 1.3} 36.4 { 1.33} 36.2 { 1.41} 37.0 { 1.33} 36.4 { 1.32} 36.4 { 1.22} 31.3 31.6 32.6 { 0.93} 22.6 { 0.91} 22.8 { 0.91} 22.8 { 0.91} 22.6 { 0.91} 22.6 { 0.91} 22.6 { 0.91} 22.8 { 0.91} 40.7 { 0.61} 13.8 { 0.62} 40.4 { 0.61} 50 { 0.24} 6.2 { 0.93} 4.7 { 0.41} 4.7 { 0.43} 4.7 { 0.31} 4.7 { 0.31} 4.7 { 0.31} 4.0 { 0.11} 0.4 { 0.11}
INCIDENT ENERGY=	6.01- 7.01	5.02- 6.01	4.50- 5.02	4.01- 4.50	3.50- 4.01	2.99- 3.50	2.75- 2.99
SECONDARY BRENGT (NEV)	(MB/SR/MEV)	(HB/SR/HEV)	(NB/SR/NEV)	(MB/SB/MEV)	(MB/SR/MEV)	(MB/SR/HEV)	(MB/SR/MEV)
0.909 1.013 1.114 1.212 1.310 1.413 1.511 1.611 1.709 1.807 2.112 2.310 2.499 2.611 2.499 2.611 2.499 2.611 3.307 3.707 3.707 3.707 3.707 3.705 5.360 5.644 5.936 6.251 6.831 7.726 8.252	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 56.7 & (\ 2.9) \\ 57.2 & (\ 2.6) \\ 55.8 & (\ 2.5) \\ 53.9 & (\ 2.3) \\ 51.3 & (\ 2.1) \\ 43.5 & (\ 1.9) \\ 45.5 & (\ 1.7) \\ 43.7 & (\ 1.6) \\ 42.2 & (\ 1.5) \\ 40.7 & (\ 1.6) \\ 38.3 & (\ 1.5) \\ 38.7 & (\ 1.6) \\ 38.7 & (\ 1.6) \\ 38.7 & (\ 1.6) \\ 38.7 & (\ 1.6) \\ 38.7 & (\ 1.6) \\ 38.7 & (\ 1.6) \\ 38.7 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.9) \\ 71.4 & (\ 0.1) \\ 71.4 $	$\begin{array}{c} 59,0 & (& (& 2, ; 3 \\ 57,0 & (& (& 2, ; 3 \\ 57,0 & (& 2, ; 3 \\ 59,3 & (& 2, ; 1 \\ 59,3 & (& 1, & 1 \\ 57,9 & (& 1, & 1 \\ 53,7 & (& 1, & 61 \\ 48,8 & (& 1, & 81 \\ 44,8 & (& 1, & 1 \\ 36,4 & (& 1, & 1 \\ 36,4 & (& 1, & 1 \\ 36,4 & (& 1, & 1 \\ 36,4 & (& 1, & 1 \\ 36,4 & (& 1, & 3 \\ 36,4 & (& 1, & 3 \\ 36,4 & (& 0, & 9 \\ 36,4 & (& 0, & 9 \\ 36,4 & (& 0, & 9 \\ 22,7 & (& 0, & 9 \\ 24,7 & (& 0, & 9 \\ 24,7 & (& 0, & 9 \\ 24,7 & (& 0, & 9 \\ 24,7 & (& 0, & 9 \\ 24,6 & (& 0, & 9 \\ 24,6 & (& 0, & 9 \\ 24,6 & (& 0, & 9 \\ 24,6 & (& 0, & 9 \\ 1, \\ 24,6 & (& 0, & 1 \\ 1, \\ 24,6 & (& 0, \\ 0, \\ 1 \\ 1, \\ 1, \\ 9 & (& 0, \\ 1 \\ 0, \\ 1 \\ 0, \\ 1 \\ 0, \\ 1,$		$\begin{array}{c} 57.9 & (2.7) \\ 56.1 & (2.3) \\ 54.3 & (1.6) \\ 47.3 & (1.6) \\ 48.6 & (1.3) \\ 51.6 & (1.3) \\ 51.6 & (1.2) \\ 49.6 & (1.2) \\ 49.6 & (1.2) \\ 49.6 & (1.2) \\ 49.6 & (1.2) \\ 33.4 & (1.0) \\ 29.7 & (0.9) \\ 29.7 & $	41.9 (2.3) 43.1 (2.1) 49.8 (2.2) 59.5 (2.3) 65.7 (2.2) 64.0 (2.0) 57.1 (1.9) 49.8 (1.6) 39.8 (1.6) 39.8 (1.5) 26.6 (1.3) 81.0 (1.5) 70.6 (1.3) 34.8 (0.8) 14.0 (0.4) 5.0 (0.2)
INCIDENT ENERGY SECONDARY ENERGY	2.51- 2.75 CRCSS SECTION	2.25- 2.51 CROSS SECTION	2.00- 2.25 CROSS SECTION	1.76- 2.00 CROSS SECTION	1.49- 1.76 Cross section	1.25- 1.49 CROSS SECTION	1.00- 1.25 CROSS SECTION
(#EV) 0.909	(MB/SR/MEV) 61.4 (2.5)	(MB/SR/MEV) 79.3 (2.8)	(MB/SR/MEV) 59.1 (2.4)	(HB/SR/HEV) 73.4 (2.5)	(HB/SR/HEV) 39.4 (1.5)	(HB/SR/NEV) 16.1 (1.3)	(HB/SR/HEV) 325.6 (8.5)
1.013 1.114 1.212 1.310 1.413 1.511 1.611 1.709 1.807 1.938 2.112 2.310 2.499 2.693 2.898 3.102	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 69.2 & (\ 22.5) \\ 60.1 & (\ 22.5) \\ 60.1 & (\ 22.5) \\ 54.9 & (\ 1.9) \\ 52.5 & (\ 1.9) \\ 52.5 & (\ 1.9) \\ 50.8 & (\ 1.6) \\ 46.2 & (\ 1.5) \\ 37.6 & (\ 1.8) \\ 30.1 & (\ 1.8) \\ 31.6 & (\ 2.1) \\ 133.6 & (\ 2.1) \\ 331.4 & (\ 0.5) \\ 9.9 & (\ 0.2) \end{array}$	$\begin{array}{c} 1.5 \\ 6.3. \\ 6.3. \\ 4 \\ (2.4) \\ 5.7. \\ 1 \\ (1.9) \\ 45. \\ 4 \\ (1.9) \\ 45. \\ 1.2 \\ 26. \\ 8 \\ (1.7) \\ 143. \\ 6 \\ (1.2) \\ 86. \\ 8 \\ (1.7) \\ 141. \\ 0 \\ (2.4) \\ 145. \\ 1.2 \\ 145. \\ 2.4 \\ (2.4) \\ 145. \\ 1.2 \\ 1$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25,3 (1.2) 26,3 (1.2) 264,5 (1.9) 150,2 (4.9) 277,6 (5.1) 277,6 (5.1) 277,6 (4.2) 167,6 (2.9) 101,1 (1.7) 43,0 (0.7) 11,3 (0.2) 2.4 (0.1)	85.6 (2.2) 236.3 (4.6) 361.2 (6.6) 371.3 (6.7) 778.4 (4.9) 168.7 (2.9) 85.4 (1.5) 38.9 (0.7) 16.0 (0.3) 4.9 (0.1)	487.6 (11.3) 487.6 (11.3) 298.9 (9.7) 298.9 (6.4) 156.8 (3.3) 66.1 (1.4) 25.6 (0.6) 8.7 (0.1) 3.1 (0.1)

TABLE 2. CU(N,XX) DIPPERPATIAL CROSS SECTIONS AT 130 DEGREES. THE NUMBERS IN PARENTHESIS ARE STATISTICAL UNCERTAINTIES (IN THE SAME UNITS AS THE DATA). THE OVERALL UNCERTAINTY IN NORMALIZATION IS ABOUT 104.

INCIDENT ENERGY≠	2.50- 2.75	2.24- 2.50	2.01- 2.24	1.75- 2.01	1.50 - 1.75	1.25- 1.50	1.00- 1.25
GAMMA RAY ENERGY (MEV)	CROSS SECTION (MB/SF/MEV)	CROSS SECTION (MB/SR/MEV)	CPOSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)
0.760	94.8 (14.4)	77.5 (12.0)	62.3 (10.0)	67.0 (8.4)	59.8 (6.9)	52.7 (5.3)	40.9 (3.6)
0.800	1157 (2 9)	1007/23	86 6 (1 9)	75 0 (1 5)	63 (1 1 3)	530 (1.9)	346708
0.840	147.7 (2.7)	132.4 (2.1)	113.5 (1.8)	96.3 (1.4)	82.0 (1.2)	69.6 (1.0)	42.3 (0.7)
0.920	175.4 (2.8)	160.0 (2.2)	134.8 (1.8)	116.7 (1.5)	100.3 (1.2)	86.1 (1.0)	51.3 (0.7)
0.960	183.1 (2.7)	166.8 (2.1)	139.3 (1.8)	123.4 (1.4)	105.7 (1.2)	90.8 (1.0)	53.4 (0.7)
1.000	172.2 (2.6)	154.3 (2.0)	129.8 (1.7)	115.3 (1.3)	97.5 (1.1)	82.9 (0.9)	47.1 (0.6)
1.040	135 9 / 2 3	113 5 (1.8)	07 6 (1.0)	99.5 (1.2)	687 (0.9)	547 (0.0)	25 8 (0 4)
1.125	116.6 (2.2)	93.5 (1.7)	79.8 (1.4)	65.6 (1.1)	54.8 (0.9)	40.4 (0.6)	16.0(0.3)
1.175	99.1 (2.1)	78.4 (1.6)	63.4 (1.3)	53.3 (1.0)	44.2 (0.8)	27.9 (0.5)	8.6 (0.2)
1.225	91.7 (2.1)	74.8 (1.6)	60.0 (1.3)	51.6 (1.0)	41.0 (0.8)	20.3 (0.4)	4.3 (0.2)
1.275	95.1 (2.1)	81.1 (1.6)	66.6 (1.3) 7% 9 (1.3)	58.0 (1.0)	44.0 (0.8)	16.6 (0.4)	2.1(0.2)
1.375	104.1 (1.8)	94.1 (1.4)	78.2 (1.2)	68.4 (0.9)	47.9 (0.7)	11.8 (0.3)	0.3 (0.1)
1.425	99.1 (1.8)	91.6 (1.4)	76.4 (1.2)	66.4 (0.9)	43.5 (0.6)	8.6 (0.3)	-0.2 (0.1)
1.475	89.0 (1.6)	83.5 (1.3)	71.2 (1.1)	60.4 (0.8)	36.4 (0.6)	5.7 (0.2)	-0.4 (0.1)
1.575	63.4 (1.3)	58.2 (1.0)	54.0 (0.9)	41.7 (0.6)	20.9 (0.4)	2.2(0.2)	-0.3(0.1)
1.640	47.3 (1.2)	42.4 (0.8)	40.2 (0.7)	28.8 (0.5)	12.3 (0.3)	1.2 (0.1)	0.2 (0.1)
1.720	32.0 (1.0)	29.0 (0.7)	26.1 (0.6)	16.6 (0.4)	5.2 (0.2)	0.5 (0.1)	0.2 (0.1)
1.800	25.1 (0.9)	18.2 (0.7)		4.1 (0.3) 4.9 (0.2)	0.8 (0.1)	0.3(0.1)	-0.0(0.1)
1.960	22.2 (0.8)	15.8 (0.6)	9.7 (0.4)	2.4 (0.2)	0.4 (0.1)	0.4 (0.1)	0.0 (0.1)
2.040	18.3 (0.8)	13.5 (0.5)	6.7 (0.3)	1.0 (0.1)	0.2 (0.1)	0.3 (0.1)	0.2 (0.1)
2.120	14.1 (0.7)	10.6 (0.4)	4.1 (0.3)	0.4 (0.1)	0.2(0.1)	0.1 (0.1)	0.2(0.1)
2.200	9.6 (0.5)	4.4 (0.3)	1.1 (0.2)	2.0(0.1)	0.3 (0.1)	0.3 (0.1)	0.2(0.1)
2.360	8.1 (0.5)	2.5 (0.2)	0.6 (0.1)	0.1 (0.1)	0.3 (0.1)	0.4 (0.1)	0.3 (0.1)
2.450	6.1 (0.4)	1.5 (0.2)	0.4 (0.1)	0.1 (0.1)	0.2(0.1)	0.3 (0.1)	0.4 (0.1)
2.550	4.0(0.3)	0.8(0.2)	0.3 (0.1) 0.2 (0.1)	0.2 (0.1) 0.2 (0.1)	0.2(0.1) 0.2(0.1)	0.0 (0.1)	0.3(0.1) 0.2(0.1)
2.750	1.7 (0.2)	0.2 (0.1)	0.1 (0.1)	0.2 (0.1)	0.2 (0.1)	0.3 (0.1)	0.2 (0.1)
2.850	1.0 (0.2)	0.1 (0.1)	0.1 (0.1)	0.2 (0.1)	0.3 (0.1)	0.5 (0.1)	0.3 (0.1)
2.950	0.6 (0.2)	0.2(0.1)	0.2(0.1)	0.2(0.1)	0.3 (0.1)	0.5 (0.1)	0.3(0.1)
3.150	0.2(0.1)	0.2 (0.1)	0.2 (0.1)	0.3 (0.1)	2.2(2.1)	0.2 (0.1)	0.2 (0.1)
3.250	C.1 (0.1)	0.1 (0.1)	0.1 (0.1)	0.3 (0.1)	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)
3.350			0.1(0.1)	$9.2 \{ 0.1 \}$	9.2(0.1)	0.2 (0.1)	0.3(0.1)
3.550	-0.1(0.1)	-0.0(0.1)	0.2(0.1)	0.0 (0.1)	0.0 (0.1)	0.3 (0.1)	0.4 (0.1)
3.665	-0.0 (0.1)	0.1 (0.1)	0.3 (0.1)	0.0 (0.1)	0.0 (0.1)	0.2 (0.1)	0.3 (0.1)
3.795	0.1(0.1)	0.2(0.1)	0.3(0.1)	0.1 (0.1)	0.1 (0.1)	0.2 (0.1)	0.3 (0.1)
4.055	0.2 (0.2)	0.2 (0.1)	0.2 (0.1)	0.3(0.1)	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)
4.185	0.2 (0.2)	0.1 (0.1)	0.2 (0.1)	0.3 (0.1)	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)
4.315	0.1(0.2)	-0.1 (0.1)	0.1 (0.1)	0.2(0.1)	0.3(0.1)	0.1 (0.1)	0.1(0.2)
4.575	0.1 (0.2)	-0.1 (0.1)	-0.1 (0.1)	0.1 (0.1)	0.3 (0.1)	(.1)	0.2 (0.2)
4.705	0.1 (0.2)	-0.0 (0.1)	-0.1 (0.1)	0.1 (0.1)	0.3 (0.1)	0.2 (0.2)	0.4 (0.2)
4.835	0.2 (0.2)		-0.1(0.1)	3.1(0.1)	-0.1(0.1)		0.4 (0.2)
5.155	0.2 (0.2)	0.3 (0.2)	0.2 (0.1)	0.3 (0.1)	-2.1(0.1)	0.2 (0.2)	0.2(0.2)
5.325	0.1 (0.2)	0.3 (0.2)	0.2 (0.1)	0.3 (0.1)	-0.1 (0.1)	0.2 (0.2)	0.1 (0.2)
5.495	0.1(0.1)	0.2(0.2)	0.2 (0.1)	0.1 (0.1)	0.1(0.1)	0.2 (0.2)	0.0 (0.2)
5.835	0.1 (0.1)	0.0(0.1)	0.1 (0.1)	-0.0 (0.1)	0.4 (0.1)	0.2 (0.2)	0.2 (0.2)
6.005	0.2 (0.1)	0.1 (0.1)	0.1 (0.1)	-0.0 (0.1)	0.3 (0.1)	0.2 (0.2)	0.2 (0.2)
6.175	0.2(0.1)	0.1(0.1)	0.1 (0.1)	0.0 (0.1)	0.2(0.1)	0.1(0.1)	0.3(0.2)
6.515	0.2(0.1)	0.2 (0.1)	0.2 (0.1)	0.2(0.1)	0.0 (0.1)	0.1 (0.1)	0.2(0.1)
6.700	0.1 (0.1)	0.2 (0.1)	0.2 (0.1)	0.2 (0.1)	0.0 (0.1)	0.1 (0.1)	0.2 (0.1)
6.900	0.1 (0.1)	0.1(0.1)	0.2 (0.1)	0.2 (0.1)	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)
7.300	0.0(0.1)	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)	0.2 (0.1)	0.1(0.1)
7.500	0.1 (0.1)	0.1 (0.1)	0.0 (0.1)	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)
7.700	0.1 (0.1)	0.1(0.1)	0.0(0.1)	0.0 (0.1)	0.1 (0.1)	0.1 (0.1)	0.1 (0.1)
7.900	0.1(0.1)	0.0 (0.1)	0.0(0.1)	0.0 (0.1)	0.1 (0.1)		0.1(0.1)
8.300	0.0 (0.1)	0.0 (0.1)	-0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.2 (0.1)	0.1 (0.1)
8.500	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)
8.725	0.0(0.1)	0.0 (0.1)	0.0 (0.1)	9.0 (0.1) 0.0 (0.1)	0.0 (0.1) 0.0 (0.1)	0.0 (0.1)	
9.225	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)
9.475	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	0.0 (0.1)	-0.0 (0.1)
9.725	0.0(0.1)			0.0 (0.1)			-0.0 (0.1)
7.213	v•v (v• 1/	J.J. (J. I)			()	0.0 (0.0)	()

TABLE 2.	CU(N,XX) DIFFERENTIAL CROSS SECTIONS AT 130 DEGREES. THE NUMBERS IN PARENTHESIS ARE STATISTICAL	
UNCERTAINTIES	(IN THE SAME UNITS AS THE DATA). THE OVERALL UNCERTAINTY IN NORMALIZATION IS ABOUT 104.	

INCIDENT ENERGY=	5.98- 7.02	5.00- 5.98	4.52- 5.00	3.99- 4.52	3.49- 3.99	3.00- 3.49	2.75- 3.00
GAMMA RAY ENERGY (MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)
C.760 0.800 0.840 0.920 0.960 1.000 1.040 1.125 1.275 1.375 1.375 1.375 1.425 1.375 1.475 1.575 1.640 1.700 1.800 1.800 1.800 1.800 1.800 1.800 1.800 2.255 3.450 3.550 3.450 3.555 5.495 5.325 5.495 5.325 5.495 5.325 5.495 5.325 5.495 5.325 5.495 5.325 5.495 5.325 5.495 5.325 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.225 5.495 5.925 5.495 5.925 5.495 5.925 5.495 5.925 5.495 5.925 5.495 5.925 5.	$\begin{array}{c} 138.6 & (23.5)\\ 161.5 & (7.5)\\ 198.2 & (3.6)\\ 249.8 & (3.4)\\ 229.6 & (3.6)\\ 306.6 & (3.5)\\ 295.8 & (3.3)\\ 295.4 & (3.2)\\ 251.2 & (3.0)\\ 226.7 & (2.9)\\ 206.5 & (2.8)\\ 201.1 & (3.1)\\ 208.4 & (3.2)\\ 211.9 & (2.5)\\ 196.6 & (2.6)\\ 174.8 & (2.4)\\ 152.2 & (2.2)\\ 131.5 & (2.6)\\ 174.8 & (2.4)\\ 152.2 & (2.2)\\ 131.5 & (2.6)\\ 174.8 & (2.4)\\ 152.2 & (2.2)\\ 131.5 & (1.4)\\ 86.3 & (1.8)\\ 86.7 & (1.7)\\ 874.7 & (1.6)\\ 65.4 & (1.6)\\ 56.9 & (1.5)\\ 51.3 & (1.4)\\ 48.7 & (1.7)\\ 874.7 & (1.6)\\ 65.4 & (1.6)\\ 56.9 & (1.5)\\ 51.3 & (1.4)\\ 48.0 & (1.4)\\ 45.7 & (1.7)\\ 874.7 & (1.6)\\ 65.4 & (1.6)\\ 56.9 & (1.5)\\ 51.3 & (1.4)\\ 48.0 & (1.4)\\ 48.4 & (1.3)\\ 40.6 & (1.2)\\ 36.7 & (1.7)\\ 34.1 & (1.2)\\ 36.7 & (1.1)\\ 34.1 & (1.2)\\ 36.7 & (1.1)\\ 34.1 & (1.2)\\ 36.7 & (1.1)\\ 31.9 & (1.6)\\ 65.9 & (0.9)\\ 17.5 & (0.9)\\ 17.5 & (0.9)\\ 11.5 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (1.0)\\ 24.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 3.7 & (0.6)\\ 1.1 & (0.7)\\ 0.0 & (0.1)\\ 0$	$ \begin{array}{c} 159 & 0 & (23. 1) \\ 168.9 & (7. 3) \\ 199.5 & (3. 4) \\ 248.8 & (3. 3. 1) \\ 248.8 & (3. 3. 1) \\ 296.5 & (3. 4) \\ 296.5 & (3. 2) \\ 296.5 & (2. 9) \\ 275.5 & (2. 9) \\ 275.5 & (2. 9) \\ 275.5 & (2. 9) \\ 207.5 & (2. 6) \\ 207.5 & (2. 6) \\ 207.5 & (2. 6) \\ 207.0 & (2. 9) \\ 210.2 & (2. 2) \\ 120.2 $	$ \begin{array}{c} 145.0 & (24.1) \\ 159.3 & (8.0) \\ 130.8 & (4.2) \\ 241.7 & (3.8) \\ 241.7 & (3.3) \\ 203.1 & (3.7) \\ 265.5 & (3.5) \\ 241.7 & (3.3) \\ 1265.5 & (3.5) \\ 241.7 & (3.3) \\ 1265.5 & (3.5) \\ 241.7 & (3.3) \\ 197.1 & (3.2) \\ 191.1 & (3.3) \\ 199.2 & (3.4) \\ 207.3 & (3.2) \\ 199.2 & (3.4) \\ 207.3 & (3.2) \\ 1196.6 & (2.6) \\ 142.5 & (2.4) \\ 120.1 & (3.2) \\ 1165.6 & (2.6) \\ 142.5 & (2.4) \\ 120.1 & (2.2) \\ 77.2 & (1.4) \\ 87.5 & (2.4) \\ 120.1 & (2.2) \\ 77.2 & (1.4) \\ 87.5 & (1.4) \\ 37.6 & (1.4) \\ 36.6 & (1.3) \\ 34.9 & (1.5) \\ 34.9 & (1.5) \\ 34.9 & (1.5) \\ 34.9 & (1.6) \\ 45.8 & (1.6) \\ 42.3 & (1.5) \\ 37.6 & (1.4) \\ 36.6 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.4) \\ 36.6 & (1.3) \\ 34.9 & (1.6) \\ 42.7 & (1.4) \\ 36.6 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.3) \\ 34.9 & (1.6) \\ 12.5 & (0.7) \\ 15.2 & (0.9) \\ 15.2 & (0.9) \\ 15.2 & (0.9) \\ 15.2 & (0.9) \\ 15.2 & (0.9) \\ 15.2 & (0.6) \\ 5.6 & (0.5) \\ 4.1 & (0.7) \\ 9.0 & (0.7) \\ 9.0 & (0.1) \\ 0.0 & (0.1) \\ 0.0 & (0.1) \\ 0.0 & (0.1) \\ 0.1 & (0.1) \\ 0.1 & (0.1) \\ 0.1 & (0.1) \\ 0.1 & (0.1) \\ 0.0 & (0.1$	$ \begin{array}{c} 143.3 & (21.6) \\ 1151.5 & (7.1) \\ 183.3 & (3.6) \\ 221.2 & (3.3) \\ 226.5 & (3.5) \\ 280.6 & (3.4) \\ 263.5 & (3.2) \\ 247.7 & (3.1) \\ 2247.7 & (3.1) \\ 2247.7 & (3.0) \\ 205.2 & (2.9) \\ 185.0 & (2.8) \\ 175.3 & (2.2) \\ 185.0 & (2.8) \\ 175.3 & (2.2) \\ 185.5 & (2.9) \\ 186.1 & (2.6) \\ 184.7 & (2.3) \\ 177.0 & (2.3) \\ 177.0 & (2.0) \\ 185.5 & (1.7) \\ 69.9 & (1.6) \\ 67.8 & (1.5) \\ 69.9 & (1.6) \\ 67.8 & (1.5) \\ 69.9 & (1.6) \\ 67.8 & (1.5) \\ 69.9 & (1.6) \\ 67.8 & (1.5) \\ 65.0 & (1.4) \\ 48.4 & (1.3) \\ 41.9 & (1.2) \\ 37.2 & (1.2) \\ 34.2 & (1.1) \\ 34.5 & (1.7) \\ 83.5 & (0.8) \\ 14.9 & (0.6) \\ 13.5 & (0.7) \\ 13.5 & (0.7) \\ 13.5 & (0.7) \\ 13.5 & (0.7) \\ 13.5 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.6) \\ 7.9 & (0.2) \\ 0.3 & (0.2) \\ 0.3 & (0.2) \\ 0.3 & (0.2) \\ 0.1 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.6 & (0.7) \\ 11.9 & (0.6) \\ 10.0 & (0.7) \\ 11.9 & (0.6) \\ 10.0 & (0.7) \\ 11.9 & (0.6) \\ 10.0 & (0.7) \\ 11.9 & (0.6) \\ 10.0 & (0.7) \\ 11.9 & (0.6) \\ 10.0 & (0.7) \\ 10.0 & ($	$\begin{array}{c} 133.4 & (19.8)\\ 145.4 & (6.6)\\ 171.4 & (6.4)\\ 171.4 & (6.4)\\ 171.4 & (3.4)\\ 212.5 & (3.1)\\ 248.4 & (3.2)\\ 260.1 & (3.1)\\ 226.4 & (2.6)\\ 1023.2 & (2.7)\\ 179.4 & (2.6)\\ 160.9 & (2.5)\\ 156.9 & (2.6)\\ 163.1 & (2.6)\\ 167.7 & (2.3)\\ 163.3 & (2.1)\\ 149.8 & (2.1)\\ 156.9 & (2.6)\\ 163.3 & (2.1)\\ 149.8 & (2.1)\\ 131.0 & (1.9)\\ 111.1 & (1.8)\\ 975.3 & (1.5)\\ 62.8 & (1.4)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.3)\\ 55.4 & (1.0)\\ 22.9 & (0.9)\\ 21.6 & (0.8)\\ 19.7 & (0.6)\\ 11.2 & (0.6)\\ 12.1 & (0.6)\\ 12.1 & (0.6)\\ 12.1 & (0.6)\\ 12.1 & (0.6)\\ 12.1 & (0.6)\\ 12.1 & (0.2)\\ 0.7 & (0.5)\\ 9.7 & (0.5)\\ 9.7 & (0.5)\\ 9.7 & (0.5)\\ 9.7 & (0.5)\\ 9.7 & (0.5)\\ 9.7 & (0.2)\\ 12.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.1 & (0.1)\\ 0.0 & (0.1)\\ $	$\begin{array}{c} 116.0 & (17.2) \\ 126.0 & (5.6) \\ 148.1 & (3.0) \\ 133.2 & (2.7) \\ 212.7 & (2.9) \\ 221.7 & (2.6) \\ 221.7 & (2.6) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 221.7 & (2.9) \\ 23.2 & (2.9) \\ 141.1 & (1.9) \\ 132.4 & (1.9) \\ 132.4 & (1.9) \\ 132.4 & (1.9) \\ 141.1 & (1.9) \\ 132.4 & (1.9) \\ 132.4 & (1.9) \\ 132.4 & (1.9) \\ 132.4 & (1.9) \\ 132.4 & (1.9) \\ 141.1 & (1.9) \\ 132.4 & (1.9) \\ 141.1 & (1.9) \\ 132.4 & (1.9) \\ 132.4 & (1.9) \\ 141.2 & (1.1) \\ 36.1 & (1.9) \\ 23.2 & (0.8) \\ 20.6 & (0.8) \\ 20.6 & (0.8) \\ 23.2 & (0.6) \\ 22.2 & (0.6) \\ 22.2 & (0.6) \\ 22.2 & (0.6) \\ 22.4 & (1.1) \\ 36.1 & (1.1) \\ 36.1 & (1.1) \\ 36.1 & (0.7) \\ 36.1 $	$\begin{array}{c} 112.9 & (17.5) \\ 107.5 & (6.3) \\ 120.7 & (3.8) \\ 120.7 & (3.8) \\ 120.7 & (3.8) \\ 120.7 & (3.8) \\ 120.7 & (3.8) \\ 187.5 & (3.6) \\ 200.3 & (3.5) \\ 194.2 & (3.4) \\ 187.6 & (3.2) \\ 164.3 & (3.1) \\ 142.1 & (2.9) \\ 119.1 & (2.8) \\ 119.1 & (2.2) \\ 119.1 & (2.2) \\ 119.7 & (2.5) \\ 124.0 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 116.4 & (2.3) \\ 101.2 & (2.1) \\ 122.5 & (1.3) \\ 22.5 & (1.4) \\ 32.5 & (1.4) \\ 32.5 & (1.3) \\ 29.2 & (1.4) \\ 32.5 & (1.3) \\ 29.2 & (1.4) \\ 32.5 & (1.3) \\ 29.2 & (1.4) \\ 32.5 & (1.3) \\ 20.2 & (1.2) \\ 22.5 & (1.3) \\ 22.5 & (1.3) \\ 22.5 & (1.3) \\ 22.5 & (1.4) \\ 32.5 & (1.3) \\ 22.5 & (1.3) $

TABLE 2. CU(N,XT) DIFFERENTIAL CROSS SECTIONS AT 130 DEGREES. THE NUMBERS IN PARENTHESIS ARE STATISTICAL UNCERTAINTIES (IN THE SAME UNITS AS THE DATA). THE OVERALL UNCEPTAINTY IN NORMALIZATION IS ABOUT 104.

INCIDENT ENERGY=	17.42-20.09	14.98-17.42	12.49-14.98	9.96-12.49	9.01- 9.96	7.98- 9.01	7.02- 7.98
GAMMA RAY ENERGY (MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (NB/SR/NEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)	CROSS SECTION (MB/SR/MEV)
0.760 0.800	140.0 (26.0) 149.2 (9.2)	127.0 (20.7) 125.2 (7.2)	103.4 (19.6) 117.9 (6.6)	139.5 (22.2) 150.7 (7.0)	121.3 (25.4) 151.7 (8.5)	146.0 (25.2) 161.3 (8.2)	142.2 (24.2) 157.2 (7.9)
0.840	156.8 (5.3)	135.6 (4.0) 157.3 (3.6)	138.8 (3.4) 166.4 (3.1)	179.6 (3.3) 217.5 (3.0)	188.0 (4.4) 236.1 (4.0)	199.4 (4.1) 252.5 (3.7)	191.9 (3.9) 243.5 (3.5)
0.920	206.8 (5.0)	179.3 (3.8)	192.1 (3.2)	250.3 (3.1)	275.4 (4.2)	294.4 (3.9)	287.4 (3.7)
1.000	227.0 (4.9)	190.4 (3.7)	207.0 (3.2) 212.3 (3.1)	264.9 (3.1) 264.6 (3.0)	298.3 (4.1) 278.5 (4.0)	289.5 (3.9)	301.8 (3.7) 289.1 (3.5)
1.040	246.3 (4.8)	202.2 (3.6)	216.3 (3.0)	260.9 (2.8)	259.1 (3.8)	265.4 (3.5)	266.1 (3.3)
1.125	265.6 (4.8)	228.9 (3.5)	222.7 (3.0) 227.3 (3.0)	257.5 (2.8)	239.5 (3.7) 221.4 (3.6)	221.7 (3.3)	244.5 (3.2) 224.2 (3.1)
1.175	255.4 (4.5)	222.3 (3.4)	221.0 (2.9)	234.3 (2.7)	208.3 (3.5)	205.2 (3.2)	207.7 (3.1)
1.275	203.3 (4.4)	173.9 (3.3)	188.0 (3.0)	215.5 (2.9)	210.0 (3.9)	213.9 (3.6)	203.0 (3.3) 208.6 (3.4)
1.325	175.4 (3.8)	150.3 (2.9)	170.4 (2.5) 150.5 (2.3)	210.4 (2.5)	210.8 (3.4)	218.5 (3.2)	213.2 (3.0)
1.425	131.8 (3.5)	114.0 (2.6)	129.5 (2.3)	182.0 (2.3)	185.1 (3.2)	190.3 (2.9)	191.1 (2.8)
1.475	117.2 (3.5)	101.5 (2.5) 91.9 (2.4)	110.6 (2.1)	160.9 (2.1) 139.5 (2.0)	166.6 { 3.0} 148.1 (2.8)	170.0 (2.7)	170.0 (2.6)
1.575	99.2 (3.1)	83.4 (2.2)	83.0 (1.9)	120.0 (1.9)	129.7 (2.6)	133.6 (2.4)	128.8 (2.3)
1.540	91.8 (3.0) 83.9 (2.9)	61.0 (2.1)	61.7 (1.9)	89.4 (1.8)	93.8 (2.4)	99.4 (2.2)	94.4 (2.1)
1.800	77.2 (2.9)	56.4 (2.0)	56.7 (1.7)	84.5 (1.7)	89.2 (2.4)	95.3 (2.2)	90.4 (2.0)
1.960	65.6 (2.8)	50.6 (2.0)	53.0 (1.7)	70.8 (1.7)	77.7 (2.4)	81.2 (2.2)	80.1 (2.0)
2.040	58.4 (2.6)	43.1 (1.8)	45.6 (1.6)	65.4 (1.6) 59.5 (1.5)	67.9 (2.2)	73.7 (2.0)	72.3 (1.9)
2.200	47.1 (2.4)	33.3 (1.7)	31.2 (1.5)	51.6 (1.5)	55.0 (2.1)	62.2 (1.9)	60.8 (1.8)
2.280	43.9 (2.3)	31.3 (1.6) 28.1 (1.6)	29.0 (1.5) 27.5 (1.5)	44.3 (1.4) 40.8 (1.4)	53.2 (2.0) 51.5 (2.0)	56.7 (1.8) 52.8 (1.8)	55.1 (1.7) 49.3 (1.7)
2.450	37.2 (2.2)	23.6 (1.5)	25.7 (1.4)	40.8 (1.4)	48.7 (2.0)	49.9 (1.8)	45.3 (1.6)
2.650	26.5 (2.0)	20.4 (1.4)	23.9 (1.4)	40.9 (1.3)	46.0 (1.9)	44.1 (1.7)	44.0 (1.5)
2.750	25.3 (1.9)	20.3 (1.4)	22.8 (1.3)	38.9 (1.3)	44.7 (1.8)	42.4 (1.6)	41.2 (1.5)
2.950	26.5 (1.9)	16.8 (1.3)	20.5 (1.3)	35.0 (1.3)	39.9 (1.8)	40.1 (1.6)	36.5 (1.4)
3.050	25.5 (1.9)	14.9 (1.3) 13.3 (1.3)	19.0 (1.3) 17.7 (1.3)	33.1 (1.3) 31.4 (1.3)	38.1 (1.8) 36.0 (1.8)	38.4 (1.6) 36.9 (1.6)	36.5 (1.4) 36.2 (1.4)
3.250	20.8 (1.9)	11.5 (1.3)	17.0 (1.3)	30.1 (1.3)	33.6 (1.8)	35.6 (1.6)	34.7 (1.4)
3.350 3.450	18.0 (1.8)	9.6 (1.3) 8.6 (1.3)	$17.1 (1.3) \\ 17.5 (1.3)$	29.2 (1.3) 28.7 (1.3)	31.8 (1.8) 30.8 (1.8)	34.2 (1.6) 32.1 (1.5)	32.3 (1.4)
3.550	15.6 (1.7)	9.1 (1.3)	17.4 (1.3)	28.5 (1.3)	30.0 (1.8)	30.0 (1.5)	28.1 (1.3)
3.665	15.3 (1.8)	11.7 (1.3)	13.4 (1.4)	26.0 (1.3)	26.7 (1.8)	27.5 (1.5)	23.9 (1.3)
3.925	14.0 (1.8)	11.3 (1.3)	11.9 (1.4) 11.8 (1.5)	24.3 (1.4)	26.5 (1.8)	26.6 (1.5)	22.0 (1.3)
4.185	11.0 (1.8)	7.1 (1.5)	12.3 (1.5)	23.7 (1.5)	26.6 (2.0)	23.5 (1.6)	20.9 (1.3)
4.315	10.1 (1.9)	4.7 (1.5) 3.0 (1.6)	1360 (1.5) 13.7 (1.8)	22.9 (1.6) 20.8 (1.7)	24.4 (2.1)	22.5 (1.7) 21.1 (1.8)	19.4 (1.4)
4.575	7.6 (1.9)	2.8 (1.7)	13.9 (1.9)	19.3 (1.8)	17.8 (2.4)	19.0 (1.9)	15.3 (1.5)
4.835	5.3 (1.9)	5.9 (1.8)	10.5 (2.0)	14.9 (2.0)	14.8 (2.4)	15.7 (1.9)	13.0 (1.4)
4.985	5.4 (1.9)	8.2 (1.8)	7.1(2.1)	14.3 (2.1)	15.6 (2.6)	14.9 (2.0)	11.5 (1.5)
5.325	6.8 (1.9)	7.4 (1.8)	6.1 (2.3)	15.5 (2.3)	17.9 (2.8)	11.5 (2.0)	8.3 (1.5)
5.495	6.5 (1.9) 5.0 (1.8)	4.3 (1.0) 1.7 (1.8)	8.9 (2.3) 11.0 (2.3)	15.4 (2.4)	15.8 (2.8)	8.9 (2.0) 7.5 (1.9)	7.7 (1.4)
5.835	3.2 (1.7)	0.8 (1.7)	10.9 (2.2)	11.1 (2.3)	8.4 (2.6)	7.3 (1.7)	6.1 (1.2)
6.005	2.1 (1.5)	2.8 (1.4)	5.6 (2.0) 5.6 (1.9)	7.7 (2.0)	5.8 (2.2)	6.9 (1.4)	4.7 (1.0) 3.5 (0.9)
6.345	1.9 (1.2)	3.5(1.3)	3.4 (1.7)	7.7 (1.8)	6.2 (1.9)	6.1 (1.1) 5 1 (1.0)	2.8 (0.7)
6.700	1.8 (0.8)	2.4 (0.9)	3.0 (1.1)	7.9 (1.2)	6.8 (1.2)	4.5 (0.7)	1.9 (0.4)
6,900	1.2(0.7)	1.5 (0.7)	3.5 (C.9) 3.4 (C.8)	6.8 (1.0) 5.2 (0.9)	5.8 (1.0)	3.8 (0.5)	1.5 (0.3) 1.0 (0.2)
7.300	0.4 (0.5)	1.4 (0.5)	2.8 (0.7)	3.8 (0.8)	2.5 (0.7)	2.2 (0.3)	0.7 (0.2)
7.500	0.5 (0.4) 0.6 (0.3)	1.5 (0.5) 1.5 (0.3)	2.1 (0.6) 1.5 (0.5)	3.0 (0.7) 2.5 (0.5)	1.0 (0.5)	1.4 (0.2) 0.9 (0.1)	0.4 (0.1) 0.3 (0.1)
7.900	0.7 (0.2)	1.2(0.3)	1.1 (0.4)	2.0(0.4)	0.9 (0.4)	0.5(0.1)	0.2(0.1)
8.300	0.5 (0.2)	0.4 (0.2)	0.7 (0.3)	1.2 (0.3)	0.9 (0.3)	0.2 (0.1)	0.1 (0.1)
8.500	0.3 (0.1)	0.1 (0.2) -0.0 (0.1)	0.6 (0.2) 0.5 (0.2)	0.9 (0.3) 0.6 (0.2)	0.7 (0.2) 0.5 (0.2)	0.1 (0.1) 0.0 (0.1)	$0.0 (0.1) \\ 0.0 (0.1)$
8.975	0.1 (0.1)	-0.1 (0.1)	0.4 (0.2)	0.4 (0.2)	0.2 (0.1)	0.0 (0.1)	0.0 (0.1)
9.225	0.0 (0.1) 0.0 (0.1)	-0.0 (0.1)	0.2 (0.1) 0.1 (0.1)	0.2 (0.1) 0.1 (0.1)	-0.0 (0.1)	0.0 (0.1) 0.0 (0.1)	0.0 (0.1) 0.0 (0.1)
9.725	0.0 (0.1)	-0.0 (0.1)	0.0 (0.1)	0.0(0.1)	-0.1 (0.1)	0.0(0.1)	0.0(0.1)
2+210	0.0 (0.1)	0.0 0.1)	0.0 (0.1)	0.0 (0.1)	· · · · · · · · · · · · · · · · · · ·	··· (···)	v.v (v. I)

TABLE 3. TOTAL SECONDARY YIELDS AND AVERAGE SECONDARY ENERGIES POR NEUTRONS AND GAMMA RAYS DUE TO NEUTRON INTERACTIONS WITH COPPER. THESE RESULTS APE FOR SECONDARY NEUTRONS WITH THERGIES GREATER THAN 0.756 HEV AND GAMMA RAYS WITH ENERGIES GREATER THAN 0.700 HEV. UNCERTAINTIES ARE GIVEN IN PARENTHIESES IN THE SAME UNITS AS THE DATA. UNCERTAINTIES IN TOTAL YIELDS DO NOT INCLUDE A 10% ERROR IN ABSOLUTE NOPMALIZATION. THE ANGLE IS 130 DEGREES.

INCIDENT NEUTR ENERGY (MEV)	ON ENTROY SPREAD	SECONDARY NEUTRON YIELD (MB/SR)	AVERAGE NEUTRON ENERGY (MEV)	SECONDARY PHOTON VIELD (MB/SR)	AVERAGE PHOTON ENERGY (MEV)
1.026	0.048	190.58 (1.80)	1.011 (.013)	12.33 (0.30)	1.284 (.043)
1.076	0.052	192.98 (1.71)	1.044 (.012)	14.66 (0.30)	1.181 (.034)
1.124	0.044	200 56 (1 79)	1.020 (.013)	22 00 (0.35)	1.177 (.035) 1.127 (.024)
1.230	0.050	183.04 (1.88)	1.159 (.012)	23.97 (0.38)	1.107 (.024)
1.275	0.040	168.31 (2.05)	1.275 (.016)	27.03 (0.46)	1.092 (.025)
1.323	0.056	157.56 (1.89)	1.333 (.015)	27.98 (0.40)	1.115 (.021)
1.419	0.047	165.42 (1.98)	1,288 (.014)	35.58 (0.48)	1.103 (.020)
1.467	0.049	170.73 (1.86)	1.286 (.012)	40.49 (0.49)	1.106 (.018)
1.518	0.052	167.60 (1.71)	1.326 (.012)	44.16 (0.49)	1.128 (.016)
1.627	0.058	151.50 (1.44)	1.475 (.013)	52.71 (0.51)	1.154 (.014)
1.676	0.040	139.72 (1.58)	1.550 (.017)	55.05 (0.62)	1.164 (.017)
1.728	0.063	147.04 (1.45)	1.557 (.014)	59.29 (0.53)	1.177 (.013)
1.826	0.046	154.36 (1.69)	1.567 (.015)	63.33 (0.65)	1.189 (.015)
1.872	0.047	159.19 (1.74)	1.550 (.015)	68.98 (0.67)	1.176 (.015)
1.921	0.049	160.77 (1.69)	1.581 (.015)	72.76 (0.69)	1.183 (.014)
2.051	0.109	149.43 (1.17)	1.699 (.012)	78.52 (0.51)	1.218 (.010)
2.149	0.087	146.71 (1.15)	1.734 (.014)	84.02 (0.61)	1.220 (.011)
2.239	0.093	148.79 (1.14)	1.754 (.014)	91.21 (0.65)	1.222 (.011)
2. 455	0.107	149.78 (1.07)	1.832 (.015)	108.19 (0.73)	1.230 (.010)
2.556	0.095	144.31 (1.17)	1.900 (.018)	115.49 (0.87)	1.241 (.012)
2.653	0.100	138.58 (1.20)	1.970 (.020)	124.13 (0.96)	1.262 (.012)
2.756	0,106	133.87 (1.39)	2.010 (.023)	128.46 (1.11)	1.273 (.014)
2.945	0.094	140.20 (1.54)	2.038 (.024)	143.11 (1.24)	1.297 (.014)
3.041	0.098	141.07 (1.50)	2.029 (.023)	153.10 (1.22)	1.306 (.013)
3.142	0.103	135.88 (1.46) 132 38 (1.46)	2.091 (.024)	158.85 (1.21)	1.321 (.013)
3.344	0.085	133.57 (1.52)	2.162 (.028)	171.41 (1.39)	1.351 (.014)
3.446	0.118	137.00 (1.29)	2.117 (.023)	181.30 (1.21)	1.361 (.011)
3.551	0.093	137.67 (1.42)	2.145 (.027)	190.64 (1.41)	1.379 (.013)
3.745	0.101	133.98 (1.31)	2.172 (.028)	203.90 (1.40)	1.402 (.012)
3.848	0.105	137.67 (1.31)	2.197 (.027)	210.94 (1.39)	1.429 (.012)
3.955	0.109	132.08 (1.28)	2.214 (.027)	220.71 (1.40)	1.439 (.011)
4.047	0.117	132.88 (1.27)	2.254 (.027)	231.04 (1.39)	1.464 (.011)
4.243	0.081	130.24 (1.53)	2.261 (.032)	237.58 (1.72)	1.478 (.013)
4.346	0.126	131.54 (1.24)	2.241 (.027)	242.27 (1.43)	1.493 (.011)
4.541	0.087	125.72 (1.48)	2.238 (.032)	253.24 (1.75)	1.531 (.013)
4.632	0.092	127.89 (1.45)	2.278 (.032)	264.01 (1.77)	1.547 (.013)
4.750	0.144	123.23 (1.25)	2.321 (.028)	264.54 (1.42)	1.567 (.011)
4.872	0.103	121.23 (1.44) 126.12 (1.44)	2.386 (.033)	2/3.00 (1.75)	1.600 (.013)
5.105	0.160	120.19 (1.19)	2.373 (.028)	285.27 (1.45)	1.616 (.010)
5.299	0.226	123.11 (1.06)	2.320 (.024)	292.19 (1.25)	1.646 (.009)
5.702	0.221	120, 35 (1, 15)	2.340 (.026)	302.67 (1.32)	1.702 (.009)
5.912	0.200	120.06 (1.12)	2.387 (.026)	306.57 (1.41)	1.719 (.010)
6.100	0.175	117.24 (1.18)	2.435 (.029)	307.41 (1.53)	1.755 (.011)
6.297	0.192	114.64 (1.08)	2.470 (.027)	316.92 (1.50)	1.788 (.011)
6.700	0.201	114.34 (1.13)	2.540 (.030)	319.64 (1.49)	1.820 (.011)
6,906	0.211	115.26 (1.11)	2.602 (.030)	324.29 (1.49)	1.842 (.011)
7.302	0.229	112.72 (1.09)	2.689 (.035) 2.670 (.032)	328.19 (1.48)	1.911 (.011)
7.512	0.191	108.63 (1.16)	2.793 (.037)	327.19 (1.63)	1.917 (.012)
7.707	0.199	109.94 (1.11)	2.783 (.037)	325.93 (1.61)	1.948 (.013)
8.094	0.161	107.59 (1.17)	2.930 (.045)	325.06 (1.80)	1.970 (.014)
8.285	0.222	108.43 (1.03)	2.996 (.042)	340.47 (1.61)	2.023 (.013)
8.511	0.231	115.06 (1.05)	3.035 (.043)	347.40 (1.64)	2.042 (.013)
8.899	0.185	110.82 (1.16)	3.100 (.047)	344.97 (1.85)	2.003 (.015)
9.087	0.191	104.85 (1.10)	3.137 (.048)	335.32 (1.78)	2.075 (.015)
9.281	0.197	102.15 (1.07)	3.164 (.048)	329.31 (1.74)	2.095 (.015)
9.481	0.204	103.43 (1.10)	3.287 (.050)	351.93 (1.85)	2.109 (.015)
9.903	0.218	110.05 (1.15)	3.459 (.053)	355.30 (1.87)	2.139 (.015)
10.240	0.458	111.48 (0.85)	3.563 (.042)	359.44 (1.34)	2.160 (.011)
10./14	0.490	10.04 (0.85)	3.693 (.045)	348.80 (1.30)	2.165 (.011)
11.718	0.467	112.72 (0.96)	3.932 (.056)	325.58 (1.44)	2.146 (.013)
12.252	0.600	110.96 (0.86)	3.913 (.054)	294.11 (1.26)	2.101 (.012)
12.764	0.563	125.67 (1.16)	3.707 (.058)	249.92 (1.38)	2.072 (.016) 2.028 (.015)
13.779	0.478	135.24 (1.39)	3.796 (.066)	237.95 (1.55)	1.963 (.017)
14.269	0.503	138.13 (1.44)	3.671 (.065)	221.25 (1.51)	1.908 (.018)
14.787	0.531	134.47 (1.46) 141.94 (1.77)	3.002 (.069) 3.825 (.083)	213.98 (1.50)	1.844 (.018)
15.763	0.585	146.96 (1.65)	3.718 (.074)	209.48 (1.58)	1.770 (.018)
16.286	0.461	146.66 (1.89)	3.649 (.086)	208.33 (1.84)	1.727 (.020)
16.758	0.482	151.24 (1.96) 159.48 (2.07)	3.750 (.089) 3.566 (.088)	219.13 (1.93) 230.58 (2.04)	1.728 (.020)
17.764	0.526	166.68 (2.18)	3.693 (.092)	247.75 (2.20)	1.726 (.020)
18.303	0.550	164.36 (2.19)	3.690 (.096)	255.27 (2.26)	1.750 (.020)
18.768	U.381 0.590	169.96 (2.70) 171.48 (2.31)	3.741 (.118) 3.681 / 102)	274.70 (2.92) 280.32 (2.45)	1.737 (.024)
19.759	0.412	174.62 (2.81)	3.769 (.126)	291.41 (3.12)	1.815 (.026)

ORNL-5499 ENDF-273 Dist. Category UC-34c

INTERNAL DISTRIBUTION

1.	L. S. Abbott	26.	R. W. Peelle
2.	R. G. Alsmiller, Jr.	27.	F. G. Perey
3.	C. F. Barnett	28-30.	RSIC
4.	D. E. Bartine	31.	D. Steiner
5.	G. T. Chapman	32.	M. L. Tobias
6.	G. de Saussure	33.	C. R. Weisbin
7.	J. K. Dickens	34.	A. Zucker
8.	G. F. Flanagan	35.	Paul Greebler (Consultant)
9.	C. Y. Fu	36.	W. B. Loewenstein (Consultant)
10.	H. Goldstein (Consultant)	37.	R. E. Uhrig (Consultant)
11.	D. C. Larson	38.	Richard Wilson (Consultant)
12.	F. C. Maienschein	39-40.	Central Research Library
13-22.	G. L. Morgan	41.	ORNL - Y-12 Technical Library
23.	O. B. Morgan	42.	Laboratory Records, ORNL RC
24.	E. M. Oblow	43.	ORNL Patent Office
25.	D. K. Olsen	44-45.	Laboratory Records

EXTERNAL DISTRIBUTION

- 46. John D. Anderson, Physics Dept., E Division, Lawrence Livermore Laboratory, Livermore, CA 94550
- 47. D. Auton, Defense Nuclear Agency, Tactical Nuclear Division, Washington, DC 20305
- 48. H. H. Barschall, Dept. of Physics, University of Wisconsin, Madison, WI 53706
- 49. R. C. Block, Nuclear Eng. & Science Dept., RPI, Troy, NY 12181
- 50. C. D. Bowman, Nuclear Sciences Division, RAD/P, NBS, Washington, DC 20234
- 51. R. E. Chrien, Physics Dept., 570A, BNL, Upton, NY 11973
- 52. C. L. Cowan, General Electric Company BRDO, 310 de Guigne Drive, Sunnyvale, CA 94086
- 53. R. A. Dannels, Westinghouse Electric Corp., Nuclear Energy Systems,P. O. Box 355, Pittsburgh, PA 15230
- 54. D. Dudziak, Los Alamos Scientific Laboratory, Los Alamos, NM 87545
- 55. D. R. Finch, E. I. Dupont de Nemours & Co., Savannah River Lab., P. O. Box 117, Aiken, SC 29801
- 56. E. G. Fuller, BlO2 Radiation Physics Building, NBS, Washington, DC 20234
- 57. S. Gerstl, Los Alamos Scientific Laboratory, Los Alamos, NM 87544
- 58. R. C. Haight, Lawrence Livermore Laboratory, Livermore, CA 94550
- 59. J. Hardy, Bettis Atomic Power Laboratory, P. O. Box 79, West Mifflin, PA 15122
- 60. P. B. Hemmig, Div. of Reactor Dev. & Demonstration, DOE, Washington, DC 20545
- 61. N. E. Holden, KAPL, P. O. Box 1072, Schenectady, NY 12301
- 62. R. J. Howerton, LLL, Livermore, CA 94550

63. H. H. Hummell, Bldg. 208, Room W-205, ANL, Argonne, IL 60439 64. H. E. Jackson, ANL, Argonne, IL 60439 65. M. Kalos, AEC Computing & App. Math. Center, Courant Inst. of Math Sciences, New York Univ., 251 Mercer St., New York, NY 10012 66. R. J. LaBauve, LASL, P.O. Box 1663, Los Alamos, NM 87545 B. Leonard, Battelle-Northwest, P.O. Box 999, Richland, WA 99352 67 68. A. E. Livolsi, Babcock & Wilcox Co., Power Generation Division, P.O. Box 1260, Lynchburg, VA 24505 69. C. R. Lubitz, G2-316, KAPL, P.O. Box 1072, Schenectady, NY 12301 70. D. Mathews, Gulf General Atomic, P.O. Box 608, San Diego, CA 92112 71. C. W. Maynard, University of Wisconsin, Madison, WI 53706 72. J. McCrosson, E. I. Dupont de Nemours & Co., Savannah River Lab., P.O. Box 117, Aiken, SC 29801 73. W. McElroy, HEDL, P.O. Box 1970, Richland, WA 99352 74. Michael S. Moore, P. Division, LASL, Los Alamos, NM 87545 75. D. W. Muir, LASL, Los Alamos, NM 87545 76. R. J. Neuhold, Division of Reactor Development and Demonstration, DOE, Washington, DC 20545 77. H. W. Newson, Dept. of Physics, Duke Univ., Durham, NC 27706 V. J. Orphan, Science Applications, Inc., P.O. Box 2351, La Jolla, CA 92037 78. 79. N. C. Paik, Westinghouse Electric Corp., Advanced Reactor Div., Waltz Mill Site, P.O. Box 158, Madison, PA 15663 S. Pearlstein, National Nuclear Data Center, BNL, Upton, NY 11973 80. 81. E. M. Pennington, Bldg. 208, ANL, Argonne, IL 60439 82. G. L. Rogosa, DPR, DOE, Washington, DC 20545 Robert Schenter, HEDL, P.O. Box 1970, Richland, WA 99352 83. R. Sher, Dept. of Mechanical Engineering, Stanford University, 84. Stanford, CA 94305 A. B. Smith, ANL, Argonne, IL 60439 85. Leona Stewart, LASL, MS-243, Los Alamos, NM 87544 86. Bruce Twining, Systems and Applications Studies Branch, Div. 87. of Controlled Thermonuclear Research, DOE, Washington, DC 20545 88. W. H. Walker, Applied Mathematics Branch, Chalk River Nuclear Laboratory, Atomic Energy of Canada, Ltd., Chalk River, Ontario, Canada Stanley L. Whetstone, Div. of Basic Energy Sciences, DOE, 89. Washington, DC 20545 J. M. Williams, Div. of Controlled Thermonuclear Research, DOE, 90. Washington, DC 20545 P. G. Young, LASL, Los Alamos, NM 87545 91.

- 92. Assistant Manager, Energy Research and Development, DOE-ORO
- 93-184. Bonnie McNair, National Nuclear Data Center, ENDF, Brookhaven National Laboratory, Upton, NY 11973
- 185-307. Given distribution as shown in TID-4500 under distribution category UC-34c