An Evaluation for ENDF/B-IV of the Neutron Cross Sections for ${ }^{235} \mathrm{U}$ from $\mathbf{8 2 ~ e V}$ to $\mathbf{2 5} \mathbf{~ k e V}$

R. W. Peelle

MASTER

OAK RIDGE NATIONAL LABORATORY

BLANK PAGE

Printed in the United States of Americ: Available from National Technical Information Service
 U.S. Department of Commerce
 5285 Port Royal Road, Springfield. Virginia 22161
 Price: Printed Copy $\$ 4.00$; Microfiche $\$ 2.25$

This raport ans prepered as an account of rork gponsored by the United Sereas Government. Nither the United Sates nor the Enerev Reanerch and Dowlopmemt Adrmisuration. no eny of their emplopmes. nor any of thair contractors. sabantractors, or their employens, mobes any werrenty. exprens or inaplied, or

 that its use would not infringe privately owned righes.

Contract No. W-7405-eng-26

Nestron Fhysics Division

AN EVALLATION FOR ENDFib-IV OF THE NELTRON CROSS SECTIONS FOR ${ }^{235}$ U FROM 82 eV TO 25 key

R. W. Peelle

MAY 1976

OAK RIDGE NATIONAL LABORATORY
Oak RIdge, Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

CONIENTS

Abstract 1
I. Introduction 2
II. Average Cross Sections for Broad Groups 3
Data Selection and Normalization 3
Results 7
Uncertaincies 19
III. Structure Representation 20
IV. Suggeations for Future Evaluations 28
Acinouledsements 32
References 33

ABSTRACT

Capture and fission cross sections for ${ }^{235} \mathbf{C}$ in the "unresclved resonance" an=rgy region were evaluated to permit determination of local-average resonance parataters for the ENDF/B-IV cross section file. Microscopic data were examined for inīinitely dilute average fission and capture cross sections and alsc for intereediate structure unlikely to te reproduced by statistical fluctuations of resonance widths and spacings wi:hin inown laws. Evaluated cross sections, averaged over lethargy intervals greater than 0.1 . were obtained as an average over selected daia sets after appropriate renormalization. Estimated uncertainties are given for these evaluated average cross sections. The "interaediate" structure fluctuations common to a few independent data sets were approximated by straight lines foining surcessive cross sections at 120 selected energ; points; che cross sections $I t$ the vertices were adjustrd to reproduce che evaluated average cross sections over che broad energy regions. Data sources and methods are reviewed, output values are tabulated, and sone modified procedures are suggested for future evaluations.

Evaluated fission and capture integrals for the resclved resonance regior. are also cabulated. These are not in agrement with integrals based on the resonance paraneters of ENDF/B versions III and IV.

I. INTRODUCTION

This report documents an evaluation for ENDF/E-IV of the cross sections for interaction between ${ }^{235} \mathrm{~V}$ and nev: rons with energies between 82 eV and 25 key , a region now assigned in the ENDEiB syster as the region of unresolved resonances. Since the normalization for many of the measuremeats used is at thermal energies or in the ior resonarice region, it was necessary to compare fission and captirc integrals through both the resolved and unresolved resonance regions.

In the ENDF/B file the cross sections in the unresolved resonance :egion are described in terms of an effective s-wave potential scattering radius and tabulations as a function of energy of local-average resonance parameturs and spacings for each of the possible spin states of the compcind r.ucleus. ${ }^{2}$ Spins $J=3,4$ for s-wave neutrons and 2,3 , 4, and 5 for p-wave neutrons have been included. The p-wave resonance average behavior is poorly known and was adopted fror the prior work of Pitterle et al. ${ }^{3}$ Level spacings and constant \hat{i}_{γ} values were also taken from the prior work for the ensembles of both s-wave and p-wave resonances, as were the numbers of degrees of izeedon taken to represent the írequency functions for the widths. The probiew then was reduced zo choosirg: and : f values as a function of eners; so tha: the experimental average cross sections for capture and fission are reproduced; these widths also control the scattering and total cross sections given by tie data file. These parameters are normally used in processing programs which reiognize the cross-section fluctuations implied by known distribution laws for widths and siderngs; \bar{r}_{f} and Γ_{n} values are entered into the file as a
function of energy to allov "intersediate structure" to be ropresented. The evaluation problems are therefore to represent correctly bcth the average cross seccions and that part of the structure not likely to be the result of width and spacing fluctuations. The presence of such structure in ${ }^{235} U$ has been demonstrated rather strongly for fission, but oniy weakiy for capture." Furthermore, representing the structure force the file to reproduce average cross sections close to the experimental ones even over relatively narrow intervals.

In the work presented here the local-average "structure" cross sections are given at about 120 points, and these average cross sections were subsequently used by M. Bhat ${ }^{5}$ to define average I_{f} and I_{n} values at the 120 energies. Between these points the average cross sections are assumed to vary linearly with energy, but enough points were chosen that only a small error ($(\mathbb{t} 1 \%$ for an interval as large as one lethargy unit) wo:sld be made if a processing code shouid assume that the parameters themselves vary linearly with erergy within these intervals.

In this report the tems "average cross section" and "integral cross sections" always refer to the extreme thin sample or infinite dilution case for which there is no self shielding.

II. AVERAGE CROSS SECTIONS FOR BROAD GROUPS

Data Selestion and Normalization

All the energy-dependent capture and fission data of interest were obtained using linear electron accelerators. Table lists each data source, the energy region on which any data renormalization was based, the renormalization factor applied, and the entrgy range through which

Table 1. Data Selection and Renormalization

Author	Normalization Energy	Renormalization Factor	C'tilization Range (keV)
Fission			
Deruytter ${ }^{\text {a }}$	$2200 \mathrm{~m} / \mathrm{sec}$	1.007^{3}	to . 0205
ORNL-RPI ${ }^{\text {c }}$	$\begin{aligned} & 2200 \mathrm{~m} / \mathrm{sec} \\ & \text { (indirect) } \end{aligned}$	$1.013^{\text {b }}$	to 1.0
Gwin ${ }^{\text {d }}$	$2200 \mathrm{~m} / \mathrm{sec}$	1.007°	to 25.
Blons ${ }^{\text {e }}$	$60-300 \mathrm{eV}$. 983	. 3 to 25.
Perez ${ }^{\text {f }}$	60-300 ev	. 985	.3 to 25.

Capture

ORNL-RPI	Resonance integral	1.000	up to 3
Guin $^{\text {d }}$	$0.02-0.03 \mathrm{eV}$	1.000	up to 25
Perez $^{\mathrm{f}}$	$60-300 \mathrm{eV}$	1.010	0.3 to 25

$b_{\text {Based }} \sigma J_{f}(2200 \mathrm{~m} / \mathrm{sec})=584.5 \mathrm{~b}$.
${ }^{C}$ de Saussure et al., ORNL-TM-18G4 (1967). Assumed ${ }^{10} B(n, \hat{1})$ has ($1 / v$) shape.
$d_{\text {R }}$ Gwin, Oak Ridge Naticnal Laboratory, letter to R. A. Dannels, NNCSC, 12-20-72. R. Gein et al., NSE, 59, 79 (1976).
ENucl. Sci. Eng. S1. 130 (1973).
ferez et al., ORNL-3696 and Nucl. Sci. Eng. SZ̈, 46 (1973).
$\mathbf{g}_{\text {A }}$ capture resonance integral for the interval $0.45<E \leq 1.0 \mathrm{eV}$ was used.
each data set was used. This table reflects the fact that such measurements are usually based upon a normalization at the low-energy end of the range studied, with the normalizing cross settion taken from the literature. An evaluator is then free to adjust this normailzáion without making any challenge to the measurement itifelf. The energy dependence of each input data set also depends upon the shape of a reference cross section as well as the validity of the experimental techniques.

For the fission cross sections the evaluation strateg: was to choose the $2200 \mathrm{~m} / \mathrm{sec}$ cross section (then) believed to be the choice for ENDF/BIV, 584.5 b , and renoralize to that vaiue che results of de Saussure et al., ${ }^{\epsilon}$ Deruytter, ${ }^{7}$ and Guin ei al. [The final ENDF/B $\sigma_{f}(2200 \mathrm{~m} / \mathrm{sec})=$ $585.7 \pm 2.3 b^{9}$ was not considered sufficiently different to warrant reworking the evaluation.] Eariier work was included only through its effect Gi: the normalization of the de Saussure (ORNL-RPI) results. The results of Lemley ${ }^{10}$ are excluded here because vithin the range of interest he gives an energy dependence which is inconsistent with the other data sets to the extent of about 5%. The results of Blons ${ }^{11}$ and of Perez et 91 . ${ }^{12}$ were originally given based on normalization to the results of de Saussure et al. is in the range 100 to 200 eV , but for the present effort these experimental results have been renormalized over the range 60 to 300 eV to the average vaiue cbtained from the three experiments first listed. Beyond che selection of data and the indicated renomalizations, the present evaluation is based on a simple average of data from the listed cxperiments. Within about 0.5% the fission values given in this evaluation are based on the shape vs. energy of the ${ }^{1 /} B(n, \alpha)$ cross section as given by Sowerby et al. ${ }^{14}$

For capture cross sections the procedure was similer to that used for fission, but differed in that relatively few measurements were considerad and only the results of Perez et al. ${ }^{12}$ vere renormalized as shour at the botto of Tabie 1 . There is no apparent incentive to alter the normalization of Gwin's yalues since the $2200 \mathrm{~m} / \mathrm{sec}$ capture cross section was not expected to change appreciably for ENDF/B-IV. If the shapes of evaluated capture and fission cross sections below 0.5 eV had been changed, the results of Gwir's normalization procedure might have been affected since two constants were fitted in this region to obtain capture cross sections. The de Saussure (ORNL-RPI) ${ }^{6}$ normalization was based on an absorption resonance integral below 1 eV obtained fram the difference between total and scattering cross sections; this chosen absorption resonance integral is not directly affected by reevaluations of the 2200 $m / s e c$ cross sections. de Saussure et al subtracted their own fission resonance integral to obtain their capture normalization; and, since de Saussure's original fission integrals in this region atch the integrals recommended in this study, it is reasonable to assume that the value of the (0.45 to 1.0 eV) fissior: resonance integral taken by de Saussure is correct and that his capture normalization is as valid as when it was published. Gin notes ${ }^{15}$ that his own fission resonance integral agrees with the ORNL-RPI work (52.4 b), but his absorption resonance integral is 2.32 higher at 59.3 b . Thus, because σ_{c} is much smaller than J_{f}, if Gwin renormalized to the capture resonance iategro. 1 chosen by de Saussure, his capture results would be lowered 172: Such a renormalization would improve agreement between the two experiments for energies below 100 eV , but catastrophically worsen agreenent in the
region of importance to this evaluation. The two measurements do not have the same shape.

The capture cross sections ziven in this report are mainly based on the shape of the ${ }^{10} \mathrm{~B}(\mathrm{n}, \alpha)$ cross gection given by Sowerby et al ${ }^{1 \text { © }}$ Had this shape been used consistently, the output capture cross sections would have been lowerre for this purpose by ~ 2.37 at $\approx 0.1 \mathrm{keV}$, ranging up to about 17 at 3 keV . Above 3 keV the change would have been a constant G.3*.

Results

Table ? shows experimental fission integrals over convenient intervals in the region below 100 eV , giving both raw and renormalized experimental results, the average values recomended as the evaluated outfut, and the ratio of the output average to ENDF/B-III incegrals. Note that from 5.0 eV to 20.5 eV the renormalized Deruytter fission integral agrees with the output average to 20.1%, so no renormalization is required to take his experiment into account. Table 3 gives similar informatira for average f ission cross sections in the energy range of the evaluation. Note in both tables that the present evaluation deffaitroly gives lower fission cross sections than ENDF/B-III. The evaluation is consistent with the cross sections chosen for energies in the range $25-100 \mathrm{keV}$, where evaluation task-group guidelines ${ }^{16}$ called for cross sections 27 above those given by Gwin.

There is in Table 3 an effort to split the decimal intervals from 0.1 to 0.2 and from 0.2 to 0.3 , etc., even though the formal data sources do not give these breakdowns. The divisions were made on the basis of
earlier private communications and study of the structure histograms described below, together with the requirement that the avezage of the values for the subintervals be the evaluated result for the full decimal 'nterval. Because of the methods used, there is perhaps twice the uncertainty in the split between the two subintervals as in their average.

For the ${ }^{23} U(\pi, Y)$ reaction, Table 4 shows the values of capture integrals in the resonance region, and Table 5 the values of input average cross sections as renormalized and the final evaluated average cross sections. Just as for fission, the resul $=$ of Parez et ai. ${ }^{12}$ ware renormalized because their original normalizatio: was based on a capture integral in the 100 - to $200-\mathrm{eV}$ range which was taken from tine literature (ORNL-RFI ${ }^{6}$).

The differ aces between the ORNI.-RPI and Gwin capture values appear to be systematic, so one cannot be very sure about the uncertainty in averaged results such as those presented here. If the capture cross sections are crucial to any system, a more thorough evaluation of existing data through the resonance region and above is called for. Some guidarce in the resonance region could also be obtained from study of total cross sections and from the average ratio of caplure and fission cross sections observed in integral experiments. The results of such a study in the resonance regior would be likely to also affect at least the normalization of data in the unresolved resonance region.

Table 6 summarizes the broad-group average cross sections obtained in this evaluation, along with the "average alpha" values obtained from them. Figures 1 through 4 show the evaluated average fission and sapture

Table 2. ${ }^{23}{ }^{3} U$ fiasion Integrale. All values in units berneev. The first columin fach case gives the experimenter's results and the aecond the resulta following normalization per Table 1 .

$\begin{gathered} \text { Energy Range } \\ \text { (ov) } \end{gathered}$	Out put Average	Deruytter ${ }^{\text {a }}$		ORNL-RPI ${ }^{\text {b }}$		Gusn ${ }^{\text {c }}$		Averagal (ENDP-III)d
		raw	norm	rav	nora	raw	isora	
0.5-0.7	13.46	13.26	13.35	13.45	13.62	13.32	23.41	. 983
$0.7-1.0$	17.05	16.66	16.78	17.09	17.31	16.94	17.06	. 980
1.0-1.8	29.4	29.11	29.31	29.09	29.47	29.3	29.5	. 991
1.8-5.0	50.8	49.96	50.3	50.7	51.4			(1.976)
5.0-7.4	62.7	62.11	62.5	(62.2)	63.0			(1.976)
$7.4-10$	222	220	221.5	(222)	225	2:?	218.5	. 961
10-15	216	214.4	215.9	215.6	218	213	214.5	. 952
$15-20.5$	318	316	318	320	324	311	313	. 973
20.5 - 33	445			443	449	439	442	. 957
$33-41$	495			498	504	483	486	. 964
$41-60$	923			924	936	905	911	(.974)
$60-200$	963			967	980	939	946	1.009
100-300	4134°			4166	4220	4021	4049	. 991

A. Deruytter, Proc. Conf. Nucl, Data for Reactors, vol 1, p. 127 (2970).
b_{G}. de Sausaure et al., ORNL-TM-1804 (196%). (The author gives only the aun of the values in parentheses.) These results assumed ($(1 / v)$ shape for the $19 B(n, a)$ reference crosi cection.
 NSE, 59, 79 (1976). As given in this letter, fisaion integrale are normaliged to a 2200 a/aec fisaion crosn eection of 580.2 b . The liated veluee are as given in owin ot al., MBI, 52, 79 (1976). except for a ahift of 4 barn-eV from the 41 - 60 eV interval to tha $60-100$ eV interval. These resulte asoumed the ENDF/B-III shape for the $10 B(n, a)$ rnference crose eection (M. G. Sowerby at al., Ref. 14). Thit shape hat dropped ~ 0.78 below ($1 / \mathrm{v}$) by 200 oV .
${ }^{\text {Cimased}}$ on SUPERTOG results obtained through R. Q. Wright, CSD, UCCND. In the ragion from 1 to 8 ? eV the ENDF/B-IV values, shown in parentheses, ahould be the ame as would have been obtained usine version III.

Energy Range (kev)	Out putdverase	ORNL_-RPI ${ }^{\text {b }}$		Ovin ${ }^{\text {c }}$		Perea ${ }^{\text {d }}$		Blons ${ }^{\text {a }}$			$\begin{gathered} \text { Avorseot/ } \\ \text { Owidn } \end{gathered}$
		rav	nora	rav	nore	ra:	nor	rav	no		
. 080 - . 100	25.05	25.4	25.1	24.2	24.4	(25.6)	(25.2)	(25.6)	[25.0]		1.035
0.1 - 0.2	21.00	21.0	21.3	20.5	20.7	${ }^{\text {(21.0) }}$	(20.7)	[21.0)	[20.6]	. 992	2.024
0.10 - 0.15	22.5			22.9	22.2	[22.6]	(22.3)				2.027
0.25 - 0.20	19.5			19.0	19.2	[19.4]	(19.1]				1.026
0.2 - 0.3	20.5	20.9	21.1	19.74	19.89	[20.9]	[20.6]	[20.A]	[20.4]	2.022	1.039
0.20-0.25	22.5			20.7	20.9	[21.9]	[21.6]				1.039
$0.25-0.30$	19.5			18.8	18.9	[19.9]	[19.6)				1.037
0.3 - 0.4	13.12	13.16	13.33	22.75	12.84	23.34	13.13	13.42	13.19	976	1.029
$0.4-0.5$	13.59	23.76	13.94	13.12	13.22	13.95	13.73	13.71	23.47	. 988	1.036
$0.5-0.6$	25.22	25.34	15.54	24.66	14.77	25.57	15.33	15.50	15.23	1.028	1.038
$0.6-0.7$	11.50	12.59	11.74	11.11	12.19	12.72	12.53	21.72	12.52	.978	1.035
0.7 - 0.8	11.11	21.26	12.41	12.71	10.79	11.28	12.11	12.30	11.11	.994	1.037
0.8 - 0.9	8.25	8.88	8.39	7.94	8.00	8.31	8.18	8.57	8.42	.954	1.039
0.9 - 2.0	7.55	7.65	7.75	7.28	7.33	7.66	7.54	7.12	7.58	. 867	2.037
1.0-2.0	7.32	[7.51)	[7.61]	7.08	7.13	7.52	7.140	7.55	7.42	. 969	2.034
$2.0-1.5$	8.07			т.84	7.90	${ }^{8.29}$	8.16				1.029
1.5 - 2.0	6.57			6.32	6.37	6.76	6.66				1.040
2.0 - 3.0	5.35	[5.60]	(5.67)	5.1	5.18	5.47	5.39	5.48	5.39	. 945	1.035
2.0 - 2.5	5.49					5.65	5.56				
2.5 - 3.0	5.15					5.30	5.22				
$3.0-4.0$	4.75	(5.09)	[5.16]	4.58	4.61	4.86	4.78	4.94	4.86	. 953	1.037
4.0 - 5.0	4.27	(4.56)	[4.62)	4.08	4.12	4.36	4.29	4.48	4.40	. 935	1.047
$5.0-6.0$	3.80	(3.82]	[3.87]	3.72	3.75	3.77	3.71	4.01	3.94	.945	2.022
$6.0-7.0$	3.42	(3.66]	(3.72]	3.14	3.16	3.66	3.60	3.54	3.48	. 949	1.086
7.0-8.0	3.15	[3.74]	[3.79]	3.05	3.07	3.22	3.27	3.28	3.22	. 939	${ }^{1.033}$
$8.6-9.0$	3.01	[2.96)	(3.00)	2.88	2.90	3.17	3.12	3.07	3.02	. 973	1.045
9.0-10.0	3.05	[3.10)	[3.24]	3.01	3.03	3.11	3.06	3.11	3.06	. 943	2.013

Tabie 3. Continued

Energy Range (keV)	Out put" Average	ORNL-RPI		Guin ${ }^{\text {c }}$		Porea ${ }^{\text {d }}$		Blona ${ }^{\text {a }}$		Avereges/ (M DF/B-JTT)	Average/ Owin
		rav	nora	ray	norm	rav	norm	rav	norm		
10.0-20.c	2.48			2.46	2.48	2.50	2.46	3.54	2.50	. 894	1.008
10-15	2.65			2.63	2.65	2.67	2.63				1.008
15-20	2.31			2.29	2.31	2.33	2.29				1.009
20-30	2.14			2.11	2.13	2.16	2.13	2.20	2.16	. 914	1.014
20-25	2.19			2.18	2.20	2.20	2.17				$1 . \infty$
25-30	2.096			2.04	2.06	2.12	2.09				2.025

Propoeed evaluated average crose oections.
$\mathrm{b}_{\text {The }}$ rav values are those of Ref. 6, but have been further corrected by de Saugsure to the 7.8 - 11.0 ov gianion integral
 lization was not recounized during the performance of this evaluation vork; correction or this orror and that indicated in tootnote e of Table 2 vould lower the output average valuea by 20.7% between 80 and 300 ev, by 20.5% from 0.3 to 1.0 keV . and by 20.2% for energies from 1.0 to 25.0 keV .

CThe "rav" values are from Ref. 8 and are based on the ${ }^{19} \mathrm{~B}(\mathrm{n}, \mathrm{a})$ crosa-aection shapg of Ref. 14 .
The "rav" values are from Ref. 12 and are based on the ${ }^{10} \mathrm{~B}(n, \alpha)$ cross-section ahape of Ker. 16 .
EBased on the average values from Rer. 11 , but in the 0.3 to $10-k 0 V$ and 50 to $10-k 0 V$ onergy ranuel, the values were taken from a full resolution data tape by R. Porez and adjusted a fow terithe of a percont to improve afrecment in the intugral with the published values over these broad regiona.
fendF/b-III valuea per private comanication of O. Ozer to K. Alter, 1-9-73, giving REBEND/INTEND valuen for mat 1157 from NNCSC for use of the CSEVC "Bie 3 " task group. Below 25 keV the ozer fiasion crome acotiona are uniformay 1.28 lever than given by SUPERYOC through R. Q. Wrieht, CSD, UCCND.

The value averosed from file 3 of MAT 1201 , ENDF/B-IV, for this interval la 2.12 b . for thia enercy region the mat 326 l values vere not based on this vork.

Table 4. ${ }^{235} \mathrm{U}$ Capture Integrals. All integral values in barn-eV.
No renormalization of these results vas performed.

Energy Range (eV)	ORRL-RPI ${ }^{\text {b }}$	Grin ${ }^{\text {c }}$	Average	$\begin{gathered} \text { Average/ } \\ \text { (ENDF/B-III }^{\text {a }} \text {) } \end{gathered}$
7.4-10	81	95	88	1.09
$10-15$	229	276	253	1.03
$15-20.5$	190	225	208	1.08
20.5-33	294	344	319	1.07
33-41	271	317	294	1.07
$41-60$	434	502	468	$1.04{ }^{\text {d }}$
$60-100$	477	557	517	1.22
$60-300$	2525	2677	2601	1.05

a ENDF/B-III values obtained from MAT 1157 using SUPERTOG by R. Q. Wright, CSD, UCCND, below 60 eV.
 Based on sumations from the data tape representing the ORNL-RPI measurements of G. de Saussure et al., as given in ORNL-TM-1804 (1967).
$C_{\text {R. Gwin, ORNL private commalication (1973). Final aerged values }}$ from the same experiment (R. Gin et al., Ref. 8) are 525 b-eV for the $60-100 \mathrm{eV}$ interval anc $2641 \mathrm{~b}-\mathrm{eV}$ for the $60-300 \mathrm{eV}$ interval. Therefore, if this same method of evaluation were used again, the renormalization constant for the Perez data would be lowered by 0.7% to correct for this change.
$d_{\text {Based on }}$ the ENDF/B version 4 MAT 1261, which should not differ wuch from MAT 1157 in this energy region.

 renortalised is accond fith Toble 1. All erose sectices are in barns.

$\begin{aligned} & \text { Baerg: Zage } \\ & \text { (cev) } \end{aligned}$	Outpout Average	Cullimi	Oris	Pree		(2vermed
				rer	mone	
0.08-0.10	15.7	15.0	16.4	[15.5]	[25.8]	
0.10-0.20	11.9	11.45	12.3	[11.45]	[12.67]	1.01
0.10-0.15	12.8		13.2			
0.15-0.20	11.0		11.4			
0.20-0.30	8.95	9.03	8.88	[9.02]	[9.19]	2.03
0.20-0.25	10.7		10.7			
0.25-0.30	7.1		7.1			
0.30-0.40	6.56	6.56	6.63	6.36	6.48	1.17
0.40-0.50	4.83	5.03	4.59	4.71	4.86	. 93
0.50-0.60	4.62	5.04	4.25	14.6.9	4.58	. 7
0.60-0.70	4.67	4.81	4.67	4.44	4.53	. 97
0.70-0.80	4.91	5.07	4.82	4.75	4.84	-95
0.80-0.96	4.15	4.33	4.05	3.90	4.06	.94
0.90-1.0	5.05	5.36	4.95	4.75	4.84	1.26
1.0-2.0	2.98	3.26	2.97	2.67	2.72	. 90
1.0-1.5	3.40		3.34	3.08	3.14	
1.5-2.0	2.56		2.60	2.26	2.30	
2.0-3.0	1.97	1.83	2.11	1.94	1.90	. 96
2.0-2.5	2.20		2.36			
2.5-3.0	1.74		1.86			
$3.0-1.0$	1.62		1.74	1.46	1.49	. 91
4.0-5.0	1.53		1.55	1.47	1. 0	. 96
5.0-6.0	1.42		1.42			. 99
5.0-70	1.65		1.48	1.30	1.32	1.09
7.0-8.0	1.33		1.31	1.33	1.36	1.12
8.0-9.0	1.45		1.68	1.38	1.41	1.32
$9.0-10.0$	1.25		1.26	1.22	1.26	1.06
10.0-20.0	0.99		0.906			0.97
10-15	1.08		1.00			
15-20	0.90		0.90			
20.0-30.0	0.82		0.82			0.96
20-25	0.07		0.87			
25-30	0.77		0.77			

[^0]Table 6. A Sunary of the Preseai ${ }^{23}$ (U Evaluated
Average Cross fections for EHID/B-IV (MN 1261)

$\begin{array}{ll} \mathrm{E}_{\text {low }} & \mathrm{E}_{\mathrm{high}} \\ \text { keV } & \text { keVI } \end{array}$	$\begin{gathered} \text { Pissica } \\ \text { Berms } \end{gathered}$	Capture Barns	Alphat
0.08-0.10 ${ }^{\text {c }}$	25.05	15.70	0.627
$0.10-0.15$	22.50	12.80	0.509
0.15-0.20	19.50	11.00	0.564
0.20-0.25	21.50	10.70	0.498
0.25-0.30	19.50	7.10	0.364
0.30-0.40	13.12	6.56	0.500
0.40-0.50	13.59	4.83	0.355
0.50-0.60	15.22	4.62	0.304
0.60-0.70	11.50	4.67	0.406
0.70-0.80	11.11	4.91	0.142
0.80-0.90	8.25	4.15	0.503
$0.90-1.00$	7.55	5.05	0.669
1.00-1.50	8.07	3.40	0.421
1.50-2.00	6.57	2.56	0.390
2.00-2.50	5.49	2.20	0.401
2.50-3.00	5.15	1.74	0.338
$3.00-4.00$	4.75	1.62	0.341
$4.00-5.00$	4.27	1.53	0.358
$5.00-6.00$	3.80	1.42	0.374
$3.00-7.00$	3.41	1.40	0.411
$7.00-8.00$	3.15	1.33	0.422
$8.00-9.00$	3.01	1.45	0.482
9.00-10.00	3.05	1.25	0.410
10.00-15.00	2.65	1.08	0.408
15.00-20.00	2.31	0.90	0.390
20.以 - 25.c0	2.19	0.87	0.397
25.00-30.00	2.09	0.77	0.368

The fission cross-section normalization is based on the value 584.5 b at 2200 m 'sec.
$\mathrm{b}_{\text {The }}$ value given is the quotient of the tabulated capture ma fission average cross sections.
${ }^{c}$ For the range $82-100 \mathrm{eV}, \delta_{c}=16.0 \mathrm{~b}$ and $\mathrm{\sigma}_{\mathrm{f}}=24.6 \mathrm{~b}$.

Fig. 1. A Comparison of Evaluated Average ${ }^{23}{ }^{3} \mathrm{U}$ Pission and Capture Cross Sections with the Structure Representation for Meutron Energies Between 10 and 100 eV . The broad-dashed histogram is the evaluated average capture cross section, the solid one is the evalusted fission, and the short-dashed one illustrates an average fission cross section 1.028 times that given by Guin (Ref. 8). The points representing the structure information for fission and capture cross sections are shown as sanll P and C characters joined f y oblique lines to guide the eye.

Pis. 2. A Comparison of Evaluated Average ${ }^{23}{ }^{1} \mathrm{~V}$ Fiseion and Capture Crose sectioas with the seructure lepresentation for Heutron Energiea Eetween 0.1 and 1.0 keV . The upper and lover colid-line histogramis are the evaluated fission and capture average crose sectione, reapectively, wille the dashed histogrim represents an average fiasion cross section 1.028 times that given by Gula (hat. 8). The poince representing the structure information are ahown as amell F and C characters joined by lines to guide the eye.

Fig. 3. A Comparison of Evaluated Average ${ }^{235} \mathbf{U}$ Fission and Capture Crose Sections with the Structure Representation for Neutron Energies Between 1.0 and 10. keV. (See Fig. 2 for an identification of the data shown.)

Fig. 4. A Cumparison of Evaluated Average ${ }^{233} \mathbf{U}$ Pission and Capture Cross Sections with the Structure Representation for Neutron Energies Between 10. and 100. keV. (See Fig. 2 for an identification of the data show.)
cross sections as histograns. Fission histograns obtained directly from the results of Guin (\mathbf{x} 1.028) are given for comparison.

Uncertainties

On the graphs of output average cross sections the uncertainties are represented as ± 32 for fission and ± 82 for capture. Based on scatter anong the observations and some knowledge of the techniques used, more detailed cross section uncertainty estiantes are made below. The uncertainty in the energy scale is inconsequential compared to the other difficulties in appropriately representing the structure.

Both of these cross sections are affected in the sane uay by any uncertainty in the ${ }^{10} B(n, \alpha)$ cross section, a shape uncertainty, relative to the cross section as 1 eV , judged to be about 12 at 4 keV growing to 27 at 20 keV . A little allonance is made here for failure of the detecter system accurately to reflect the reactions which occur.

The normalization of the evaluated fission cross section, counting the uncortainty in the low energy sross section, the various experimental normalizations to it, and the two or thri? internormalization steps of ten required to reach 100 eV , are estinated to have a combined uncertainty of $\pm 2 \%$. The corresponding normalization uncertainty on the evaluated average capture cross sections is estimated to be $\pm 7 \%$ though, were it not for the wide discrepancy between the capture integrals of Table 4 in the region below 100 eV , a normalization uncertainty of about 42 would have been chosen. In each case these normalization uncertainties are correlated over the while energy range.

The remaining uncertainties, generated by background suitractions and other experimental difficulties, may be partially sensed by the scatter of the average cross sections reportec by the various vorkers, and are assumed not to be videly correlated ovir energy. These uncertainties are estimated to be about 2% for the evaluated average fission cross sections and about 42 for the evaluated average capture cross sections.

The rms combinations of the above uncertainty components come to about ± 37 for fission and ± 87 for capture as shown on the plets.

Because the concept of the structure cross sections discussed in the follouing sections is somewhat muddy, no effort is made to describe the uncertainty in other than the average cross sections.

III. STRUCTURE REPRESENTATION

Structure more marked than vould be expected from known distributions of spacings and widths can be represented in an ENDF/B file by energydependent average neutron and fission widths. To make use of this option it is necessary first to determine what experimentally observed structure (averaged over ΔE much larger than the level spacing) is real, and then to estimate what part of this real structure is effectively represented by accepted spacing and width distributions. In ${ }^{235} U$ it has been shown that at least the fission cross section cannot so be represented.

To determine the real structure in the fission cross sections, the data sets of Gwin, Perez, de Saussure, Blons, and Lemley ${ }^{6,6,10-12}$ were examined a: full resolution to assure that they were on a common energy scale. Small changes in the flight-time zero were made to bring the
others into accord with the Gin and Lenley data sets, which agreed and vere arbitrariiy taken as correct. Plots were than made from each data set integrated over $10-$, $i 00$-, and $500-\mathrm{eV}$ intervals uithin successively higher energy regions. ${ }^{17}$ The results from the various experiments vere visually compared and the major aspects of the coamon structure vere represented uith a trapezoidal approximation; below 2 keV in fission there irss no disagreement even in details of the structure, and at higher energies the major features selected were fairly unamiguous. The selected energy values vere then merged with those found necessary in the sinilar study of capture cross sections using the three available data sets, and the cross sections at the resulting iol energy points vere adjusted to require that averages over the structure give the evaluated average cross sections of Table 6. Note that no objective criterion was utilized to indicate which fluctuations in the observed cross sections should be represented in the files. Later, points were added to assure that reconstructed average cross sections are almost independent of whether cross sections or average resonance parameters are linearly interpolated between energy points in processing codes. Table 7 gives both the fission and capture cross sections at (i.e., in the immediate neighbortood of) the 120 energy points selected to represent the structure, as well as the derived ratios of capture to fission cross section values.

To state the relationship between the evaluated average cross sections and the ENDF/B parameters more prcisely, the cross sections in Table 7 reproduce the average cross sections of Table 6 using a "linear1inear" interpolation and unit weight. The parameters in the ENDF/B-IV

Table 7. Point Cross Sections for ${ }^{235} U$ Fission and Capture ${ }^{\text {a }}$

$\begin{aligned} & E \\ & V E V \end{aligned}$	$\begin{gathered} \text { FISSi0:4 } \\ \text { BAZNS } \end{gathered}$	CAPTIIRE SARIS	Alpion	E KEV	$\begin{array}{r} \text { FISSION } \\ \text { GARNS } \end{array}$	CAPTIRF BARNS	ALPHA
0.8920	2. 24	13.39	2.474	4.40	4.51	1.47	0.326
0.0965	26.43	14.72	0.556	$4.8: 8$	3.75	$1.5 y$	6.426
copie	2.4.6.3	16.f:	2. $6 \leq 3$	4.90	3.74	1.34	0.362
2.ens5	22.6	17.32	0.755	5.68	3.73	1.10	2.254
2. 198	21.32	i5.63	0.206	5.16	3.58	1.32	B. 369
<.116	22.46	15.43	6.669	5.22	3.45	1.55	2. 452
0.122	23.38	11.44	3.478	5.25	3.52	1.33	6.377
c.lf0	18.39	16.94	8.595	5.36	3.64	1.11	0.30 ¢
2.248	22.5:	18.77	0.475	5.62	4.36	1.07	0.246
0.263	21.96	8.54	6.389	5.65	3.Es	1.27	2. 327
3.298	2!.24	6,31	0.297	5.70	3.39	1.46	2. 431
2.238	15.18	5.45	0.359	5.90	4.27	2.11	2. 454
0.308	12.73	5.89	2.46.3	6.60	3.41	2.13	D. 625
0.315	12.93	7.29	9.564	6.10	3.54	1.58	0.446
6.332	13.12	8.69	0.662	6.45	3.38	1.35	0. 412
C. 345	13.19	7.24	0.547	6.82	3.22	1.21	0.375
0.368	13.23	5.79	0.4.38.	7.68	3.76	1.19	6.316
0.450	13.19	4.51	0.342	7.20	3.22	1.34	0.416
. 0.528	15.39	5.32	0.546	9.13	2.87	1.36	0.473
0.565	15.24	4.37	3.287	9.36	2,81	1.71	0.611
0.610	15.11	3.42	0.226	8.58	3.11	1.59	0.512
2.62c	12.37	4.75	0.384	8.70	3.42	1.47	0.431
0.6 .38	9.64	6.89	0.632	9.20	2.64	0.99	0.375
0.643	9.36	8.81	0.304	9.22	3.26	1.30	0.399
0.658	10.23	5.33	0.588	16.48	2.71	1.23	0.454
0.660	10.58	3.85	0.366	11.48	2.87	1.16	2.403
0.710	12.27	3.45	0.281	11.70	2.28	1.10	0.482
0.725	11.84	5.28	0.446	11.98	3.27	1.87	0.327
0.740	11.48	7.11	0.624	12.00	2.58	1.87	0.415
0.755	11.81	5.69	0.517	12.20	2.71	1.21	0.447
0.770	12.61	4.27	0.402	12.30	2.35	1.21	0.515
0.883	7.18	4.63	6.561	12.78	2.33	1.05	2.450
0.910	P. 21	4.22	8.587	13.30	2.97	C. 99	4.332
0.923	6.92	5.32	0.769	13.68	2.61	0.99	0.379
1.085	8.67	4.55	0.582	14.43	2.42	0.98	E.424
1.182	13.42	3.37	0.324	15.00	2.80	0.87	0.310
1.22.	6.84	3.67	0.449	15.10	2.14	C.E7	h. 485
1.300	7.46	2.56	0.344	16.40	2.49	0.99	0.400
1.488	2.4F	2.58	0.325	17.58	2.81	1.21	3.584
1. 4.40	9. 88	4.56	6.513	17.60	2.31	0.95	0.411
1.450	8.99	2.63	0.293	18.46	2.40	9.86	0.368
1.460	3.03	2.65	$0.29 ?$	17.26	2.48	2.78	8.312
1.480	3.98	2.76	0.692	19.36	2.12	0.78	E.366
1.580	4.47	2.79	0.623	19.90	2.21	0.78	0.351
1.545	6.63	2.65	0.446	20.20	2.63	R. 79	0.301
1.590	7.59	2.52	0.331	26.20	2.28	0.89	0.39 .3
1.70	6.98	2.29	0.333	28.46	1.92	1.00	0.519
1.90	5.77	2.63	8.466	21.20	2.24	1.01	0.453
1.91	7.29	2.70	0.378	21.20	:.87	0.59	0.475
2.80	6.39	2.89	0.452	21.78	2.25	0.83	0.371
2.19	5.26	2.32	0.455	22.20	2.63	0.78	0.297
2.38	5.4 .3	2.16	と. 386	22.36	3.29	0.79	0.248
2.50	5.51	1.85	2.323	22.48	2.42	0.98	0.332
2.70	4.98	1.65	0.332	22.90	2.14	2.85	0.397
3.20	5.22	1.8 .9	0.378	23.20	1.87	0.90	C. 492
3.30	4.92	1.64	0.334	23.46	2.64	e.9.9	0.434
3.40	4.123	1.48	0.283	24.20	2.14	0.31	0.422
3.75	4.57	1.56	0.341	24.46	2.43	0.21	0.330
4.10	4.31	1.73	6.8 .04	24.60	2.14	0.73	0.342
4.38	5.20	1.55	0.298	25.10'9	2.16	0.79	0.364

When these fission and capture cross sections are integrated using linearlinear interpolation between the given energies, the average cross sections of Table 6 are reproduced.
file were obtained for the energy poiats of Table 7 by Mulki Bhat ${ }^{5}$ f the National Neutron Cross Section Center with the use of the code UR. This program adjusts values of $\bar{\Gamma}_{n}^{0}$ and $\bar{\Gamma}_{f}$ for ${ }^{235} \mathbf{U}$ for levels of spin 3 and spin 4. All other parameters were fixed without review to the values chosen earlier by Pitterlie et al. ${ }^{3}$ and listed below, where v_{f} and v_{n} are the chi-square distribution parameters for fission and neutron widths.

L	J	D		
(eV)			$\quad v_{f} \quad v_{\mathrm{n}} \quad$	$\bar{\Gamma}_{\mathrm{f}}$
:---:				
(eV)				

The p-wave strength funciion was taken as $2.0 \times 10^{-4} \mathrm{eV}^{-1 / 2}$, while the s-wave strength function as well as the $\bar{\Gamma}_{f}$ values are taken to vary from point to point. For all cases $\overline{\mathrm{F}}_{\boldsymbol{Y}}=35 \mathrm{meV}$. Unlike the previous efforts, $\bar{\Gamma}_{\mathrm{n}}^{\circ}$ was allowed to differ at some energy points between the $J=3$ and 4 level ensembles. The previous constraint that $\bar{\Gamma}_{f}(J=3)$ be twice $\vec{\Gamma}_{f}(J=4)$ was also dropped at about half the energy points represented.

Figures 1 through 4 illustrate the proposed evaluated average cross sections compared to the structure representation of 100 energy points covering the rarge 60 eV to 30 keV . The lines which join the points representing the structure are to guide the eye; they do not follow the linear interpolation law.

Figure 5 shows for the region below 1.5 keV a consensus of experimental f ission results averaged over $10-e V$ intervals, the proposed strirture cross section from Table 7, (solid-line sawtooth), and the comparable sawtooth from ENDF/B-III, MAT 1157 (via Mulki Bhat, NNCSC). The propised new version shows greater variation, and this trend continues to higher energies. At the right side of the figure this difference is notale in the representation of the major dip. Note that while 120 energy points are entered in the $f i l e$, the structure represented sere has about 30 maxima in the 25 keV interval. At the lower energies the spacing; between these major fluctuations are $\because 0.2 \mathrm{keV}(\sim 200$ s-wave resonances) whil2 at higher energies the typical spacings are in the neighborhood of 1 keV .

If a processing code interpolates average resonance parameters rather than cross sections between the given points, slightly discrepant group cross sections will be obtained. Such interpolation of parameters is firmly required in processing cross sections for point Monte Carle codes. ${ }^{19}$ A test was made for the infinitely dilute case by interpolating parameters to obtain cross sections at energies midway between those of Table 7. The average cross sections over the decimal intervals of Tables 3 and 5 using the resuiting 240 points (half of them obtained by the "incorrect" interpolation procedure) were then compared with the evaluated ("correctly" interpolated) results. For the average cross sections over "decimal intervals" the differences amounted to no more than $+\mathbf{2 / 3 \%}$ in fission and -1.3% in capture, with maximum discrepancies in the range $600-700 \mathrm{eV}$. Averaged over the regions from 0.1 to $1.0 \mathrm{keV}, 1$ to 10 keV , and 10 to 25 keV , the apparent cross section deviations of the altered (240-points) averages from the input evaluated value: for fission

Fig. 5. Comparison of "Structure" Cross Sections with Consensus of Observations for ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ for Energies to 1.5 keV .
were $0.26 \%, 0.20 \%$, and 0.13%; those ior capture vere $-0.69 \%,-0.35 \%$, and -0.17\%. These differences are acceptable in terms of present cross-section uncertaintie:, although the apparent discrepancies would increase some if parameter interpolations were performed at even more energy points between those at which the parameters are given in the file.

When average resonance parameters were chosen to fit the pointwise fission and capture cross sections (by M. Bhat of NNCSC using the prograr UR), ENDF/B-IV total cross sections at each energy point were established once an effective scattering radius was chosen. The averages of these cross sections over broad intervals are compared in Table 8 with the experimental average total cross sections of uttley ${ }^{1 \%}$ which above 1 keV are quoted to uncertainties smaller than the systematic differences between each pair of comparable values. The observations of average total cross seciions were not employed in the present evaluation except to help stimulate the decision that the potential scattering cross secion in the unresoived region be given the same value as in the resolved region (11.5 b) rather than the ENL/B-III value of 10.3 b . (Uttley ${ }^{18}$ suggested a value 11.7 b based on his experimental data.; This practice of giving little weight to observations of total cross sections seems inherently unsatisfactory, but proper consic eration would require development of a fitting system to give appropriate weight to each type of data. For the case of ${ }^{235} \mathrm{U}$, more precise (thin sample) observations of the total cross section may also be required.

Table 8. Comparison of ampr/b-IV ${ }^{23}$ SU Total Croes Sections With Experimental Results of Uteley.

Energy Range (keV)	Total Cross Uttley	Section ENDF/B-IV
$0.1-0.2$	460 ± 1.0	45.5
$0.2-0.3$	44.7 ± 1.0	42.3
$0.3-0.4$	$31.11 \pm .18$	32.0
$0.4-0.5$	$29.73 \pm .19$	30.6
$0.5-0.6$	$31.24 \pm .21$	32.2
$0.6-0.7$	$27.15 \pm .21$	28.6
$0.7-0.8$	$28.57 \pm .22$	28.6
$0.8-0.9$	$23.69 \pm .24$	24.7
$0.9-1.0$	$24.64 \pm .25$	25.2
$1.0-1.5$	$24.0 \pm .3^{\mathrm{b}}$	23.8
$1.5-2.0$	$21.6 \pm .3^{\mathrm{b}}$	21.2
$2.0-3.0$	$19.81 \pm .10$	19.23
$3.0-4.0$	$18.83 \pm .14$	18.2
$4.0-5.0$	$18.09 \pm .16$	17.7
$6.0-7.0$	$16.96 \pm .18$	16.6
$7.0-8.0$	$16.69 \pm .19$	16.2
$8.0-9.0$	$17.08 \pm .20$	16.3
$9.0-10.0$	$16.47 \pm .20$	16.0
$10.0-20.0$	$15.44 \pm .10$	14.9

${ }^{2}$ C. A. Uttley, afre m1272 (1963).
${ }^{b}$ In these regions Uttley's table was collapsed assuming that the uncertainties, given for 0.1 keV intervals, were fully correlated.

IV. SUGCESTIONS FOR FUTC E EVALUATIONS

Evaluations of structure would te more straightforvard using his:ogren interpolation of cross sections since results could be derived more defensibly by averaging experimental cross sections over selected energy intervals. So long as there remains abiguity as to whether cross sections or averase parameters will be interpolated between the energy points ziven in the file, the number of such energy points must be large to assure that the intended cross sections will be reproduced by processing codes. Note that when average parameters are indicated to be independent of energy, it is imperative to "interpolate" (the fix. 1) parameters at intenvediate energies; if paraneters are tabulated as a function of energy, boith evaluation and processing (for multigroup codes) are simplified if cross sections are interpolated. ${ }^{20}$ If all processing codes were able to recognize this distinction or a similar rule that. parameters be interpolated whenever the ENDF/B tape lists exactly the same parameter values for successive energy points, the ambiguities could be eased. It now appears that the recomendations of Ref. 20 are generally being followed for multigroup processing.

When the ENDF/B-IV MAT 1261 file based on the present evaluation was used to give average unit-weight cross sections, it was found that the evaluated values of Table 6 were not generally reproduced within the tolerances attributable to the interpolation problem. ${ }^{21}$ A significant portion of the discrepancies first observed seemed to depend upon the way in which a particular processing code handled the so-called fluctuation integrals which involve quantities like $\left\langle\Gamma_{n} \Gamma_{x} /\right\rangle_{a v}$ for each class
of levels. If it is deternined that the more important proceasins codes use a particular method and mesh spacing for evaluating these intesrale, the same method should be used in deteraining the values of the averase resonance parameters to be placed in the EDDF/B file. ${ }^{20}$ Recently Buang and Henryson have reviewed the quadrature problems and developed low-order quadrature applications which achieve good pracessing accuracy. ${ }^{22}$

It is apparent in Tables 2 and 4 that fission and capture integrals In the resonance region using ENDF/B-III pardecters are inconsistent with the results of this evaluation and probably inconsistent with presently accepted $2200 \mathrm{~m} / \mathrm{sec}$ values. The resolved resonmace parameters for ENDF/B-IV are the same as for version 3, so version 4 integral fission cross sections in the resolved region will be about 2-42 larger than is indicated by the data considered in the present evaluation. Perhaps in the next years it will be possible to review this evaluation in the resolved resonance range taking into account all present data including experimental resonance integrals.

In performing this work the author was impressed with the arbitrariness of the procedure he found hisself using to decide which portion of the observed structure should be reflected in changes in the "unresolved parameters" entered into an evaluated file. The method of inserting the structure into the file was also somewhat arbitrary. Some benchmarks in addition to the average cross section are required, and the intuitive guide (that the most dramatic structure should be reproduced if it covers an energy interval containing many resonances) seems tou qualitative.
Mdicional relevent information is contained in thick-smple transniseion and self-indication reaction dala, but no effort was made to test agalnst such daca ${ }^{23}$ for this evaluation. Future evaluations could be more athoritative if such data were taken into accoing. Alternatively, quaticative criteria could be set up to perait decisions based on comparison of observed crons-section fluctuations to those computed from representative "ladders" of resoanaces obeying the fluctuation laws assuned in the processin codes.
seyond the details of the problens encountered in this evaluation, one should recognize that a good share of the structure in the "unresolved resonance" resion in resolved in a practical sense, though a resonance analysis would aiss many levels which are weakly excited. For example, existing fission measurements at 0 RELA ${ }^{24}$ using the 150 -meter flight path resolve all the atructure that would be sensed by neutrons with energy less than 5 keV in a comercial fast reactor; inproved resolution is available if needed. This observation inplies that evaluated resolved resonance files aight contain fits to observed ${ }^{235}$ U cross sections up to energies much higher than 82 eV , it being unimportant to practical applications that many small resonances are missed. For so much of the energy region as could be covered in this manner, the arbitrariness and propensity touard error connected with the "uresolved resonance region" could be avoided. About 130 resonances are now indicated for ${ }^{235} \mathrm{U}$ in ENDF/B-III or IV. With Ewice this number one could reproduce the data to 0.2 keV , and with a total of about 600 resonances one could reach 1 keV.

At the upper end of the interval the Doppler broadening for ${ }^{23}{ }^{3} \mathrm{U}$ ($\sim 10 \mathrm{eV}$ at 20 keV for ${ }^{235} \mathrm{~L}$ at $830^{\circ} \mathrm{K}$) is many times as large as the resonance spacing, so use of the unresolved resonance technique for this nuclide my not be required for neutron energies above $\sim 10 \mathrm{keV}$; any observed internediate structure could better be represented by a "s=00th" cross section interpolated between energy points spaced as closely as necessary to represent the structure. Such a conclusion is supported by the work of Bramblett and $\mathrm{C}_{2 i r r^{23}}{ }^{3}$ but should be tested against rigorously calculated self-shielding factors before action is taken to modify the energy range now covered.

ACXANOWLEDGBIENTS

The authors of some of the works reviewed, Gerard de Saussure, Reg Gwin, and Raphael Perez, all of OMN, were very helpful in making avallable in custom form their own data and that of other authors. Mulki Bhat of MACSC, Brookhaven National Laboratory, advised the author of the requirements and assumptions of the UR progran, carried out all the fits of paraeters to the cross sections listed here, placed the output numbers into the ENDF/B format, and generally cooperated to expedite the work. Leona Stewart, LASL, performed the "Phase I" reviews and assembled the final file with coments. Many persons, including J. E. White, R. Q. Uright, and C. R. Weisbin, iried to aid my understanding of the problems faced by processing codes in utilizirg cross sections in the unresolved resonance region. G. de Saussure, R. Gwin, and C. R. Weisbin reviewed the report and made many helpful comments. L. Lovette and E. Plemons prepared the typescript.

PEPSPRTCES

1. The Evaluated auclear Data File is mintained by the Mational Meutron Cross Section Center, Brookhaven Matiomal Laboratory.
2. M. K. Drake, editor, Data Formats and Procedures for the RDP Meutron Cross Section Library, Bil 50274 (T-601), EDDF 102, October 1970. Section 7.3 and Appendix D are particularly relevant.
3. T. A. Pitterle, N. C. Paik, and C. Dursten, Evaluation and Integral Testing of Modificitions to EDDF/B Version II Dets, MNRD-4210T4-1 (1972), pp. 7-9.
4. G. D. James, G. de Saugure, and R. B. Perez, Intermediate Structure in the Neutron Induced ${ }^{235} \mathrm{U}$ Cross Sections, Trans. Anerican Huclear Society 17, 495 (1973).
5. M. Bhat, Brookhaven National Laboratory, private commizations. (1973-4).
6. G. de Saussure, R. Grin, L. W. Weston, R. W. Ingle, R. R. Fullwood, and R. H. Hockenbury, Simultaneous Measuremente of the Neutron Fission and Capture Cross Sections for ${ }^{235}$ U for Incident Neutron Energies from 0.4 eV to 3 keV , ORNL-MH-1804 (Rov. 1967). Also, with A. Lotin, Pron. Conf. Nucl. Data for Reactors, Paris, 2, 233 (1967). (The values in the ORNL report contain an additional correction and are to be preferred.)
7. (a) A. J. Deruytter and W. Becker, Proc. Second Conf. Nucl. Data for Reactors, IAEA, Vienna, 1970. Paper LAEA-CR-26/106, p. 127 vol. 1 , "Cross Sections and lechniques for High Precision Neutron Nuclear Data Measurements." See also (b) A. J. Deruytter and C. Hagemans,
J. Stucl. Energy i5, 263 (1971), where the results are given with a different normalization.
8. R. Grin, Oak Ridge Nationsl Laboratory. Private commanication of 12-20-72 to R. A. Dannels, NICSC, Brookhaven National Laboratory. Final results recently published: R. Gein, E. G. Silver, R. W. Ingle, and H. Weaver, Nucl. Sci. Eng. 59, 79 (1976).
9. J. R. Stehn, NNCSC at BNL, CSENG communication enticled Thermal Parameters for ENDF/B-IV (Dec. 13, 1973).
10. J. R. Lemley, 3. A. Keywrth, and B. C. Diven, Mucl. Sci. Eng. 43, 281 (1971). These results of Lemley et al. do confire the ratio chosen here for the fission integral in the $100-300 \mathrm{eV}$ region relative to that for the $20.5-100 \mathrm{eV}$ region, but then drop below the evaluated values by 25% at energies above 1 keV . By 80 keV these values again approach chose of Ref. 8. Inclusion of these data in the present evaluation could have been justified, and vould have lowered the evaluated curve by $1,1 \%$ above 1 keV .
11. J. Blons, Nucl. Sci. Eng. S1, 130 (1973).
12. R. B. Peroz, G. de Saussure, E. G. Silver, R. W. Ingle, and H. deaver, Nuc1. Sci. Eng. 52, 46 (1973).
13. The results of Ref. 6 (ORNL-TM-1804) as revised by de Saussure at least to accept the 7.4-11.0 eV fission integral (240.2 barn-eV) of Ref. $7 b$ and che ${ }^{19} B(n, x)$ cross section shape of Sowerby et al. (Ref. 14).
14. M. G. Sowerby et al., The Ratio of the ${ }^{6} \mathrm{Li}(\mathrm{n} . \alpha)$ co ${ }^{10} \mathrm{~B}(n, \alpha)$ Cross Section from 10 eV to 80 keV and Recommended Values on the ${ }^{10} \mathrm{~B}(\mathrm{n}, \alpha)$ Cross Section, AERE-R 6316 (1970). ENDF/B-III used Sowerh;'s shape for ${ }^{13} B(n, i)$.
15. R. Cwin, Oak Ridge Mational Laboratory, private comanication (August 1973).
16. H. Alter, Atonics International, private comanication, including the informal report of the ENDF evaluation working group (Feb. 27 and April 17, 1973).
17. These custom plots were provided by others. R. Grin, ORNI, private comunication (1973). R. B. Perez, ORNL, private comunication (1973). G. de Saussure, ORNL, private comurication (1973).
18. C. A. Uttley, The Average Neutron Tctal Cross Section of ${ }^{235} \mathrm{U}$ from 0.1 to 70 keV , AERE-M 1272 (1963).
19. C. R. Weisbin, Oak Ridge National Laboratory. private commication (1976).
20. Cecil Lubitz, Knolls Atomic Pover Laboratory, Minutes of the Resonance Region Subcomittee of the (U.S.) Cross Section Evaluation Horking Group, June 1974 meeting, p. 7 of Enclosure 7 of compiled minutes. Available through NNCSC, Brookhaven National Laboratory (1974).
21. C. R. Weisbin and J. E. White, ORNL, private commications (1975, 1976). R. Q. Wright, Union Carbice Corp., Nuclear Div., private comanication (1975).
22. R. N. Heang and H. Henryson, Trans. Am. Nucl. Soc. 22, 712 (1975).
23. R. L. Bramblett and J. B. Czirr, Nuc1. Sci. Eng. 35, 350 (1969).
24. For example, R. B. Perez et al., Nuc1. Sci. Eng. 55, 203 (1974). For these ${ }^{235} \mathrm{U}(\mathrm{n}, \mathrm{f})$ measuretients the resolution increments at 5 keV were each $\Delta E / E \neq 0.4 \times 10^{-3}$, compared to a Ioppler spread of about 1×10^{-3} at $830^{\circ} \mathrm{K}$, a temperature which is will below the fuel temperature in a power reactor.

[^0]:
 3 capture croes secticas are uniformly lereer by 2.68 than those cemereted by R. Q. Wriche, CSD, UCCID, wita surthiog. Thue "averge dipha" value differed alicgether by 3.6i. Ivaluated date of wir 1157 ves veed.

