BNL-NCS-50446 (ENDF-216) NEACRP-L-145 NEANDC(US)-193/L INDC(US)-70/L

ENDF/B-IV DOSIMETRY FILE

Edited by B.A. Magurno

April 1975

INFORMATION ANALYSIS CENTER REPORT

NATIONAL NEUTRON CROSS SECTION CENTER BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973

BNL-NCS-50446 (ENDF-216) (Physics-Nuclear - TID-4500)

ENDF/B-IV DOSIMETRY FILE

Edited by B.A. Magurno

April 1975

NATIONAL NEUTRON CROSS SECTION CENTER

BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC. UNDER CONTRACT NO. E(30-1)-16 WITH THE U.S. ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

> Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161 Price: Printed Copy, Domestic \$8.75; Foreign \$11.25; Microfische \$1.45

August 1975

800 copies

GUIDE TO CONTENTS

Introduction	v
Acknowledgements	VII
Table of Contents	VIII
Evaluations	1
Appendix I (Derived Parameters)	284

INTRODUCTION

The Dosimetry File ⁽¹⁾ issued as part of the ENDF/B-IV Library contains thirty-six reactions in twenty-six isotopes. Each isotope in the ENDF/B-IV Library starts with a brief description of the data and methods used in that particular evaluation (File 1). The purpose of this report is to present, where feasible, a more detailed description, summarizing those evaluations that appear on the Dosimetry File.

The Dosimetry File evolved as a consequence of the Task Force assembled at Battelle Northwest by the Normalization and Standards Subcommittee of the Cross Section Evaluation Working Group (CSEWG) to review the cross section sets used for dosimetry purposes in the Inter-laboratory LMFBR Reaction Rate (ILRR) Program. From the list of necessary dosimetry materials prepared by the Task Force, all reactions already included in the ENDF/B General Purpose Library (with subsequent updating) were to be extracted and placed on the Dosimetry File. All other reactions on the list were assigned to Task Force members for evaluation. The "Table of Contents" of this volume lists all the reactions from the Task Force list, name and affiliation of the authors of each evaluation, the particular reaction assigned, and the Material (MAT) Number.

There are several different types of entries in the ensuing pages:

Documentation for threshold reactions (other than fission), which were evaluated by Task Force Members and whose Atomic Number $Z \leq 90$, contains a description of the evaluation by the authors, references used, and a series of graphs displaying the experimental data and the evaluated curve in discrete energy regions. Immediately following each evaluation is a reproduction of the data file as it appears on the Dosimetry File and a single curve over the entire energy region plotted from the evaluation on the Dosimetry File.

Documentation for threshold reactions, which were taken from the ENDF/B-IV General Purpose Library and whose Z \leq 90, contains an extracted portion of the Summary Documentation⁽²⁾ (found in ENDF-201), and the original report is identified. These reactions are followed (as above) with a reproduction of the data on the Dosimetry File and a single plot of the reaction over the entire energy range.

- v -

Documentation for exoergic reactions, which were evaluated by Task Force members and whose $Z \leq 90$, contains a description of the evaluations by the authors and the references used. Following each evaluation is a reproduction of the data on the Dosimetry File and a plot of the data. For convenience, experimental data from the CSISRS⁺ Library outside of the resolved resonance energy region is plotted on the curve. The references for the experimental data sets are included.

Documentation for excergic reactions (including Threshold Fission), which were taken from the ENDF/B-IV General Purpose Library and whose $Z \leq 90$ contains an extracted portion of the Summary Documentation⁽²⁾ (ENDF-201), and the original report is identified. These reactions are followed by a reproduction of the data on the Dosimetry File, a single plot of the reaction and the experimental data (outside of the Resolved Resonance Energy Region) and the references from CSISRS.

Documentation for reactions whose Z > 90 was considered too complex (e.g. the relationship between σ_f , σ_g and $\overline{\nu}$) to extract. Since all reactions with $Z^{+} > 90$ are from the ENDF/B-IV General Purpose Library, the reader in need of detailed information is directed to ENDF-201⁽²⁾. In place of summary documentation, File 1 from the ENDF/B-IV General Purpose Library is included here. As in the cases above, a reproduction of the data from the Dosimetry File, a plot of the data, experimental points outside the resolved energy region, and references for the experimental data are included.

In the case of 235 U(n,f), the portion of the curve from ~10 keV-20 MeV is enlarged and included as a separate page.

Because of extenuating circumstances, not all the reactions included here were renormalized to ENDF/B-IV. Those that were not are identified with ENDF/B-III in the Documentation Titles. The reactions include: ${}^{32}S(n,p), {}^{54}Fe(n,p), {}^{56}Fe(n,p), {}^{115}In(n,n'), {}^{58}Ni(n,p).$

+ Cross Section Information Storage & Retrieval System(CSISR**9** Maintained at the National Neutron Cross Section Center. Appendix I contains a table of derived parameters, i.e. the Resonance Integral of the excergic reactions and the 235 U Fission Spectrum Average Cross Sections (T = 1.32) of all reactions on the file.

For additional information concerning the evaluated files, as well as corresponding experimental data, contact:

National Neutron Cross Section Center Brookhaven National Laboratory Upton, New York 11973

⁽¹⁾ENDF/B-IV Dosimetry File; Tape 412, issued January 1975

(a) ENDF/B Summary Documentation ENDF-201 - BNL 17541, June 1975

Acknowledgements

In projects of this nature, the support and encouragement of the individual authors over and above the initial contributions of their manuscripts is necessary and even critical in order to produce a final product. My thanks are extended to all. Special mention is due to L. Stewart of Los Alamos Scientific Laboratory for her efforts in proofreading and criticism of the manuscripts.

Thanks are also extended to all the BNL personnel involved; particularly R. Kinsey of the National Neutron Cross Section Center for directing and C. Brewster and A. Fuoco for producing the graphic portions of this report, and to the Photography and Graphic Arts Division for production of the final pages.

Finally, I wish to recognize and acknowledge the unflagging interest and encouragement shown this project by both P. Hemmig of the U.S. Energy Research Division Administration and S. Pearlstein of the National Neutron Cross Section Center.

TABLE OF CONTENTS

÷

Isotope/Reaction	MAT	Authors	Lab	Page
⁶ Li(n,total He)	6271	L. Stewart & G. M. Hale	LASL	1
¹⁰ B(n,total He)	6273	P. G. Young & G. M. Hale	LASL	7
²³ Na(n,y)	6156	N. C. Paik & T. A. Pitterle	WARD	14
²⁷ Al(n,p)	6193	P. G. Young & D. G. Foster	LASL	21
27 Al(n, α)	6193	P. G. Young & D. G. Foster	LASL	24
³² S(n,p)	6407	N. D. Dudey & R. Kennerley	ANL	34
⁴⁵ Sc(n,γ)	6415	B. A. Magurno & S. F. Mughabghab	BNL	42
⁴⁶ Ti(n,p)	6421	B. A. Magurno	BNL	51
⁴⁷ Ti(n,np)	6422	B. A. Magurno	BNL	54
⁴⁷ Ti(n,p)	6422	B. A. Magurno	BNL	54
⁴⁸ Ti(n,np)	6423	B. A. Magurno	BNL	56
⁴⁸ Ti(n,p)	6423	B. A. Magurno	BNL	56
⁵⁵ Mn(n,2n)	6197	B. A. Magurno & H. Takahashi	BNL	70
⁵⁴ Fe(n,p)	6417	R. E. Schenter	HEDL	74
⁵⁶ Fe(n,p)	6410	N. D. Dudey & R. Kennerley	ANL	80
⁵⁸ Fe(n, y)	6418	R. E. Schenter	HEDL	88
⁵⁹ Co(n,y)	6199	T. J. Krieger & A. B. Smith &	BNL	92
FQ		D. L. Smith	ANL	94
⁵ ² Co(n,2n)	6199	A. B. Smith & D. L. Smith	ANL	95
⁵⁹ Co(n,α)	6199	J. D. Jenkins	ORL	97
⁵⁸ Ni(n,2n)	6419	M. Bhat	BNL	108

TABLE OF CONTENTS

Isotope/Reaction	MAT	Authors	Lab	Page
⁵⁸ Ni(n,p)	6419	R. E. Schenter	HEDL	114
⁶⁰ Ni(n,p)	6420	M. Bhat	BNL	120
⁶³ Cu(n,γ)	6411	H. Alter	A.I.*	126
⁶³ Cu(n,α)	6411	H. Alter	A.I.*	130
⁶⁵ Cu(n,2n)	6412	P. F. Rose	A.I.**	143
¹¹⁵ In(n,n')	6406	R. Sher	STF	150
¹¹⁵ In(n,γ)	6416	F. Schmittroth	HEDL	158
¹²⁷ I(n,2n)	6414	R. Sher	STF	167
¹⁹⁷ Au(n,γ)	6283	M. Goldberg & S. F. Mughabghab	BNL	174
²³² Th(n,f)	62 9 6	W. A. Wittkopf	B&W	192
232 Th(n, γ)	6296	W. A. Wittkopf	B&W	195
²³⁵ U(n,f)	6261	See ENDF-201 ⁺		207
²³⁸ U(n,f)	6262	See ENDF-201+		229
²³⁸ U(n,y)	6262	See ENDF-201 ⁺		229
²³⁷ Np(n,f)	6263	See ENDF-201 ⁺		245
²³⁹ Pu(n,f)	6264	See ENDF-201 ⁺		265

*Present Address: U. S. Energy Research Development Administration, Washington D.C. 20045

**Present Address: Brookhaven National Laboratory, Upton, New York 11973

+ENDF/B Summary Documentation - ENDF-201 BNL 17541, June 1975

- ix -

Total Helium Production Cross Section for Neutron-Induced Reactions on ⁶Li for ENDF/B-IV L. Stewart and G.M. Hale Los Alamos Scientific Laboratory Theoretical Division - January 1975

Below 10 MeV, the following reactions produce alpha particles from neutron interactions with 6 Li:

Reaction	Q (MeV)	Threshold (MeV)
⁶ Li(n,t)α	+4.785	-
⁶ Li(n,n'd)α	-1.472	1.717
6 _{Li(n,2np)α}	-3.697	4.313

In the alpha-production data that were provided for the Version IV dosimetry file only the ${}^{6}Li(n,t)\alpha$ contribution differs from the Version III dosimetry file. The (n,t) data below 2 MeV are based on the coupled-channel R-matrix analysis by Hale, Dodder, Young, and Stewart that were included in the general purpose Version IV file. The analysis included experimental data for the total and the (n,t) cross sections and various differential cross section measurements for $n + {}^{6}Li$ and $\alpha + t$ elastic scattering, as described in the File 1 comments of the Version IV data.

The (n,n'd) and (n,2np) cross sections are the same as were provided for the Version III dosimetry files and are based on smooth curves through the available experimental data. These data are compared with the Version III evaluation and with experimental

- 1 -

data in Figs. 1 and 2. Note that the dosimetry data for the (n,n'd) and (n,2np) reactions are lower and higher, respectively, than the Version III evaluation. This remark also applies for the Version IV evaluation, which is the same as Version III for the (n,n'd) and (n,2np) reactions.

Figure 2

EVAL-NOV73 HALE, NISLEY AND YOUNG 3-LI- 6 LASL DIST-1974 ACCEPTED FOR DOS, FILE BY NORMALIZATION AND STANDARDS SUBCOMMITTEE 12/73. SUPPLIED BY P.G.YOUNG LASL DATA TABLE BELOW IS THE TOTAL HELIUM PHODUCTION CROSS SECTION OF LI-6, FOR CONVENIENCE IT IS LISTED AS MT=107. THE CROSS SECTION IS COMPOSED OF THREE REACTIONS L.E. LI-6(N,T)ALPHA LI-6(N, NPRIME D) ALPHA LIF6(N:2NP)ALPHA PERTINENT HOLLORITH FROM GENERAL FILE FOLLOWS. (MAT 1271) TOTAL, ELASTIC, AND (N, ALPHA) CROSS SECTIONS AND ELASTIC ANGULAR DISTRIBUTIONS REPLACED FOR NEUTRON ENERGIES BELOW 1,2 MEV BY HALE, DODDER, YOUNG AND STEWART AT LASL JAN 74 THE NEW DATA RESULT FROM & COUPLED-CHANNEL R, MATRIX ANALYSIS THAT IS DESCRIBED IN THE GENERAL FILE. SIGMA=940.00 BARNS (N-ALPHA)MT=107 RES, PAR, MF=2 MT=151 SCATTERING RADIUS ONLY, SMOOTH CROSS SECTION MF=3 MT=107(IE N,T ALPHA ONLY) BELOW 1.2 MEV BASED ON REMATRIX ANALYSIS DESCRIBED UNDER MT=1 ALTHOUGH THE DATA OF REF 13 WERE NOT EXPLICITLY INCLUDED IN THE ANALYSIS, THESE DATA ARE GENERALLY CUNSISTANT WITH THE RESULTS OF REF 14 AND 15 WHICH WERE INCLUDED, IN ADDITION THE EVALUATED (N, ALPHA) CROSS SECTION AGREES WELL WITH THE VERSION IV EVALUATION OF B-10(N, ALPHA) CROSS SECTION AND THE RATIO MEASUREMENT OF REF, 18, THE (N; ALPHA) BETWEEN 2 AND 15 MEV IS BASED ON REF. 1, EXTRAPOLATION TO 20 MEV IS BASED ON KERN AND KREGER DATA (REF,8)BETWEEN 15 AND 18 MEV. REFERENCES PENDLEBURY, E.D., REPORT AWRE 0=60/64. 1, DIMENT, K.M., AND UTTLEY, C.A., NUCLEAH PHYSICS DIVISION 2. PROGRESS REPORTS AERE-PR/NP 15 AND AERE-PR/NP 16 (1969). ALSO PRIVATE COMMUNICATION FROM C. A. UTTLEY TO LEONA STEWART, 3, HIBDON, C.T., AND MOORING, F.P., CONFERENCE ON NEUTRON C/S TECHNOLOGY, WASH., D.C., 1, 159 (1968). 4. FOSTER, D.G., JR., AND GLASGOW, D.W., HW-73116 AND HW-77311, 5, PETERSON, J.M., ET AL, PHYS REV 120, 521 (1960), HOPKINS, J.C., ET AL, LOS ALAMOS SCI LAB REPORT LA-3765 6. (1967) 7. PRESSER, G., ET AL, NUCL PHYS A131, 679 (1969). KERN, B.D., AND KREGER, W.E., PHYS REV 112, 926 (1958), LANE, R.O., ET AL, ANN PHYS 12, 135(1961), 8, 9. 10, L. ROSEN AND L. STEWART, LA=2643. 11. F. AJZENBERG-SELOVE AND T.LAURITZEN, ENERGY LEVELS OF LIGHT NUCLES, TO BE PUBLISHED, 12. J.W.MEADOWS AND J.F. WHALEN, NUCL.SCI.ENGR. 41.351 (1970). 13, E.FORT AND J.P. MARQUETTE, PRIVATE COMMUNICATION TO L.STEWART, (1973), 14. M.S.COATES, G.J.HUNT, AND C.A.UTTLEY, PRIVATE COMMUNICA-TION TO L.STEWART, (1973), 15. W.P.POENITZ, PRIVATE COMMUNICATION TO L, STEWART, (1973). 16. A.ASAMI AND M.C.MOXON: NUCL.DATA FOR REACTORS, HELSINKI, 1970, P153. 17. R.J.SPIGER AND T.A.TOMBRELLO, PHYS, REV, 163, 964 (1970). 18. M.G.SOWERBY ET AL, J.NUCL, ENERGY 24, 323 (1970). 19. E.T.JURNEY, LASL, PRIVATE COMMUNICATION, (1973).

ENDF/B MATERIAL ND. 6271

LITHIUM-6

(N,ALPHA) Neutron cross section

> INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 24 LN Y Linear in LN X 24 to

RANGE DESCRIPTION 24 to 177 y Linear in X

NEUTRON	CROSS SEC	TIONS CROSS SECTION	ENERGY	CROSS SECTION	ENERGY	NOILDES SEGLION	ENERGY 0	ROSS SECTION	ENERGY	CROSS SECTION
	2	BARNS	EV	BARNS	ΕV	BARNS	E۷	BARNS	E <	BARNS
	1.0000E-05	4.7284E+04	1.0000E-02	1.4952E+03	2,53025-02	9.4003E+02	1.0000E-01	4.7282E+02	1.0000E+00	1.4951E+Ø2
1.0	1.00005+01	4.7266E+01	1.00005+02	1.4036E+01	4 0000E+02	7.4631E*00	1.0000E+03	4.71885+00	2,0000E+03	3.338ØE+ØØ
*	4 0000L 401	2.3647F+00	6.50001+03	1.84.0F+00	1.00005+04	1.50855+00	1.5000E+04	1.2429E+00	2.0000E+04	1,0875E+00
1.0	2.50005-04	9.8389E=Ø1	3.00005+04	9.00495-01	3.50005+04	8.5359E-01	4.0000E+04	8.1036E-01	4,5002E-24	7.7634E-01
- n	5.00005-04	7.49346-01	6.0000-04	7.11045-01	7.00005+04	6,8849E-Ø1	8,000E+04	6.7831E-01	9.0000E+04	6.7901E-01
1.0	00000F-05	6.90285=01	1.10005+05	7.15745-01	1.2000E+05	7,47915-01	1.30005.1	7.9831E-01	1,4000E+05	8.6768E-01
i el	1.50005+05	9.6140E=01	1.60025+05	1.04705+00	1.7000E+05	1.25455+00	1.8000E+05	1.4767E+00	1.9000E+05	1.7676E+ØØ
1.0	2.00005+05	2.1366E+00	2.05025+05	2.3487E+00	2.1000E+05	2,57405+00	2.1500E+05	2.8041E+00	2.1600E+05	2.8497E+00
14	2.17005-05	2.8949E+00	2.1800F+05	2.9396E+00	2.1900E+05	2,98355+00	2,2000E+05	3.0267E+00	2,2100E+05	3,2690E+00
4	2.22005+05	3.1101E+02	2.23005+05	3.1501E+00	2 2400E+05	3,18865*00	2.2500E+05	3.2256E+00	2,2600E+05	3.2610E+Ø0
ï	2.2700F+05	3.2945E+00	2.28005+05	3.3261E+00	2.2900E+05	3,3556E+20	2.3000E+05	3.3829E+00	2.3100E+05	3.40795+00
- 10 . 10	2.3200E+05	3.4394E+00	2.33985+05	3.4504E+90	2.3400E+05	3,46775+90	2.3500E+05	3.4823E+00	2,3600E+05	3.4941E+00
	2.3700F+05	3.5031E+00	2.38005+05	3.5093E+88	2.3900E+05	3,51262*80	2.40005+05	3.51305+00	2.4100E+05	3,51056+00
99	2.4200E+05	3.5052E+00	2.43005+05	3.4071E+00	2.44005-05	3.4863E*00	2.4500E+05	3.4728E+00	2,4600E+05	3.4567E+20
12	2 4700F+05	3.4382E+00	2.48005+05	3.4.72E+00	2,49005+05	3,3940E+00	2.5000E+05	3,3686E+ØØ	2.5100E+05	3.3412E-00
9.6	2.52001-05	3.3120E+00	2.53005+05	3.2809E+00	2.5400E+05	3,24836+00	2.5500E+05	3.2141E+00	2,5600E+05	3.1786E+ØØ
	2.57005-05	3.1419E+00	2.58005+05	3.1041E+00	2,5900E+05	3,06545+00	2.600PE+05	3.0258E+00	2,6100E+05	2.9856E+Ø0
9	2.6200E+05	2.94485+00	2.6300F+05	2.90355+00	2,6400E+05	2,86195+00	2.6500E+05	2.8200E+00	2.6620E-05	2.7779E+00
5	7.6700F+05	2.73586+00	2.68005+05	2.6037E+00	2.6900E+05	2.6517E+00	2.7000E+05	2.6098E+00	2,7500E+05	2.4051E+00
0	2.8000F-05	2.21196+00	2.8500F+05	2.01356+00	2.9000E+05	1.87136*00	2,9500E+05	1.7252E+00	3,00005+05	1.5945E+00
1.61	3.05001+05	1.4779E+00	3.10005+05	1.3740E+00	3.2000E+05	1,19916+00	3.40005+05	9.4784E~01	3,6000E+05	7.8239E-01
9.6	3.80005+05	6.6872E=01	4.20005+05	5.87455-01	4,2500E+05	5.1470E-01	4.5000E+05	4.6246E-01	4,7500E+05	4.2353E~01
	5.00005+05	3.9362Ea01	5.5000-05	3.5113E-01	6.0000E+05	3,22795-01	6.5000E+05	3.0284E-01	7.0000E+05	2.8824E-Ø1
10	8.0000E+05	2.6886E-01	9.00005+05	2.5732E-01	1,00005+06	2,5046E-01	1,1000E+06	2.4676E-01	1.2000E+Ø6	2.4547E-01
14	1.30006+06	2.4624E=01	1.4000F+06	2,4896E-01	1,5000E+06	2,53645-01	1.6000E+06	2.6000E-01	1,7000E+06	2,6400E-01
106	1.71805-06	2.63075-01	1.80005+06	2.6500E-01	1,9000E+06	2,64005-01	2,0000E+06	2.6600E-01	2.1000E+06	2,7200E-01
	2.20005+06	2.82005-01	2.30005+06	2.9300E-01	2 4000E+00	3,05005-01	2.50005+06	3.1500E-01	2.6000E+06	3.3600E-01
136	2.70005+06	3.53005-01	2.80005+06	3.7490E-01	3,0000E+06	4,5300Er01	3.1000E+06	4.9800E-01	3.1920E+06	5.2900E-01
141	3.30005+06	5.59005-01	3.40005-06	5.80005-01	3,50005+06	10-30066 6	3,6000E+06	6.1000E-01	3,8000E+06	6.2900E-01
941	4.0000F+05	6.41005-01	4.1580r+06	6.4AP0E-01	4.2000E+06	6.5000E-01	4.4000E+05	6.5665E=01	4.7000E+06	6.6430E-01
	5.0000E+06	6.6962E-01	5.3000r+06	6.7370E-01	5,6000E+06	6,7200E-01	6,0000E+06	6.7000E-01	6,4000E+06	6.633ØE-Ø1
10	6.6140E+06	6.5852E-01	7.00005+06	6.4050E-01	7 2000E+06	6.4450E-01	7.6000E+06	6.3150E-01	8.0000E+06	6.1800E-01
141	8.5000E+06	5.9900E-01	9.66605+06	5.7900E-01	9.5000E+06	5,5600E-01	1.0000E+07	5.3620E-01	1,0500E+07	5.1730E-01
155	1.1000E+07	5.0120E-01	1.1500F+07	4.8820E-01	1.2000E+07	4,77805-01	1,2500E+07	4.6880E-01	1.3000E+07	4.6230E-01
171	1.3500E+07	4.56505-01	1.4000E+07	4.51505-01	1,4500E+07	4,4750E-01	1.5000E+07	4,4280E-01	1.6000E+07	4,3600E-01
176	1.8000E-07	4.21005-01	2 0000E+07	4.06005-01						

- 5 -

		REFERENCES FOR E	XPERIMENTAL DATA
⁶ L i(1	<u>n,t)</u>		
<u>Yr.</u>	Lab	Author	References
74	GRT	Friesenhahn, et al.	INTEL-RT-7011 (1974)
74	ANL	Poenitz	Priv. Comm. (1974)
73	HAR	Coates	Priv. Comm. (1973)
72	CAD	Fort, et al.	EANDC-(E)-148 (1972)
72	HAR	Clements, et al.	AERE-R-7075 (1972)
67	RBZ	Rendíc, et al.	ZFK- <u>130</u> , 143 (1967)
67	ALD	Cox, et al.	J. Nuc. En. <u>21</u> , 271 (1967)
66	ALD	Barry	Conf. Neutron Cross Sections and Tech., Washington D.S. Voll <u>I</u> , 763 (1966)
65	FOA	Conde, et al.	Ark.Fiz. <u>29</u> , 45 (1965)
65	FOA	Schwartz, et al.	Nuc. Phys. <u>63</u> , 593 (1965)
61	CCP	Mikailina, et al.	Sov. Prog. Nuc. Phys. p.185 (1961)
60	HAM	Bormann, et al.	Zeit. Nat. /A <u>15</u> , 200 (1960)
60	CCP	Perelygin, et al.	At. En. <u>9</u> , 488 (1960)
59	NWU	Pardo, et al.	Bull. Am. Phys. Soc. <u>4</u> , 218 (1959)
59	RIC	Gabbard, et al.	Phys. Rev. <u>114</u> , 201 (1959)
59	LAS	Bame, et al.	Phys. Rev. <u>114</u> , 1580 (1959)
59	ORL	Murray, et al.	Phys. Rev. <u>115</u> , 1707 (1959)
58	NRD	Kern, et al.	Phys. Rev. <u>112</u> , 926 (1958)
57	CCP	Elpidinskii, et al.	At. En./Supp 5, 75 (1957)
56	LAS	Ribe	Phys. Rev. <u>103</u> , 741 (1956)
56	CCP	Gorlov, et al.	Dok. <u>111</u> , 791 (1956)
54	LAS	Frye, Jr.	Phys. Rev. <u>93</u> , 1086 (1954)
54	NWU	Weddell, et al.	Phys. Rev. <u>95</u> , 117 (1954)
52	LAS	Ribe	Phys. Rev. <u>87</u> , 205 (1952)
50	ANL	Blair, et al.	ANL-4515, 7 (1950)

Total Helium Production Cross Section From $n + {}^{10}B$

Interactions for ENDF/B-IV P.G. Young and G.M. Hale Los Alamos Scientific Laboratory Theoretical Division - January 1975

Below 10 MeV, the following reactions produce helium from neutron interactions in $^{10}\mathrm{B}\text{:}$

	Reaction	Q (masses) <u>MeV</u>	Laboratory Threshold (MeV)
(1)	¹⁰ B(n,a _o) ⁷ Li	+2.792	-
(2)	¹⁰ B(n,a ₁) ⁷ Li [*] (478 keV)	+2.314	_
(3)	¹⁰ _{B(n,n'α)} ⁶ Li	-4.461	4.907
(4)	¹⁰ B(n,t2a)	+0.324	-
(5)	$10_{B(n,n'd2\alpha)}$	-5.933	6.526
(6)	$10_{B(n,2np2\alpha)}$	-8.158	8.974

The total helium production cross section was derived by summing the cross sections from reactions (1)-(3) plus twice the sums of reactions (4)-(6). The data for reactions (1), (2), and (4)were taken directly from the Version IV evaluation. Below 1 MeV reactions (1) and (2) are based on a coupled-channel R-matrix analysis,¹ and reaction (4) on a single-channel analysis. The experimental data included in the analyses are referenced in the File 1 comments of the Version IV evaluation. Above 1 MeV, reac-

G.M. Hale, P.G. Young, and R.A. Nisley, "R-Matrix Analysis of the n + 10B System at Low Energies," Trans. Am. Nucl. Soc. <u>18</u>, 327 (1974).

tions (1), (2), and (4) are based on smooth curves through experimental data, as outlined in the File 1 comments.

The contributions from reactions (3) and (5) were also obtained from the Version IV evaluation by summing the appropriate discrete (n,n') cross sections to particle unstable final states, as indicated by LR flags. Reaction (6), which was not included in the Version IV evaluation because of its small magnitude, was estimated from the measurements of Mather² at 14 MeV.

D.S. Mather and L.F. Pain, "Measurement of (n,2n) and (n,3n) Cross Sections at 14 MeV Incident Energy," AWRE report 047/69 (1969).

5-8 - 10 LASL EVAL-NOV73 HALE, NISLEY AND YOUNG DIST 1974 ACCEPTED FOR DOS, FILE BY NORMALIZATION AND STANDARDS SUBCOMITTEE 12/73, SUPPLIED BY P.G.YOUNG LASL PERTINENT HOLLORITH FROM GENERAL FILE FOLLOWS, (MAT 1273) MT=151 EFFECTIVE SCATTERING RADIUS = 0,40937E=12 CM MF=3 ----- SHOOTH CROSS SECTION------THE 2200 H/B CROSS SECTION ARE AS FOLLOWS, BARNS MT=107 SIGMA =3836,5 SIGMA =0,000566 BARNS MT=113 MT=788 SIGMA =240,51 BARNS MT=781 SIGMA =3596.0 BARNS (N, ALPHA) CROSS SECTION (GENERAL FILE ONLY) MT=107 0 TO 20 MEV, SUM OF MT=780,781 (N. TZALPHA) CROSS SECTION MTe113 Ø TO 2,3 MEV, BASED ON A SINGLE-LEVEL FIT TO RESONANCE MEASURED AT 2 MEV BY DA61, ASSUMING L=0 INCOMING NEUTRONS AND L=2 OUTGOING TRITONS. 2.3 TO 20 MEV, SMOOTH CURVE THROUGH MEASUREMENTS OF FR56 AND WY58, FOLLOWING GENERAL SHAPE OF DA 61 MEASUREMENT FROM 4 TO P MEV. (N, ALPHAD) CROSS SECTION MT=78Ø Ø TO 1 MEV, CALCULATED FROM THE R-MATRIX PARAMETERS DESCRIBED FOR MT=1, EXPERIMENTAL (N:ALPHAD) DATA INPUT TO THE FIT WERE THOSE OF MAGE AND DAGL, IN ADDITION, THE ANGULAR DISTRIBUTIONS OF VA72 FOR THE INVERSE REACTION WERE INCLUDED IN THE ANALYSIS, 1 TO 20 MEV, BASED ON DAGL MEASUREMENTS, WITH SMOOTH EXTRA-POLATION FROM 8 TO 20 MEV, DA61 MEASUREMENT ABOVE APPROXIMATELY 2 MEV WAS RENORMALIZED BY FACTOR OF 1.4. 781 (N,ALPHA1) CROSS SECTION Ø TO 1 MEV, CALCULATED FROM THE R-MATRIX PARAMETERS MT=781 DESCRIBED FOR MT=1, EXPERIMENTAL (N, ALPHA1) DATA INCLUDED IN THE FIT ARE THOSE OF FR72. 1 TO 20 MEV, SMOOTH CURVE THROUGH MEASUREMENTS OF DA61 AND NE70, WITH SMOOTH EXTRAPOLATION FROM 15 TO 20 MEY. THE DA61 DATA ABOVE APPROXIMATELY 2 MEY WERE RENORMALIZED BY A FACTOR OF 1.4 DATA TABLE BELOW IS THE TOTAL HELIUM PRODUCTION CROSS SECTION OF B-10, FOR CONVENIENCE IT IS LISTED AS MT=107, THE CROSS SECTION IS COMPOSED OF SIX REACTIONS, 1.E. B-10(N;ALPHA0)LI-7 MT=780 8-10(N, ALPHA1) [1-7+(478 KEV) MT=781 B-10(N:NPRIME ALPHA)LI=6 MT=113 AND TWICE THE SUM OF B-10(N, T2ALPHA) B-10(NINPRIME D ZALPHA) B-10(N, 2NP2ALPHA)

	REFERENCES	
AL66	D.E. ALBURGER ET AL., PHYS, REV. 143,692 (1966)	
AS7Ø	A. ASAMI AND M.C. MOXON, J.NUCL. FNERGY 24.85 (1970)	
BA60	R. BARDES AND G.E. OWEN, PHYS. SEV. 120, 1369 (1960)	
BE56	R L. BECKER AND H H. BARSCHALL, DHVS.DEV 100 1384/4	0541
B157	H RICHCEL AND T.W RONNER.PHVS REV. 408 4026 /40574	,,,,,,,
B051	C K DORKELMAN ET AL DUAS DEN 64 KO 14564	
0021	D ROOTET AND A L NIGHELO MUCH BUYS ANDE AND A DE AND A DE ANDRE	
8007	U, BUGARI ANU LILINICHOLSI NUCLIPHTS, A125, 463 (1969)	i
0052	J.H.COON ET AL,, PHYS, REV, 88,562 (1952)	
0054	C.F.COOK AND T.W. BONNER, PHYS.REV, 94,651 (1954)	
C067	S.A. COX AND F.R. PONTET, J.NUCL, ENERGY 21,271 (196	57)
C069	J.A. COOKSON AND J.G.LOCKE, NUCL. PHYS. A146, 417(1970)	ł
C073	M.S. COATES ET AL., PRIV, COMM, TO LISTEWART (1973))
CU65	R.Y.CUSSON, THESIS, CALIF, INSTIT, TECH, (1965)	
DA56	R.B.DAY, PHYS. REV. 102, 767 (1956)	
DAGØ	R.B. DAY AND M. WALT. PHYS. REV. 117.1330 (1960)	
DA61	E.A. DAVIS ET AL., NUCL. PHYS. 27.448 (1961)	
D167	K.M. DIMENT. AFRE-R-5224 (1967)	
F061	D M. EASSAN FT ALL DUYS REV. 123,209 (1961)	
FD56	C M COVE AND U.H. CAUMEL, PHVC PCV 107, 700 /40644	
F 870	S I PRIESENUAUN ET AL CHEEPT. 440040 (4000)	
11173	STELLAR ADENT THESIS ONIO UNIV COD-4747-5 46774	
HA/S	3 E NOOKING BRIV COND LASK (1973)	1
HUOY	J.C. HOPKINS, PRIV. COMM. LASL (1909)	
INO	U.C. IRVING, URNL-TM-18/2 (1907)	
LADD	T.LAURITSEN AND F.AJZENBERG-SELOVE, NUCL, PHYS, 78, 1(1	,960)
LA71	R.O. LANE ET AL., PHYS.REV,C4,380 (1971)	
MA68	R.L.MACKLIN AND J.H.GIBBONS, PHYS. HEV. 165, 1147 (1968	3)
M066	F.P.MODRING ET AL., NUCL, PHYS, 82, 19 (1966)	
NE54	N.G.NERESON, LA-1655 (1954)	
NE7Ø	D.C.NELLIS ET AL., PHYS.REV. C1,847 (1970)	
P07Ø	D,PORTER ET AL,, AWRE O 45/70 (1970)	
SE66A	R.E. SEGEL AND R.H. SIEMSSEN, PHYS, LETT, 20, 295 (1960	(ذ
SE66B	R.E.SEGEL ET AL., PHYS.REV. 145,736(1966)	
S165	R.H.SIFMSSEN ET AL., NUCL.PHYS.69,209 (1965)	
TF62	K. TESCH, NUCL. PHYS. 37. 412 (1962)	
1563	K. TSUKADA AND O. TANAKA. J. PHYS. SOC. JAPAN 18.610 (196	531
VA65	V VALKAVIC FT AL. PHVS.REV. 139.331 (1945)	1
VA70	R VALICHER FT AL., HELV PHYS.ACTA 43.237 (1970)	
VA72	I NAM BED ZWAM AND K WIGETGER MUCH PHYCIA190.445/10	2721
VAIC	N DE THEITADD BA VIE DAAR BEA 9914400101010101010101010101010101010101	
WIDD	NIM HUNNYE CH VI DUNE DEN VID ADAV VIDBAV NIM HUNNYE CH VI DUNE DEN VID ADAV VIDBAV	
W T D D	", L, WIMAN LI ALII FMYD, MLV, 112/1804 (1950)	

REFERENCES FOR EXPERIMENTAL DATA

$\frac{10}{B(n,\alpha)}$

<u>Yr.</u>	Lab	<u>Author</u>	References
74	GRT	Friesenhahn, et al.	INTEL-AT-7011 (1974)
69	LRC	Bogart, et al.	Nuc. Phys./A 125, 463 (1969)
68	ORL	Macklin, et al.	Phys. Rev. <u>165</u> , 1147 (1968)
67	ALD	Cox, et al.	J. Nuc. En. <u>21</u> , 271 (1967)
65	ANL	Mooring, et al.	ANL-6877 (1965)
60	DKE	Bilpuch, et al.	An. Phys. <u>10</u> , 455 (1960)
57	RIC	Bichsel, et al.	Phys. Rev. <u>108</u> , 1025 (1957)

ENDF/B MATERIAL ND. 5273

(N, ALPHA) Neutron Cross Section

BORCN-10

DESCRIPTION Y LINEAR IN X SECTION RANGE 96 TO 193 CR0SS BAR 3E-82 ENERGY LAW BETWEEN ENERGIES Description LN Y LINEAR IN LN X INTERPOLATION L Range 1 1 To 96 L

OSS SECTION BARNS CROSS 000 000 000 000 000 000 000 1.60005+07 1.8500E+07 ENERGY CROSS SECTION BARNS 5.7385E=01 5.8826E-01 5.9613E=01 4.4.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0</li ENERGY R MERGY
M F MERGY
M F EVENCY
< 5,8951E-01 6,0371E-01 1.7000E+07 NEUTRON CRDSS SECTIONS CRUCK C CRSSS SECTIONS CRSSS

5.8845E**.**01 6.0044E-01

1 6500E+07 1 9000E+07

Evaluation of Sodium-23 Neutron Capture Cross Section Data for the ENDF/B V-III File*+

by

N.C. Paik and T.A. Pitterle Westinghouse Advanced Reactors Division Waltz Mill Site P.O. Box 158 Madison, Pennsylvania 15663

This report describes the evaluation of neutron cross sections of Na-23, material number 1156, for the ENDF/B File. Cross sections were evaluated between 10^{-5} eV and 15 MeV.⁺ Experimental data available up to March 1971 were included in the evaluation.

The total cross section of sodium has been re-evaluated for the ENDF/B library in the neutron energy range from 100 eV to 15 MeV. The measurement of the total cross section for neutron energies above 600 eV and below 40 keV at the Nevis Laboratory, Columbia University⁽²⁾ verifies a spin assignment of J=1 for the 2.85 keV resonance and a neutron width of about 410 eV. The data indicates that the width of the resonance is wider than the earlier measurements by Garg⁽³⁾, and more in agreement with the measurements of Moxon⁽⁴⁾ and Lynn.⁽⁵⁾ The peak value of the resonance is

*Work performed under AEC Contract AT(30-1)-4210.

[†]Data extrapolated to 20 MEV at NNCSC and carried over to Version IV.

This report extracted from ENDF/B Summary Documentation ENDF 201 BNL 17541 (May 1973).

within the statistical uncertainty of the theoretical value, which is 380 barns for a resonance with J=1.

Resonance parameters are given in Table 1. Yamamuro's⁽⁶⁾ measured value of 0.47 eV for Γ_{γ} of the 2.85 keV resonance has been used in the present evaluation. Parameters for resonances at 7.53, 35.4, 53.0, 114.7, 129.5, and 139.1 keV were estimated from data by Moxon⁽⁴⁾, Hockenbury⁽⁷⁾, and Ribon⁽⁸⁾ with particular emphasis on the capture areas measured by Hockenbury.⁽⁷⁾ The parameters for the 53.0 keV resonance, for instance, are Moxon's values with Hockenbury's Γ_{γ} data.

The scattering radius was chosen to provide a good agreement between calculation for the 2.85 keV resonance at energies above the resonance with measured data from the Nevis Laboratory.⁽²⁾ Background cross sections are given in File 3 to improve agreement between calculated and measured data below 1.50 keV. The resolved resonance range is defined to be from 600 eV to 150 keV. Below 600 eV the total cross section is based on the data of Columbia⁽²⁾ and of Joki.⁽⁹⁾

The sodium capture cross section between 100 eV and 200 keV is based primarily on the resonance parameter evaluation and in agreement with the capture areas measured by Hockenbury. $^{(7)}$ The radiation width for the 2.85 keV resonance, which dominates Na capture cross section, is 0.47 eV $^{(6)}$ compared to 0.33 eV for the ENDF/B Version 1 evaluation. Integral testing $^{(10)}$ of this capture cross section change of sodium indicated that the eigenvalue calculation of a fast reactor system with a power reactor spectrum is

- 15 -

Resonance Energy, keV	J	1	Γn,eV	Γγ,eV
2.85	1	0	410	0.47
7.53	1	1	0.012	1.5
35.4	3	1	0.86	0.76
53.0	2	1	1200	1.48
114.7	2	0	11.0	2.72
129.5	3	1	0.374	1.5
139.1	2	1	3.33	1.5

Resonance Parameters in ENDF/B Version III Sodium Evaluation

Table 1

not significantly affected (0.01% Δk change for $\Gamma\gamma$ = 0.33 eV).

Above 200 keV and below 100 eV, the capture cross section of the Version I sodium evaluation $^{(1)}$ was retained for the present evaluation.

- 16 -

References

- 1. T.A. Pitterle, "Evaluated Neutron Cross Sections of Na²³ for the ENDF/B File," APDA-217, (June 1968).
- F. Rahn et al., Private Communication, Nevis Laboratory, Columbia University, (1968).
- J.B. Garg, J. Rainwater, S. Winchank, and W.W. Havens, Jr., "Total Cross Section of Elements with Widely Spaced Levels in the Energy Interval of 200 eV-600 keV," in <u>Nuclear Structure</u> <u>With Neutrons</u>, Proceedings of the International Conference on the Study of Nuclear Structure with Neutrons, Antwerp, Belgium, 526, (July 19-23, 1965), North-Holland Publishing Company, Amsterdam, (1966).
- M.C. Moxon and N.J. Pattenden, CN-23/27, Paris Conference, (1966).
- J.E. Lynn, F.W.K. Firk, and M.C. Moxon, "The 2.85 keV Neutron Resonance of Sodium," Nucl. Phys. <u>5</u>, 603-614 (1957).
- N. Yamamuro, R.W. Hockenbury, R.C. Block, and R.H. Wolfe, "A Measurement of the Radiation Width of the 2.85 keV Neutron Resonance and of the Thermal Neutron Capture Cross Section in Sodium," Nucl. Sci. Eng. <u>41</u>, 445-449 (1970).
- R.W. Hockenbury, Z.M. Bartholome, J.R. Tatarczuk, W.R. Moyer, and R.C. Block," Neutron Radiative Capture in Na, A1, Fe, and Ni from 1 to 200 keV," Physics Rev., 178, 1746-1769 (1969).
- 8. P. Ribon et al., CN-23/72, Paris Conference, (1966).
- 9. Joki, Miller, Evans, Phy. Rev. 109, 610 (1955).
- N.C. Paik, T.A. Pitterle, and C. Durston, "Integral Testing of Modifications to ENDF/B Version II Data", in <u>Proceedings of</u> <u>the Third Conference Neutron Cross Sections and Technology</u>, CONF-710301, Vol. 1, 44-50 (August 1971).

	F 0			ē	TAN TONANOS			ENDF/A MATERI	AL ND. 6156	
0 0	01-H11			RESON	ANCE PARAME	TERS				
ISDTOPE FRACTIO	NAL ABUNDAN OF ENERGY R	ANGES	1.00104+23 1.00005+00							
E C C C C C C C C C C C C C C C C C C C	RANGE NUMBE NERGY LIMIT NERGY LIMIT Spin	A	6.88888 4.58888 4.58888 4.58888 4.5888 5.3888 5.3888 5.3885 5.3875 5.3885 5.3885 5.3885 5.3885 5.38755 5.38755 5.387555 5.3875555555555555555555555555	RESOLVED SI	INGLE-LEVEL		LER PARAMETERS			
L VALUE NUMBER SPIN SC	OF RESONANC	EST (A.)	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8							
INDEX	ENERGY (EV)	J VALUE	TOTAL	REBONANCE NEUTRO	WIDTHS (EV) N RADIAT	I ON	ISSION			
-1 N	2.8500£+03 1.1470E+05	1,0000E+00 2,0000E+00	4,1047E+0	2 4.1000E.	.82 4.7000 .81 2.7200	е-01 9.0 е+00 9.0	0005+00 0005+00			
L VALUE Number Spin Sc	OF RESONANC	F	1 5 5 8 8 8 8 8 8 8							
INDEX	ENERGY (EV)	J VALUE	TOTAL	RESONANCE Neutro	WIDTHS (EV) N RADIAT	10N	NO I SS I.			
-1 N 19 4 16	7.53005403 3.53005403 5.30005404 5.30005404 1.20956548	1,00000 1,0000 2,00000 2,000000 2,00000 2,00000 2,00000000	1,51,266 1,51,2626 1,5229 1,521,95 1,531,96 1,531,495 6,63 6,63 6,63 6,63 6,63 6,63 6,63 6,6	2000 2000 2000 2000 2000 2000 2000 200	82 81 82 1 1 5 88 88 1 1 5 88 89 88 88 88 88 88 88 88 88 88 88 88	22222 22222 22222 22222 22222 22222 2222	19665:+08 19985:+08 19485:+08 18485:+08 18485:+08			
SC	001UM-23			NEUTRI	(N,GAMMA) ON CROSS SEC	710N		ENDF/8 MATERI	4L NO, 5156	
REACTIC	ON Q VALUE	6,9615E+B6	EV							
INTERPO RAN 1 To 51 To	JLATION LAW VGE DESC 18 LN 32 7 L1	BETWEEN ENER Sription / Linear in I inear in X	RGIES LN X 1	RANGE BTO 23	DESCRIPTION Y LINEAR IN	×	RANGE 23 TO 5	DESCRIPTID L LN Y LINEAR	N LN X	
N ND ND ND ND ND ND ND ND ND ND ND ND ND	00000000000000000000000000000000000000	(100NS SR0SS SE C 110 CR0SS SE C 110 2.688681-80 1.22886861-80 1.22886861-80 7.9888861-80 8.888861-82 8.888861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.988861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.3888861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.3888661-84 8.3888661-84 8.3888661-84 8.388861-84 8.388861-84 8.388861-84 8.388861-84 8.38886601-84 8.38886601-84 8.38886600000000000000000000000000000000	Z R NET R NET	R 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Z 48.494.94.94.94.06 7.000000000000 7.00000000000000000000	C C C C C C C C C C C C C C C C C C C	100N ENERGY 53 2,00005 + 02 53 2,00005 + 02 53 2,00005 + 02 54 5,00005 + 02 54 5,00005 + 02 54 5,0005 +	CROSS SECTION BARNS SECTION BARNS SECTION BARNS B494885-01 B4.944885-02 B4.944885-02 B4.944885-02 B4.944885-02 B4.94885-02 Constant Consta	440,0404,044 440,040,400 440,000,000 440,000,000 440,000,000 440,000,000 440,000 440,000,000,000 440,000,000,000 440,000,000,000 440,000,000,000,000 440,000,000,000,000,000,000,000,000,000	CRDSS SECTION RARNS CCTION 2.2.24706101 2.4.24706102 3.1.868061602 3.1.868061602 4.998081604 4.998081604 3.358081604 3.358081604 2.358081004 2.358081004 2.358081004 2.358081004 2.358081004 2.358081004 2.3580810000000000000000000000000000000000

۱,

- 19 -

REFERENCES FOR EXPERIEMNTAL DATA

²³Na(n,Y)

<u>Yr.</u>	Lab	<u>Author</u>	References
72	RBZ	Holub, et al.	LNS-4-72 (1972)
70	RPI	Yamamuro, et al.	Nuc. Sci.&Eng. <u>41,</u> 445 (1970)
67	DEB	Csikai, et al.	Nuc. Phys./A <u>95</u> , 229 (1967)
67	LOK	Menlove, et al.	Phys. Rev. <u>163</u> , 1299 (1967)
63	ORL	Macklin, et al.	Phys. Rev. <u>129</u> , 2695 (1963)
61	ANL	Meadows, et al.	Nuc. Sci.&Eng. <u>9</u> , 132 (1961)
59	LAS	Bame, et al.	Phys. Rev. <u>113</u> , 256 (1959)
59	ORL	Lyon, et al.	Phys. Rev. <u>114</u> , 1619 (1959)
58	LRL	Booth, et al.	Phys. Rev. <u>112</u> , 226 (1958)
58	ALD	Perkin, et al.	Proc. Phys. Soc. <u>72</u> , 505 (1958)
58	CCP	Kononov, et al.	At. En. <u>5</u> , 564 (1958)
58	CCP	Leipunsky, et al.	Second Peaceful Uses of At. En. Conf. Geneva Vol <u>15</u> , 5 (1958)
57	ORL	Macklin, et al.	Phys. Rev. <u>107</u> , 504 (1957)

Evaluation of the ²⁷A1(n,p)²⁷Mg and ²⁷A1(n,α)²⁴Na Cross Sections* for ENDF/B-IV P.G. Young and D.G. Foster, Jr. Los Alamos Science Laboratory Theoretical Division March '72

The Version III ENDF/B cross sections for the ${}^{27}\text{Al(n,p)}{}^{27}\text{Mg}$ and ${}^{27}\text{Al(n,\alpha)}{}^{24}\text{Na}$ reactions were examined with the aim of implementing several improvements for standards use. The suggested revisions are described below and in the accompanying figures, where the recommended Version IV data are compared to experimental results as well as to other evaluations.

27 A1(n,p) 27 Mg

The only change suggested for the Version III ENDF/B (n,p) cross section (Yo72) is for neutron energies below 4 MeV. At these energies the data were modified to correspond more closely to the Henkel (He54) and Grundl (Gr67) measurements, which are in good agreement. The recommended curve from threshold to 7 MeV is compared to the available measurements in Fig. 1. The energy dependence of the curve below 3 MeV is represented by an $\ell = 0$ penetrability function for the outgoing p + 27 Mg channel. From 4 to 7 MeV the recommended curve is based on a composite of the available measurements (Ba65, Ca62, Gr67, He54).

^{*}Submitted to Normalization and Standards Subcommittee March 1972. This evaluation has since been incorporated into the ENDF/B-IV general purpose library.

The recommended curve is compared to the available activation measurements from 7 to 13 MeV in Fig. 2, and from 13 to 20 MeV in Fig. 3. It should be noted that the data of Ferguson (Fe67), which are substantially lower than the evaluation, are relative data that have been normalized to a value of 55 mb near 13 MeV. Similarly, absolute data were obtained at only one energy (50 mb at 14.4 MeV) in the Gabbard measurement (Ga62), and the remaining points were normalized to that value. Therefore, since the preponderance of experimental results near 14 MeV suggests a substantially higher (n,p) cross section, the evaluation was chosen to approximately follow the measurements of Mani (Ma60), resulting in an evaluated cross section of 77 mb at 14.1 MeV.

Figure 1

Figure 3

$\frac{27}{A1(n,\alpha)}^{24}$ Na

The recommended curve for the (n, α) cross section was changed somewhat from the ENDF/B-III values to better agree with the experimental data of Butler (Bu63), Liskien (Li66), and Paulsen (Pa65). The new curve is compared to the experimental data from threshold to 9 MeV in Fig. 4. The energy dependence of the curve below 6 MeV is approximated by an $\ell = 0$ penetrability function for the $\alpha + {}^{24}$ Na channel. The results from 6 to 13 MeV and from 13 to 20 MeV are shown on linear scales in Figs. 5 and 6. It is interesting to note that if the measurements of Tewes (Te60) are renormalized by a factor of 1.37, very good agreement is obtained with the Butler data (Bu63). The recommended curve has a value of 124 mb at 14.1 MeV.

Figure 4

- 25 -

- 26 -

- Ar64 P.M. Aron et al., Atom. Energiya 16, 450 (1964).
- Ba61 B.P. Bayhurst and R.J. Prestwood, Phys. Rev. <u>121</u>, 1438 (1961).
- Ba65 R. Bass, EANDC(E)-66U, p. 64 (1966) and private communication (1966).
- Ba69 R.C. Barrall et al., SUHP-69-2 (1969).
- Ba69a R.C. Barrell and M. Silbergeld, Nucl. Phys. A138, 387 (1969).
- Bo61 M. Bormann et al., J. Phys. Radium 22, 602 (1961).
- Bo64 G.C. Bonazzola et al., Nucl. Phys. <u>51</u>, 337 (1964).
- Bo65 M. Bormann et al., Nucl. Phys. <u>63</u>, 438 (1965).
- Br70 A.M. Bresesti et al., Nucl. Sci. Eng. <u>40</u>, 331 (1970).
- Bu63 J.P. Butler and D.C. Santry, Can. J. Phys. <u>41</u>, 372 (1963).
- Ca62 G. Calvin et al., Nucl. Phys. 39, 621 (1962).
- Ch63 G.P. Chursin et al., JETP 44, 472 (1963).
- Cs63 J. Csikai et al., Nucl. Phys. <u>46</u>, 141 (1963).
- Cu68 P. Cuzzocrea and E. Perillo, Nuovo Cimento B54, 53 (1968).
- De60 M.J. DePraz et al., J. Phys. Radium 21, 377 (1960).
- Fe67 J.M. Ferguson and J.C. Albergotti, Nucl. Phys. <u>A98</u>, 65 (1967).
- Fo52 S.G. Forbes, Phys. Rev. 88, 1309 (1952).
- Ga62 F. Gabbard and B.D. Kern, Phys. Rev. 128, 1276 (1962).
- Gr58 J.A. Grundl et al., Phys. Rev. 109, 425 (1958).
- Gr67 J.A. Grundl, Nucl. Sci. Eng. 30, 39 (1967).
- He54 R.L. Henkel, private communication via BNL Sigma Center (1954).
- He66 J.D. Hemingway et al., Proc. Roy. Soc. (London) <u>A292</u>, 180 (1966).

- Hu59 O.M. Hudson, Jr. et al., "Neutron Interactions in Lithium, Carbon, Nitrogen, Aluminum, Argon, Manganese, Yttrium, Zirconium, Radiolead, and Bismuth," WADC-TN-59-107 (1959).
- Hu70 L. Husain et al., Phys. Rev. C1, 1233 (1970).
- Im60 W.L. Imhoff, private communication to Sigma Center BNL (1960).
- Je63 J.M. Jeronymo et al., Nucl. Phys. 47, 157 (1963).
- Ka61 J. Kantele, Bull. Am. Phys. Soc. 6, 252 (1961).
- Ka62 J. Kantele and D.G. Gardner, Nucl. Phys. 35, 353 (1962).
- Ke59 B.D. Kern et al., Nucl. Phys. 10, 226 (1959).
- Kh59 C.S. Khurana and H.S. Hans, Nucl. Phys. 13, 88 (1959).
- La62 J. Langmann, private communication to Sigma Center, BNL (1962).
- Li65 H. Liskien and A. Paulsen, Nucleonics 8, 315 (1966).
- Ma60 G.S. Mani et al., Nucl. Phys. 19, 535 (1960).
- Me67 H.O. Menlove et al., Phys. Rev. 163, 1308 (1967).
- Mi66 B. Mitra and A.M. Ghose, Nucl. Phys. 83, 157 (1966).
- Mi67 B. Minetti and A. Pasquarelli, Z. Physik 199, 275 (1967).
- Mu60 S.K. Mukherjee et al., Proc. Phys. Soc. (London) <u>77</u>, 508 (1961).
- Pa53 E.B. Paul and R.L. Clarke, Can J. Phys. <u>31</u>, 267 (1953).
- Pa65 A. Paulsen and H. Liskien, J. Nucl. Energy 19, 907 (1965).
- Pa70 D. Partington et al., Analyst 95, 257 (1970).
- Po59 A. Poularikas and R.W. Fink, Phys. Rev. 115, 989 (1959).
- Po61 H. Pollehn and H. Neuert, Z. Naturforsch. 16A, 227 (1961).
- Ra68 N. Ramakumar et al., Nucl. Phys. A122, 679 (1968).
- Sa61 M. Sakisaka et al., J. Phys. Soc. Japan 16, 1869 (1961).
- Sa71 G.N. Salaita, Nucl. Phys. <u>A170</u>, 193 (1971).

- Sc61 H.W. Schmitt and J. Halperin, Phys. Rev. 121, 827 (1961).
- Si70 R.L. Simons and W.N. McElroy, "Evaluated Reference Cross Section Library," BNWL-1312 (1970).
- St62 P. Strohal et al., Nucl. Phys. 30, 49 (1962).
- St65 J.E. Strain and W.J. Ross, "14-MeV Neutron Reactions," ORNL-3672 (1965).
- Te60 H.A. Tewes et al., "Excitation Functions of Neutron-Induced Reactions," UCRL-6028-T (1960).
- Ti68 P.I. Tiwari and E. Kondaiah, Phys. Rev. <u>167</u>, 1091 (1968).
- Ya57 S. Yasumi, J. Phys. Soc. Japan 12, 443 (1957).
- Yo72 P.G. Young and D.G. Foster, Jr., "A Preliminary Evaluation of the Neutron and Photon Production Cross Sections of Aluminum," LA-4726 (TBP 1972).

ALUMINUM-27

{N,P} Neutron Cross Section

ENDF/B MATERIAL NO. 6193

- 31 -

		0055 84,87 84,87 64,94 64,94 70,94 7
. NO, 6193	×	
F/B MÅTERIAL	DESCRIPTION Y LINEAR IN	
E	RANGE 39 TO 84	ENERGY ENERGY FIRENCY
		2222 222 2
ALPHA) (oss section	RIPTION Linear in X	NKENGY CROC CROC CROC CROC CROC CROC CROC CRO
NEUTRON CR	E DESCA 39 LN Y	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
	3 TO	
وہ ۲	NERGIES	$ \begin{array}{c} H \\ S \\ \mathsf$
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	L BETWEEN E	CALCON CONTRACT CONTR
,UMINUM-27	DLATION LAW	C CROS'S SC C CROS
AL Reactio	INTERPO	N N M N D H H N K K K K K K K K K K K K K K K K K

- 33 -

Evaluation of the ³²S(n,p)³²P Reaction for ENDF/B-III N.D. Dudley and Robert Kennerley Argonne National Laboratory

The literature examined in this review includes all references in CINDA 71 and its Supplements. Four experiments have reported ${}^{32}S(n,p)$ cross sections near the reaction threshold of 1.6 MeV. All used the activation technique and measured relative to a flux monitor. The beta counting of the sulphur pellets appears to be the weakest portion of these measurements because of self absorption and self-scattering of beta particles in the relatively thick sulphur targets.

The four data sets are shown in Fig. 1. Klema and Hanson measured relative to a uranium fission chamber. Neither the isotopic composition nor the uranium cross sections are stated so renormalization of their results is not possible. Lüscher measured relative cross sections and normalized to Klema and Hanson. Hurlimann and Huber calibrated a Hornyack button relative to H(n,p)then measured ${}^{32}S(n,p)$ relative to the calibrated Hornyack detector. Allen et al. measured relative to a ${}^{238}U(n,f)$ chamber and

- 34 -

we have renormalized their data to the ENDF/B-III 238 U(n,f) cross sections. The structural detail as seen both by Lüscher and Hurlimann-Huber is well reproduced with the exception of a 20-50 keV difference in the neutron energy scale. We have chosen to increase the neutron energy scale of Hurlimann-Huber by 20 keV between 2.2 to 2.9 MeV and 50 keV for data greater than 3.0 MeV although this is not shown on the data plotted in Fig. 1. With the exception of the 2.25 and 2.55 MeV energy region, the agreement between the four experiments is reasonably good.

After renormalization of the Allen et al. data, good agreement is obtained with Klema and Hanson from 3.4 to 5.8 MeV. From 5.8 to 9.6 MeV data are only available from Allen. Between 10.4 to 11.6 Santry and Butler have data relative to the Allen data at lower energy. We have renormalized the Santry and Butler values relative to the renormalized Allen data. From 13 to 15 MeV, Allen measured the cross section absolutely by the associated alpha particle technique. Santry and Butler measured relative to Allen from 12.5 to 20.3 MeV by normalization at 14.50 MeV. Both measurements seem acceptable without any renormalization.

Eight individual measurements are reported between 14.0 and 14.8 MeV. These data have large scatter but, in general, are consistent (on the average) with both Allen and Santry and Butler. These data are shown in Fig. 2 with error bars attached. Above 15 MeV our evaluation follows the Santry and Butler data.

- 36 -

Figure 2

Because ${}^{32}S(n,p)$ has been extensively used as a cross section reference reaction, we feel additional measurements from threshold to 20 MeV are required. The cross section situation for ${}^{32}S(n,p)$ is not satisfactory for its use as a standard. Our evaluation consists of a "best" curve and is shown as the solid line in Fig. 1 and 2. An evaluation by J. Spaepen is also shown and is similar to ours up to 15 MeV.

- 1. D.L. Allan, Nuc. Phys. 24, 274-299 (1961).
- L. Allen, Jr., W. A. Biggers, R.J. Prestwood, and R.K. Smith, Phys. Rev. <u>107</u>(5) 1363-1366 (1957).
- 3. B. Antolkovic, Nuc. Phys. <u>44</u>, 123-129 (1963).
- R.C. Barrall, M. Silbergeld, and D. G. Gardner, Nuc. Phys. <u>A138</u>, 387-391 (1969).
- T. Hurlimann and P. Huber, Helvetica Physica Acta <u>23</u>, 561-566 (1950).
- 6. C.S. Khurana and I. M. Govil, Nuc. Phys. <u>69</u>, 153-157 (1965).
- 7. E.D. Klema and A. O. Hanson, Phys. Rev. 73(2), 106-110 (1948).
- 8. V.N. Levkovskii, Soviet Physics JETP 18(1), 213-217 (1964).
- V. Levkovskii, G.E. Kovel'Skaya, G.P. Vinitskaya, V. Sm. Stepanov, and V. V. Sokoz'skii, Soviet Journal of Nuclear Physics <u>8</u>(1), 4-5 (1969).
- E. Lüscher, R. Ricamo, P. Scherrer, and W. Zunt, Helvetica Physica Acta <u>23</u>, 561-566 (1950).
- 11. A. Pasquarelli, Nuc. Phys. <u>A93</u>, 218-222 (1967).
- 12. E.B. Paul and R. L. Clarke, Canadian Journal of Physics <u>31</u>, 267-277 (1952).
- D.C. Santry and J. P. Butler, Canadian Journal of Chemistry 41, 123-133 (1963).
- 14. J. Spaepen, Private Communication (1972).

SULFUR-32

(N,P) NEUTRON CROSS SECTION

ENDE/B MATERIAL NO. 5407

۲
0E+05
9.275
! 뛰
UALI
NOI.
REACT

INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 71 y linear in X

NEUTRON CROSS SECTIONS INDEX, ENERGY CROSS SECTIONS I 9.57845.465 8.998085.484 1 1.957845.465 8.998085.484 1 1.958845.485 8.998085.484 1 1.988855.485 1.288085.483 1.538085586 4.1280855.483 1.538085586 4.1280855.483 1.538085586 4.1280855.483 1.538085586 2.7788055791 1.538085586 2.7788055791 1.538085586 2.7788055791 1.538085586 2.7788055791 1.538085586 2.7788055791 1.538085586 2.7788055791 1.538085587 3.7788055791 1.538085587 1.538085587 1.538085587 1.538085587 1.538085787 1.538085787 1.538085787 1.538085787 1.538085787 1.538085787 1.538085787 1.538085787 1.538085787 1.538085787 1.538085787 1.5380857 1.538085787 1.538085

S SECTION ARNS 1,302 1,302 1,302 1,302 1,303 1,303 1,303 1,303 1,303 1,303 1,303 1,303 1,413 1,453 1, SECTION ENERGY CROSS 2Ng EV BAR ENERGY CROSS SECTION

Evaluation of the ⁴⁵Sc(n,γ)⁴⁶Sc Reaction* for ENDF/B-IV B.A. Magurno and S.F. Mughabghab National Neutron Cross Section Center

Brookhaven National Laboratory

Because of the importance of ⁴⁵Sc in dosimetry applications and its use as a filter to produce a "monoenergetic" neutron beam at 2.0 keV an accurate knowledge of the cross sections is required. In another study⁽¹⁾ an analysis and evaluation of the total cross section in the thermal and resonance region was presented. That study is extended here to include the capture cross section from the thermal region to 20 MeV.

The only capture cross section data sets (other than thermal) available at the time of this evaluation were those of Romanov⁽²⁾ (average cross sections as function of energy) Perkin⁽³⁾, Csikai⁽⁴⁾, and Booth.⁽⁵⁾ This lack of data caused almost complete dependence on a multilevel Breit-Wigner calculation using the code RESEND⁽⁶⁾ for the thermal and resonance region cross section evaluation.

As a starting point, the resonance parameters recommended in BNL-325 (1973) were adopted. Since the spin and parity of the ground state of the target nucleus are $7/2^{-}$, s-wave neutron capture by Sc-45 forms compound states with spins and parities 3^{-}

^{*}Research supported by U.S. Energy Research and Development Administration.

and 4. The spins of the resonances below 10 keV were not determined. In addition, thermal capture γ ray spectra measurements of Bolotin⁽⁷⁾ and Delang et al.⁽⁸⁾ give some, but inconclusive, indication that the spin of the bound level is possibly 3. This is based on the observation of a primary transition to a low lying state at 142 keV with spin and parity 1 and the lack of transitions to several low lying states with possible spin and parity of 5+. It must be pointed out that at the start of the evaluation, thermal neutron polarization data which is important in shedding light on the coherent and incoherent cross sections and the spin of the bound level, were not available.

The total cross section in the energy range 3-10 keV was calculated and compared with the experimental data. The spin of the resonances at 3.24, 4.27, 6.59, 7.92, 8.90, 11.7 keV were found to be 3,4,3,4,3,4 respectively. With such a choice for the spins, several attempts were made to reproduce the minimum at 2.0 keV on the assumption that the spin of the bound level is 3. However, the best fit in the region of the minimum in the total cross section was achieved by adopting a spin 4 for the bound level.

With the aid of the resonance parameters determined from σ_t the partial cross sections can be calculated. Of particular interest is the comparison of the calculated thermal cross sections with the experimental cross section recommended in BNL-325⁽⁹⁾ and more recently reported results of Dilg.⁽¹⁰⁾ As can be seen (Table I) the results are in excellent agreement.

- 43 -

Table I									
	0.0253	eV	18.8 eV						
	BNL-325	ENDF/B-IV Evaluation	Dilg.	ENDF/B-IV Evaluation					
σ _t (b)	50.5 ± 1.0	50.6	22.03 ± 0.25	21.7					
σ _γ (b)	26.5 ± 1.0	26.9	(1.01)	0.9					
σ _s (b)	24 ± 2	23.7	21.0	20.8					

The average data set of Romanov⁽²⁾ (to 40 keV) and the Booth⁽⁵⁾ datum (20 keV) were not used since they fell inside the resolved energy region. The data of Perkin⁽³⁾ (.15-15 MeV) and Csikai⁽⁴⁾ (15 MeV) were used as guides for extending the capture cross section from 0.1 MeV (upper end of the resolved energy region) to 20 MeV. The evaluation is a smooth curve approximating the data of Perkin and Csikai.

- B.A. Magurno and S.F. Mughabghab, Nucl. Sci. and Tech. Conf. (To Be Published) (March 1975).
- 2. S.A. Romanov and F.L. Shapiro, J. Yad. <u>F12</u>, 229 (1965).
- 3. J.L. Perkin, J. Nuc. Energy <u>17</u>, 349 (1963).
- J. Csikai, G. Peto, M. Buczko, Z. Miligy and N.A. Eissa, Nucl. Phys. <u>A95</u>, 229(1966).
- R. Booth, W.P. Ball and M.H. MacGregor, Phys. Rev. <u>112</u>, 226 (1958).
- 6. O. Ozer, RESEND, BNL 17134, Brookhaven National Laboratory.
- 7. H.H. Bolotin, Phys. Rev. <u>168</u>, 1317 (1968).
- W. Delang, P. Gottel, and H. Seyfarth, Contribution <u>A56</u>, Conference on Nuclear Structure Study with Neutron, (Budapest 1972) p.112.
- 9. S.F. Mughabghab, and D.I. Garber, BNL 325, Neutron Cross Sections, Vol. 1 (1973).
- 10. W. Dilg, Z. Naturforsch 29a, 1750 (1974).

B MATERIAL NO. 6415 Ata Meters		BREIT-HIGNER PARAMETERS		y] Ation fission	00E≠01 A,0000E+₽0	00E-01 0.0000E+00 00E-01 0.0000E+00		00E+00 4, 0000E+00	8855+888 74,886865+88 8855+88 74,888865+88		00E+00 0.0000E+00	00E+03 9,6000E+00 00E+03 9,0000E+00		20E+30 3.8800E+30	00E+03 7,0000E+00 00E+03 9,0000E+00	00E+00 0,0000E+00	0.011 + 0.0 3 4 6 0 0 0 1 + 0 0 0 0 1 + 0 0 4 0 1 + 0 0 0 0 1 + 0 0		00E+200 0.90%0E+20 00E+200 2.50%0E+200		005+00 1,0005+00 405+00 4 60485+00	80E+80 7,8088E+80	66E+60 A+6008E+60	00E+00 3,0000E+00 00E+00 3,00005+00	00E+30 9, 8042E+89	ØØE+ØØ 91,00000E+ØØ	005 + 00 0,000 05 + 00	601-400 01-0000400 001-400 09000400		22E+00 0,0000E+00	805+88 0,880485+88 	005+00 0,00005+00 095+00 0,00005+00
ENDF/ Nance d Ce Para		ILEVEL		DTHS (E Ragi	3.79	20 20 20 20 20 20 20 20 20 20 20 20 20 2		1.50	1.56	1.1	1.50	- - 	1.1	1.56	1.50	1.50	1.50	11	95.1	14	1.50	1.1	1,50	4 9 9	1.56	1.50	1.56	 	100	1.59	9 0 10 1	
RE SONAN		resorved MULT		RESONANCE WI NEUTRON	3.3714E+01	7.80005+01 * 200005+02		1.60005+02	2.60005+02	6.0000E+01	6.2000E.01	8.8000E+92 4 2000E+02	6.0000E+01	8,9968E+81	1,1010E+02 • .0000F+02	5.70005+02	1.8970F+02	1.29805+02	1.8000E+02	1.6890E+02	100000 TOUR	1.6000E+02	8.4630E+02	1.0400E+02	2.16005-02	1.6460F+02	5.23605+02	5,6400E+02	1.6016F+03	4.08905+02	3,5090E+02	1,49795+02 2,48985+02
A ND J UM-45	. 989865+80 1	- 00005.405 - 05005.405 - 50005.405 - 50005.405 - 10005.405 - 01 - 10005.401 - 01	0 57 57	TOTAL	3,4093E+01	7.0300E+01	4 4500F +0+	1.6150E+02	2.61595+62	6.1500E+01	6.1500F+01	8.0150E+02	6.1500E+01	9.14605+01	1.11.605+02	5.7150E+02	1,9120E+02	1.3130E+02	1.01595-02	1.70405+02	4.8150E+02	1.6150E+02	8.478ØE+02	1.0550E+02	2.17585+82	1.6410E+02	5,25105+02	5.6610E+02 	1.60715400	4 1040E+02	3.524ØE+Ø2	1.5120E+02 2.5040E+02
		1	S	J VALUE	4,0000E+00	3.00%0E+00	1.00%0F+00	4.00005+00	3.00005+00	4.07065+00	4 . 000 PE + 00	3,0000E+00	4.0000E+00	4.25255.453	3.00000E+00	3.66065+96	3,0000E+00	4.00005+00	3. 2000E+00	4,90095+00	3.0000E+00	4.00005+00	4 . 0000E+00	3,0000E+00	3.0000E+00	3.00005+00	4,0000E+00	3.6000E+00 • 2000E+00	3.0000E+00	4.0000E+00	3.0000E+00	3.00006+00 4.06006+06
GAND1UM-45	DNAL AUUNDANI Of Energy RA	RANGE NUMBEF ENERGY LIMIT ENERGY LIMIT ENERGY LIMIT Reference dattering Len dattering Len	CTTERING LEN	ENERGY (EV)	-2,700bE+02	3,2480E+03	6 - 2000E + 03	7 9200E+03	8,90005+03	1.9176-04	2 08005+04	2 0950F+04	2.44805+04	2,71205+04	2.8120E+04	3 2400E+04	3 4000E+04	4.83766+94	4.0770E+D4	4.33565+64	4.61595+04	4.91705+04	5,11606+04	5,2180E+04	5.76805+04	5.877bF+04	6,1840E+04	0.2540E+04	7.01105+04	7.17605+04	7 31805-04	7.4900E+04 7.7150E+04
S	FRACTI NUMBER	ENERGY UPPER V UPPER V VUPER V VUPER V VUPER V V V V V V V V V V V V V V V V V V V	K VALU NUMBER SPINSI	INDEX	ъ	~	o ⊲	ß	4 Q	• 10	0	- - - -	1 01	13	4 U 1	12			8	101	2	t in V Q	58	2.0	. 5	36	E1	21 P	5 M	52	8 i	38 38

- 46 -

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F I SS I ON	9,8688€+68 7,8688€+68
	HS {EV) Ràdiation	3,80885-81 3,80885-81
 A. 982 000 A. 982 000 A. 982 000 A. 982 000 A. 983 000 <	RESONANCE WIDT NEUTRON	7.60005-03 2.20005-02
0 4 0 0 0 4 0 0 8 4 N 0 0 0 4 4 N 4 4 4 4 4 4 4 4 4 4 4 4	2 .0000E+00 Total	3,8768E-81 3,2288E-81
	S	4 , 80005 + 86 3 , 80005 + 86
П 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	OF RESONANCE Cattering Len Energy (EV)	4 5500E+02 1 0100E+03
→ ×4444444444488888888888888888888888888	NUMBER SPIN SI INDEX	<u>ң М</u>

'/B MATERIAL NO, 6415		SS SECTION ENERGY CROSS SECTION ARNS 9ARS 9595-02 3.04086-05 7.9806-02 9806-03 8.00086-05 7.98086-03 9806-03 8.282426-06 1.47506-03 98066-03 6.32466+06 1.47506-03
E NO		ENERGY CRO. 1.7554 695 1. 7.88885485 8. 2.61035486 1.
(N.GANHA) Neutron Cross Section	RANDE DESCRIPTION 3 to 23 LN Y LINEAR IN LN X	<pre>/ CHOSS SECTION ENERGY CROSS SECTION EV BARNS EV FO BARNS EV FO FO FO FO FO FO FO FO FO FO FO FO FO</pre>
Scarptum-45	NTERPOLATION LAW BETWEEN ENERGIES Aange description 1 to 3 y Linear in X	IEUTRON CROSS SECTIONS EVENCY CROSS SECTION ENERGY NDEX, EVENCY CROSS SECTION EVENCY NDEX, EVENCY CROSS SECTION EVENCY 1 108005-05 0.1095075 1.105075 1 1 2020055 0.115072 0.115072 1 1 2020055 7.015072 0.115072 1 0 2020055 7.015072 0.12072 1 0 2020055 7.015072 0.12072 1 0 2020055 7.015072 0.12072 1 0 2020055 7.015072 0.12072 1 0 2020055 7.015072 0.10072 1 0 2020055 7.01005 0.10072 1 0 200555 20055 0.10052 0.10072 1 0 200555 20055 0.10052 0.10072 0.10072 21 0 20055 1 0.10072 0.10072

REFERENCES FOR EXPERIMENTAL DATA

<u>Yr.</u>	Lab	Author	References
67	DEC	Csikai, et al.	Nuc. Phys./A <u>95</u> , 229 (1967)
65	LEB	Romanov, et al.	Yad. Fiz. <u>1</u> , 229 (1965)
63	ALD	Perkin	J. Nuc. En. <u>17</u> , 349 (1963)
58	LRL	Booth, et al.	Phys. Rev. <u>112</u> , 226 (1958)

 $\frac{45}{Sc(n,Y)}$

An Evaluation of the (n,p) and (n,np) Reactions of the Isotopes of Titanium for ENDF/B-IV

B.A. Magurno

NNCSC

Brookhaven National Laboratory

Threshold detectors generally use elemental titanium rather than isotopically enriched samples necessitating the evaluation of all the (n,p), (n,np), (n,pn) and (n,d) reactions of the major contributing isotopes separately. ⁴⁹Ti and ⁵⁰Ti will not be dealt with here since they are both approximately 5% abundant and have small cross sections. The (n,np), (n,pn) and (n,d) reactions will be lumped together and hereafter called (n,np). The energy range will be divided into three regions. Region I is that of threshold to 7 MeV. Region II, 7 to 12 MeV and Region III, 12-20 MeV.

$\frac{46}{Ti(n,p)}$ 46Sc.

The ⁴⁶Ti(n,p)⁴⁶Sc reaction is useful as a dosimetry material because of its long half life and simple mode of decay (i.e. 83.8 days, 0.89 MeV γ). This cross section is considered one of the primary reaction necessary in the ILRR program.⁽¹⁾ Until recently the only data sets available in Region I were those of Ghorai⁽²⁾ and Lukic.⁽³⁾ Ghorai's data was taken on the 3-MeV Dynamitron at Auburn University and measured relative to ²⁷Al (n,p)²⁷Mg of Grundl.⁽⁴⁾ Lukic, on the 4-MeV Van De Graaff of the University of Florida, measured relative to ⁵⁶Fe(n,p)⁵⁶Mn⁽⁵⁾,

- 51 -

 27 Al(n,a) 24 Na⁽⁶⁾ and 58 Ni(n,p) 58 Co.⁽⁷⁾ These data, however, where widely scattered and had cross section errors of the order of 20%. Smith⁽⁸⁾ has since measured the cross section from 3-6 MeV on the ANL Fast Neutron Generator with accuracies of about 6%, using enriched 235 U in a fission chamber for $E_n \lesssim 3$ MeV and enriched 238 U for higher energies. This data set alone was used as input for the evaluation from 3-6 MeV. From threshold (1.62 MeV) to 3 MeV (no data available) Slavic⁽⁹⁾ from Knolls Atomic Power Laboratory supplies "guidance" with model calculations.

Region II has no available data. Smith of ANL, however, is extending the measurement (above) to 10 MeV. If these cross sections being measured are higher than the present evaluation, they may help to solve the discrepancy between 235 U fission spectrum averaged cross section calculated from above (10.2 mb) and the presently, accepted integral cross section⁽¹⁰⁾ (12.3 mb).

Region III (12-20 MeV) has several data sets measured as a function of energy. Liskien⁽¹⁾ accounted for the possibility of competing reactions in the text (i.e. ${}^{47}\text{Ti}(n,np){}^{46}\text{Sc}$) but apparently did not correct the data. Bormann's⁽¹²⁾ cross section measurements are available but very little information regarding the experiment accompany the results. The best data available, using isotopically enriched samples and correcting for completing reactions are those of Pai.⁽¹³⁾ The six 14 MeV experiments (Table 1) range from 203 mb to \sim 520 mb making their contribution to the evaluation minimal.

- 52 -

Figure 1

Figure 2

The model calculation of Slavic, the data of Smith, Pai (heavily weighted), Liskien, and Bormann were used as input to $\text{SPLINE}^{(14)}$, a cubic spline⁽¹⁵⁾ fitting program which generated the evaluated ${}^{46}\text{Ti}(n,p){}^{46}\text{Sc}$ ENDF/B-IV cross section curve.

⁴⁷Ti,(n,p)⁴⁷Sc,⁴⁷Ti(n,np)⁴⁶Sc.

 47 Ti(n,p) is an excergic reaction with an apparent threshold of ~ 0.5 MeV. It is considered a secondary reaction in the ILRR program.⁽¹⁾ The data by Smith⁽⁸⁾ with that of Armitage⁽¹⁶⁾ were the determining factors in the evaluation of Region I. As in 46 Ti, Ghorai's data were deemed too high. The data of Gonzales⁽¹⁷⁾ seem to be of different shape and magnitude compared to the other experiments (see curve-3) and were ignored for this evaluation.

As in 46 Ti(n,p) 46 Sc Region II has no data available but measurements by D.L. Smith are underway.

Region III has only one data set as a function of energy, that of Pai.⁽¹³⁾ The 14 MeV measurements of Cross,⁽¹⁸⁾ Allan⁽¹⁹⁾ and Hillman⁽²⁰⁾ are in general agreement with Pai, while those of Levkovski⁽²¹⁾ and Poularikis⁽²²⁾ are high.

The data of Smith, Armitage, Ghorai, Pai, Hillman, Allan, Cross, were used as input to SPLINE and the cross section curve was generated.

47Ti(n,np)⁴⁶Sc was merely a connection of points as supplied by Pai since this is the only information available.

- 54 -

Figure 3

Figure 4

⁴⁸Ti(n,p)⁴⁸Sc, ⁴⁸Ti(n,np)⁴⁷Ti

 48 Ti(n,p) is considered a secondary reaction in the ILRR⁽¹⁾ program. It has the smallest cross section of the titanium isotopes construed as important in the program, but the highest abundance (\sim 74%).

The data in Region I are sparse, consisting of a few points measured by Smith, $^{(8)}$ Lukic, $^{(3)}$ and Ghoral. $^{(2)}$ See 46 Ti (np) above. All the available data sets in this Region were used as input.

As in the above reports Region II has no data but measurements to 10 MeV are underway by D.L. Smith of ANL.

In Region III Gabbard ⁽²³⁾ measured the relative cross section as a function of energy on the U of Kentucky Electrostatic Accelerator, and then normalized to his own absolute measurements at 12.98, 13.75 and 16.60 MeV. Vonach ⁽²⁴⁾ measured the relative cross section as a function of energy and normalized to ²⁷Al(n, α) ²⁴Na = 111.5 mb at 14.7 MeV. Bormann's ⁽¹²⁾ data was available but not the details of the experiments. The data of Bormann, Vonach, Pai and Gabbard were used as input to SPLINE along with those of Smith, Ghorai and Lukic. The resulting curve was not renormalized since the 14.8 MeV value was approximately the same as that derived from a weighted average of the 14 MeV experiments. (See Table II). i.e. 66 mb.

The 48 Ti(n,np) 47 Sc, as in the case of 47 Ti described above, was determined by connecting the values indicated by Pai. (13)

- 56 -

Figure 5

Figure 6

<u></u>	Table I	······································
E(MeV)	σ(mb)	Reference
14.0	203 ± 21	D.L. Allen, Nuc. Phy. <u>24</u> , 274 (1961).
14.0	240 ± 40	Bayhurst and Prestwood, in <u>Fast Neutron Physics</u> , Part II, Interscience Publ., N.Y. London (1963). Chapter V by Ribe.
14.5	268 ± 30	W.G. Cross and H.L. Pai, Private Comm. to M.D. Goldberg (1963).
14.7	324 ± 30	D.R. Koehler and W.L. Al- ford, J. Nucl. En. <u>18 A/B</u> , 81 (1964).
14.8	230 ± 50	V.N. Levovskii et al., Yad Fiz <u>10</u> , 44 (1969). Trans. in Sov. J. Nucl. Phys. <u>10</u> , 25 (1969).
14.8	∿ 520	A. Poularikas and R.W. Fink, Phys. Rev. <u>115</u> , 989 (1959).
	Table II	
14.0	61 ± 10	Bayhurst & Prestwood, Fast Neutron Physics, Part II Interscience Publ., N.Y. London (1963) Chapter V by Ribe.
14.5	55 ± 11	Hillman, Nuc. Phys. <u>37</u> , 78 (1962).
14.5	93 ± 33	Paul & Clark, Can. J. Phys. <u>31</u> , 267 (1953).
14.7	55	Koehler et al., J. Nuc. Energy <u>18</u> , 81 (1964).
14.7	80 ± 4	Crumpton, J. Inorganic & Nuc. Chem. <u>31</u> , 3727 (1966).
14.8	70 ± 6	Prasad et al., Nuova Cím. <u>3A</u> , 467 (1971).
14.8	58 ± 8	Poularíkís et al., P.R. <u>115</u> , 989 (1959).
14.8	63 ± 6	Levkovskii et.al., Yad Fiz <u>10</u> , 44 (1969).

1.	Inter Laboratory LMFBR Reaction Rate Program (ILRR). McElroy - Private Comm. to M.K. Drake, Dec. 17, 1971.
2.	Ghorai et al., J. Nuc. Energy <u>25</u> , 319 (1971).
3.	Lukic et al., Nuc. Sci. and Eng. <u>43</u> , 233 (1971).
4.	Grundl, Nuc. Sci. and Eng. <u>30</u> , 39 (1967).
5.	Santry et al., Can. J. Physics <u>42</u> , 1030 (1964).
6.	Butler et al., Can. J. Physics <u>41</u> , 372 (1963).
7.	Goldberg et al., Neutron Cross Sections, BNL 325, 2nd Ed. Vol. II (1966).
8.	Smith et al., T.A.N.S. <u>16</u> , 312 (1973) & Private Comm. 8/73.
9.	Slavic et al., Private Comm., August 15, 1972.
10.	Fabry, Bldg. 465, May 1972.
11.	Liskien et al., Nuc. Physics <u>63</u> , 393 (1965).
12.	Bormann et al., EANDC (E) 57"U" (1965).
13.	Pai, Can. J. Physics <u>44</u> , 2337 (1966).
14.	SPLINE, Private Comm., D.E. Cullen, March 1971.
15.	Ahlberg et al., The Theory of Solines and Their Application, Acedemic Press (1967).
16.	Armitage et al., Private Comm. to M.D. Goldberg (1967).
17.	Gonzales et al., Phys. Rev. <u>126</u> , 27 (1962).
18.	Cross et al., Private Comm. to M.D. Goldberg (1963).
19.	Allan, Nuc. Phys. <u>24</u> , 274 (1961).
20.	Hillman, Nuc. Phys. <u>37</u> , 78 (1962).
21.	Levkovskii et al., Yad. Fiz. <u>10</u> , 44 (1969). (Trans. in Sov. J. Nuc. Phys. <u>10</u> , 25 (1969).
22.	Poularikis et al., Phys. Rev. <u>115</u> , 989 (1959).
23.	Gabbard et al., Phys. Rev. <u>128</u> , 1276 (1962).
24.	Vonach et al., Nuc. Tech. Conf. 2, E31 (1968).

1421			Y CROSS SECTION BARNS	+86 4,36685-84 +86 2,88885+82	+06 1.0357E+01 +07 2.7438E-01	+07 2.6500E-01 +07 1.7777E-01
MATERIAL NO. 6			SCTION ENERG	1-04 3,0000E -02 3,9800E	E-02 5,6667E E-01 1,1333E	E-01 1,4000E E-01 1,8667E
ENDFLA			RGY CROSS SI V BARN	2E+06 2.71001 0E+06 1.12941	3E+06 8.6490	3E+B7 2.74421 3E+B7 1.99431
			ECTION ENEI S	E-04 2.900	E-02 5,333; E-01 1,100	E-01 1,333 E-01 1,733
SECTION			CRGY CROSS S	12E+26 2,8588 38E+06 4,9984	10E+06 6.9602 13E+06 2.3838	76+07 2,7982 106+07 2,2500
NEUTRON CN			SECTION ENE	1E-12 2,750 1E-03 3,460	E-02 5,000 E-01 9,333	15-01 1,260 15-01 1,602
			RGY CROSS S V BARN	UE+86 3,6400 DE+86 1.3902	BE+86 5,1162 7E+86 1,8922	05+07 2,8000 35+07 2,3904
	₽96 +Ø6 EV En Energies	×	SECTION ENE	5E+20 1.630	.E-02 4.666 5E-01 7.666	8E-01 1,208 9E-01 1,533 8E-01 1,533
2 4 0	ALVE ~1,584 N LAM BETHEE	V LINEAR	A SECTACIAS HGY CROSS 5 V BARI	46+06 0.0009 06+06 7.6223	NE-86 3.441) NE-86 1.2080	7E+07 2.7783 7E+07 2.5275 BE+07 2.500
T I TANEU	REACTION Q V Interpolatio	RANGE 1 70 31	INDEX, ENE	1 1 619 6 3 1 619	11 4 328	21 1 166 26 1 466 31 2 000

- 61 -

ENDF/B MATERIAL NO. 6422 (N,N') P NEUTRON CROSS SECTION INTERPOLATION LAM BETMEEN ENERGIES Range description 1 to 16 y Linear in X REACTION O VALUE -1.0460E+07 EV TITANIUM-47

		下 550000000000 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0, 6422		ГЕRG ГЕRG 1000 1000 1000 1000 1000 1000 1000 10
IAL NO		
B MATER		0 0 0 0 0 0 0 0 0 0 0 0 0 0
ENDF/		C C C C C C C C C C C C C C C C C C C
		E NERVER C C C C C C C C C C C C C C C C C C C
		R 255 R
CTION		7776666666667 4000000000000000000000000000000000000
(N,P) CPDSS SEC		Н К К К К К К К К К К К К К К К К К К К
NEUTRON		100 1111111110 1111111110 1111111110 111111
		С с ч ч ч ч ч ч ч ч ч ч ч ч ч
	ES	F N N N N N N N N N N N N N N N N N N N
	V ENERGI V X	00000000000000000000000000000000000000
	BETWEE/ Ription Near II	700 20 20 20 20 20 20 20 20 20 20 20 20 2
M-A7	N LAW DESC Y LI	акта акта
ITANIU	DLATIO NGE D 52	2 0.11140/0440144 6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
H	INTERPI RA 1 TI	25 12 12 12 12 12 12 12 12 12 12 12 12 12

NEUTRON CROSS SECTIONS INDEX, ENERGY CHOSS SECTION ENERGY CROSS SECTION ENERGY CROSS SECTION ENERGY CROSS SECTION INDEX, ENERGY CHOSS SECTION ENERGY BARNS 1 111089:407 1.0008:400 1.2635:407 4.00495-403 1.36865-407 1.42465-407 1.10325-42 1 1.15806:407 1.74645-42 1.40005-407 2.50085-42 1.66585+407 4.06125-42 1.73055+407 5.90005-42 1.44005+407 8.25155-42 11 1.95045+407 9.400055-42 2.000085-407 9.80405-42 1.66585+407 4.06125-42 1.73055+407 5.90005-42 1.44005+407 8.25155-42 ENDF/B MATERIAL NO. 6423 (N,N') P NEUTRON CROSS SECTION INTERPOLATION LAM BETWEEN ENERGIES Rance description 1 to 12 y linear in x REACTION Q VALUE -1.1446E+Ø6 EV TITANIUM-48

AL NO. 6423		ENERGY CROSS SECTION EV EV 94.90335+06 8.98895-05 5.64082-06 5.08005-04 9.31082-06 7.92075-02 1.37335+07 6.38155-02 1.70005-07 5.10005-02 1.70005-07 5.10005-02
ENDF/B MATERI		CROSS SECTION BARNS BARNS BARNS BARNS BABABE-05 864 4.5537E-02 87 5.7072E-02 87 5.7072E-02
		R R A A A A A A A A A A A A A
SECTION		C CROSS SECTIO BARNECTIO +86 8,98085-96 -80 3,21075-94 -80 3,21075-92 -80 4,5505-92 -87 4,85925-92 -87 4,8692-92
TRON CROSS		202 202 202 202 202 202 202 202 202 202
N N N		CR055 SEG4 6 3.184R5 6 3.184R5 6 2.488865 6 2.488865 6 1.77355 6 1.77355 7 2.658851 7 2.658851 7 4.238151 7 4.238151 7 4.238151 7 4.238151 7 4.238151 7 4.238151 7 4.538151 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
i	V EV RGIES	0.N ENERCY 4. 4.6.0 5.2.4.000 5.2.4.0000 5.2.4.000 5.2.4.000 5.2.4.00000 5.2.4.00000 5.2.4.00000 5.2.4.000000 5.2.4.0000000000000000000000000000000000
	-3,20805-00 -5,20805-00 -661465N Ene icription inear in X	CR055 SEC 11C CR055 SEC 11C CR055 SEC 11C CR055 SEC 11C CR055 SEC 11C 1.583385 1.1.583385 1.1.583385 1.1.583385 1.1.583385 1.1.583385 1.1.583385 1.1.583385 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.534555 1.2.5345555555555555555555555555555555555
11 TAN1 UM-48	ION Q VALUE Polation Law Inge des To 28 y L	CROSS SEC ENERGS CROSS SEC 5 000 5 0000 5 0000 5 000 5 000 5 000 5 000 5 000 5
-	REACT INTERI	です。 して、 して、 して、 して、 して、 して、 して、 して、

- 69 -

Evaluation of the ⁵⁵Mn(n,2n)⁵⁴Mn Cross Section for ENDF/B-IV B.A. Magurno and H. Takahashi* NNCSC

Brookhaven National Laboratory

The ${}^{55}Mn(n,2n){}^{54}Mn$ cross section was one of the reactions to be supplied by the Cross Section Evaluation Working Group (CSEWG) for the Interlaboratory LMFBR Reaction Rate Program (ILRR). This reaction was later incorporated into a complete isotopic evaluation for ENDF/B-IV by H. Takahashi. The description of the evaluation (below) was extracted from the final report.⁽¹⁾

The (n,2n) activation cross section of Mn^{55} in the neutron range from 12.6 to 19.6 MeV has been measured by Menlove et al.⁽²⁾ and A. Paulsen, and H. Liskien.⁽³⁾ The other data for the cross sections were obtained either at one energy around 14 MeV or measured over the fission neutron spectrum.⁽⁴⁾

Paulsen and Liskien's data are about 15% higher than the Menlove data and also show small fluctuations. The Paulsen and Liskien experiment was performed by using a proton recoil telescope to measure the absolute flux, and the Menlove data are obtained from the ratio measurements to the U^{235} fission cross section.

These cross sections were evaluated by comparing these with the results calculated by using the nuclear model codes $GR \phi GI$ -III⁽⁵⁾ and THRESH.⁽⁶⁾

*Now at Tokyo Institute of Technology.

⁺Submitted to the normalization and standards subcommittee Oct. 1973. This evaluation has since been incorporated into the ENDF/B-IV General Purpose File.

Figure 1

There are no experimental data near the threshold energy, (Q= -10.225 MeV) and GRØGI-III code cannot treat the discrete excited level, so that the cross sections near the threshold were carefully evaluated by using the transmission coefficients obtained from optical model calculations.

References

- Takahashi, "Evaluation of the Neutron and Gamma Ray Production Cross Sections for ⁵⁵Mn". BNL 19454 (ENDF-208) Nov. 1974.
- 2. Menlove et al., Phys. Rev. <u>163</u>, 1308 (1967).
- 3. Paulsen and Liskien, J. Nuc. Energy A/B 19, 907 (1965).
- 4. Bormann et al., Nuc. Phys. A130, 195 (1969).
- Takahashi, "Grogi-III" Modified Version of Grogi-II by J. Gilat BNL 50246 June 1970.
- 6. Pearlstein, "THRESH" J. Nuc. Energy <u>27</u>, 81 (1973).

ENDF/B MATERIAL NO. 6197			N ENERGY CROSS SECTION ENERGY CROSS SECTION EV Deb35: 4.99415-22 1.108035: 4.9405: 4.0 1.28035: 4.99415-22 1.16605: 4.975.225: 4.1 1.2335: 4.75.40805: 4.1 1.6657: 4.077, 4.0755: 4.1 1.48005: 4.77.59035: 4.1 1.68005: 4.77, 4.0755: 4.2 1.66675: 4.77.5035: 4.1 1.9335: 4.7975: 4.21 1.66675: 4.775: 4.7975: 4.21 1.9335: 4.7857: 4.21 1.9335: 4.78575: 4.21 1.9335: 4.7857: 4.21 1.9335: 4.21 1.9335: 4.7857: 4.21 1.9335: 4.7857: 4.21 1.9335: 4.7857: 4.21 1.9335: 4.21 1.9335; 4.21 1.9
DIRECT(N, 2N) NEUTRON CROSS SECTION			ECTION ENERGY CROSS SECTION EVEN BRANS E-10 1.06871207 4.08004502 E-01 1.20001407 4.08004501 E-01 1.30471407 7.3236701 E-01 1.33351407 8.5755702 E-01 1.95005407 9.02005701
L	1,0224E+07 EV	ETWEEN ENERGIES 1971on 16ar in X	LONS BARNS SECTION ENERGY CROSS SI BARNS DARNS 1.0412602 212802 212833 1.04262522001 1.0412602 22007 1.222552201 1.33335-07 2.08021 3.22255221 1.33335-07 9.02001 3.22255221 1.33335-07 9.0041 3.22255221 1.33335-07 8.0041 3.22255221 1.33355-07 8.0041 3.222552221 1.33355-07 8.0041 3.222552221 1.33355-07 8.0041 3.222552221 1.33355-07 8.0041 3.222552222252225225 3.2255222222225225 3.225522222225225 3.225522222525225 3.22552222225 3.22552252525 3.22552252 3.2255225 3.2255252 3.2555252 3.5555252 3.5555252 3.5555252 3.5555252 3.5555252 3.5555252 3.5555252 3.5555252 3.555525252 3.555552 3.5555252 3.555552 3.5555252 3.555552 3.555552 3.555552 3.555552 3.555552 3.555552 3.555552 3.555552 3.555552 3.555552 3.555552 3.5555552 3.5555552 3.555552 3.555552 3.5555552 3.555552 3.5555552 3.5555552 3.5555552 3.5555555555
MANGANESE-55	REACTION Q VALUE	INTERPOLATION LAW B RANGE DESCR 1 TO 25 Y LIN	NEUTRON CROSS SECTI INDEX, ENERCY CR 1 1143356407 0 1 1143356407 0 1 1143356407 0 1 1143356407 0 1 114356666407 0 2 1 1,466566407 0 2 2 2000066407 0

- 73 -

Evaluation of the ⁵⁴Fe(n,p)⁵⁴Mn Reaction For ENDF/B-III Dosimetry File R.E. Schenter - August 1973 Hanford Engineering and Development Laboratory

The literature reviewed in this evaluation includes all references in CINDA 72 and its supplements plus papers describing recent measurements by Smith and Meadows and Paulsen and Widera. Fig. 1-5 show the evaluation made (solid curve) together with available experimental data and some previous evaluations. Below 2.5 MeV Smith and Meadows and Paulsen and Widera values were used directly (Fig. 1-2). Between 2.5 and 6.0 MeV Smith and Meadows results were directly used (Fig. 3). Smith and Meadows results were normalized relative to the ENDF/B-III ²³⁵U fission cross section. Above 6.0 MeV a smooth "eye-guide" curve was constructed (Fig. 4-5) which fell between previous evaluations (6-13 MeV) and numerous experimental results (13-17 MeV).

- 74 -

Figure 3

Figure 4

Figure 5

References

1.	Smith and Meadows Trans. Am. Nucl. Soc. <u>16</u> , 1 (1973).
2.	Paulsen and Widera, EANDC (E) 150U, 1972.
3.	Fabry et al., EANDC (E) 127U, 1970.
4.	Simons et al., BNWL-1312, 1970.
5.	Bresesti, Nuc. Sci. and Eng. <u>40</u> , 331 (1970).
6.	Barrall et al., Nuc. Phys. <u>A138</u> , 387 (1969).
7.	Carroll et al., Nuc. Sci. and Eng. <u>22</u> , 411 (1965).
8.	Salisbury et al., Phys. Rev. <u>B140</u> , 305 (1965).
9.	Lauber et al., Nuc. Phys. <u>73</u> , 234 (1965).
10.	Cross et al., EANDC (CAN) <u>16</u> , (1963).
11.	Cross et al., AECL <u>1542</u> , (1962).
12.	Storey et al., Proc. Phys. Soc. <u>75</u> , 526 (1960).

1

IRON-54

(N,P) NEUTRON CROSS SECTION

ENDF/B MATERIAL NO. 6417

E۷	
8,8000E+05	
VALUE	
REACTION D	

INTERPOLATION LAW BETWEEN ENERGIES Range description

	ENERGY CROSS SECTION EV BARNS	1.7102E+06 5.9022E-03	2.2109E+06 3.7200E-02	2,9850E+Ø6 1.3200E-01	3,78806+06 2,61006-01	4,5870E+06 3.3100E-01	4,9960E+26 4.2900E-01	5,2380E+06 4.3600E-01	5.6380E*06 5.1100E-01	6,00000+06 5,2000E-01	7,2500E*06 5,8200E-01	8.50006+06 5.89006-01	9.7500E*06 5.7000E-01	L.1000E+07 5.3200E-01	L.2250E+07 4.8090E-01	L,3500E+07 4,0609E-01	L.4750E+07 3.8700E-01	L.6000E+07 2.3200E-01	L.7250E+27 1.8400E-01	L,8500E+07 1.5600E+01	L.9750E*07 1.4200E+01		
	ENERGY CROSS SECTION EV BARNS	1.625FE+86 1.1622E-03	2.1810E+06 2.6200E-02	2.7920E+86 1.0000F-01 2	3.7160E+R6 2.4800F-01	4.3850E+06 3.0600E-01	4.8950E+06 3.8300E-01 .	5.1990E+06 3.8900E-01 !	5.4380E+06 4.7400E-01 3	5.938AE+86 5.080AE+01 (7.0000E+06 5.7300E-01	8.2500E+06 5.9000E-01 1	9.5000E+06 5.7500E-01 9	1.0750E+07 5.4000E-01 1	1.2000E+07 4.9300F-01 1	1.3250E+07 4.2500E-01 1	1.4500E+07 3.2500E-01 1	1.575 <i>8</i> E+ <i>8</i> 7 2.4600E-01 1	1.7000E+07 1.9200E-01 1	1.8250E+07 1.6000E-01 1	1.950RE+07 1.4400E-01 1		
	ENERGY CROSS SEGTION EV barns	L.5009E+06 3,5000E-04	1,979AE+Ø6 1,2700E-02	2,7820E+86 9,9600E-02	3,5879E+06 2,6500F-01	4,1830E+06 3,1800E-01	4,7960E+06 3,6400F-01	5.1370E+26 4.4800E-01	5.35586+06 4,15005-01	5,8560E*Ø0 4,9200F-01	5.7500E+06 5.6500F-01	8,0000E+06 5,9200F-01	9.2500E+26 5.7900F-01	L,0500E+07 5,4900E-01	1.1750E+27 5.0200F-01	L, 3000E+07 4, 4200E-01	1.4258E+07 3.4500F-01	[,5507F+07 2,6200F-01	L.6750E+B7 2.0280F−B1	L. BODOE+07 1,6500F-01	L,9250E+07 1,4600E-01		
	ENERGY CROSS SECTION FV BAANS	1,3750E+06 9,5000E-05	L.9000E+06 7.8500E-03	2.7270E+06 1.1900E+01 3	5.3850E+06 1.9700E-01	\$ 1400E+06 2.6200E-01	1,7950E+86 3,6700E-01	5.0370E+06 3.8900E-01	5 2558E+Ø6 4 58A0E-01	5.8400E+06 5.4500E-01	5 5000E+06 5 5200E-01	7.7580E+26 5.8980E-01	0.0000E+06 5.0300E-01	L.0250E+07 5,5800E=01	L.1500E+07 5.1200E-01	L 2750E+07 4 5800E-01	1,4000E+07 3,6500E-01	.5250E+07 2.7500E-01	L 6592E+07 2.1000E=01	1.7750E+07 1.7600E-01	1.9000E+07 1.4900E-01		
1 TO 101 LN Y LINEAR IN X	NEUTRON CROSS SECTIONS Index. Enemgy Cross Section Ev	1 1.2500E+06 1.0000E+05	6 1,7580F+86 3,8000E+03	11 2.5890E+06 7.2100E+02	16 3.1870E+06 1.4500E-01	21 3.998ME+86 2.498ME=81	26 4 5870E+06 3 6100E=21	31 4 9960F+D6 4 0100E-01	36 5,2400E+06 3,9100E=01	41 5.7550E+86 5.1980E=81	46 6 2500E+06 5 3800E-01	51 7 5000E+06 5 8600E+01	56 8.7500F+06 5.8800E+01	61 1.0000E+07 5.6400E+01	66 1.1250E+07 5.2200E+01	71 1.2500E+07 4.7000E=01	76 1.3754E+07 3.8700E=01	81 1.5000E+07 2.9000E-01	86 1.6250E+07 2.2200E+01	91 1.7500E+07 1.7600E=01	96 1.875bE+07 1.5200E=01	1A1 2,0000E+07 1.4100E-01	

- 79 -

Evaluation of the 56 Fe(n,p) 56 Mn Cross Sections for ENDF/B-III

N. D. Dudey and Robert Kennerley

Argonne National Laboratory

The literature examined in this review includes all references in CINDA 71 and its supplements plus some very recent measurements near the reaction threshold. All reference cross sections have been renormalized to ENDF/B-III cross sections and weighted least-squares fitting routines were used to systematize the evaluations.

Virtually all measurements on 56 Fe used the activation technique to determine 56 Mn in activated natural iron samples. As a result, the 57 Fe(n,np+d) and 58 Fe(n,t) cross section contributions to 56 Mn are included in the measurements. For dosimetry purposes, elemental iron is usually used, so the evaluated cross sections are appropriate for this application. It should be recognized however, that this evaluation is not strictly 56 Fe(n,p). Chittenden¹ has measured the 57 Fe(n,np) cross sections at 14.8 MeV to be 6.1 mb. From this result it can be concluded that below about 15 MeV contributions to the 56 Mn activity are negligible (<0.3%) but above 15 MeV they may be more significant.

The evaluation approach is largely based upon a subjective analysis of the experimental technique. From this analysis a weighting factor was assigned to each of the reported results. The next step was to relate all relative measurements to ENDF/B-III

- 80 -

cross sections if a monitor reaction was used. Santry and Butler² measured relative to the ³²S(n,p) reaction. The measurement was renormalized to the evaluation of ³²S (submitted to the task force working group) which was essentially relative to the ²³⁸U(n,f) reaction. Liskien and Paulsen⁽³⁾ essentially measured relative to H(n,p) and no renormalization was necessary. Grund1⁽⁴⁾ and Meadows⁽⁵⁾ measured relative to ²³⁸U(n,f) and both sets of data were renormalized to ENDF/B-III. Cuzzocrea⁽⁶⁾ reports a number of measurements for ⁵⁶Fe and several other cross sections including ²⁷A1(n, α) between 13.7 and 14.7 MeV. In general, all of their results were high; a flux calibration problem was assumed and their ⁵⁶Fe data was renormalized by relating their ²⁷A1(n, α) results to the revised evaluation of ²⁷Al provided by P.G. Young. Hemingway⁽⁸⁾ reported ⁵⁶Fe results by the associated alpha particle technique so no renormalization was necessary.

Fourteen individual measurements (9-22) are reported for the energy region 14-15 MeV. Bormann (23) has measured relative 56 Fe cross sections and normalized to a value of 112.5 at 14.1 MeV. Similarly, Terrell and Holm(24) normalized their relative data to a value of 110 mb at 14.3 MeV. All data between 13.5 and 15 MeV were fit, weighted according to an in house assessment, to obtain renormalization values for Bormann and Terrell-Holm. The renormalization values were 110.3 and 108.8, respectively.

Bresesti⁽²⁵⁾ and Fabry⁽²⁶⁾ both measured a number of spectrum averaged cross section ratios in a thermal neutron induced 235 U fission spectrum. Bresesti assumed a cross section shape for 56 Fe

- 81 -

based upon Liskien-Paulsen and Santry-Butler and determined the magnitude based upon integral ratios and an assumed fission spectrum. Fabry did essentially the same, except he allowed the shapes to vary in an ill-defined way to essentially measure 56 Fe relative to 6 other cross sections including 235 U(n,f). An adjustment to Fabry's 56 Fe data was made by renormalizing his reported 235 U(n,f) data to the ENDF/B-III evaluation.

Finally, all renormalized cross sections were weighted according to a subjective analysis and least squares fit to obtain the evaluated excitation function. Figures 1 and 2 show all the renormalized data together with the evaluated curve. The evaluated cross sections are tabulated in Table I using an energy grid such that a linear interpolation between points will result in a negligible error. In Fig. 3 a comparison is shown of this evaluation to those of Kanda and Nakasima⁽²⁷⁾ and the SAND-II evaluated library.⁽²⁸⁾ All three evaluations are very similar up to about 15 MeV where SAND-II begins to deviate significantly.

On the basis of this evaluation, it is felt that the shape of the excitation function is established with considerable confidence and the magnitude of the cross sections seems to be established to within about ±5%. For dosimetry applications to LMFBR-type neutron spectra, no further experimental work would seem necessary.

- 82 -

Figure 1

Figure 2

Figure 3

References

- D.M. Chittenden, D.G. Gardner, and R.W. Fink, Physical Review 122, 860 (1961).
- 2. D.C. Santry and J.P. Butler, Can. J. Phys. <u>42</u>, 1030 (1964).
- H. Liskien and A. Paulsen, Jour. Nucl. Energy <u>19</u>, 73 (1965).
 H. Liskien and A. Paulsen, NUK <u>8</u>, 315 (1966).
- 4. J. Grundl, Nucl. Sci. and Eng. <u>40</u>, 331 (1970).
- 5. J.W. Meadows and D.L. Smith, unpublished private communication (1972).
- 6. P. Cuzzocrea and E. Perillo, Nuovo Cimento 54, 53 (1968).
- 7. P.G. Young, private communication (1972).
- J.D. Hemingway, R.H. James, E.B.M. Martin, and G.R. Martin; Proc. Roy. Soc. <u>A292</u>, 180 (1966).
- 9. D.L. Allan, Nuc. Phy. 24, 274 (1961).
- 10. G.W. McClure and D.W. Kent, Journ Frank. Inst. 260, 238 (1955).
- 11. H. Pollehn and H. Neuert, Zeit. Naturforsch. 16A, 227 (1961).
- R. S. Storey, W. Jack, and A. Ward, Proc. Phys. Soc. (London)
 <u>75</u>, 526 (1959).
- 13. Shinjiro Yasumi, Jour. Phys. Soc. Japan 12, 443 (1957).
- 14. S.G. Forbes, Phys. Rev. 88, 1309 (1952).
- P. Strohal, P. Kulisic, Z. Kolar, and N. Cindro, Phys. Letters
 <u>10</u>, 106 (1964).
- 16. F. Gabbard and B.D. Kern, Phys. Rev. <u>123</u>, 1276 (1962).
- W.G. Cross, R.L. Clark, K. Morin, G. Slinn, N.M. Ahmed, and
 K. Beg, Bull Am. Phy Soc <u>7</u>, 335 (1962).

- 84 -

- 18. E. B. Paul and R.L. Clarke, Can Jour Phys. <u>31</u>, 267 (1952).
- G.C. Bonazzola, P. Broretto, E. Chiavassa, R. Spinoglio, and
 A. Pasquarelli, Nuc. Phys. <u>51</u>, 337 (1964).
- R.C. Barrall, M. Silbergeld, and D.G. Gardner, Nuc. Phys. <u>A138</u>, 387 (1969).
- V. Levkovskii, G.E. Kovel'skaya, G.P. Vinitskaya, V.M. Stepanov, and V.V. Sokol'skii, Soviet Journal of Nuclear Physics <u>8</u>, 4 (1970).
- P. Hille, Oestem. Akad. Wiss. Mata. and Naturw. Sitzber. (Austria) <u>177</u>, 463 (1969).
- 23. M. Bormann, S. Cierjacks, R. Lankau, and H. Neuert, Z. Physik <u>166</u>, 477 (1962).
- 24. J. Terrell and D.M. Holm, Phys. Rev. 109, 2031 (1958).
- A.M. Bresesti, M. Bresesti, A. Rota, R.A. Rydin, and
 L. Lesca, Nucl. Sci. and Eng. <u>40</u>, 331 (1970).
- 26. A. Fabry, M. DeCoster, G. Minsart, J.C. Shepers, and P. Vandeplas, IAEA-CN-26/39, p. 533, Helskini (1970).
- 27. Y. Kanda and R. Nakasima, NBS Sp. Pub. 299, Vol. 1, p. 193, Washington, D.C. (1968).
- R.L. Simons and W.N. McElroy, "Evaluated Reference Cross Section Library", BNWL-1312 (1970).

(N,P) Neutron Cross Section

ENDF/8 MATERIAL NO, 6410

1R0N-56

REACTION Q VALUE -2.9550E+26 EV Interdlation Law Betheen Energies Rance description 1 to 77 y Linear in X

	S								
	CROSS SECTI BARNS	2.9500E-07 2.5000E-06	5,6000E-05 5,5502E-04	3.2800E-03 1.3200E-02	2,9600E-02 6,3300E-02	1,2300E-01 1,1300E-01	1,1400E-01 1.10f0E-01	1.0400E-01 8.1800E-02	5.4700E-02
	ENERGY	3,3000E+06 3,8000E+06	4,3000E+06 4,8000E+06	5, 3000E+06 6, 0000E+06	7.0000E+06 9.5000E+06	1,2000E+07 1,3000E+07	1,3500E+07 1,4200E+07	1.4700E+07 1.6000E+07	1,8500€+07
	ROSS SECTION Reans	2.1000E-07 1.5000E-06	2.9000E-05 3.7500E-04	2.1400E-03 1.0100E-02	2.6400E-02 5.6700E-02	9.5600E-02 1.1200E-01	1.1400E-01 1.1100E-01	1.0400E-01 9.070FE-02	5.89 <i>00</i> E-02
	ENERGY CI	3.2000E+06	4.2000E+06 4.7007E+06	5.2000E+06 5.8000E+06	6,8020E+06 9.0000E+06	1.15006+07	1.3400E+07 1 1.4100E+07	1.4600E+07 1.5500E+07	1, 60,006+07
	ROSS SECTION Rarns	1.5000E-07 9.8006E+07	1.2008F-05 2.38085-04	1.70005-03 7.16005-03	2,31005-72 5,84005-02	8,72005-02 1.10006-01	1,14005-01 1,12005-01	1.07006-01 9.9400F-02	6, 350BF-02
	ENERGY C	3,1007E+26 3,6000E+06	4.100%E+06 4.6000E+06	5,1000E+06 5,6003E+06	6.6000E+06 8.5000E+06	1,1000E+07 1,2600E+07	1,3300E+07 1,3900E+07	1.4500E+07 1.5000E+07	1,75006+07
	ROSS SECTION	1.1000E-07 6.2000E-07	8.0000E-06 1.5000E-04	1.2300E-03 5.8000E-03	1.9800E-02 4.4000E-02	7.8770E-02 1.0800E-01	1.1400E-01 1.1300E-01	1.0800E-01 1.0190E-01	6. <i>9278</i> 5-82 4.92785-82
	ENERGY D	3.00000E+06 3.5000E+06	4.5000F+05	5.0000E+06	6.4000E+06 8.0000E+06	1.8500E+07 1.2400E+07	1.32005+07 1.38005+07	1,4400E+07 1,4900E+07	1.70006-07 1.95006-07
	IONS Ross section Badas	6.0000E+00 4.2000E+07	4.4800E>06 9.3800E-05	8.8000E=04 4.5000E=03	1.6400E-02 3.7200E-02	7.9600E=02 1.9600E=01	1.1300E=01 1.1300E=01	1.0500E-01 1.0200E-01	7.6200E=02 5.1300E=02
	N CROSS SECT ENERGY C	2.9700E+06 3.4000E+06	3.9000E+06 4.4000E+06	4 9080E+06 5 4000E+06	6, 2000E+06 7, 5020E+06	1.2200E+07	1,3100E+07 1,3400E+07	1,4300E+07 1,4800E+07	1.6500E+07 1.9000E+07
•	NEUTRON INDEX,	40	-1 40 -1 40	222	Ē	4 4 4 5	1. S	41 99 99	71

- 87 -

Evaluation of the ⁵⁸Fe(n,γ)⁵⁹Fe Reaction For ENDF/B-IV Dosimetry File R.E. Schenter - October 1973 Hanford Engineering and Development Laboratory

The literature reviewed in this evaluation includes all references in CINDA 72 and its supplements plus the theoretical calculations of Green et al. The thermal value of 1.18 taken from Fabry et al. Resolved resonance parameters for both s and p waves were obtained from Hockenbury et al, and were put into File 2. Above 32 keV the cross section is described in File 3 using the results of a Hauser Feshbach calculation made with the NCAP code of Schmittroth. For these calculations the Moldauer Optical Potential was used with $\Gamma_{\gamma} = 0.200$ and $D_{\rm obs} = 22860$ eV. The NCAP results were lowered 10% to give better agreement with integral results from CFRMF reported by Rogers and Millsap. No microscopic capture measurements above 20 keV have been reported for this isotope.

References

- 1. Green et al., R-750, RAND, April 1971.
- 2. Fabry et al., EANDC (E), <u>76J</u>, (1967).
- 3. Hockenbury et al., Phys. Rev. <u>178</u>, 1746 (1969).
- 4. Hockenbury, RPI Progress Report, April 1973.
- 5. Schmittroth HEDL-TME 73-30, January 1973.
- 6. Schmittroth HEDL-TME 71-106, August 1971.
- 7. Rogers and Millsap HEDL-TME <u>72-129</u>, ANC-13 (1972).
- 8. Simons et al., HEDL-TME <u>72-129</u>, HEDL-17 (1972).

ENDF/9 MATERIAL NO. 6418 RESOLVED SINGLE=LEVEL BREIT-WIGNER PARAMETERS 7.02005+00 7.02005+00 7.02005+00 n, 68085+78 7, 68665+76 9, 88465+76 FISSION FISSION 2,0000E-01 2,0000E=01 2,0000E=01 7,5008E-01 2,0280E-01 1,7500E-02 2,0008E-01 2,0098E-01 2,0280E-01 RESONANCE DATA Resonance parameters RESONANCE WIDTHS (EV) Neutron Radiation RESONANCE WIDTHS (EV) NEUTRON RADIATION 3,24006+03 5,00006+00 4,00006+01 9.5000E-01 2.1750E-01 2.0200E+01 2,8326E-01 5,2000E+00 1,82000E+00 TOTAL TOTAL 1,52005+20 5,00005-01 1,50005+00 1 -2,00005+02 5,00006-01 2 3,55005+02 5,00006-01 3 1,92005+04 5,00006-01 U VALUE J VALUE INDEX ENERGY (EV) INDEX ENERGY (EV) 2 . 30005 +02 6 . 20005 +03 1 . 05045 +03 180N-58 ~ ~

1RON-58

(N,GAMMA) Neutron Cross Section

ENDF/B MATERIAL NO, 6418

		i
IES	×	
ENERG	IN LN	
LAN BETWEEN	LN Y LINEAR	SECTIONS
ATTON	5	CROSS
INTERPOL	1 70	NEUTRON • NDE V

	2						
	CROSS SECTIO	AARNS	4 7.9000F-03				1 11 CONTRACTOR
	ENFRGY	74	3.2000E+0	7 00005 01	D D D D D D D D D D D D D D D D D D D		
	CROSS SECTION	BARNS	4 5.0000F-04	R 3 81 995 - 01		7 8 8200C 04	
	ENFRGY	>	3.2000E+0	5.00005+0	0.00001-0	0.0005	
	CROSS SECTION	BARNS	5.0006F-04	2.96865-03	2.00005-03	9.63005-04	
	ENERGY	E د	2,00005+02	2.00005-05	8.50005+05	7.00005+06	
	CROSS SECTION	BARNS	5.0000E-02	5 4.3400E+03	2.7300E-03	1.2300F-03	
	ENERGY	2	2.5200E-02	1.00005+05	8.20005-0	5.00005+06	
ECTIONS	CROSS SECTION	BARNS	04 7.6000E=01	84 5.6000E-03	05 2.7200E-03	06 1.2200E-03	37 1.4000E-02
V CROSS SI	ENERGY	л Ч	1.0000E-1	6 .0000E+1	8,0000E.*	2.0000E-5	2,0000E+6
NEUTRO	INDEX.		ч	v	7	4 4	21

Evaluation of 59 Co(n, γ) 60 Co, 59 Co(n, 2n) 58 Co, 59 Co(n α) 56 Mn. For ENDF/B-IV

T.J. Krieger, (BNL), A.B. Smith, D.L. Smith (ANL) and

J.D. Jenkins (ORNL)

The present evaluation of Co-59 (n,γ) for ENDF/B IV consists of two parts, an evaluation below 100 KeV by T.J. Krieger, Brookhaven National Laboratory, and one above 100 KeV by A.B. Smith and D.L. Smith, Argonne National Laboratory.

A. $\frac{59}{Co(n,\gamma)}$ evaluation below 100 KeV, T.J. Kreiger, BNL.

The Resonance region has been extended from 10^{-5} eV -36 keV in ENDF/B-III to 10^{-5} eV - 100 keV for ENDF/B-IV. However, the list of resonances extends to 119 keV. There is no unresolved region. Care has been taken to tie in smoothly with the evaluation above 100 keV.

The resonance parameters were taken from the recently published new edition of the BNL 325 compilation (Ref. 1) with the following modifications:

(1) The effective scattering radius R' was increased from 5.3f (Ref. 1) to 6.8f in order to improve the fit of the total cross section between resonances with the data of J. Garg et al. (Ref. 2).

(2) The change in R' mentioned above entailed a change in the bound state parameters. These are determined by fitting to the experimental values (Ref. 1) of the thermal scattering and

- 92 -

thermal capture cross sections and of the coherent scattering amplitude.

(3) Unknown J-values were assigned the values 3 or 4 at random, an attempt being made to keep the level density pro-

(4) To improve the fit with the data of Ref. 2, a few resonances in Ref. 1 were eliminated completely and some in the high energy region were shifted slightly.

(5) Unknown gamma widths (for resonances between 18.92 keV and 90 keV) were assigned the value $\Gamma\gamma=0.48$ eV. Above 90 KeV gamma width was increased to 1.55 eV in order to improve the fit to capture data and to smooth the tie-in with the evaluation above 100 keV.

Using the resonance parameters of Ref. 1 with the above modifications, Breit-Wigner multi-level calculations were performed and compared with the data of Ref. 2. The fit was generally very good. However, for further improvement, a small background contribution (no larger than ±1b below 95 KeV) to the elastic scattering cross section was introduced in selected energy regions of File 3. The capture cross section was not assigned a File 3 background contribution.

The thermal (0.0253 eV) cross section calculated from Files 2 and 3 follows:

Thermal capture cross section = 37.22 barns This value is within the limits given in Ref. 1. The resonance capture integral (lower limit = 0.5 eV) calcu-

- 93 -

lated from File 2 is 76.7 barns which is within the limits given in Ref. 1.

B. $\frac{59}{\text{Co-evaluation 0.1 - 20 MeV, A.B. Smith and D.L. Smith, ANL.*}}{\text{The (n, <math>\gamma$) Reaction

The cross sections for this process have been measured by activation and by prompt gamma-ray detection techniques. There is a metastable state in the residual ⁶⁰Co nucleus but the isomer ratio has been determined at a number of incident energies by Paulsen⁽⁶⁾ and thus the total (n,γ) cross section can be reasonably deduced using activation techniques. Johnsrud et al.⁽⁷⁾ have determined the isomer activation cross section at a number of energies up to ~ 2.0 MeV. Their results have been corrected to obtain the total (n,γ) cross section using the isomer ratios of Paulsen. Paulsen has measured the (n,γ) cross sections at approximately 2.0, 6.0 and 14 MeV. The Johnsrud et al. and Paulsen measurements are in agreement in the region of overlap near 2.0 MeV. Rigaud et al.⁽⁸⁾ determined a 14.8 MeV cross section from observation of prompt gamma-ray emission. Their value is only about half that of Paulsen but both are small (< 2.5mb).

The available experimental information is sparse but it does provide reasonable guidance for the present evaluation illustrated in Fig. 1. The evaluation follows the small structure near 0.5 MeV reported in Ref. 7. The interpolation from measurements at 6.0 to those at 14.0 MeV is essentially linear with little slope. The available experimental information seems to preclude any ap-*Extracted from P.T. Guenther et al. (Ref. 3).

- 94 -

Figure 1

preciable giant resonance behavior between 2.0 and 14.0 MeV. Above 14 MeV the evaluation slowly increases. Such a behavior is qualitatively consistent with a small contribution from direct capture. The evaluation compromises between measured results near 14.0 MeV. The evaluation has some uncertainties but the cross sections are generally small and as a consequence creditable errors will not seriously influence most applications.

The present (n,γ) evaluation is grossly different from that of ENDF, MAT-1118 as illustrated in Fig. 1. No experimental evidence justifying the ENDF-III result over much of the energy range could be found.

The (n,2n) Reaction

The product nucleus, ⁵⁸Co, has an isomeric state which, fortunately, decays primarily by internal conversion. Thus, with reasonable care, activation methods have been used to give good results.

The available experimental information was divided into three sets. The first of these was judged most reliable by experimental

- 95 -

error, detail and consistency, both internally and with other selected sets. In this first group were the results of Cabe et al. $^{(9)}$, Granger and Longneve $^{(10)}$, Bormann et al. (omitting the lowest energy points) $^{(11)}$, Wenusch et al. $^{(12)}$, Bormann et al. $^{(13)}$, Wenusch and Vonach $^{(14)}$, Paulsen and Liskien $^{(15)}$, and Goodwin and Carter $^{(16)}$. The second set of data was given less consideration in the evaluation and consisted of the results of Decowski et al. $^{(17)}$, Weigold et al. $^{(18)}$, and Jeronymo et al. $^{(19)}$. The third set of data, consisting of the results of Refs. 20 to 23, was not accepted for this evaluation and/or large uncertainties. In some instances the values of the third set were not reasonably consistent with systematics $^{(24)}$ and/or were obviously much too small. The experimental information of all three sets is summarized in Fig. 2.

Giving most weight to the first data group (above) and, particularly, that of Ref. 15 (as it is detailed and of high

Figure 2
precision) a curve was constructed through the measured values. This curve is representative of experimental values as shown in Fig. 2 and was used in the present evaluation. The choice of this curve was subjective. However, more logical approaches may be deceptive in this instance as some data, reported with the highest precision, are obviously in error. Furthermore, some merit should be given to demonstrated reliability of particular laboratories and/or methods. These are subjective judgments.

Apparently the energies of the emitted neutrons have not been measured. Therefore, we assume an evaporation distribution with a temperature somewhat "softer" than that of the (n,n') process. The present evaluation and that of ENDF, MAT-1118 are compared in Fig. 2. There is not a great deal of difference though the present evaluation clearly is more descriptive of measurements at lower energies.

C. $\frac{59}{Co}$ (na) $\frac{56}{Mn}$ evaluation, J.D. Jenkins, ORNL.

Several sets of consistent data exist for this reaction. The ENDF/B Version III (MAT 1118) representation follows the general shape of the data at energies above 8 MeV but does not represent the experimental shape below that energy. It is evident from Fig. 3 that the ENDF/B straight line representation from 6.5 to 8 MeV can be improved upon.

Bresesti et al. (Ref. 5) have evaluated this reaction cross section and their evaluation appears on Figs. 3 and 4. It appears to follow the data more closely in the lower energy range and re-

- 97 -

produces the experimental threshold at 0.5 MeV while the ENDF/B evaluation is zero up to 5.5 MeV. At higher energies the Bresesti evaluation and ENDF/B Version III evaluations are similar.

The evaluation of Bresesti et al., therefore is adopted to represent this reaction and replaces the current evaluation of $^{59}Co(n,\alpha)$ for ENDF/B Version IV.

References

- S.F. Mughabghab and D.I. Garber, Neutron Cross Sections, Vol. 1, Resonance Parameters, BNL-325, Third Edition, Vol. 1, (June, 1973).
- J.B. Garg, J. Rainwater and W.W. Havens Jr., B.A.P.S. 8,334 (1963), and Columbia Report CR-1860 (1964). Also, Private Communication, (1965).
- P.T. Guenther, P.A. Moldauer, A.B. Smith, D.L. Smith, and J.F. Whalen, <u>Cobalt Fast Neutron Cross Sections</u> - <u>Measurement</u> and <u>Evaluation</u>, ANL Report ANL/NDM-1, (July, 1973).

- 4. A. Wapstra and N. Gove, Nuclear Data A9, 267 (1971).
- 5. Bresesti et al., Nuc. Sci. and Eng. 40, 331 (1970).
- 6. A. Paulsen Z fur Phys. 205, 226 (1967).
- A. Johnsrud, M. Silbert and H. Barschall, Phys. Rev. <u>116</u>, 927 (1959).
- F. Rigaud, J.L. Irigaray, G. Pettit, C. Longo and F. Saporetti, Nuc. Phys. <u>A173</u>, 551 (1971).
- 9. J. Cabe, H. Laurat and P. Yvon, EANDC-49, 83 (1963).
- 10. B. Granger and M. Longneve, EANDC-49, 82 (1963).
- M. Bormann, U. Seebeck and W. Voigts, Z. Naturforschung <u>21A</u> 988 (1966).
- 12. R. Wenusch et al., Oesterr. Akad. Wiss 99, 1 (1962).
- M. Bormann, S. Cierjacks, R. Langkau and H. Neuert, Zeits. fur Physik. <u>166</u>, 477 (1962).
- 14. R. Wenusch and H. Vonach, Private Communication as quoted by Ref. 60.
- A. Paulsen and H. Liskien, Jour. Nucl. Energy <u>A/B19</u>, 907 (1965).
- 16. D. Goodwin and G. Carter, Trans. of ANS 10, 227 (1967).
- P. Decowski, W. Grochulski, A. Marcinkowski, K. Siwvek, I. Sledzinska and Z. Wilhelmi, Nucl. Phys. <u>A112</u>, 513 (1968).
- 18. E. Weigold, Australian Jour. Phys. 13, 186 (1960).
- J. Jeronymo, G. Mani, J. Olkowsky, A. Sadeghi and C. Williamson, Nucl. Phys. <u>47</u>, 157 (1963).
- 20. S. Okumura, Nucl. Phys. A93, 74 (1967).
- 21. E. Weigold and R. Glover, Nucl. Phys. 32, 106 (1962).
- J. Strain and W. Ross, Oak Ridge National Lab. Report, ORNL-3672 (1965).
- 23. J. Preiss and R. Fink, Nucl. Phys. 15, 326 (1960).
- 24. M. Bormann, Nucl. Phys. <u>65</u>, 257 (1965).

AL NO. 6199			ENERGY CROSS SECTION Brans 1.25006-07 4.00006-01 1.68006-07 7.50006-01
ENDF/8 MATERS			ERGY CROSS SECTION Barns
CTION			CROSS SECTION EN Barro 11,20 1,50005-31 1,20 6,40005-31 1,20 9 6,40005-91 2,00
DIRECT (N, 2N) NEUTRON CROSS SEC			SECTION ENERGY Section Energy de-01 1.1564 de-01 1.90006407 de-01 1.90006407
	EV	GIES	ENERGY CROSS Burge 07 2,006 1,10006-07 2,000 1,35006-07 5,600 1,80006-07 8,000
	.uE =1,0461€+07	LAW BETWEEN ENER Description Y Linear in X	SECTIONS SY CROSS SECTION CROSS SECTION (CROSS SECTION (CROSS SECTION (CROSS SECTION (CROSS SECTION) (CROSS SE
COBALT-5	REACTION & VA	INTERPOLATION Range 1 To 14	NEUTRON CROSS INDEX, ENEW 1 1,06401 1 1,00401 11 1,70041

- 101 -

RESONANCE DATA Resonance parameters

ENDE/B MATERIAL NO. 6199

				RESONANCE WID	THS (EV)	
INDEX	ENERGY (EV)	J VALUE	TOTAL	NEUTRON	RADIATION	FISSION
1	-5,2100E+02	3,0000E+00	5.0150E+01	4.9670F+01	4. A000E-01	a.0000F+00
2	1.32005+02	4.0000E+00	B 6000E+00	B 1200C+00	A AAAAA	0.0000C+00
3	1.3800E+03	3.000000+00	4 85405-01	5.40005-03	4. 600000001	0.000000-00
4	2.850WE+03	4.000000+00	5.8500E=01	1.05005-01	4 80005-01	A. 000000-000
5	3.98000+03	3.0000E+00	5.79005-01	B. 0000F-02	4	0.0000E+00
6	4.322%E+Ø3	4.00002+00	1.10485+02	4.18805-02	4 60005 01	0,000000-000
7	5.015¥E+03	3.0000E+00	6.5200F+02	6.51005+02	1 00005+00	A. 000000-00
8	6.380PE+03	4,00002E+00	2.22005+00	2.00005+00	2 2000E-01	a.0000E+00
9	8,0500E+03	3.000005+00	3.730ØE+01	3,70005+01	3. 0000E-01	A. BBUBE+00
10	8,75Ø0E+Ø3	4.000000+00	1.1400E+00	8.2000F-01	3.20002-01	a.0000F+00
11	9.6900E+03	3.000000+00	3.2600E+00	2.7000F+00	5 A000E-01	a.0000F+00
12	1.0700E+04	4,000000+00	6.5530E+01	6.4900E+01	6.3000E-01	0.0000E+00
13	1,1850E+04	3.0000E+00	2.7500E+00	2.50000.000	2.90005-01	0.0000F+00
14	1.3280E+Ø4	4,0000E+00	2.1650E+01	2.1000E.01	6.5000E=01	0.0000E+00
15	1.5640E+04	3,8008E+08	7.4570E+01	7.4188E+81	4.7888E-81	8.20005+00
16	1.6920E+04	4,000000+00	1.6552E+02	1.6500E+02	5.2000E-01	9.0000E+00
17	1,975#E+Ø4	4,00002+00	3,2800E+00	2.8000E.00	4.8000E-01	0.000000+00
18	2,1940E+Ø4	3,000000+00	7,4543E+02	7.45002+02	4.8000E-01	0.0000E+00
19	2,2510E+04	4,00002+00	2.5348E+02	2.5300E+02	4,80005-01	0.0000E+00
20	2,4460E+Ø4	3,0000E+00	3.6048E+02	3.6000E+02	4,8000E+01	9.0000E+00
21	2,5150E+04	4,00002+00	1.8448E+Ø2	1.8400E+02	4.8000E-01	0,0000E+00
22	2,5924E*94	4,000000+00	2,548ØE+Ø1	2,5000E+01	4,8800E-01	8,8000E+08
23	2,7350E+Ø4	4,000000+00	1,7048E+02	1.70002+02	4,8000E-01	0.0000E+00
24	2.9409E+04	3,0000E+00	1.648ØE+Ø1	1.60000+01	4,8000E-01	A,8000E+00
25	3.0110E+04	4,0000E+00	3,2748E+ø2	3,2700£+02	4,8000E=01	0,0000E+00
26	3,1360E+04	3,0000E+00	1,5548E+02	1,55002+02	4,8000E-01	A,0000E+00
27	3,1760E+04	4,0000€+00	8,880ØE+ØØ	8.4000€+00	4.8000E-01	0.0000E+00
28	3.2730E+Ø4	3,00002+00	1,4248E+@2	1.42000+02	4,8000E=01	0,0000E+00
29	3,3050E+04	4,000000+00	4,448ØE+01	A,4000E+01	4,8000E=01	ø,8808e+60
30	3.4510E+04	3,0000E+00	6.18g0E+00	5,7000E+00	4,8000E-01	0,0000E+00
31	3,4900E+04	4,0000E+00	2,4648E+82	2,4600E+02	4,8000E=01	0,0000E+00
32	3.6744E+Ø4	3,00000+00	2.648ØE+Ø1	2.6000E+01	4,8000E-01	1,0000E+00
33	4.0254E+04	3,0000E+00	2.7480E+01	2.7000E+01	4,8000E=01	0:0000E+00
34	4.0670E+04	4,0000E+00	3,68902+00	3,2000E+00	4,8000E-01	A 10000E+00
35	4.1480E+04	4,0000E+00	3.6480E+01	3.6000E+01	4,8000E=01	# : 0000E+00
36	4,281VE+04	4.0000E+00	3,18g0E+00	2,7000E+00	4,8000E+01	0.0000E+00
37	4,3610E+04	3,0000E+00	3,8800E+00	3,4000E+00	4,8000E-01	# . 0000E + 00
38	4,5234E+84	3,22226+88	3,2348E+Ø2	3,2300E+02	4,8000E=01	A,0000E+00
39	4,5970E+04	4,0000E+00	3,0048E+02	3,0000E+02	4.8000E-01	4.0000E+00

COBALT-59

1 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					20000000000000000000000000000000000000
4 6 6 6 6 6 6 6 6 6 6 6 6 6	444444 444444 8888888888 88888888 888888				
4.08996 + 81 4.08996 + 81 4.88086 + 81 5.19086 + 82	2.00000 2.410000 2.410000 2.410000 2.410000 2.410000 2.410000 2.410000 2.410000 2.40000 2.400000 2.400000 2.400000 2.4000000 2.40000000000	00000000000000000000000000000000000000	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2000 200 2000 2	4 1000000000000000000000000000000000000
4 - 06460 4 - 06460 5 - 20846 5 - 028 5 - 028	0.0 10 10 00 0.0 10 10 00 0.0 10 10 00 0.0 10 10 10 0.0 10 0	0000404040400 42014404040 42000000000000	4040000040 64460404040 90400044040 40040404404 9400404040 9400404040 00000000	2000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 4 4 4 4 9 0 4 4 4 4 9 0 4 4 4 4 4 4
4,00000E+00 4,00000E+00 4,00000E+00		00000000000000000000000000000000000000	 N 4 N N 4 N 4 4 N 4 N N 4 N 4 4 N 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 M. 4. W. 4.	N4 NN 44 N4 4 NN 44 N4 4 NN 44 N4 1000 000 00 1000 000 00 1000 000 00 1000 000
5,714 4,714 5,714 5,712 5,615 5,91455555555555555555555555555555555555	и и и и и и и и и и и и и и и и и и и	00000000000000000000000000000000000000	V V	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	10000000000000000000000000000000000000
4 4 4 Ø 11 (1)	1444444 194000000		2 4 0 10 4 10 0 1 00 0 0 0 0 0 0 0 0 0 0	орурания Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Ваниия Вании Вани Ван	1994 1949 F 60 F 6

- 103 -

1

200 200 200 200 200 200 200 200 200 200	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IQNS RASS SECTION ENERGY CROSS SEC RASS SECTION ENERGY CROSS SEC BARNS E 00081400 1,000014 0,00001400 1,20001400 1,000001 1,25001403 1,25001406 7,000014 1,25001403 1,25001406 7,000014 1,25001403 1,25001406 7,000014 1,25001403 1,25001406 7,000014 1,25001403 1,25001406 7,000014 1,25001403 1,25001406 7,000014 1,25001403 1,25001406 7,000014 1,25001400 1,25001406 7,000014 1,25001400 1,25001406 7,000014 1,25001400 1,25001406 7,000014 1,25001400 1,25001406 7,000014 1,25001400 1,25001406 7,000014 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,25001400 1,250001400 1,25001400 1,250001400 1,250001400 1,250001400 1,250001400 1,250001400 1,2500001400 1,25000000000000000000000000000000000000	TJDN ENERGY CROSS SECTION ENERGY CROSS SECTION ENERGY CROSS SECTI EV BARNS BAR
		REFERENCES FOR	EXPERIMENTAL DATA
⁵⁹ Co(1	٩.٣		
Yr.	<u>Lab</u>	Author	References
72	MOL	Deworm	Priv. Comm. (1972)
67	GEL	Paulsen	2. fltr Phys. 205, 226 (1967)
66	GEL	Vanínbroukx	Nuc. Sci. & Eng. 24, 87 (1967)
65	FAR	Carre'	EANDC-(E)-57, 171 (1965)
63	ORL	Macklin, et al.	Phys. Rev. <u>129</u> , 2695 (1963)
61	BUC	Stephanescu, et al.	Reactor Conf. Bucharest, p. 553 (1961)
61	ANL	Meadows, et al.	Nuc. Sci. & Eng. <u>9</u> , 132 (1961)
61	ORL	Gibbons, et al.	Phys. Rev. <u>122</u> , 182 (1961)
60	MUN	Wolf	Nuk, <u>2</u> , 255 (1960)
52	FAR	Ailloud, et al.	J. Phys. Rad. <u>13</u> , 171 (1952)
51	BNL	Deutsch, et al.	Phys. Rev. <u>83</u> , 1059 (1951)

- 104 -

ENDF/B MATERIAL NO. 6199

(N,GAMMA) Neutron Cross Section

COBALT-39

COBALT-59

(N, ALPHA) Neutron Cross Section

ENDF/B MATERIAL NO. 6199

REACTION & VALUE 3.17806+05 EV

INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 26 y Linear in X

NEUTRON CROSS SECTIONS INPEX; ENEGY CROSS SECTION INPEX; ENEGY CROSS SECTION ENERCY CROSS SECTION ENERCY CROSS SECTION ENERCY CROSS SECTION 1 5,0000E-05 5,5000E-05 5,5000E-06 4,0000E-05 5,0000E-05 5,0000E-05 7,0000E-05 5,5000E-05 5 7,5000E-05 5,5000E-05 4,0000E-06 7,5000E-05 5,0000E-05 1,0000E-05 7,0000E-05 1,0000E-02 1,0000E-02 1,0000E-02 11 1,5000E-07 2,0000E-07 1,7700E-07 2,7000E-02 1,5000E-02 1,5000E-02 1,5000E-02 1,2000E-02 1,2000E-02 1,2000E-02 14 1,4250E-07 2,9000E-07 1,7700E-07 2,7000E-02 1,5000E-02 1,5000E-02 1,5000E-02 1,2000E-02 1,20

- 107 -

⁵⁸Ni (n,2n)⁵⁷Ni Reaction for ENDF/B-IV*

M. R. Bhat

NNCSC

Brookhaven National Laboratory

There are extensive data on the (n, 2n) cross-section of ⁵⁸Ni from its threshold of 12.415 MeV to 20 MeV. The most extensive data covering a wide range are by Paulsen and Liskien¹ and by Bormann et al.² Paulsen determined the (n,2n) cross-section from 12.98 to 19.6 MeV by the activation method and the measurement of the annihilation radiation with an accuracy of about 7%. The activation experiments of Bormann measured the gamma and positron activities with a NaI(T1) detector and a $\gamma-\gamma$ coincidence spectrometer and have a comparable accuracy and extend from 12.95 to 19.6 MeV. As can be seen from Fig. 1, though these two sets of data are in good agreement with one another below 16 MeV, they diverge above this energy with the Paulsen data being larger by as much as 12% or approximately two standard deviations. Two other data sets which extend up to 20.0 MeV; one by Prestwood and Bayhurst³ and the other by Jeronymo et al.⁴. Prestwood and Bayhurst counted the 57 Ni β particles and used 238 U fission cross-sections to monitor the neutron flux. These data agree with the general trend of other measurements up to about 14.0 MeV; above this energy

- 108 -

^{*}Extracted from "Neutron and Gamma Ray Production Cross-Sections for Nickel" BNL 50435 October 1974 M.R. Bhat.

they are higher giving 77.4 mb at 19.8 MeV. These cross-sections were considered too high and were not included in the evaluation. The Jeronymo data obtained by measuring the gamma rays following the decay of ⁵⁷Ni give a cross-section of about 40 mb at 20 MeV and are considered too low to merit consideration (not shown in Fig. 1). The data of Lu and Fink⁵ at 14.4 MeV and Cross et al.⁶ at 14.5 MeV are higher than other data at this energy. The data of Csikai' (not shown) between 13.56 and 14.71 MeV appear to be higher than other measurements and also show a peculiar trend at variance with other experiments (see the plot in Ref. 8 p. 28-58-4) and were not considered in the evaluation. Other data sets shown in the plot are by Temperley⁹ and by Barrall et al.¹⁰⁻¹². Temperley measured the annihilation radiation from the decay of 57 Ní and the data are in good agreement with other measurements in the energy region 13.72 to 14.79 MeV. Barrall and co-workers obtained 30.9 ± 2.0 mb at 14.5 ± .2 MeV, 33.4 ± 2.0 mb at 14.6 ± 1.2 MeV, and 36.0 ± 3.0 mb and 14.8 MeV in good agreement with other data sets. Rayburn¹³ measured the (n, 2n) cross-section as 34.2 ± 2.6 mb at $14.4 \pm .3$ MeV based on 63 Cu (n,2n) = 503 mb. In the ENDF/B-III MAT = 1085 evaluation this cross-section is found to be 533 mb. Therefore, a renormalized value of 36.2 \pm 2.7 mb is obtained which is slightly higher than other data at this energy. Preiss and Fink¹⁴ obtained 52 \pm 5 mb at 14.8 \pm .9 MeV using 63 Cu (n,2n) = 556 mb as the standard cross-section; this value appears to be too high. Bramlett and Fink¹⁵ obtain 31.6 ± 4.0 mb at 14.7 \pm .2 after their value is renormalized to

- 109 ~

 27 Al (n, α) = 116.1 mb, and is a little on the low side. In addition, Glover and Weigold's¹⁶ measurements follow the general trend of other data except for the last two points at 14.77 MeV and 14.88 MeV. Some of these data were not plotted in Fig. 1 for fear of cluttering up the diagram. After considering all these data, a smooth curve was drawn through these data points with the curve following the general trend of the Bormann data at higher energies and lies lower than the Paulsen measurements and higher than the Bormann data. In Fig. 1 the dashed line shows the (n,2n) cross-section as calculated using the code THRESH¹⁷ which uses systematies of nuclear data to calculate the various (n, particle) cross-sections.

Figure 1

References

- 1. A. Paulsen and H. Liskien Nuk 7, 117 (1965).
- 2. M. Bormann, F. Dreyer and V. Zielinski EANDC (E) <u>66</u>, 42 (1966).
- 3. R. J. Prestwood and B. P. Bayhurst, Phys. Rev. <u>121</u>, 1438 (1961).
- J. M. F. Jeronymo, G. S. Marri, J. Olkowsky, A. Sadeghi and G. F. Williamson, Nucl. Phys. <u>47</u>, 157 (1963).
- 5. Wen-deh Lu and R. W. Fink, Phys. Rev. <u>C/4</u>, 1173 (1971).
- W. G. Cross, R. L. Clarke, K. Morin, G. Slinn, N. M. Ahmed and K. Beg, Bull. American Phys. Soc. Ser. II, <u>7</u>, 335 (1962).
- J. Csikai EANDC<u>-50</u>, 2 (1965), Conf on Study of Nuclear Structure with Neutrons, Antwerp, paper 102 (1965).
- M. D. Goldberg, S. F. Mughabghab, B. A. Magurno and V. M. May, BNL-325, Second Ed. Supplement No. 2, <u>II-A</u>, (1966).
- 9. J. K. Temperley, Nucl. Sci. & Engineering 32, 195 (1968).
- R. C. Barrall, M. Silbergeld and D. G. Gardner, Nucl. Phys. <u>A138</u>, 387 (1969).
- 11. R. C. Barrall, M. Silbergeld and D. G. Gardner SUPH-69-2 (1969).
- 12. R. C. Barrall, J. A. Holmes and M. Silbergeld AFWL-TR-68-134 (1969) CSISRS AN/SN-10022/14.
- 13. L. A. Rayburn, Phys. Rev. <u>122</u>, 168 (1961).
- 14. I. L. Preiss and R. W. Fink, Nucl. Phys. 15, 326 (1960).
- 15. E. T. Bramlett and R. W. Fink, Phys. Rev. <u>131</u>, 2649 (1963).
- 16. R. N. Glover and E. Weigold, Nucl. Phys. 29, 309 (1962).
- 17. S. Pearlstein, Journ. Nucl. Energy 27, 81 (1973).

			ROSS SECTION DABNS	2.400000-022 4.90000-022 5.65000-32
AL NO. 6419			ENERGY C	1.40006+07 1.65906+07 1.92006+07
ENDF/B MATERI,			CROSS SECTION Badne	1.50000 4.60000 5.600000 5.600000 5.60000 5.600000 5.600000 5.600000 5.6000000 5.60000000000
ŭ			ENERGY	1.35096+07 1.68086+07 1.85086+07
N D I J			CROSS SECTION Plane	2,05005-03 4,22005-03 5,45006-32
IRECT(N, 2N)			ENERGY	1,30055407 1,555085407 1,86005407
NEUTRO			ROSS SECTION	2.23096-04 3.75006-04 5.30006-02 5.70006-02
	EV	GIES	ENERGY	1.2500E+07 1.5500E+07 1.7500E+07 2.0500E+07 2.0500E+07
	-1,2203E+07	BETWEEN ENER Pretion Near in X	TIONS RCSS SECTION	6,900 1,1550 5,1550 5,1000 5,1000 5,70000 5,70000000000
I כאבר ~ Sc	ON Q VALUE	OLATION LAW NGE DESC 0 17 7 LI	N CROSS SECT ENERGY C	1,24195487 1,45805487 1,758055487 1,95805487
Z	REACTI	INTERPU RAU	NEUTRO	4040 44

- 112 -

- 113 -

Evaluation of the $\frac{58}{Ni(n,p)}$ Co Reaction for ENDF/B-III Dosimetry File R.E. Schenter - August 1973 Hanford Engineering and Development Laboratory

The literature reviewed in this evaluation includes all references in CINDA 72 and its supplements plus papers describing recent measurements by Smith and Meadows and Paulsen and Widera. Fig. 1-5 show the evaluation made (solid curve) together with available experimental data and some previous evaluations. Below 6.0 MeV Smith and Meadows values were directly used (Figs. 1-3). Smith and Meadows results were normalized relative to the ENDF/B-III 235 U fission cross section. Above 6.0 MeV a smooth "eye-guide" curve was constructed (Figs. 4-5) which fell between previous evaluations and numerous experimental results.

Figure 2

1.2

Figure 3

Figure 5

References

1.	Smith and Meadows, Trans. Am. Nucl. Soc. <u>16</u> , 1 (1973).
2.	Paulsen and Widera, EANDC (E) 150U, 1972.
3.	Fabry et al., EANDC (E) 127U, 1970.
4.	Simons et al., BNWL-1312, 1970.
5.	Bresesti, Nuc. Sci. and Eng. <u>40</u> , 331 (1970).
6.	Barrall et al., Nuc. Phys. <u>A138</u> , 387 (1969).
7.	Temperley, Nucl Sci. and Eng. <u>32</u> , 195 (1968).
8.	Decowski et al., Nuc. Phys. <u>A112</u> , 513 (1968).
9.	Okumupa, Nuc. Phys. <u>A93</u> , 74 (1967).
10.	Bormann et al., Z. Naturforsch, <u>21A</u> , 988 (1966).
11.	Debertin et al., Nuc. Phys. <u>70</u> , 89 (1965).
12.	Konijn et al., Nuc. Phys. <u>48</u> , 191 (1963).
13.	Nakai et al., J. Phys. Soc. Japan, <u>17</u> , 1215 (1962).
14.	Glover et al., Nuc. Phys. <u>29</u> , 309 (1962).
15.	Cross et al., AECL 1542 (1962).
16.	Barry et al., J. Nuc. Energy Parts A/B, <u>16</u> , 467 (1962).
17.	Storey et al., Proc. Phys. Soc. <u>75</u> , 526, (1960).
18.	Gonzalez et al., Phys. Rev. <u>120</u> , 1319 (1960).

ENDF/B MATERIAL NO. 6419

(N,P) NEUTRON CROSS SECTION

NI CKEL-58

REACTION & VALUE 3.9470E+05 EV

BETWEEN ENERGIES INTERPOLATION LAH BETKEEN ENERG Range description 1 to 168 LN 7 Linear in X

SECTION ENERGY CROSS
 75,92
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 92,02
 ENERGY CROSS SECTION 7,95087.05 1,30087.05 1,03961.05 1,30807.05 2,09361.05 1,30877.05 2,09361.05 1,30877.05 2,09361.05 1,30877.05 2,09361.05 1,108377.05 2,09361.06 1,108377.02 3,11060.06 1,118375.02 3,313605.06 1,123355.06 3,31365.06 2,09867.01 3,31365.06 2,09867.01 3,31365.06 2,09867.01 3,41375.06 2,09867.01 3,41375.06 2,09867.01 1,123665.06 3,147257.01 1,125665.07 5,08867.01 1,125665.07 5,08867.01 1,125665.07 5,08867.01 1,125665.07 5,08867.01 1,125665.07 5,08867.01 1,25665.01 5,08867.01 1,2567.01 1,257.01 1,257.01 1,257.01 1,257.01 1,257.01 1,257.01 1,257.01 1,257.01 1,257.01 1,257.01 2.0700E-01 1.9100E-01 1.7750E+07 1.9000E+07 SECTION 2.125885-81 1.92588-81 1.89886-81 CROSS ENERGY SECTION CROSS ENERGY FV NEILTRON CROSS SECTIONS NEILTRON CROSS SECTIONS INDEX, FREHS, CROSS SECTIONS INDEX, CROSS SECTIONS INT, CROSS SE

1.8750E+07 2.0000E+07

- 119 -

⁶⁰Ni(n,p)⁶⁰Co Reaction for ENDF/B-IV*

M. R. Bhat

NNCSC

Brookhaven National Laboratory

The most extensive data on the 60 Ni(n,p) cross section from 5.76 to 19.55 MeV are by Paulsen and Liskien. ${}^{1-4}$ In these experiments the induced activity was measured by γ - γ coincidence counting and the efficiency of the coincidence spectrometer determined from calibrated radioactive sources whose activities were known to ±0.5%. The errors vary from 7-10% except for a few points where they are larger, up to 16%. The measurements of Cross et. al.⁵ at 14.5, MeV when renormalized to an 27 Al (n, α) cross section of 118.6 mb (MAT = 1135 ENDF/B-III), give 186 mb and a later result⁶ by the same authors is 165 mb; both appear to be too high compared to the Paulsen and Liskien data. Allan⁷ determined the (n,p) cross section by measuring it at 120° to the neutron beam using photographic emulsion plates and multiplying by 4 π the observed differential cross section. He obtained a value of 134 ± 9 mb at 14 MeV in good agreement with Liskien and Paulsen. How-

^{*}Extracted from "Neutron and Gamma Ray Production Cross Sections for Nickel" BNL 50435 October 1974, M.R. Bhat.

evern, this technique has given results widely at variance with others. Storey et. al.⁸ have determined the (n,p) cross section to be 158 ± 32 mb at 14.1 MeV which appears to be rather high compared to the general trend of the other data. Hemingway 9 obtained a cross section of 129 ± 16 mb at 14.7 ± 0.2 MeV using 56 Fe(n,p) 56 Mn = 97.8 mb as a standard. This is to be compared with 104 mb recommended for the standard in the evaluation (MAT-6410) in ENDF/B-IV dosimetry files. This implies a 6% upward renormalization of the Hemingway value to give 137 mb. Levkovskii et. al.¹⁰ have measured the (n,p) cross section to be 130 ± 40 mb which again is higher than the general trend of the Liskien -Paulsen data. The data not considered in this evaluation are by Preiss et. al.¹¹ (cross section to metastable state only) March et. al.¹² (too low) and Allan¹³ (highly discrepant). In looking at all the available data it is unfortunate that there are no data from the threshold energy to 5.75 MeV, hence the rising part of the curve was drawn similar to the 58 Ni (n,p) cross section curve (after suitably shifting it for differences in the Q-values) and smoothly joined to a curve drawn through the experimental data at higher energies. The trend of the curve in this energy region is mainly determined by the Paulsen and Liskien data, as shown in Fig. 1.

Figure 1

References

- 1. H. Liskien and A. Paulsen, Nucl. Phys. <u>63</u>, 393 (1965).
- 2. H. Liskien and A. Paulsen, Nukleonik, 8, 315 (1966).
- 3. A. Paulsen, Nukleonik 10, 91 (1967).
- 4. A. Paulsen, Z. Physik 205, 226 (1967).
- 5. W. G. Cross, R. L. Clarke, K. Morin, G. Slinn, N. M. Ahmed and K. Beg, Bull. Amer. Phys. Soc. 7, 335 (1962).
- W. G. Cross, R. L. Clarke, K. Morin, G. Slinn, N. M. Ahmed and K. Beg, EANDC (Can)-16 (1963).
- 7. D. L. Allan, Nucl. Phys. 24, 274 (1961).
- R. S. Storey, W. Jack, and A. Ward, Proc. Phys. Soc. 75, 526, (1960).
- 9. J. D. Hemingway, Jour. Nucl. Energy 27, 241 (1973).
- V. N. Levkovskii, G. P. Vinitskaya, G. E. Kovilskaya and
 V. M. Stepanov, Sovt. Jour. Nucl. Phys. <u>10</u>, 25 (1969).
- 11. I. L. Preiss and R. W. Fink, Nucl. Phys. 15, 326 (1960).
- 12. P. V. March and W. T. Morton, Phil. Mag. 3, 577 (1958).
- 13. D. L. Allan, Proc. Phys. Soc. A70, 195 (1957)

			2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
			R 2000 0 1 1 1 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0
ND. 642Ø			E N E N E N E N E N E N E N E N
B MATERIAL			+++++++ 0 0 0 0 0 0 0 0 0 0 0 0 0
ENDF			CR CR CR CR CR CR CR CR CR CR CR CR CR C
			8844444 888888 88888888888 88888888888
z			20 20 20 20 20 20 20 20 20 20 20 20 20 2
SECTIO			C C C C C C C C C C C C C C C C C C C
(N, P) CROSS			7 7 7 7 7 7 7 7 7 7 7 7 7 7
NEUTRON			20 20 20 20 20 20 20 20 20 20 20 20 20 2
			C C C C C C C C C C C C C C
	N.	SIES	ENERGY ENERGY 2000 2000 2000 2000 2000 2000 2000 20
	.0411E+06	TWEEN ENER PTION AR IN X	200 200 200 200 200 200 200 200
<i>6</i>	LUE =2	LAW BE DESCRI Y LINE	68444446 68444446 68444446 6844444 6844444 6844444 6844444 6844444 6844444 6844444 684444 684444 684444 684444 684444 68444 68444 68444 68444 68444 68444 68446 884468846 88446 88446 88446 88446 88446 884468846 88446 88446 88446 88446 884468846 88466 88466 88466 88466 88466 884666 88466666666
ו כאבר - 6ו	ON D VA	DLATION NGE 0 33	Z 0.40044444 70 0.70044400 20 0.808888888 20 0.8088888888 20 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
z	REACTI	INTERP RA 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

63 Cu(n, γ); (n, α) Reactions for ENDF/B-IV

H. Alter*

Atomics International

March 1972

Introduction

Evaluated data sets for 63 Cu (n, γ) and (n, α) reactions contained in the ENDF/B-III and SAND files were reviewed, compared and where possible, intercompared with measured data. Specific sources were: for ENDF/B, Tape #303, MAT #1085, release date 1/21/72; for SAND, the National Neutron Cross Section Center at BNL provided the reviewer with data decks for the required neutron reactions. In addition, the NNCSC also provided a CSISRS listing of measured data for the two reactions in 63 Cu.

Review Procedure

All data sets were independently graphically displayed and respective data sets were then overlayed so that differences could be visually interpreted (e.g., Fig. 1-3 the (n,γ) cross sections). (n,γ) Cross Section

Below 1 eV the data from the ENDF/B and SAND libraries are essentially identical. Above 1 eV the data sets diverge with the SAND data being lower in magnitude. The ENDF/B data in the resolved resonance region is more highly resolved than that in the

^{*} Present Address: U. S. Energy Research Development Administration, Washington, D.C. 20045.

SAND library. To further analyze the data in the energy region 10 eV to 30 keV, both sets of data were group averaged (group width equal to 0.5 lethargy units) weighting with a 1/E spectrum. Results are given in Table 1. The group constants based on the ENDF/B parameters were obtained analytically using the File 2 resonance parameters. The SAND data did not have parameters, therefore the related group constants were obtained by numerical

Figure 2

Figure 3

- 127 -

integration. To be assured that this comparison was valid, the ENDF/B resonance parameters were used to generate the (n,γ) line shape and these data were then numerically integrated.

Agreement between the analytic calculation and the numerical integration is generally quite good except at the first few resonance peaks. The differences in group constants (ENDF/B vs SAND) are apparent and can easily be related back to the energy dependent cross section data.

In Table 2 calculated resonance integrals for 63 Cu (n, γ) are compared with a number of reported measurements. In a recent compilation of resonance integrals, M.K. Drake* gives for 63 Cu a value of 5.1 ± 0.2b. A recent compilation of values for resonance integral cross sections, given in "Neutron Fluence Measurements", Technical Report Series #107, IAEA, Vienna 1970, range from 4.2 to 5.1 barns. These values are given for various cutoff energies. Generally the reported data agree reasonably well with ENDF/B-III.

Above 30 keV experimental data, supplied by the NNCSC, are plotted on the overlay ENDF/B and SAND cross section curves (e.g. Fig. 4-5). Resolution of the discrepant data in this energy region requires a more extensive effort than that currently applied for this task force review. One notes however, that the magnitude of the cross section in this region is generally less than 120 mb.

Based on this review, MAT #1085 (ENDF/B-III) is accepted to 30 keV and above 1.8 MeV. Between 30 keV and 1.8 MeV, at least squares fit of the data in (Fig. 4-5) is utilized, and

* Private communication, M.K. Drake to E. Ottewitte, 1970.

Figure 4

Figure 5

joined to MAT #1085^{*} (insufficient data does not permit high confidence in the evaluation above 30 keV).

(n,a) Cross Section

The SAND file (n,α) cross section data were obtained from the NNCSC, and overlayed with the ENDF/B data for energies greater than ~ 5.5 MeV. The SAND (n,α) data extends from .0001 eV to ~ 18 MeV.

In Fig. 6, experimental values of the (n,α) cross section supplied by the NNCSC and also obtained from a brief review of the literature are plotted against the overlay ENDF/B and SAND curves. Generally, the measured values fall between the two evaluated curves.

In Table 3, calculated values for the fission spectrum averaged (n,α) reaction are given. Results are given for both the Cranberg and Watt representations of the fission spectrum.

In Table 4, both measured and calculated values of this quantity are given. These values are all within a factor of ~ 2 of each other.

* Data extrapolated from 15-20 Mev at NNCSC January 1974.

- 130 -

Figure 7

Figure 6

Paulsen (Nukleonik <u>10</u>, 91) quotes a value of 0.34 \pm 0.04 for the (n, α) reaction integrated over a Watt spectrum. Taking measured differential cross sections, (eliminating the data points at 10.17 and 10.98 MeV as he suggested) and calculating the fission spectrum average using the Watt representation the following results are obtained:

∆ E	<u>σ(mb)</u>
5.5 - 15.0 MeV	0.343
5.5 - 19.55 MeV	0.344

This result, when compared to the calculated quantities in Table 3, falls between the ENDF/B value 0.298 and the SAND value 0.442.

From the review of the 63 Cu (n, α) reaction one concludes that neither of the evaluated sets is adequate. The spectrum averaged quantity using the ENDF/B data is consistently lower than the same quantity using the SAND data. This is consistent with the respective sets of evaluated data. The value of 0.356 mb quoted in ENWL-1312 does not appear to be consistent with the same spectrum averaged quantity, 0.490 mb, calculated for this review. The reason for this discrepancy is not known at this time. Therefore, for ENDF/B-IV the Paulsen data, (Nukleonik, <u>8</u>, 315 (1966); <u>10</u>, 91 (1967), and Nucl. Phy. <u>63</u>, 393 (1965) with the points 10.17 and 10.98 omitted, are to be adopted.
Table	1
-------	---

Comparison of ENDF/B-III and SAND 63 Cu Capture Cross Section for

10 eV <u><</u> E <u><</u> 25 KeV

Group Boundary ^E L	ENDF/B (Barns)	ENDF/B (Barns)	SAND (Barns)
$(\Delta u = 0.5)$	(Analytic Solution)	(Numerical	Integration)
24.788 kev			
15.034	0.109	0.110	0.081
9.1188	0.192	0.193	0.152
5.5308	0.243	0.246	1.265
3.3546	0.226	0.228	0.626
2.0347	0.721	0.730	0.096
1.2341	0.143	0.145	0.592
748.52 eV	0.046	0.046	0.007
454.	5.337	5.400	3.438
275.36	0.046	0.046	0.013
167.02	0.043	0.043	0.009
101.30	0.053	0.052	0.011
61.442	0.067	0.067	0.018
37.267	0.090	0.090	0.030
22.603	0.121	0.121	0.051
13.710	0.162	0.161	0.088

		Table 2		
	Com	parison of Calcula	ited and	
	Measured R	esonance Integrals	for $63_{Cu(n,\gamma)}$	
<u></u>	(Calculated: E = 0	0.5 ev)	
ENDF/B		SAND	BNWL-1312	
		(BARNS)		
5.35		4.79	4.64	
		(MEASURED)		
Measured Value (b)	Cutoff Energy, E (ev)	c Remarks	I, Ad- justed to E= 0.5 ev In- cluding 1/v(b)	Ref.
4.4	0.52	1/v included	4.4	1
3.09±0.15	0.5	No 1/v, restored using $\sigma_{a2200}^{=4.5}$	5.11±0.2 Ъ	2
3.17±0.18	0.62	No 1/v, restored using $\sigma_{a2200}^{=4.5}$	4.99±0.2 Ъ	3
4.2±0.2	0.62	5 mil foil	5.3±0.2	4

- 1. R. Macklin and H. Pomerance, <u>5</u>, 96 (1955).
- R. Dahlberg, K. Jirlow and E. Johansson, J. Nucl. Energy AB, <u>14</u>, 53 (1961).
- 3. N.P. Baumann, DP 817 (1963).
- 4. L. Anderson, Health Physics, <u>10</u>, 315 (1964).

Table	3
-------	---

Comparison of Calculated Values

for the Fission Spectrum Averaged

 63 Cu (n, α) Reaction

		(MILL)	IBARNS)	
~	DATA	SPECTRUM	ENERGY_INTERVAL	RESULT
	ENDF/B	CRANBERG	5.5 - 15.0 MeV	0.274
	ENDF/B	WATT	5.5 - 15.0 MeV	0.298
	SAND	CRANBERG	5.5 - 15.0 MeV	0.408
	SAND	WATT	5.5 - 15.0 MeV	0.442
	SAND	CRANBERG	10 ⁻⁹ - 15 MeV	0.455
	SAND	WATT	10 ⁻⁹ - 15 MeV	0.490
	BNWL-1312	WATT	10 ⁻¹⁰ -18 MeV	0.356

CRANBERG: $f(E) = 0.453 \exp(-E/0.965) \sinh(2.29 E)^{\frac{1}{2}}$ $f(E) = 0.484 \exp (-E) \sinh (2E)^{\frac{1}{2}}$ WATT:

٠,

Fission-			
Spectrum			
XSC (mb)	Basis	Reference	Year
.76	Empirical estimate	Roy, Hawton CRC-1003	1962
.72	Measurement relative to 0.60 mb for 27Al (n,α) ^{24}Na	R.S. Rochlin, Nucle- onics <u>17</u> , 54	1959
.54±.07	Measurement relative to $101 \text{ mb for } 58_{\text{Ni}} \text{ (n,p)} \\ 58_{\text{Co}}$	R. Nilssm, Neutron Dosimetry, VII, 275	1963
.42	Measurement relative to 0.57 mb for $^{27}A1$ (n, α) ^{24}Na	C.H. Hogg, L.D. Weber Symposium on Rad. Eff. on Metals and Neut. Dos., 133 (ASTM)	1963
.36±.04	Measurement relative to 65 mb for 32 S (n,p) 32 P	R.L. Ritzman, et al. Ibid, 141	1963
.45±.05	Measurement relative to 76 mb for ⁵⁴ Fe (n,p) 54Mn	D.M. Clare, W.H. Martin J. Nucl. En. <u>18</u> , 703	1964
.52±.04	Measurement relative to (1) 63 mb for 32 S (n,p) 32 p (2) 0.63 mb for 27 Al (n, α) 56 Mn (3) 1.04 mb for 56 Fe (n,	A. Fabry EANDC (E) 66U p)	1965
.44	Measurement relative to 90.6 mb for ⁵⁸ Ni (n,p) 58 _{Co}	(Grenoble) EANDC (E) 57U	1965
. 382	Integration of an evaluated curve	Sov. J. At. E. <u>25</u> , 1251	1968
.34±.04	Integration of an evaluated curve (over Watt spectrum)	Paulsen, Nukleonik <u>10</u> , 91	1967
. 356	Integration of evaluated curve (over Watt spectrum)	BNWL-1312	1 97 0

Tab	1e	4

Values of the Fission Spectrum Averaged ^{63}Cu (n,a) Reaction

•

ENDF/B MATERIAL NO. 6411 RESOLVED MULTILEVEL BREIT-WIGNER PARAMETERS FISSION RESONANCE DATA Resonance Parameters RESONANCE WIDTHS (EV) Neutron Radiation 2 28 28 28 28 28 28 J. V. A.L.U.
Z. 1.90%
D. V. A.L.U.
Z. 2.90%
D. 2.10%
<liD. COPPER-63 1 NDEX

COPPER-63

(N, GAMMA) NEUTRON CROSS SECTION

ENDF/B MATERIAL NO. 6411

N U
7,9159E+Ø6
I VALUE
I ON C
REACT

BETWEEN ENERGIES

INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 124 LN Y Linear In LN X

2,5387E-02 4,94777e00 1,00005E-01 4,0008E-03 3,20002E+01 4,0008E-03 5,20002E+01 4,0008E-02 5,20002E+02 4,0008E-02 6,0008E+02 4,0028E-02 6,0008E+02 4,0078E-02 1,1000E+03 2,0148E-02 1,1000E+03 2,0148E-02 1,1000E+03 2,0148E-02 1,1000E+03 2,0148E-02 1,1000E+03 2,0148E-02 2,0008E+03 2,0148E-02 2,0008E+03 2,0148E-02 2,0008E+03 1,1178E-02 4,2008E+03 1,1178E-03 1,0008E+03 1,008E-03 1,0008E+03 1,008E-03 1,0008E+03 1,008E-03 1,0008E+03 1,008E-03 1,0008E+03 1,008E-03 1,0088E+03 1,008E-03 1,0088E+03 SECTION RNS ENERGY CROSS SECTION ENERGY CROSS 1, 20002 + 201 2 + 24107 1, 20002 + 201 2 + 14105 + 201 2, 20002 + 201 2 + 14105 + 201 3, 20002 + 201 2 + 14105 + 201 4, 20002 + 201 2 + 14105 + 201 4, 20002 + 201 2 + 14105 + 202 4, 20002 + 201 2 + 14105 + 202 4, 20002 + 201 2 + 14105 + 202 4, 20002 + 201 2 + 14105 + 202 4, 20002 + 201 2 + 14105 + 202 4, 20002 + 201 2 + 14105 + 202 4, 20002 + 201 2 + 14105 + 202 4, 20002 + 201 2 + 1405 + 202 4, 20002 + 201 2 + 102 4, 20002 + 201 1 + 11002 + 202 4, 20002 + 201 1 + 11002 + 202 4, 20002 + 201 1 + 11002 + 202 4, 20002 + 201 1 + 11002 + 202 4, 20002 + 201 1 + 11002 + 202 4, 20002 + 201 1 + 11002 + 202 4, 20002 + 201 1 + 11002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 202 1 + 20002 + 202 4, 20002 + 20 ENERGY CROSS SECTION ENERGY CROSS SECTION EV BARNS EV BARNS 5,80077702 5,00077702 5,000077702 5,000077702 5,000077702 5,00007702 5,00007702 5,00007702 5,00007702 1,0000702 1,0000702 1,0000702 1,0000702 1,0000702 1,00000702 1,NEUTRON CROSS SECTIONS INDEX, CRERGY CROSS SECTIONS I BUBUER-DD 2 26666487 I BUBUER-DD 2 26667837 I BUBUER-DD 2 26667837 I BUBUER-DD 2 26667833 I BUBUER-DD 2 26667833 I BUBUER-DD 2 200055833 I BUBUER-DD 2 20055833 I BUBUER-DD 2 2005583 I BUBUER-DD 2

- 139 -

ENDE/B MATERIAL ND. 5411

COPPER-03

(N, ALPHA) Neutron Cross Section

REACTION & VALUE 1.7149E+06 EV

INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 59 y Linear in X

 LOW
 ENERGY
 CROSS
 SECTION
 ENERGY
 GROSS
 SECTION

 FV
 94,000
 1,000
 1,000
 1,000
 1,000
 1,000

 75,75000-00
 4,4200
 5,7300
 6,5700
 1,41100
 1,000

 8,75000-00
 4,4200
 5,7300
 1,41100
 1,000
 1,000

 8,75000-00
 1,4200
 1,41100
 1,000
 1,000
 1,000
 1,000

 8,75000-00
 1,4000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000
 1,000<

- 141 -

REFERENCES FOR EXPERIMENTAL DATA

⁶³Cu(n,Y)

<u>Yr.</u>	Lab	Author	References
70	DEB	Diksic, et al.	Acta Phys. Hun. <u>28</u> , 257 (1970)
69	FEI	Dovbenko, et al.	INDC 260, 11 (1969)
68	MUA	Hasan, et al.	Nuov. Cim./B <u>58</u> , 402 (1968)
68	UKR	Zaikin, et al.	At. En. <u>25</u> , 526 (1968)
67	MOL	Pinancelli, et al.	EANDC-(E)-76, 1 (1967)
66	FEI	Tolstikov, et al.	At. En. <u>21</u> , 1 (1966)
59	LVN	Vervier	Nuc. Phys. <u>9</u> , 569 (1959)
59	ORL	Lyon, et al.	Phys. Rev. <u>114</u> , 1619 (1959)
58	LRL	Booth, et al.	Phys. Rev. <u>112</u> , 226 (1958)
57	ORL	Macklin, et al.	Phys. Rev. <u>107</u> , 504 (1957)

The ⁶⁵Cu(n,2n) ⁶⁴Cu Reaction for ENDF/B-IV P. F. Rose *

Atomics International

May 3, 1972

I Introduction

The 65 Cu(n,2n) 64 Cu reaction has been re-evaluated for the ENDF/B-files using a combination of selected experimental data and a semi-empirical technique for fitting the data at energies above 15 MeV. An estimate of the (n,3n) reaction was also obtained as a result of the analysis.

II Theory

The theoretical approach of S. Pearlstein⁽¹⁾ was utilized. Pearlstein's estimate of the (n,2n) cross-section was based upon the expression

$$\sigma_{n,2n} = \sigma_{ne} \ x \ \frac{\sigma_{n,M}}{\sigma_{ne}} \ x \ \frac{\sigma_{n,2n}}{\sigma_{n,M}}$$
(1)

where σ_{ne} is the non-elastic cross-section and $\sigma_{n,M}$ is the sum of the neutron emission cross-sections. Pearlstein obtained the ratio $\sigma_{n,M} / \sigma_{ne}$ as an empirical fit to nuclear data.

Pearlstein obtained the energy dependent ratio $\sigma_{n,2n} / \sigma_{n,M}$ from statistical compound nucleus theory. His final working equation is:

*Presently at Brookhaven National Laboratory.

- 143 -

$$\frac{\sigma_{n,2n}}{r} = 1 - \frac{e^{p^{1/2} \left[(1 - \frac{1}{s}) p_{2}^{3} - (3 - \frac{1}{s}) p + 6p^{1/2} - 6 \right] + 6 - \frac{p}{s}}{e^{\left(\frac{p}{s}\right)^{1/2} \left[-2 \left(\frac{p}{s}\right) + 6\left(\frac{p}{s}\right) - 6 \right] + 6 - \frac{p}{s}}}$$
(2)

in which $p = 4a S_n$, $S=S_n/E_n$, and a is the familar level density parameter of the residual nucleus (Z,N). If the threshold for the occurrence of the (n,3n) reaction is overlapped by the neutron energies, the (n,3n) cross-section is calculated with $p=4aS_{2n}$ and $S=S_{2n}/E_n$. For this case the cross-section using S_n is for the sum of the (n,2n) and (n,3n) cross-sections. Equation 2 was used for the evaluation of the ${}^{65}Cu(n,2n)$ ${}^{64}Cu$ reaction at energies above 15 MeV.

III Experimental

In evaluating the 65 Cu(n,2n) 64 Cu reaction four sets of data, representing the major amount of experimental information, were selected for the analysis. Individual experimental points (notably around 14 Mev) were not included in the analysis and, where measurements were repeated, the latest experiment was used.

The oldest experiment used were that of R. J. Prestwood and B. P. Bayhurst⁽²⁾. The data was partly normalized relative to the fission cross-section of U^{238} (3 highest energies, Circa 1961). The lower energy points, however, were obtained absolutely. The errors quoted in the article are inferred from theoretical considerations and are not experimental errors.

A. Paulsen and H. Liskien⁽³⁾ measured an absolute excitation

- 144 -

function between 12.6 and 19.6 Mev. The measurement (1965) is based upon a neutron flux determination by detection of recoil protons. The quoted uncertainty is $\pm 8\%$ with energy uncertainties between ± 0.11 to 0.47 Mev.

In 1966, D. C. Santry and J. P. Butler⁽⁴⁾ presented data for a complete excitation function between 10 and 20 Mev. This was measured by activation relative to the $S^{32}(n,p)P^{32}$ cross-section. The uncertainty of the sulphur cross-section and angular neutron intensity are included in the quoted uncertainty of $\pm 8\%$. Santry and Butler quote a fission average (n,2n) cross-section of 0.251 \pm 0.018 mb.

A series of measurements have been reported by M. Bormann and co-authors. Bormann's 1963 data⁽⁵⁾ shows prominent (n,3n) competition. M. Bormann and B. Lammers⁽⁶⁾ have re-measured the (n,2n) cross-section (1969). This latter measurement is in agreement with the other experiments, and does not show the prominent reduction of cross-section near 20 Mev which the earlier measurement indicates. The earlier data was not used in the present evaluation.

IV <u>Results</u>

Fig. 1 shows the experimental data and the evaluated curve. The evaluated curve was obtained from a least squares spline fit of the experimental data below 15 Mev, and by a parametric fit of the data above 15 Mev using the formalulism of equation (2).

An effective value of S_{2n} was introduced in order to adequately fit the experimental data at the higher energies. An

- 145 -

Figure 1

upward shift of the (n,3n) reaction threshold is supported by $Lu^{(7)}$ and has been discussed in an article by Hankla and Fink⁽⁸⁾. Table 1 summarizes the parameters used to obtain the evaluated curve.

Table 1 Parameters for ⁶⁵ Cu (n	1,2n) ⁶⁴ Cu Rea	ction
Parameter		Value
o n.m	1.081	barns
a	6.0	MeV ⁻¹
s _n	10.1	MeV
S _{2n}	18.1	MeV
S _{2n} effective	k9.0	Mev

Values for the (n,3n) reaction were also obtained from the theoretical fit as described in Section II.

References

1.	S. Pearlstein,	"Analysis of (n,2n)	Cross-Section	ns for Nuclei
	of Mass A>30",	BNL 897 (T-365), EA	NDC (US)-71,	Brookhaven
	National Labora	tory, (1964).		

- R. J. Prestwood and B. P. Bayhurst, Phys. Rev. <u>121</u>, 1438 (1961).
- 3. A. Paulsen and H. Liskien, Nukleonik 7, 117 (1965).
- 4. D. C. Santry and J. P. Butler, Can. J. Phys. <u>44</u>, 1183 (1966).
- 5. M. Bormann, et. al. Zeitschrift fur Physik, <u>174</u>, 1, (1963).
- 6. M. Bormann and B. Lammers, Nucl. Phys. <u>A130</u>, 195 (1969).
- 7. W. Lu and R. W. Fink, Phys. Rev. <u>C4</u>, 1173 (1971).
- 8. A. K. Hankla and R. W. Fink, Nucl. Phys. <u>A180</u>, 157 (1971).

DIRECT(N, 2N) Neutron Cross Section

ENDF/B MATERIAL NO. 6412

COPPER-65

INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 45 y Linear in X

I ENERGY CROSS SECTION EVERGY CROSS SECTION ENERGY CROSS SECTION ENER

The ¹¹⁵In(n,n')^{115m}In Reaction for ENDF/B-III

R. Sher

Stanford University

May 4, 1972

$\frac{115_{\text{In}(n,n')}^{115m}_{\text{In}, E_{\gamma}} = 335 \text{ Kev}, T_{1/2} = 4.5 \text{ hours}}{1/2}$

Several measurements exist (1-4,4a) of the energy-dependence of the cross section for excitation of the 4.5 hour, 335 keV isomeric state in 115 In by neutron inelastic scattering. There is also a calculation by Gardner $^{(5)}$, and some 14-MeV measurements. $^{(6-8)}$

Ebel and Goodman⁽¹⁾ did relative measurements up to about 1.8 MeV, using an anthracene crystal for detection of the 335-keV gamma rays. They subsequently normalized their results to those of Martin et al.⁽²⁾ at 0.88 MeV.

Martin et al.⁽²⁾ measured the cross section up to 5 MeV, using a 1-1/2" x 2" NaI crystal for gamma-ray detection. They measured the neutron intensity with a long counter which had been calibrated with a Ra-Be source known to $\pm 5\%$. They consider their data above 4 MeV suspect since the neutron angular distribution may have been in doubt, the neutron energy changing rapidly with angle in this region. For the gamma counting they assumed an internal conversion coefficient of 0.98, and a β branching ratio of 6%. The presently accepted value of the internal conversion coefficient is 0.90; this results in a 5% change in the cross sections.

- 150 -

Menlove et al.⁽³⁾ used various reactions in a Van de Graaff Accelerator to cover the energy range from threshold to 8 MeV, and from 12 to about 19.5 MeV. Gamma-ray counting on 3" x 3" and 4" x 4" NaI crystals was employed. The cross section was determined relative to the fission cross section of ²³⁵U in this energy region; the fission counter efficiency was calibrated at thermal energy. At 12.7 and 12.9 MeV the ²⁷Al(n, α) cross section was used for calibration. Menlove et al. used BNL-325 values of $\sigma_{\rm f}$ (²³⁵U); in the present report these have been replaced by ENDF-B-III values; the resulting change in the ¹¹⁵In(n,n') cross sections is of the order of 5-10% in the energy region between 2 and 8 MeV.

Grench & Menlove⁽⁴⁾ used gamma-ray counting on a calibrated 4" x 4" NaI crystal, and determined the cross section relative to that of ¹⁹⁷Au(n, γ)¹⁹⁸Au. For the ¹⁹⁷Au(n, γ) values they used the 1966 evaluation of Vaughn and Grench.⁽¹¹⁾ These results have been renormalized to a later (1971) evaluation of Vaughn and Grench⁽¹²⁾, and the new values, together with those of Martin et al., are shown in Fig. 1 and 2. Butler and Santry^(4a) have made measurements from 0.8 to 6 MeV relative to a calibrated long counter, and at higher energies, calibrated against the ³²S(n,p)³²P cross section. These data are plotted in Fig. 2 as read off a curve prepared by Dudey and Kennerley; the original data are not available in published form.

In the 14 MeV region there are measurements by Heertje et al. $^{(6)}$ and Barrall et al. $^{(7,8)}$ Heertje et al. obtained 81.0 ± 5.6

- 151 -

mb at 14.6 MeV, normalized to the 56 Fe(n,p) cross section of 117 mb. Apparently this result was later revised to give a value for 115 In (n,n') of 55 ± 8 mb. ${}^{(9)}$ Barrall, Holmes, and Silbergeld ${}^{(7)}$ report a value of 67 ± 7 mb at 14.6 MeV, and Barrall, Silbergeld, and Gardner ${}^{(8)}$ report a value of 69 ± 5 mb at 14.8 MeV.

Gardner⁽⁵⁾ has calculated this cross section from 2 to \sim 10 MeV. These are absolute calculations, and the results are plotted as the dashed curve in Fig. 2. (The calculation does not include precompound nucleus evaporation.)

Gardner's calculations are about 10% higher than the measurements of Menlove, but support the relatively constant cross section from 4 to 8 MeV. There is other supporting evidence for this in older measurements of Cohen⁽¹⁰⁾ and a broad-spectrum experiment of Heertje.⁽⁶⁾ Below 4 MeV, all the experiments are in reasonably good agreement. The 14 MeV points of Heertje et al.⁽⁶⁾ and Barrall et al.^(7,8) are also in good agreement with Menlove's data. Most of these data are shown on Fig. 2.

Discussion

In Fig. 1 the low energy data, from threshold to about 2 MeV, are plotted. The data of Ebel and Goodman⁽¹⁾ and Martin et al.⁽²⁾ have been slightly renormalized to account for the more recent value of the gamma rays per disintegration constant mentioned above. The data of Menlove et al.⁽³⁾ and Grench and Menlove⁽⁴⁾ have been renormalized to ENDF-B III values of the reference cross sections, $\sigma_{\rm f}(^{235}{\rm U})$ and $\sigma_{{\bf n},\gamma}(^{197}{\rm Au})$, respectively. The recommended curve has been faired through the ensemble of points. The in-

- 152 -

Figure 1

Figure 2

- 153 -

flection at 1.2-1.4 MeV is believed to be real; a similar behavior seems to be present in the cross section for excitation of the 0.91 MeV gamma ray at about the same energy.⁽¹³⁾

Above 2 MeV, the data are shown in Fig. 2, with the same renormalization as mentioned above. The recommended curve from 2 to 8 MeV is faired through the points of Menlove et al.⁽³⁾ and Butler and Santry^(4a); as has been noted, the data of reference (2) are suspect above 4 MeV. Gardner's calculation⁽⁵⁾, while $\sim 10\%$ higher than the measurements, further supports the relative flatness out to 8 MeV. Gardner's calculations are stated to have an uncertainty of at least the order of 10%, so there is no essential conflict between the calculations and the experimental data.

At higher energies, the recommended curve is faired through the available data which, in the neighborhood of 14.6-14.8 MeV, are all in reasonably good agreement. From 8 to 12 MeV, the curve is simply a guess designed to join the lower and higher energy regions smoothly. Neither experimental nor calculational data exist between 10 and 12 MeV.

References

- 1. A.A. Ebel and C. Goodman, Phys. Rev., <u>93</u>, 197 (1954).
- H.C. Martin, B.C. Diven, and R.F. Taschek, Phys. Rev., <u>93</u>, 199 (1954).
- H.O. Menlove, K.L. Coop, H.A. Grench, and R. Sher, Phys. Rev., <u>163</u>, 1308 (1967).
- 4. H.A. Grench and H.O. Menlove, Phys. Rev., <u>165</u>, 1298 (1968).
- 4a. J.P. Butler and D.C. Santry, A.P.S., <u>12</u>, 547 (1967); and Private Communication quoted by N.D. Dudey.
- 5. D.G. Gardner, Private Communication to R. Sher.
- I. Heertje, W. Nagel, and A.H.W. Aten, Jr., Physica, <u>30</u>, 775 (1964); W. Nagel and A.H.W. Aten, Jr., Physica, <u>31</u>, 1091 (1965).
- 7. R.C. Barrall, J.A. Holmes, and M. Silbergeld, AFWL-TR-68-134, Kirtland AFB (1969).
- R.C. Barrall, M. Silbergeld, and D.G. Gardner, Nucl. Phys., <u>A138</u>, 387 (1969).
- 9. B.J. Mijheer, Private Communication to R.C. Barrall.
- 10. S.G. Cohen, Nature, <u>116</u>, 475 (1948).
- 11. F.J. Vaughn, et al., Bull. Am. Phys. Soc., <u>11</u>, 753 (1966).
- 12. F.J. Vaughn and H.A. Grench, Proc. of 3rd Conf. on Neutron Cross Sections and Technology, Vol. 1, 430 (1971).
- 13. BNL-325, 2nd Ed., Supplement No. 2, Vol. IIB.

[ND]UM~115

INELASTIC Neutron Cross Section

ENDF/B MATERIAL ND. 6406

	<pre>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</pre>
eles Gies	С
BEACTION O VALUE 3.3500E-05 Interpolation Lam Between Ener: Range description 1 to 52 y Linear In X	VEUTRON CROSS SECTIONS INDEX, ENEGY CROSS SECTION EV 1 3.379995.855 5.53086.402 1 3.379995.855 5.53086.402 1 4.338965.855 5.53086.402 1 4.388965.865 1.468865.402 2 4.538965.865 3.748865.41 2 4.538965.865 3.748865.41 2 4.558965.865 3.748865.41 2 4.558965.865 3.748865.41 2 4.558965.865 3.748865.41 2 4.558965.865 3.748865.41 2 4.558965.865 3.748865.41 2 4.558965.865 3.748865.41 2 4.55865.875 3.588865.41 2 4.55865.875 3.588855.42 4 1.4759565.875 3.588855.42 4 1.4759565.875 3.588855.42 4 1.4759565.875 3.588855.42 4 1.4759565.875 3.588855.42 4 1.4759565.875 3.588855.42 4 1.475956.875 3.588855.42 4 1.475956.875 3.588855.42 4 1.475956.875 3.588855.42 4 1.475956.875 3.588855.42 4 1.475956.875 3.588855.42 4 1.475956.875 3.588855.42 4 1.475956.475 3.588855.42 4 1.47556.475 3.588855.42 4 1.47556.475 3.588855.42 4 1.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.47556.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475 4.475566.475666.475666.475666.475666.475666.4756666.47566666.4756666666666

1

Evaluation of 115 In(n, γ) 116 In For ENDF/B-IV

F. Schmittroth

Hanford Engineering and Development Laboratory

The evaluation of the $^{115}In(n,\gamma)^{116m}In$ metastable reaction described here is primarily for use in dosimetry. Emphasis was placed on File 2 (MT=151, resolved resonance parameters) and File 3 (MT=102, smooth capture cross sections).

Two metastable states exist for ¹¹⁶In, a 54.2 min. state at 0.126 MeV and a shorter-lived state (2.2 sec) at 0.289 MeV that decays isomerically to the 54.2 min. state. Therefore, the metastable capture described here includes both isomeric states. Resonance Parameters

The evaluation of resonance parameters is based on the new BNL resonance parameters.¹ Since the *l*-values for these resonances are not given, s- and p- waves were assigned by a probability method² based on the neutron widths. Although this method is poor compared to more direct experimental evidence, assignments were unambiguous for most resonances. Typical probabilities for a particular p wave resonance were either less than 0.01 or greater than 0.80 so that a clean separation was obtained. On this basis, the number of s-wave resonances, N(E), up to an energy, E, was plotted as a function of energy. Numerical fitting procedures gave an average s-wave spacing,

- 158 -

 D_{obs} , of (11.0 ± 0.7) eV. Also, since an inspection of the graph showed that resonances were being missed above 1 keV, the resolvedresonance range was terminated at that point. Except for the few cases where J-values were known, a value of J=4.5 was assigned for both s- and p-wave resonances. This unphysical value is appropriate for a ground state spin of $I_0=9/2$ for ¹¹⁵In and provides a clue that the numbers are evaluated and not measured. A weighted average of radiation widths gives an average value of $\Gamma_{\gamma}=(77 \pm 5)$ mV. Because, as described below, capture to the ¹¹⁶In isomeric states accounts for 79% of the total, all radiation widths were reduced by this factor.

Smooth Cross Sections

Above 1 keV, a standard Hauser-Feshbach calculation with width-fluctuation corrections³ was performed for the isomeric capture cross section. By varying the ratio, Γ_{γ}/D_{obs} , the calculation was adjusted to an experimental value of 0.2 barns at an incident energy of 0.85 MeV. For the keV range, the primary data considered were from the work of Grench and Menlove⁴ and Ryves et al.⁵ Other data given consideration included measurements by Cox⁶ and earlier work by Menlove et al.⁷

Other details required for the calculations include inelastic levels⁸ taken from the compilation of Bass et al. Collective and direct capture were estimated by a phenomenological model for MeV energies. Below 1 keV, a small "1/v" component was entered in File 3 to give a thermal cross section of 161 barns when added to the resonance contributions. Holden and Walker⁹ recommend 41, 70 and 91 barns for the thermal cross sections leading to the ground state, and the first and second metastable states in 116 In, respectively (the total isomeric capture is 70 + 91=161 barns). Since the resonance parameters gave a thermal cross section of 157.09 barns, only 3.91 barns had to be added as the "1/v" component. Notice that the thermal isomeric to ground state cross section ratio is equal to 161/(161+41)=0.80. In the vicinity of 700 keV, this same ratio is close to 0.78; therefore a reduction of 0.79 for the capture widths was chosen for the resolved resonance parameters.

References

- S.F. Mughabghab and D.I. Garber, BNL 325, 3rd Ed., Vol. 1, (Nat'1. Neutron Cross Section Center, Brookhaven Nat'1. Lab.) June 1973.
- 2. L.M. Bollinger and G.E. Thomas, Phys. Rev. <u>171</u>, 1293 (1968).
- 3. F. Schmittroth, "Theoretical Calculations of Fast Neutron Capture Cross Sections", HEDL-TME <u>71</u>, 106 (August 1971).
- 4. H.A. Grench and H.O. Menlove, Phys. Rev. <u>165</u>, 1298 (1968).
- 5. T.B. Ryves et al., J. of Nuc. Energy, 27, 519 (1973).
- 6. S.A. Cox, Phys. Rev. 133, B 378 (1964).
- 7. H.O. Menlove et al., Phys. Rev. 163, 1299 (1967).
- W.T. Bass et al., "Current Nuc. Level Schemes, A=91-117," ORNL-4627, (December 1970), (Nuclear Data Project, Oak Ridge Nat'1. Lab.).
- N.E. Holden and F.W. Walker, Chart of the Nuclides, 11th Ed., Revised to April 1972 (Knolls Atomic Power Lab., General Electric Co., Schenectady, NY.).

ENDETS MATERIAL NO. 6416

INDIUM-115

1

T .

RESONANCE DATA Resonance parameters

RESOLVED SINGLE-LEVEL BREIT-WIGNER PARAMETERS

INDIUM-115	
ISOTOPEINDIUM FRACTIONAL ABUNDANCE	·115 E+00 1
ENERGY RANGE NUMBER	1

L VALUE	ø
NUMBER OF RESONANCES	89
SPIN SCATTERING LENGTH (A+)-+	0.0000E+00

				RESONANCE WID	THS (EV)	
INDEX	ENERGY (EV)	J VALUE	TOTAL	NEUTRON	RADIATION	FISSION
1	1,457 <i>0</i> E+00	5.0000E+00	5,9916E-02	3,0364E-03	5.68802-02	0,000000+00
2	3.8600E+00	4,0000E+00	6.4344E-02	3,5444E-Ø4	6.3990E=02	0,0000E+00
3	9,12005+00	5.0000E+00	6.4773E-02	1.5727Eר3	6.3200E-02	0,000000+00
4	1,210°E+01	4.5000E+00	1.10716-01	1,1200E-04	1 1060E-01	9,000ØE+00
5	2,273 ⁰ E+Ø1	4.5000E+00	6.5030E-02	1 04005-03	6,3990E-02	A, BUUDE+OP
6	2,3000F+01	4,5000E+00	6,4143E-02	1,18005-03	6.2963E-02	A,0000E+00
7	3,96805+81	4,5000E+00	6,4040E-02	A. 0000E-03	6,0040E-02	A,9000E+00
8	4,6360E+01	4,5000E+00	6.3223E-02	2,60005-04	6,2963E=Ø2	8,0000E+00
9	4,81405-01	4.5000E+00	7.1700E-02	6,0000E,04	7,11005-02	7,0000E+00
10	6,3000E+01	4,5000E+00	7.5890E-02	8,4000E-04	7,5050E-02	8,0000E+00
11	6,950°£+01	4,5000E+00	6,3363E+Ø2	4.0000E.04	6,2963E-Ø2	A ØØØØE+00
12	8,0870F+01	4,5000E+00	5,6800E-02	1.5000E_03	5.5300E-02	a . 0000E+00
13	8,32805-01	4,5Ø00E+20	6,427ØE-Ø2	6.6000E-03	5,7670E-02	9+0000E+00
14	9,4340E±01	4,5000E+00	7.4000E-02	2.9000E-03	7,1100E-02	3,0000E+00
15	1.258 E + 02	4,50000+00	5,5150E-02	3.8000E-03	5,1350E-02	A,0000E+00
16	1.3261E+02	4,50000+00	1.4760E-01	5,4000E-03	1,4220E=01	A 0000E+00
17	1.5027E+02	4,5000E+00	7.1750E-02	A.6000E-03	6.7150E=02	A 0000E+00
18	1.646/1+02	4,50000+00	8.278ØE-02	1.80000-02	6.478ØE-02	4 90000E+00
19	1.68005.402	4,50001+00	6,5063E-02	2.1000E-03	6.2963E-02	0,00006+00
50	1,77941.402	4,50001+00	6,6200E-02	3,00000-03	6.3200E=02	0 0000E+00
21	1,80405+05	4,50001+00	9,90000-02	2 0000E 02	7.9000E=02	2.20205+00
22	2 00001 02	4,50000+00	8,5963E-02	2.3000E-02	6.2963E=02	0.0000E+00
20	2,11002.002	4,50001+00	6.3483E-02	9.20005-04	0.29035-02	R + 80000 + 60
24	2,2404.402	4,500000+00	7,9400E-02	3.20001-02	4.74006=02	N 1 0000E+00
22	2,20011.+02	4,500000+00	6.4283E-02	1.3200E=03	D.2903E502	0,0000E+00
27	2 44065400	4 E000E+00	1.6/120-01		6 00675-002	
27	2 88885-02	4 50002+00	0.07631-02		0.29031-02	N 1 N 2 N 2 C + 0 0
20	2 04335402	4,5000E+00	0.29631-02	7 YUUUL US	6 29635 -02	0.0000€+00 0.00000€+00
70	3 10495402	4 50005-00	7 70475-01	4 FAAAF 43	6 00475-02	1,00000C+00
31	3.39805+02	4.5000E+00	A ARATE-02	1,00000-03	6 09435-02	4.3000C+00
32	3.5413F+Ø2	4.5000F+00	A 02435-02	A 2800C-03	6 09635-02	7.00000-+00
33	3.6210F+02	4.5000F+00	7 38435-00	4 08800 02	6 00635-00	0.000000+00
34	3.7094F+02	4.5000E+00	A 98435-00	A. 90000 - 03	A 0943F=02	
35	3.8297E+02	4.5000E+00	A 41935-02	1.22005-03	6 0963F=00	0.0000c+00
36	3.84295+02	4.5000E+00	6.88038-02	5.8600F-03	6 2963F #42	0.00000-00
37	4.0237E+02	4.50000+00	9.43A3F=00	3.14005-02	6 2963Ema2	6.0000c+00
38	4,1150E+02	4.50000+00	9.4363F=02	3.14001-02	6 2963F=02	3.00000000
., -				OTT ODE ODE		

- 0	4	1 50005.00				
37	4.23001.402	4.50001+00	7.34236-02	1.0400E-02	0,2963t=02	ମ∎ମପ୍ରରିE+ଧ୍ୟ
410	4,37105,+02	4,5000E+00	6.4003E-02	1.04005-03	6.2963E=02	2.2040F+20
41	4.48905+02	4.5000E+00	7 55435-00	1 25405-02	6 3963F=02	0.00405+00
	4 53845+63	A 50005-00	7,70,75-02	1,20402-02	6 20000 02	
46	7.53076.492	4,30000000	8.09631-02	5.10006-05	0'5407FER5	2 1 0 0 0 0 E + 0 0
4.5	4,5682E+02	4,50000+00	8,2163E-02	1,92000-02	6,2963E-02	0,00005+00
44	4.6965E+Ø2	4.5000E+00	6.84035-02	5.4400F-03	6 2963E=02	3.00005.00
45	4 77555+02	4 5000F+00	4 41435-00	7 14000 07	4 00475-02	3 99395+49
- 12	4 00000.00		0,01036-02	0.14006-00	0,27636462	NINDEDETOD
40	4,98201 402	4,20000.+00	6,5883E-02	5.05005-02	6,2963E-02	0.0000E+00
47	5 037 SE+02	4,5000E+00	8.7963E-02	2.50000-02	6.2963E-02	A.0000F+00
48	5.1530F+02	4.500000+000	6 63035-02	3 34005-03	A 08435+82	a. 30405+00
	5 25465+02	A 5000E-00	7 74 075 00	4 40000 40	6.270000-02	
	20101.492	4,300000.409	1.11826-05	2.46602-06	0.54035-05	N * N N N N N E * N N
510	5,47926.+02	4,5000E+00	6,84Ø3E-Ø2	5,44008-03	6 2963E 02	R . ABUDE+0A
51	5.51106+02	4.500000+00	6.4643F-02	1.68006-03	6.2963F=02	0.0040F+09
52	5.74865+02	4 5000F+00	0 85435-02	T 65405-02	6 09435-003	a aadac+08
	5 04405.00		7 0 0 0 C - 0 Z	0.33406-02	0,29000-02	N & NOD DO DE + 1 M
50	3 80141 #02	4.20005+00	7.0903E-02	7.94005-03	6,2963L-02	0,00006+00
54	5.890YE+02	4,50000+00	6.9663E-02	6.7000E-03	6.2963E=02	0,0000E+00
55	6.0222F+02	4.5000€+00	6.50A3F-02	2.10005-03	6 2943F=02	0.00000+00
E Á	6 141.15+0.7	A 5000E+00	4 00405-04	7 76406 00	6 00 15 - 02	a adda
	0,14101.402		1,00000-01	0.70401-02	0.2763L-02	- NODODE+ND
57	0.19591.02	4.50002+00	7,9683E-Ø2	1.67205-02	6 2963E Ø2	M'N0975E+00
58	6,4393E+Ø2	4.5000E+00	6.7763E-02	4.8000E-03	6.2963E=02	7 000000+00
59	6.4707F+02	4.5000E+00	A 86835-02	5 7200E-03	A 29635=82	A. 00005+00
. 0	6 64806+00	A BOMAL MA	7 40475 40	0 00000 07	6,290000002	
	0,90007,402	4,500000000	7.196.1-02	A'NDBBF - NO	0.29635-02	N. 0000E+30
61	0.74031.+02	4.500000+000	7,4243E-Ø2	1,12805-02	6,29631=02	0,9000E+00
62	6.8323E+Ø2	4,5000E+0Ø	6.6103E-02	3.1400E-03	6.2963E-02	0,00006+00
63	6.9462F402	4.5000E+00	6.7143F-92	4.18005-03	6 2963F-02	A. GONGE+00
	7 64755+03	A SOODE+00	4 60/75-00	0 10000 03	6 00435-00	a. aukar+aa
			0,2403E-02	5.3000F403	0.27032-02	NINDOBETHD
62	2.0783E+02	4,50001+00	6,8823E-02	5,8600E-03	6,2963E=Ø2	0.0000E+00
66	7.1985E+02	4.5000E+00	6.61Ø3E-Ø2	3,1400E-03	6.2963E-02	4 9000E+00
A7	7.27846+02	4.5000F+00	6 63035-00	3 34005-03	6 2963Fed2	9.00405+00
4.4	7 11255-42	A 50005-00	3 57435-40	1 73406 03	6 004 35 - 40	a. aggartag
	7,35251.402	4,500002+00	1,55035-02	1,20401.402	0.27032-02	NINDONE THE
67	1 22001 +02	4 - 20,005 + 60	6,5263E-02	5'3000E+03	6.29631-02	9 N N N N N E + N N
70	7.74025.+02	4,5000E+00	8.3863E-02	2,09006-02	6.29635-92	7,7000E+00
71	7.8354F+02	4.5000F+00	7 88435-02	1.5880F-02	6 2963F ##2	A. 00405+00
45	7 80585+83	4 50005.00	3 04035-00	47000-00	4 004 IE-00	a. aagar + 40
12	107501-02		1,70836-02	1.0/605-06	0.27030002	NUNDERETNE
73	1.950 pt +02	4.50002+00	5.8753E-02	5 80005 03	6.2463E 402	2 0000E+00
74	8,157JE+02	4.5000E+0 0	6.6303E-02	3,3400E=03	6.2963E-Ø2	0,0000E+00
75	8.19416+02	4.5000F+00	7 13935-09	8.36000-03	6 2963F=02	a.0000c+00
	8 30795+03	A 50005+00	7 38435-00		6 00435-02	3.00005+00
/0	0.277	4.50000-+00	7.38432-02	1.00001-02	0.27002.022	WIDDDDE FDD
77	8,38/01+02	4,500000+00	8,07232-02	1,77001-02	6.2963L-02	N 1 9 0 0 0 E + N N
78	8.5352F.+Ø2	4.5000E+00	1.215ØE~Ø1	5,8540E-02	6.2963E=02	0 0000E+00
79	8.4408F+02	4.5000E+00	8.59A3Fed2	2.30005-02	6.29635-02	7.00005+00
	8 41855400	A 50005+00	9 17435 00	4 44005-00	6 09435-03	
610	0,0007.402	4,50500-900	0.11005-02	1 00001.302	0.2.000002	
61	8.758YE+02	4,5000E+00	6,9863Eů2	9' 2 N N N E = N 3	6,2963E-Ø2	N * NN * NE + SN
82	8,9162E+02	4,500ØE+00	7.8843E×02	1.58805-02	6,2963E=02	A,0000E+00
83	8 08965-82	4.5000F+00	6 6503F -02	3.56005-03	6 2963E 02	3.0000F+00
	0 43046400	4 EQ005.00	3 43435.40	4 18902 00	4 00435-00	8.8938r+95
N-9	A 12446 #85	4, 3000E+00	1.0/836-02	1,30805-05	0.5a0orahs	2 100 00 TON
85	9,2343£+02	4,5000E+00	6,9243E-02	6,2800E=03	6,2963E⇒Ø2	4 0000E+00
86	9.48125.482	4.5000£+00	1.1516E-01	5.22002-02	6.2963E=02	8,88085+68
	9 56575+00	4.50005+00	0 43035-00	3.13605-00	6 2963F-02	3.00005+00
	0 77095.702	4 80005.00		3 4300C 40C	4 00435-42	3 363ac+00
84	* //¥*L+UZ	4.70005+00	A A 4 4 9 9 4 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4 9 5 4	0.00000-002	0.29036-02	WINNARF AN
89	9,9797E+02	4.5000E+00	9.6363E-Ø2	3,3400E-02	6.2963E∍Ø2	N 1 NO NOE + 0 D

				RESONANCE WID	THS (EV)	
INDEX	ENERGY (EV)	J VALUE	TOTAL	NEUTRON	RADIATION	FISSION
INCER		0 18200				
1	7.3080F+01	4.5000F+00	6.29755-02	4.2000F_05	6.2963E=02	a.0000F+00
2	8.6360F+01	4.50000+00	6.3015F-02	5.2000F-05	6.2963E=02	0.0000F+00
3	1 0083E+02	4.500000+00	6.3007E-02	4.40005-05	6.2963E=02	0.00002+00
Ă	1,10906.+02	4,5000E+00	6,3011E-02	4.80002-05	6,2963E⇒Ø2	0,0000E+00
5	1,1443E+82	4,5000E+00	6,3067E-02	1.04000-04	6,2963E-02	ୟ , ସହତହେମ + ତହ
6	1,2071E+02	4,5000E+00	6,2971E-Ø2	8.00005-06	6.2963E-02	A,0000E+00
?	1,44845.+82	4,500000400	6,31Ø9E-Ø2	1.46002-04	6,2963E-02	A .0000E+00
5	1,45/01.+02	4,500000+00	6.3023E-02	5,0000E-07	0,29031.402	0 10000E+00
	1 74085-02	4,50000,400	6.31096-02	1,40001-04	6 29031-02	01,00000E+00 01,00000E+00
11	1.92246+02	4.50005+00	A 2905E-02	3.20005-05	6 2963F-02	3.0000F+00
12	1.94425+02	4.5000E+00	6.30A7E-02	1.24005-04	6.29638-02	0.0000F+00
13	1,9883E+Ø2	4.5000E+00	6.3035E-02	7.20005-05	6.2963E=02	0,0000E+00
14	2,14875.+02	4,30002+00	6.31398-02	1.76001-04	6,2963E=02	9,90005+00
15	2,3928E+02	4.5000E+00	6,3217E-Ø2	2.5400E-04	6,2963E+02	7,0000E+00
16	2,4674E+82	4,500000+00	6,3155E-Ø2	1,92005-04	6,2963E=02	A,0000E+00
17	2,74//1.402	4.500000+00	6.3099E-02	1.36000-04	6,2963E-02	A . 9900E + 90
10	2.82201.002	4,50006+00	6,3149E-02	1,80005-04	0.29031-02	0.0000E+00
20	3.0837E+02	4.500000+00	6 3089E-02	1.04000-04	6 2963E 02	0,0000E+00
21	3 2957F+02	4.5000E+00	6.31635-02	2.00000-04	6.2963E+02	0.0000000000
22	3,3673E+02	4.50002+00	6.31632-02	2.00005-04	6,29635-02	A.0000E+00
23	3 4510F+82	4,500000+00	6,29935-82	3,88885-85	6,29635-82	7,8030E+00
-24	3,6060E+02	4.5000E+00	6,3163E+Ø2	2.0000E-04	6,2963E=02	0,000000+00
25	3.668/E+02	4,50000+00	6,3303E-02	3,40006-04	6,2963E-02	A . 0000E +00
20	4 34315402	4,5000E+00	0,3091E-02	8,2800E=04	6,2963E=02	0.000000+00
28	4.7358F+02	4,500000000	6 35035-02	2.2000E=04	0.29031-02	0 + 0 0 0 0 E + 10
29	4.8801E+02	4.50002+00	6.3603E-02	A.4000F-04	6.29635-02	0.0000F+00
30	4,93675+02	4,5000E+00	6.3463E-02	5,00000,04	6.29632-92	3,99992+99
31	5,0184E+02	4.5000E+00	6,4003E-02	1,0400E-03	6,2963E-02	0,0000E+00
32	5,0621E+02	4.5000E+00	6,4043E-02	1,08005-03	6,2963E-02	3.0000E+00
30	5 30115-02	4,5000E+00 4 6000E+00	6.3061E-02	9.60005-05	6,2963E=02	A, 8030E+80
35	5.5970F+02	4.50006+00	6 3603E=02	4 4000E304	6,29035-02	0 00000 +00
36	5 6261E+02	4.5000E+00	6.3903F=02	9.40005-04	6 29635-02	0.0000E+00
37	5,69621+02	4,5080E+80	6.34B3E-02	5.20006-04	6.29632-82	0.0000F+30
38	6.0999E+02	4,5000E+00	6,3803E-02	8,4000E-04	6,2963E=Ø2	A,0000E+00
39	6,9915E+02	4,5000E+00	6,4183E-82	1,22005-03	6,2963E=02	N,0000E+00
40	7 40045+02	4.500000+00	6,3963E-Ø2	1,00000-03	6,2963E=02	A.8000E+90
42	8.00A3F+02	4.5000E+00 4.5000E+00	6,4043E-02	1,0800E-03	6,2963E=02	A + 0000E + 00
43	8,12575+02	4.5000E+00	6.34A3F=02	7,0000E=04 5.0000E=04	6 29032-02	N 100000E+00
44	8,6944F.02	4,500000+00	6.4543E-02	1.5800F-03	6.29632002	0.000000-000
45	8,8258E+Ø2	4,5000E+00	6 3723E-Ø2	7.60005.04	6.2963E=02	3 0000E+00
46	9,06768.002	4,50002+00	6,3543E-02	5,80005-04	6,2963E-02	A . 6648E + 88
47	9,3199E+Ø2	4,50000+00	6,5243E=Ø2	2,28005-03	6.2963E-02	9,0000E+00
40	9,73815+02	4,7000E+00	6.4063E-02	1.10000-03	6.2963E-02	0,0000E+00
50	9.8176F+02	4.500000+00	D 2031-02	1,24005-03	0,2903L=02	R 8000E+00
2.0			0.00005-05	K'ADDOF-DO	0.2403F.#85	N N N N N N N N N N N N N N N N N N N

-	163	-

1ND1UM-115

(N, GAMMA) Neutron Cross Section

ENDF/B MATERIAL NO. 6416

REACTION Q VALUE 6,5980E+06 EV

INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 37 (n y linear in ln x

N ENERGY CROSS SECTION ENERGY CROSS SECTION EV 84NNS E 1,00362-03 2,203774-00 1,00005-04 3,74596-01 1,00005-04 3,745966-01 2,00005-05 1,98965-01 7,00005-05 1,98965-01 1,00005-03 1,08965-01 1,00005-03 1,08965-01 1,00005-03 1,08965-01 NEUTRON CROSS SECTIONS INDEX, ENEGY CROSS SECTION ENERGY CROSS SECTION ENERGY CROSS SECTION EV 1 DEVELOP CROSS SECTION ENERGY CROSS SECTION EVER PARKS 1 DEVELOP 1 DEVELOP 2 DEVELOP 1 DEVELOP 1 DEVELOP 1 1 2 DEVELOP 1 DEVELOP 2 DEVELOP 1 DEVELOP 1 DEVELOP 1 1 2 DEVELOP 2 DEVELOP 1 DEVELOP 1 DEVELOP 1 DEVELOP 1 1 2 DEVELOP 2 DEVELOP 1 DEVELOP 1 DEVELOP 1 DEVELOP 1 1 2 DEVELOP 1 DEVELOP

REFERENCES FOR EXPERIMENTAL DATA

¹¹⁵ In	(n, Y)		
<u>Yr.</u>	Lab	Author	References
73	KOS	Peto	Act. Phys. Ac. Sci. Hung. 33,363 (1973)
71	WWA	Brzosko, et al.	Acta Phys. Pol/B 2, 489 (1971)
68	lok	Grench et al.	Phys. Rev. <u>165</u> , 1298, (1968)
67	LOK	Menlove et al.	Phys. Rev. <u>163</u> , 1299, (1967)
66	KFK	Poenitz	EANDC (E) - 66, 5, (1966)
64	ANL	Cox	Phys. Rev./B, <u>133</u> , 378 (1964)
59	WIS	Johnsrud, et al.	Phys. Rev. <u>116</u> , 927 (1959)
59	ORL	Lyon et al.	Phys. Rev. <u>114</u> , 1619 (1959)
58	LRL	Booth	Phys. Rev. <u>112</u> , 226 (1958)
58	CCP	Kononov, et al.	At. En. <u>5</u> , 564 (1958)
58	CCP	Leipunsky, et al.	Second Peaceful Uses of At. En. Conf. Geneva Vol <u>15</u> , 50 (1958)
57	ORL	Macklin et al.	Phys. Rev. 107, 504 (1957)

The ¹²⁷I(n,2n)¹²⁶I Cross-Section for ENDF/B-IV

R. Sher

Stanford University

May 1, 1972

$\frac{127}{1(n,2n)}$ ¹²⁶ I, Q = -9.15 + 0.20 MeV, E_{th} = 9.23 + 0.20 MeV

Relative cross sections for this reaction have been measured from 13.2 Mev to 18 Mev⁽¹⁾ and from 12.4 Mev to 18.3 Mev⁽²⁾. In addition, there are a number of measurements at single energies in the vicinity of 14.6 Mev,⁽³⁻⁶⁾ and calculated cross-section curves by Pearlstein⁽⁷⁾ and Gardner⁽⁸⁾. Several measurements of crosssections averaged over a broad neutron spectrum also exist^(9,10).

In reference (1), a thin tritium target was bombarded by 3 MeV deuterons. The cross-section values were normalized relative to $\sigma^{27}A\ell(n,\alpha)^{24}Na = 107\ 107 \pm 5$ mb at 15.21 Mev. NaI counting of ¹²⁶I decay gammas was employed with assumed branching ratios of 29% for the 386 keV gamma ray and 33% for the 667 keV gamma ray. Presently accepted values⁽⁹⁾ for these branching ratios are 34% and 33%, respectively; the present values would lower the reported cross-sections by 62/67 = 0.925.

In reference (2), a NaI crystal was used as a combination target and detector. In addition to relative counting, σ_{rel} was also based on the angular distribution of (d,t) neutrons, known at the time to \pm 10%. The relative cross-sections were normalized at 14.1 MeV in a separate experiment using a Cockroft-Walton

- 167 -

generator and monitoring the neutron flux to \pm 5% by means of the associated alpha particles.

In reference (3), the cross-section at 14.5 Mev was determined by beta-counting, with an uncertainty of + 35%. In reference (4), gamma counting was used, and the cross section was determined at 14.6 \pm 0.2 Mev relative to $\sigma^{27} Al(n,\alpha)^{24} Na = 120.7$ mb. The value obtained was 1.66 ± 0.15 barns. In reference (5), gamma counting was used, and the neutron flux was determined with a proton recoil telescope. The neutron energy was 14.8 ± 0.2 Mev. The crosssection obtained was 1.67 ± 0.09 barns. In reference (6), the cross-section was determined at 14.7 Mev relative to $\sigma^{27} A1(n,\alpha)^{24}$ Na = 112 mb. Gamma-ray counting with a NaI crystal was used. Chemical separation was employed to remove Sb resulting from $\frac{127}{I(n,\alpha)}$ Sb. The efficiency of the NaI crystal was determined using Heath's curves, and a graphical spectrum-peeling procedure was used. The cross-section obtained was 1.64 ± 0.15 barns. However, the 27 Al(n, α) cross-section used for normalization seems low, and should be 120 mb; this would raise the 127I(n,2n) crosssection to 1.76 ± 0.16 barns.

Pearlstein's calculated cross-sections⁽⁷⁾ are relative; he normalized to a neutron emission cross-section, $\sigma_{nM} = 1.380$ barns, which makes the peak (n,2n) cross-section around 14.5 MeV have a value of about 1.3 barns. Gardner's calculation⁽⁸⁾ is absolute, and gives a peak (n,2n) cross-section at 16 MeV of 1.65 barns, and a value at 14.7 MeV of 1.59 barns.

- 168 -
It is seen that measurements up to 1968 give a peak (n,2n) cross-section at \sim 14.5 MeV of \sim 1.3 barns; measurements since 1968 give a peak cross-section \sim 1.7 barns. There are no obvious explanations for this discrepancy. The later measurements are favored on two grounds, however. First, they are more recent; second, Gardner's calculations, which are absolute in the sense that they are not normalized to any assumed cross-sections, favor the higher values.

In Fig. 1, the data of references (1), (2), (4-6), are compared with Gardner's calculated curve. The experimental data of (1) and (2) have been renormalized at 14.1 Mev to agree with Gardner's curve. Gardner's curve extends to 17 Mev; the region from 17-20 Mev has been calculated by Pearlstein's method, normalized to Gardner's value at 17 Mev.

There are two measurements of the average cross-section in a fission spectrum (9,10). These (0.647 mb, 1.62 mb) differ by more than a factor of two, and therefore are of no help in normalizing the differential cross-section curve. The recommended curve (Gardner's calculation) yields an average cross-section in a Watt spectrum of 1.1 mb, which is close to the average of the two measured values.

The recommended curve for ENDF-B-IV is that in Fig. 1 (solid curve).

Figure 1

References

- 1. M. Bormann, et al., Z. Phys. <u>166</u>, 477 (1962).
- 2. H. L. Martin and R. F. Taschek, Phys. Rev. <u>89</u>, 1302 (1953).
- 3. E. B. Paul and R. L. Clarke, Can. J. Phys. <u>31</u>, 367 (1953).
- 4. R. C. Barrall, J. A. Holmes, and M. Silbergeld, Kirtland USAF Base, New Mexico, AFWL-TR-68-134 (1969).
- R. C. Barrall, M. Silbergeld, and D. G. Gardner, Nucl. Phys. <u>A-138</u>, 387 (1969).
- 6. Havlik, Acta Physica Austriaca, <u>34</u>, 209 (1971).
- 7. S. Pearlstein, Nucl. Sci. Eng. 23, 238 (1965).
- 8. D. G. Gardner, private communication.
- 9. D. DeRegge, R. Dams, and J. Hoste, Radiochimica Acta, Band 9, Heft 2/3, 57 (1968).
- F. Nasyrov, Soviet J. Atomic Energy <u>25</u>, 1251 (1967) (English trans 1.).

IODINE-127

DIRECT(N, 2N) Neutron Cross Section

ENDF/8 MATERIAL ND. 6414

5	
9.1588E+B0	
ĩ	
VALUE	
a	
REACTION	
-	

INTERPOLATION LAW BETNEEN ENERGIES Range description

	z							
	CROSS SECTIC BARNS	7,5362E-02 2,5450E-01	5.0555E-01 7.7431E-01	1.0088E+00 1.1972E+00	1.4410E+00 1.5905E+00	1,7452E+00	1.6907E+00	9.8764E+01 6.7311E+01
	ENERGY (Ev	9.446 <i>0</i> E+06 9.9007E+06	1.0400E+07 1.0900E+07	1.1400E+07 1.1909E+07	1.2800E+07 1.3800E+07	1.5800E+07	1.6800E+07 1.7800E+07	1.8800E+07 1.9800E+07
	OSS SECTION Barns	.60435-02	.5172E-Ø1 .2207E-Ø1	6568E-Ø1 .1629E+ØØ	.3966E+ØØ .5684E+ØØ	.73535+00	.7198E+ØØ .4622E+ØØ	. 26175-00 . 26175-01
	ENERGY CR Ev	9.3920E+06 5	1.0300E+07 4 1.0800E+07 7	1.1300E+07 9 1.1800E+07 1	1.2600E+07 1 1.3600E+07 1	1.4600E+07 1 1.5600E+07 1	1.56688E+87 1 1.7688E+87 1	1.9600E+07 1 1.9600E+07 7
	OSS SECTION B≜RNS	76435-02	.9913F-01 .6867E-01	.2070F-01 .1270F+00	. 5467 <u>7</u> +60 . 546477+60	.64388+00 .72185+00	.7386 <u>7</u> +80 .5336 <u>E</u> +00	.1432 <u>F</u> +00 .8417F-01
	ENERGY CR Ev	9,3388E+26 3 9,7888E+26 1	L 0200E+07 3	1,1200E+07 9 L,1700E+07 1	1,2420E+07 1 1,3400E+07 1	L.4400E+07 1 L.5400E+07 1	L.6480E+87 1 L.7480E+87 1	L,8400E+07 1 L,9400E+07 7
	OSS SECTION Babage	. 8362E-02	48355-01	7394E+00	29126+00	62766+00 7062E+00	7482E+00	.22395-00
	ENERGY CR	9,28405+06 1 9,60005+06 1	1.0100E+07 3	1,1100E+07 8	1.2200E+07 1	1.5200E+07 1	1.5200E+07 1	1.9200E+07 4
EAR IN X	DNS OSS SECTION DADMS	. 96665+96 . 56665+96	. 0000E=01 6000E-01	, 2500E-01 , 0500E+00	2300E+00	.6100E+80 .6900E+80	,7500E+00 ,4500E+00	. 15075+00 15075-01 25005-01
VI Y LIN	CROSS SECTI Energy Cr Fv	,2300E+06 0 1.5000F+06 9	0500E+07 3	15005-07 B	2000E+07 1	50005+07 1 50005+07 1	4 6000E+07 1 7000F+07 1	- 9000E+07 1 9000E+07 9 2,0000E+07 9
1 70	NEUTRON INDEX.	-1 -0 -0 -0		110		110		1994 2994

¹⁹⁷Au(n,γ)¹⁹⁸Au Reaction for ENDF/B-IV* M.D. Goldberg and S.F. Mughabghab Brookhaven National Laboratory

The capture cross section in the ENDF/B-IV File below 2 keV is represented by the resonance parameters. In the energy region, 2-10 keV, the capture cross section was calculated by using the average resonance parameters specified in File 2 and the code $AVRAGE-4^{(1)}$ which follows the method of Lane and Lynn⁽²⁾ and applies width fluctuation corrections as discussed in their paper. This calculated curve is shown in Fig. 1 compared with the avail-

Figure 1

*Extracted from "Evaluated Neutron Cross Sections of ¹⁹⁷Au" BNL 50439 (ENDF-215) 74, S.F. Mughabghab et al.

- 174 -

able data in this range and with the ENDF/B-III valves between 1 and 6 keV. (The curve above 10 kev is the same as that of Fig. 4.)

For neutron energies greater than 25 keV, a reassessment of the gold capture cross section is required because of the availability of new measurements and because of a reevaluation of the 235 U cross section for ENDF/B-IV. Fig. 2 shows the new 235 U fission cross section between 25 and 100 keV. It can be immediately seen that there is considerable structure in this cross section, with fluctuations of as much as 10% or more within a kilovolt or so. Thus, its use as a standard is quite compromised unless the neutron energy and neutron energy spread are well known and accounted for. In Fig. 3 this cross section is "smeared out" by averaging points in groups of ten (effective "resolution" \sim 5 keV) and compared to a similar curve for the 235 U fission cross section in ENDF/B-III. This plot indicates an average change in the absolute value of the cross section of 5-15%.

Since it would seem that a fluctuating cross section subject to substantial renormalization, does not make a very reliable

Figure 2

- 175 -

standard, it was decided to perform the gold capture re-evaluation with data not involving ²³⁵U fission standardization. This follows the procedure adopted by Carlson⁽³⁾ and by Poenitz⁽⁴⁾ in evaluations presented at the 1970 EANDC Normalization and Standards Conference held at Argonne National Laboratory and follows the most recent recommendations of the Normalization and Standards Subcommittee of CSEWG (July 1973). Due to an abundance of excellent recent experiments, it was also arbitrarily decided that only data measured since 1960 would be considered.

The capture cross between 10-100 keV is shown in Fig. 4. The following data sets were were plotted: (1) Czirr et al.⁽⁵⁾ (2) LeRigoleur et al.⁽⁶⁾ (3) Fricke et al.⁽⁷⁾ (4) Kompe⁽⁸⁾ (5) Poenitz et al.⁽⁹⁾ (6) Belanova et al.⁽¹⁰⁾ (7) and Bergvist.⁽¹¹⁾ The data of Spitz et al.⁽¹²⁾ Moxon et al.⁽¹³⁾ and Bilpuch et al.⁽¹⁴⁾ were not used.

The capture cross section between 100-1000 keV is shown in Fig. 5. Data sets of Refs. 6-10 were plotted, plus the data sets of Barry.⁽¹⁵⁾

Inspection of Figs. 4 and 5 show that the various data sets are in quite good agreement with each other within the quoted

- 176 -

Figure 4

errors. There is a general tendency for the data of Fricke et al.⁽⁷⁾ (Fig. 4) and Barry⁽¹⁵⁾ (Fig. 5) to be higher than others and for the data of Bergvist⁽¹¹⁾ to be lower; but all are never more than about two standard deviations from the mean. The one point of Belanova et al.⁽¹⁰⁾ is about three standard deviations low. The evaluated eye-guide in Figs. 4 and 5 was drawn with no explicit weight factors for the various experiments.

For the region above 1 MeV, the only one significant new contribution is that of Lindner. (16) These data should be considered preliminary until published and were measured relative to 235 U. but the lack of measured fluctuations in the ²³⁵U fission cross section at these high energies made it worthwhile to see what the new data indicated for gold capture. Fig. 6 shows two independently normalized data sets from Lindner (16) between 0.5 and 3 MeV. The curve between 0.5 and 1 MeV is that of Fig. 5 and above 1 MeV is that of ENDF/B-III. The data up to 2.2 MeV are in excellent agreement with the old evaluation. The two higher energy points are low by about 15% and 20% respectively. It was felt that it was not worthwhile to give these points sufficient weight to seriously distort the ENDF/B-III curve, which represents the best curve through all previous measurements. An added inducement for not trying a serious reassessment of all of the data above 1 MeV was the implications of the effect noted by Devaney. (17) Devaney points out the importance of a multiple reactions correction for reaction cross section measurements above approximately 100 keV. The correction is particularly important for

- 178 -

Figure 5

Figure 6

radiative capture, even with fairly thin samples. The relevance of this effect to specific gold capture experiments is unknown, but should be determined before the higher energy gold capture data are reevaluated again.

In conclusion, the evaluated curve of ENDF/B-III between 1 and 20 MeV, which included the evaluation of Vaughn and Grench⁽¹⁸⁾(1.0 - 5.2 MeV) and that of Bogart⁽²⁷⁾ above 5.2 MeV, are adopted for ENDF/B-IV.

It is of interest to calculate the fission spectrum averages of the capture and other reaction cross sections and compare them with experimental measurements. For this purpose, a Maxwellian ²⁵²Cf fission spectrum of characteristic temperature 1.39 MeV and represented by

$$\phi(E) = C \sqrt{E} e^{-E/T}$$

was used. (C is a normalizing constant.) The calculated fission spectrum average of the ENDF/B-IV (n,γ) reaction of gold is 81.8 mb. This number is to be compared with an experimental value of 95.5 ± 2.3 mb measured by Pauw and Aten.⁽¹⁹⁾ Since the capture section in the whole energy range 0.100-1.5 MeV is believed to be known to better than 18%, the source of this discrepancy could be due to either the measurement and/or the inadequacy of representing the fission spectrum by a Maxwellian form at low energies. The ²³⁵U fission spectrum average measurements of Fabry⁽²⁰⁾ shed some light on the former explanation. Fabry obtains a value of 88.0 ± 4.5 mb for ¹⁹⁷Au (n,γ) ¹⁹⁸Au reaction. With a characteristic temperature T = 1.32 MeV for ²³⁵U, we obtain a fission spectrum average of 84.9 mb which is within the stated error of Fabry. (20)

After the completion of the evaluation of the capture cross section of Au, it was found that two points had been inadvertently omitted from consideration. Both were measured with the same technique at the National Physical Laboratory in England. At 25 keV, Ryves et al.⁽²¹⁾ measured a value of 640 ± 25 mb. This is in excellent agreement with the value of 648 mb read from Fig. 4. At 966 keV, Robertson et al.⁽²²⁾ measured a value of 96.2 ± 2.0 mb. This value is approximately 12% higher than the value at this energy from Fig. 5. No changes were made as a result of this discrepancy for the reasons noted above regarding the Devaney⁽¹⁷⁾ multiple reaction correction effect. In addition the following data sets become available at the time of the writing of the report:

(1) Poenitz⁽²³⁾ data in the energy range 400 - 3500 keV. This is an absolute measurement carried out by a large liquid scintillator for the detection of prompt capture gamma rays. The Grey Neutron Detector, the Black Neutron Detector and a 6 Li-glass detector were employed to measure and monitor the neutron flux.

(2) Macklin et al. $^{(24)}$ data in the energy range from 3 to 550 keV. In this measurement a scintillation detector and a 6 Li neutron monitor were used. The efficiency of the detector was normalized to the 4.9 eV gold resonance by the saturation method. The 6 Li neutron cross section of Uttley, slightly modified, was adopted.

(3) Rimawi and Chrien⁽²⁵⁾ using the iron filtered beam,

- 181 -

measured the neutron capture cross section of Gold at 24.5 keV by the activation method. Assuming a ${}^{10}B(n,\alpha\gamma)^7$ Li cross section of 3.487 b and a total reaction cross section of 5.9175 b for ${}^{10}B$, they obtained a total capture cross section for 197 Au of 0.630 ± 0.006 b. The error indicated is only statistical and does not include the uncertainly in the normalization. These new measurements were plotted and compared with the ENDF/B-IV capture cross section in the pertinent energy regions. Good agreement is noted between the new measurements and the evaluated ENDF/B IV capture cross section.

Finally, it may be noted that preliminary results of the capture cross section of gold between 100 keV and 500 keV were reported by Fort⁽²⁶⁾ in a progress report. A $4\pi\beta\gamma$ detector was used to detect the induced activities. The data is not available at this time. Fort, however, made a comparison between his data and those of LeRigoleur and found reasonable agreement between the two measurements. These new data sets will be considered in the evaluation of the Au(n, γ) cross-section for ENDF/B-V.

References

- 1. M.R. Bhat, BNL 50296 (ENDF-148) June 1971.
- 2. A.M. Lane and J.E. Lynn, Proc. Phys. Soc. <u>A70</u>, 557 (1957).
- A.D. Carlson, "Neutron Standards and Flux Normalization," ANL, 285, Oct. 21-23 (1970).
- 4. W.P. Poenitz, ibid p. 320.
- 5. J. B. Czirr and M.L. Stelts, Nucl. Sci. and Eng. <u>52</u>, 299 (1973). See also UCRL 74447 (Rev. 1) (June 1973).
- C. LeRigoleur et al. "Contributions to Karlsruhe Meeting and Private Communication" (1973). See also Saclay Report CEA-N1662.
- M.P. Fricke, W.M. Lopez, S.J. Friesenhahn, A.D. Carlson and D.G. Costello, "Proc. Nuclear Data for Reactors Conference," Helsinki, paper CN26/43 (1970).
- 8. D. Kompe, Nucl. Phys. A133, 513 (1969).
- W.P. Poenitz, D. Kompe, and H.O. Menlove, J. Nucl. Eng. <u>22</u>, 505 (1968).
- T.S. Belanova, A.A. Van'kov, F.F. Mikhailus, and Ya. Yo. Stavisski, At. Eng. <u>19</u>, 3 (1965). Translated in J. Nucl. Eng. <u>20</u>, 411 (1966).
- 11. I. Berqvist, Ark. Fys. 23, 425 (1963).
- L.M. Spitz, E. Barnard, and F.D. Brooks, Nucl. Phys. <u>A121</u>, 655 (1968).
- 13. M.C. Moxon and E.R. Rae, Nucl. Inst. Methods, 24, 445 (1963).
- E.G. Bilpuch, L.W. Weston, and H.W. Newson, Ann. Phys. <u>10</u>, 455 (1960).
- 15. J.F. Barry, J. Nucl. Energy 18, 491 (1964).
- 16. M. Lindner, Private Communication (Feb. 1973).
- 17. J.J. Devaney, Nucl. Sci. and Eng. <u>51</u>, 272 (1973).
- F.J. Vaughn and H.A. Grench, "Proc. Neutron Cross Sections and Technology Conference," 340, Knoxville (March 1971).
- 19. H. Pauw and A.H.W. Aten, Jr., J. Nucl. Energy 25, 457 (1971).

- A. Fabry, Report BLG463, May 1972. Volume appears in contribution by W.L. Zijp to the Conf. of Nucl. Data in Sci. and Technology, Volume II, p. 271, Paris (1972).
- T.B. Ryves, J.C. Robertson, E.J. Axton, I. Goodier, and A. Williams, J. Nucl. Energy <u>20</u>, 249 (1966).
- J.C. Robertson, T.B. Ryves, E.J. Axton, I. Goodier, and A. Williams, J. Nucl. Energy <u>23</u>, 205 (1969).
- 23. W.P. Poenitz, Private Communication (1974).
- 24. R.L. Macklin, J. Halperin, and R.R. Winters, Private Communication (1974). To be published in Phys. Rev.
- 25. K. Rimawi and R.E. Chrien, Private Communication (1974).
- 26. E. Fort EANDC(E), <u>157U</u>, Vol. II, 29 (1973).
- B. Bogart, "Proc. of Neutron Cross Sections and Technology Conference, 486, Washington (1966).

					ENDF/B MATERI	AL NO. 6283	
ť.	DLD-197			RESONA	NCE DATA		
				RESONANCE	PARAMETERS		
ISOTOF FRACTINUMBER	ONAL ABUNDANC	EGOL NGES	D-197 000PE+00 2				
*****				CONTRACTOR STACLE		WHENER PADAMETER	
ENERGY LOHER UPPER	ENERGY LIMIT	(EV) 1. (EV) 2.	1 н 0000Е-05 0000Е+03 5000Е+03	EZULAFO 2140-E	-FFACE BUELL	alàngu sagame(fu:	3
NUCLEA	AR SPIN-FREEFE	CTU (AA) 0					
STIN 2	SCATTERING LEN	GIR (A#1-0 9;	DERLANT				
NUMBER	UN L STATES-		T				
	IF		8				
SUMARS	OF RESONANCE	S	117				
SPIN	CATTERING LEN	GTH (4+)-+ 6.	AGAAF AA				
				RESONANCE WIDT	HS (EV)		
INDEX	ENERGY (EV)	J VALUE	TOTAL	NEUTRON	RADIATION	FISSION	
•							
1	-2,5580E-01	2,ØØØØE+ØØ	1.7642E-01	5,242ØE-Ø2	1.2400E-01	7,8208E+00	
2	4,9060E+00	2,0000E+00	1.3920E-01	1,5200E=02	1.2400E<01	8,00002+00	
3	4.6450E+D1	1.000000+00	1.2413E-01	1,3000E-04	1.2400E-01	2,00000:00	
4	5.8100E+01	1,0000E+00	1.1640E-01	A,4000E-03	1,1200E-01	9,0000E+00	
2	6,0300L401	2,0000E+00	1,46006-01	6,8000E+02	1.30001-01	0,0000 <u>0</u> -20	
2	1 03005-02	1,0000L+00	1 27805-01	1,0700C-02	1 3000E=01	2.00005+00	
á	1.22306+02	2.000000+00	1.2480F-01	8.00005-04	1.2400E=01	3.00002+00	
9	1 4420E+02	1,0000E+00	1.2800E-01	8,9000E-03	1.2000E-01	A, 0000E+00	
10	1,5130E+02	2,0000E+00	1.4200E-01	2.20005-02	1.2000E-01	a,0000E+00	
11	1,6290E+02	1,0000E+00	1.8000E-01	5,00000-02	1.3000E=01	7.000000+00	
12	1,64941.402	2,0000E+00	1,1530E-01	9.30002-03	1.00001-01	7,00085+00	
13	2 00306+02	1,000000+00	1,7400E-01	4.4000E-02	1.30006301	0.00005+00	
15	2.4050F+02	2.000000000	1,24901-01	7.20005-02	1 00000001	A.0000E+00	
16	2.5579E+Ø2	1.00000E+00	1.2480E-01	8.0000E-04	1.2400E-01	A.0000E+00	
17	2.6240E+02	1.0000E+00	2,5300E-01	1.3300E=01	1,20005-01	A 8808E+88	
18	2,7360E+02	2,0000E+00	1,0920E-01	A,2000E-03	1,0500E-01	0,0000E+00	
19	2,9300€+02	2,000000+00	5,11002-01	3.65002-01	1,4680E-01	A, 6666E+00	
510	3,29306+02	2.00001+00	1.7960E-01	A.5000E+02	1,34006-01	7,0000E+00	
22	3.5500F+02	1,0000E+00	1 64000-01	3 92005-02	1.30000-001	A.00000€+00 A.00006+00	
23	3.7074E+02	2.0000E+00	1.90005-01	A.4000F-02	1.0600F-01	3.0000F+00	
24	3,7510E+02	1.000000+00	1,4390E-01	1,3900E-02	1.3000E-01	2,0000E+00	
25	3,8150E+02	2.0000E+00	1.66105-01	6.1100E-02	1,0500E=01	0,0000E+20	
26	4.00002+02	2.98885+98	1.50005-01	5.0000E-02	1.4020E-01	3,8808E+20	
27	4 50000.+02	1.00002+00	4,2000E-01	2,8800E-01	1,3200E=01	0,0000E+00	
29	4.7700F+02	2.00000000	4 50005-01	5.20005-02	1 20005-01	0.0000E+00	
30	4 90005+02	1,00000 +00	1.87000-01	5.70000-02	1.3000E-01	0.0000E+00	
31	4.940VE+02	2,0000E+00	1.60002-01	2,7000E-02	1,3300E-01	7,0000E+C0	
32	5,3410E+02	2.0000E+00	1,52002-01	3.50005-02	1,2700E=01	0,0000E+00	
33	5.4860E+02	1.000000+00	1.8000E-01	5,3000E-02	1.2700E-01	0,000ØE+00	
34	5,7910E+02	2,000000+00	5,2000E-01	3,7000E-01	1.5000E-01	0,0000E+00	
35	5 87005-02	1.000000400	2.52001-01	1,47001-01	1.12001-01	9,0000E+00	
37	6.0280F+02	2.0000000	1.09001-01	3,500000-02	1 46005-01	7,00000E+00	
38	6.1734E+Ø2	2.0000E+00	2.34005-01	7.40005-02	1 A000F-01	7.0000C+02	
39	6,248VE+02	1.0000E+00	1.70000-01	4.9000E-02	1 2100E-01	0,0000E+00	
40	5.284DE+02	2,0000E+00	1,6000E-01	2,2000E-02	1,3800E-01	0,00002+00	
41	0.3879E+Ø2	2.0000E+00	6.3000E-01	4.8000E-01	1,50000-01	0,0000E+00	
42	0,00/01402 A 85005-00	1.00001+00	1.30486-81	6.4000E-03	1.24085-01	7,0000E+00	
40	6.9580F±02	1,00005+00	1.3/30E-01	1,3300E=02	1.2400E+01	A DOODE+00	
45	6.9900E+02	2.000000+00	8.8000E-01	0.0/00L~01 7.3600F_01	1 44005-01	4 * 0000E + 00	
46	7,1560E+02	2,00000+00	2.8500E-01	1.1500E-01	1.7000E-01	0.0000F+00	
47	7,3840E+02	2,0000E+00	1.3200E-01	A.0000E-03	1,2400E=01	A 0000E+00	
48	7,599ºE+02	1.0000E+00	5.8100E-01	4,2700E-01	1.5400E-01	8,0000E+00	

- 185 -

40	7 71845-05	4 64445.44		· · ·	11-8-85 - 64	
	1113046.402	1.00006400	0,00005-01	4.72005-01	1.27006-01	N'NNNRE+0N
50	7.843 <u>0</u> E*02	2,0000E+00	2.8000E-01	1.2000E-01	1.6000E=01	0,00005+00
51	7.9400F+02	2.0000F+00	3 25005-01	1 7800F-01	1 47005-01	3.00005+00
82	8 13505+03	4 33935+00		1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		~{0000E+00
24	0.13306402	1.000000+00	1.0006-01	2,2000E-02	1,24001-01	0,00002+00
53	8,195%E+Ø2	2,000000+00	3.8000E-01	2.3000E-01	1.5000E-01	7.0000E+00
54	8.25845+82	3.00005+00	7 99995-01	5 13005-01	1 47005-01	1.44445+44
55	8 44505+00	1 00005+00	Tagar at	- 3000F - 02	1,8,000-01	
22	0.04542482	1.000000-000	1.70005-01	5.3000E-02	1,47001-01	N,0000E+00
50	8,79702+02	2,0000E+00	1,700000-01	3,5000E-02	1.3500E=01	8.0000E+00
57	9.324 ⁰ E+02	2.0000E+00	5.6000F-01	4.1100F-01	1 49005-01	0.00005+00
58	9.61305+02	1 00005+00	5 4000F-01	4 09000-01	1 54005-01	A AAAAC+00
	0 01045.00	1,000000.00	2.000000-01	7.0.005-01	1,510001	0 2 0 0 0 0 E + 0 0
57	A 84205402	5,00006+00	4.80006-01	3,3100E-01	1,4900E-01	0,0000E+00
6Ø	9,8860E+Ø2	2,0000E+00	2.9000E-01	1.21005-01	1.A900E=01	a.0000F+00
61	9.95505+02	3. 9099F+99	6 50005-01	4 96995-91	5 A G O E - G 1	0.00307.00
	1 00045-07	4 99995 . 99	C. DODE-DI	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1.94000-01	410000C+00
04	1,02276.400	1.00002+00	1.2>30E-01	1.300000-03	1.24006-01	6'68665+83
63	1,03995+03	1,00008+00	1,6800E-01	4,40005-02	1.240°E=01	8,0000E+00
64	1.0434E*03	1.0000E+00	6.1000F-01	4 85005-01	1 25008-01	a.00005+00
45	1 04195+01	0 00005+00	1 70405 01	40000-07	1.20000-01	
		2.000002.000	1.00405-01	9.40005-00	1,24005301	N 000005+00
60	1.07//1.+03	1.00006+00	4,84002-01	3,6000E-01	1.2400E-01	0,00005+00
67	1,0925E+03	2.000000+00	5.20005-01	3.76001-01	1 44005 001	3. 9009F+09
4.9	1 10045-03			6 0000r 60	A 04000-01	1 0000t 00
	1,120,1000	1.000002+00	1,70000-01	2,20001-02	1,24001-001	N' DDDDF + DD
69	1 1289E+03	5.00005+00	1.61ØØE-01	3,70000-02	1,240°E=01	7,0000E+00
70	1.1354E+03	2.0000E+00	4.90005-01	3.3900F-01	1.51006-01	a.0000F+00
71	1.17756+03	3 99995-90	4 32005-04	A 49997 41	1 04025-01	0 00400+00
15	1 40700-07		1.02000-01		1.24806-01	N, DD4DE - 00
14	1,1000L#03	<.0000L+00	4.3000E-01	5'2000E=01	1,400VE-01	3,0000E+30
73	1,2070E+03	2.000000000	5.000000-01	3.60005-01	1.4000E=01	7,0000F+00
74	1.21856+03	2.0000F+00	4 56005-01	3 28685-02	1 04005-01	0.00000+00
			1.500000-01	3.20002-02	1,24000-01	N10000E+00
72	1.2233E-03	1.000000+00	7.0000E-01	5,60000-01	1.4000E=01	0,0000E+00
76	1,2454E+03	1.000000+00	2.5700E-01	1.3300E-01	1.2400E-01	0,0000E+00
77	1.28176+03	4 . 0000F+00	A 00005-01	4 59005-01	1 44 005 -01	9.00000+00
*	1 08845-07	1,00000-00	0.00000-01	, 5000C 401	1.41001-01	7 1000BC+00
70	1.20000.403	5.000005+00	1.39866-61	1,20005-02	1.24001-01	0.0000E+00
79	1,310/E+03	2.0000E+00	3.7700E-01	2.5300E-01	1.2400E=01	7 000000+00
яØ	1.3288F+03	1.0000E+00	8.40005-01	7.0400F-01	1 34005-01	a. 00005+00
	1 77585+07	0 00005+00	0 40005 0		1.0.000-01	a aadaa
	1.33JOE #03	2,000002+00	5.44005-01	1,20001-01	1.24000-01	0.00005+00
82	1,3543E#03	1.000000+00	7,2000E-01	5,92002-01	1,280°E-01	7,0000E+00
R3	1.3595E+03	2.0000E+00	1.5000F-01	2.6000F-02	1.2400E+01	3.0000F+00
	1 36775403	4 00005+00	1 01005-01	0 47905-01	1 04005-01	a aawar+aa
07		1.00000-00	0191006-01	2.0/002-01	1.2-0001	11000000-400
8 D	1,39566+03	2,00006+00	1,5600E-01	3,20005-02	1.2400E=01	0 0000E+00
86	1,42625+03	1.0000E+00	3.8500E-01	2.6100E-01	1.2400E=01	0.8002E+00
d 7	1 42885+03	2.00005+00	5 50005-01	4 26005-01	1 3400F-01	A. 00005 +00
	4 4 8 9 5 5 9 7		5,50000-01	P. COUDE-OI	1.24000-01	
80	1 4282 - 03	5,00006+00	4.10005-01	2.7700E-01	1.33000-01	0.00005-00
89	1,4692E+Ø3	2,000000+00	1.6100E-01	3.7000E-02	1.2400E-01	9,0000E+00
00	1 47435403		2 84005-04	4 40005-01	1 34005+01	3.00005+03
70	1 10045-07	adaat.aa	LIUNDEL DI	1,000000-01	1.05000-00	a aaaac.aa
91	1 490-1.+03	5,00005+00	1,10005+00	1.00005+00	1.52005-01	440000F+C9
92	1,501°E+03	1.0000E+00	1.544ØE-Ø1	3,0400E-02	1.240°E-01	0 0000E+00
¢3	1.5300E+03	1.0000E+00	1.74005-01	5.0000F-02	1.2400E-01	3.00J0F+02
64	1 68036+01	3 00005-00	1 66665	- 600ar at	1	4 00005+03
12	1,55246.403	2,0000000000	3.0000E-61	1,900000-01	1.50000-01	010000E+00
<i>9</i> 5	1,5690E+Ø3	1,000000+00	1.36ØØE-01	1.2000E-02	1.2400E-01	0,0000E+00
96	1.5784E+Ø3	1.000000+00	6.4000F-01	4.8000E-01	1.6000E-01	7 0000E+00
67	1 80335+03	3 0000F+00	1 93005-015	5 90005-02	1 34005-01	3.00005+00
7/						a ag.(6c+dg
98	1,61476+03	2,00005+00	2,8000E-01	1,00005-01	1,14005-01	N 1 N N N N N E + N N
<u>99</u>	1,641 25.+03	1,000000+00	2,4400E-01	1,2000E-01	1.2400E-01	0,0000E+00
1 00	1.64645403	2.000000+00	2.20005-01	9.60005-02	1.2400E-01	7.00005+00
	1			4 4 6 9 4 5 4 7	4 4435 44	5 0000C+00
101	1,000-1-00	1,00000-000	1.30105-01	B,1000L-03	1.24000-01	0,0000E+00
102	1.6932E+Ø3	2,0000E+00	2,5800E-01	1,34002-01	1.2400E-01	3,9000E+30
103	1.7062E+03	2.0000E+00	3.94005-01	2.70005-01	1.2400E+01	3.0000E+00
	1 72125-07	2.00005-00	1 61000-01	3 70005-00	1 24075-0	9.90295+00
10			T'OTRREANT			
102	1,73491+03	5,00005+00	4,3900E-01	3,12005-01	1,24005401	N 1 N N N N N E T N N
106	1.754>E+03	2.00006+00	4.4400E-01	3.2000E-01	1.2400E-01	0,00005+00
4 8 7	1.78636.01	1 . BRARE+00	A 9200E-04	B 6800F-01	1 24005-01	A. 0000F+00
4.07		1,00000-00	0,76006-01	2100005-01	4 4005-00	a addac+ad
108	1,81196+03	1,00001+00	2,2000E-01	A'ONNNE DS	1.24006-01	N . D D D D F + D D
109	1.82116+03	2,000000+00	1.3800E-01	1,4000E-02	1.2400E-01	0,0000E+00
110	1 83205-03	1 0000F+00	2 12005-04	A ANNOF -02	1 24005-91	a.0000F+00
110	1,00202400	1,000000-00	C. TCODE DI		*************	
111	1,85638+83	1.000000+00	1,>>00E+00	1.3030E+00	1.6/00L-01	0 000005-00
112	1.86006+03	2,000000+00	2.1000E-01	8.6000E-02	1.2400E-91	3,000000+00
443	1 88365.03	1.0000F+00	3 51005-04	2.2700F-01	1.9400E+01	0.00005+00
	10000000000				1 04005-01	a d00ac+00
114	7.04205+02	2,00002+00	1,2//0E-01	3.10005-03		0100405-00
115	1,9130E+03	1,0000E+00	2,6000E+00	2,4030E+00	1.4700E+01	N*0870E+N0
114	1 03075-03	4.00005+00	A 50305-04	5 20005-01	1.30000-01	a.00005+00
110		A AGUAE. 04	0.00000-01	8 340AF A4	1 46005-04	A. AAAAC + AA
11/	T AGRACARS	K 10000C+00	A'RARRF-01	7.3400E-01	T'DDDDC-DT	

- 186 -

GOLD-19/ ISATOPE Fractional Abun Vumber of Energ		0LD=197 1.8088E+88 2	RESONA RESONANCE	NCE UATA . PARAMETERS	ENDF/8	MATERIAL	.02	5283
ENERGY RANGE NU Lower Energy L1 Upper Energy L1 NUCLEAR ENERGY L1 NUCLEAR ENERGY L1 NUCLEAR ENERGY L1 NUMBER OF L STA	MBER	2.00006403 1.00006403 1.00006403 1.50006403 9.60006401 9.60006401	UNRESOLVED SINC	OLE-LEVEL BREIT-NIGNER PARAMETER	w			
L VALUE NUMBER OF J STA	1ES	ବେରା						
		AVE	RAGE RESONANCE	WIDTHS (EV)				
LEVEL SPACING	J-VALUE DEG	OF FREEDOM	NEUTRON	RADIATION				
4.32006+01 2,59006+01	1 . 0000E + 00 2 . 0000E + 00	1, 88805 + 88 1, 86805 + 88	9.0720E-03 5.4390E-03	1.2500E-01 1.2500E-01				
L VALUE	[ES==========	44						
		AVE	RAGE RESONANCE	WIDTHS (EV)				
LEVEL SPACING	J-VALUE DEG	OF FREEDOM	NEUTRON	RADIATION				
1,296666482 4,328766481 2,59886481 1,85886481	0,000055400 1,000055400 2,000055400 3,00005400	1,00025+00 2,00005+00 2,00005+00 2,00005+00	5.1840E-03 1.7280E-03 1.0360E-03 7.4900E-03	1,25006-01 1,25006-01 1,25006-01 1,25006-01				

ENDF/B MATEPIAL ND. 6283

(N,GAMMA) Neutron Cross Section

COLC-197

REACTION Q VALUE 6.4970E+26 EV

RANGE DESCRIPTION 95 to 135 LN Y LINEAR INTERPOLATION LAN BETWEEN ENERGIES Range gescription 1 to 95 y Linear in X

4.98825+93 3.413473 9.38825+93 9.3875 9.38825+93 9.38554 1.38825+93 9.38545+91 1.38825+94 9.589565+04 1.388265+94 5.389565+04 1.398265+94 5.389665+04 1.498265+94 5.389865+04 1.998065+94 5.3878665+04 1.998065+04 5.3878665+04 1.998065+04 5.3878665+04 1.998065+05 1.458865+04 1.1980855+05 1.938865+04 1.1980855+05 1.938865+04 1.1980855+05 1.938865+04 1.1980855+05 1.938865+04 1.1980855+05 1.938865+04 1.1980855+05 1.938865+04 1.1980855+05 1.938865+04 1.2880855+05 1.938865+04 1.1780855+05 1.938865+04 1.1780855+05 1.938865+04 1.1780855+05 1.938865+04 1.1780855+05 1.1288865+04 1.2880855+05 1.1288865+04 1.2880855+05 1.1288865+04 1.2880855+05 1.1288865+04 1.2880855+05 1.1288865+04 1.2880855+05 1.1288865+04 1.2880855+05 1.1288865+04 1.2880855+05 1.1288865+04 1.1280855+05 1.1288865+04 1.1280855+05 1.1288865+04 1.1280855+05 1.1288865+04 1.128865+05 1.1288865+04 1.128865+05 1.1288865+04 1.128865+05 1.1288865+04 1.128865+05 1.1288865+04 1.128865+05 1.1288865+05 1.1288865+05 1.1288865+05 1.1288865+05 1.1288865+00 1.1288865+05 1.1288865+00 1.1288855+05 1.1288865+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.1288855+00 1.128865+05 1.128865+00 1.128865+05 1.128865+00 1.128865+05 1.128865+00 1.128865+05 1.128865+00 1.128865+05 1.128865+00 1.128865+05 1.128865+00 1.128865+0 SECTION BARNS ENERGY CROSS ENERGY CROSS SECTION BARNS SS SECTIUN BARNS R ENERGY CAOSS SFC7100 R EVERGY A BARNS R EVERGY A BARNS R EVERGY A BARNS R BARN IN LN X 2.20005-001.22055-01 1.20005-02 0.20762-01 1.20005-02 0.20762-01 2.20005-04 1.35905-01 2.20005-04 5.30705-01 3.20705-04 5.30705-01 4.20705-04 4.407055-01 4.20705-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-04 4.407055-01 1.207055-05 1.207055-01 1.207055-05 1.207055-01 1.407055-05 1.207055-01 1.407055-05 1.207055-01 1.407055-05 1.207055-02 1.407055-05 1.207055-02 1.907055-05 1.207055-02 1.907055-05 1.577055-02 1.907055-05 1. SECTION CROSS ENERGY NEUTRON CROSS SECTIONS INDEX, CROSS SECTIONS FUENCY CROSS SECTIONS FUENCY CROSS SECTIONS FUENCY CROSS SECTIONS FUENCY CROSS SECTION FUENCY CROSS STORMARCH FUENCY CROSS

- 189 -

REFERENCES FOR EXPERIMENTAL DATA

¹⁹⁷Au(n,Y)

<u>Yr.</u>	<u>Lab</u>	Author	References
72	FEI	Chelnakov, et al.	Jad. Fiz. Iss. <u>13</u> , 6 (1972)
71	GA	Fricke, et al.	Third Conf. Neutron Cross Sec- tions & Tech., Knoxville, Tenn. Vol. <u>I</u> , 252 (1972)
71	LRL	Nagle, et al.	Third Conf. Neutron Cross Sec- tions & Tech., Knoxville, Tenn. Vol. <u>II</u> , 251 (1971)
71	LAS	Drake, et al.	Phys. Lett/B <u>36</u> , 557 (1971)
71	WWA	Brzosko, et al.	Act a Phys. Pol/B <u>2</u> , 489 (1971)
69	KFK	Kompe	Nuc. Phys./A <u>133</u> , 513 (1969)
68	GA	Friesenhahn, et al.	J. Nuc. En. <u>22</u> , 191 (1968)
67	DEB	Peto, et al.	J. Nuc. En. <u>21</u> , 797 (1967)
67	ORL	Macklin, et al.	Phys. Rev. <u>159</u> , 1007 (1967)
67	KFK	Poenitz	Fast Reactor Phys. Symp. Karlsruhe, Vol <u>I</u> , 67 (1967)
66	KFK	Poenitz	J. Nuc. En. <u>20</u> , 825 (1966)
66	KFK	Poenitz	Int. Conf. Nuc. Phys. Paris Vol <u>I</u> , 295 (1966)
65	MUA	Chaubey, et al.	Nuc. Phys. <u>66</u> , 267 (1965)
65	LOK	Grench, et al.	EANDC-(US) 79, 72 (1965)
65	GA	Friesenhahn, et al.	GA-6832 (1965)
65	LOK	Harris, et al.	Nuc. Phys. <u>69</u> , 37 (1965)
64	GA	Haddad, et al.	Nuc. Inst. & Meth. <u>36</u> , 125 (1964)
64	ANL	Cox	Phys. Rev./B <u>133</u> , 378 (1964)
64	ALD	Barry	J. Nuc. En. <u>18</u> , 491 (1964)
63	FOA	Bergqvist	Ark. Fiz. <u>23</u> , 425 (1963)
63	ORL	Macklin, et al	Nuc. Phys. <u>43</u> , 353 (1963)
63	LEB	Konks, et al.	Zhur Ex. & Theor. Fiz. <u>46</u> , 80 (1963)

REFERENCES FOR EXPERIMENTAL DATA

¹⁹⁷Au(n,Y) cont'd

<u>Yr.</u>	Lab	Author	References
62	LRL	Miskel, et al.	Phys. Rev. <u>128</u> , 2717 (1962)
61	ANL	Meadows, et al.	Nuc. Sci. & Eng. <u>9</u> , 132 (1961)
61	ORL	Gibbons, et al	Phys. Rev. <u>122</u> , 182 (1961)
61	ANL	Cox	Phys. Rev. <u>122</u> , 1280 (1961)
61	ORL	Weston, et al.	Phys. Rev. <u>123</u> , 948 (1961)
61	ORL	Block, et al.	Neut. T.O.F. Conf. Saclay, p. 203 (1961)
60	DKE	Bilpuch, et al.	An. Phys. <u>10</u> , 455 (1960)
60	ORL	Schmitt, et al.	Nuc. Phys. <u>20</u> , 202 (1960)
60	LAS	Diven, et al.	Phys. Rev. <u>120</u> , 556 (1960)
60	CCP	Belanova	At. En. <u>8</u> , 549 (1960)
59	LAS	Bame, et al.	Phys. Rev. <u>113</u> , 256 (1959)
59	ORL	Lyon, et al.	Phys. Rev. <u>114</u> , 1619 (1959)
59	WIS	Johnsrud, et al.	Phys. Rev. <u>116</u> , 927 (1959)
59	HAR	Ferguson, et al.	J. Nuc. En. <u>10</u> , 19 (1959)
58	LRL	Booth, et al.	Phys. Rev. <u>112</u> , 226 (1958)
58	CCP	Kononov, et al.	At. En. <u>5</u> , 564 (1958)

²³²Th Cross Section Evaluation for ENDF/B-IV*,**

W.A. Wittkopf

Babcock & Wilcox

232 Th Cross Sections Below 50 keV

Capture Cross Sections in the Sub-resonance Region (0.001 to 10 eV)

The capture cross section of ²³²Th in the thermal and nearthermal energy range deviates substantially from 1/v behavior; this is due to the large contribution from resonance levels whose energies are less than the neutron separation threshold. From 4.0 eV to approximately 10 eV, the capture cross-section profile is dominated by the 21.78 eV resonance level; this profile, however, is essentially unaffected by Doppler broadening even at normal reactor fuel temperatures. Thus, 10.0 eV was chosen as the cut-off between the sub-resonance and resolved resonance regions.

For any E in the sub-resonance region, the value of $\sigma_{n\gamma}(E)$ can be computed by summing contributions from the various positive and negative energy resonance levels. In this study, these contributions have been obtained with the single-level, Breit-Wigner formula corrected for Doppler-broadening:

$$\sigma_{n,\gamma}(E) = \sum_{i} \sigma_{o}^{i} \sqrt{\frac{E_{i}}{E}} \psi(x,\theta)$$

- 192 -

^{*}This report is extracted from a draft copy of BAW-317.

^{**}This ²³²Th evaluation is a version II set updated at the NNCSC to meet the specifications of version IV.

where

$$\sigma_{o}^{i} = \frac{2.6038 \times 10^{6}}{E_{i}} \quad \frac{A+1}{A} \quad {}^{2} \qquad \frac{\Gamma_{n}^{0,i} \Gamma_{\gamma}^{i}}{\left(\sqrt{E_{i}} \Gamma_{n}^{0,i} + \frac{\Gamma_{\gamma}^{i}}{\Gamma_{\gamma}}\right)^{2}}$$

At E = 0.253 eV, the first 32 positive levels in 232 Th contribute 0.44 barns. Parameters for these levels were taken from Reference 1.

If $\sigma_{n,\gamma}$ (0.0253 eV) = 7.4 ± 0.1 barns

is the preferred experimental value⁽¹⁾, then 6.96 barns must be attributed to the negative energy levels and the remaining positive energy resonances. In this evaluation, the remaining contributions were attributed to a single negative energy level at -7 eV (first negative levels would be expected at approximately -2 and -14 eV). With $\Gamma_n^0 = 0.0321 \times 10^{-2}$ (eV) and $\Gamma_{\gamma} = 0.0259$ eV, this fiducial level contributes 6.96 barns to the 2200 m/sec capture cross section, and, this model therefore, will produce the preferred value of $\sigma_{n\gamma}(0.0253 \text{ eV})$ for 232 Th.

The Resolved Resonance Energy Region (10 eV to 3.94 keV)

From 10 eV to 3.006 keV, parameters for the resolved resonances in 232 Th are the recommended values given in Reference 1. The remaining parameters (last resolved resonance appears at 3.931 keV) were obtained from measurements reported by Garg, et al. ⁽²⁾ The capture width was taken as constant, $\Gamma_{\gamma} = 0.0259$ eV. All levels were taken as s-wave ($\ell = 0$) levels (none were identified as p-wave or "doubtful"). These parameters were used in the single-level, Breit-Wigner formula.

The Unresolved Resonance Region (3.94 keV to 50 keV)

Unresolved resonance parameters for Th-232 are given in Table 2. The s-wave parameters are identical to those used by Sehgal⁽³⁾ in his recent study of the thorium resonance integral and were deduced from the resolved resonance data. The p-wave strength function was selected such that calculated, infinitely-dilute, capture cross sections would agree well with experimental values reported in Reference⁽¹⁾. The calculations were performed with the ERIC-2⁽⁴⁾ code and comparison of the calculated and experimental capture cross sections was made over an energy range extending from 10 keV to 200 keV (the unresolved region cut-off, however, was taken at 50 keV). For these calculations, the & = 1 strength function was assumed constant and independent of J, and the average level spacing assumed proportional to $(2J + 1)^{-1}$; the mean reduced neutron width can then be computed from

$$\overline{\Gamma}_{n}^{0}(E) = S_{\ell}\overline{D}_{\ell,j}E v_{\ell}$$

where

$$S_{1} = \text{strength function}$$

$$v_{\ell} = \text{penetration factor}$$

$$= 1 \text{ for } \ell = 0$$

$$= \frac{x^{2}}{1+x^{2}} \text{ for } \ell = 1; x = 0.00191 \sqrt{E}$$

The neutron level widths were assumed to be distributed in a chi-squared distribution with one degree of freedom (v = 1). For $S_1 = 1.20 \times 10^{-4}$, the calculated and measured cross sections are in good agreement; sources for the measured data are given in Reference 1. The Harwell data is given greater weight than that of Sehgal⁽³⁾, resulting in a lower p-wave strength function. The ERIC-2 calculations utilized 100 "narrow" groups and a potential scattering cross section of 12.0 barns.

		Table	2		
	Unresolved	Resonance Par	rameters f	or ²³² Th	
	l = 0		l	, = 1	
	J = 1/2		J = 1/2	J = 3/2	
D	12.95 ev	1	2.95	1.475	
s	0.73×10^{-4}		1.20 x 10	-4 1.20 x 10	-4
Г	0.0259 ev		0.0259	0.0259	

The Radiative Capture Cross Section (.05-15 MeV)*

From 0.05 MeV to 0.12 MeV a smooth curve is drawn to connect with the value given by the solid line of Reference 1. From 0.12 MeV to 15 MeV the solid line of Reference 1 was used. This gives the (n,γ) cross section tabulated in File 3.

The Fission Cross Section*

The fission cross section up to 10 MeV was taken from the work of Davey⁽⁵⁾ who made an evaluation of the fission cross section up to MeV. From 10 MeV to 15 MeV the fission cross section given by the solid line of Reference 1 was used. The fission cross section thus obtained is tabulated in File 3.

References

- 1. J.R. Stehn, et al., BNL-235, 2nd Ed., Sup. 2, Vol. III (1965).
- J.B. Garg, J. Rainwater, J.S. Petersen and W.W. Havens, Jr., Phys. Rev. <u>134</u>, B895 (1964).
- 3. B.R. Sehgal, Private Communication to D. Roy and A. Livolsi (1966).
- 4. H.M. Sumner, AEEW-R-323, (April 1964).
- 5. W.G. Davey, Nuc. Sci. Engr, <u>26</u>, 149 (1966).

*The cross sections were extrapolated to 20 MeV at the NNCSC.

,	HORTUM-232			RESONA	INCE DATA	IAL NU, 0295	
150108			RTUM-232	RESONANCE	PAPAMETERS		
FRACTI	ONAL ABUNDANG	E 1, NGES	20064E+40				
ENERGY LOWER	RANGE NUMBER	(EV) 1.	1 A 0000E+01	ESOLVED SINGLE	-LEVEL BREIT-	WIGNER PARAMETERS	
	ENERGY LIMIT	(FV) 3.	9400E+03 0000E+00				
SPIN S	OF L STATES-	IGTH (A+) 8, 	9874E-01 1				
L VALU	E		Ø				
NUMBER Spin S	CATTERING LED	S IGTH (A⇒)-≂ Ø.	229 Dødde + Dø				
INDEX	ENERGY (EV)	.I VALUE	TOTAL	RESONANCE WIDT	THS (EV) RADIATION	FISSION	
1	-5.100000+00	5.00002-01	2.82046-02	4.2040E=03	2.4000E-02	A.0000E+00	
2	8.3400E+00	5.0000E-01	2.5900E-02	2.50000-07	2 5900E+02	0,0000E+00	
4	2.17805+01	5,0000E-01	2.7900E-02	2.0000E-03	2,5900E=02	7,00005+00	
5	2.3450E+01 3.6900E+01	5.0000E-01 5.0000E-01	2.9640E=02 2.5901E=02	3.7400E-03 1.0500E-06	2.5900E=02	4'4008E+86 4'4008E+86	
7	3,8200E+01	5.0000E-01 5.0000E-01	2,59015-02	6.3000E=07	2.5900E=02	9,0000E+00 0.0000E+00	
9	4.7100E+01	5.0000E-01	2.5902E-02	1.7000E-06	2.5900E+02	0,0000E+00	
10	6,9130E+01	5,0000E-01	2.9900E-02 6.7900E-02	4.2000E-03	2.5900E=02	9 80005+00 9 80005+00	
12	9.0100E+01 9.8000F+01	5,0000E-01 5,0000E-01	2,59052-02	5.0800E-06 4.0000F-06	2,5900E=02 2,5900E=02	9,0000E+00 1.0000E+00	
14	1,03602+02	5.0000E-01	2,5906E-02	6.0000E-06	2.59000 -02	A.0000E+00	
16	1.2075E+02	5,0000E-01	4.64000-02	2,0500E-02	2,5900E=02	A.0000E+00	
1.7 1.8	1,2819E+02 1,2919E+02	5.0000E-01 5.0000E-01	2,5980E-02 2,9400E-02	8,0000E=05 3,5000E=03	2.5900E=02 2.5900E=02	0,00005+00 0,00005+00	
19	1.4590E+02	5,0000E-01	2,59605-02	6.20002-05	2.59000002	8,8200E+00	
21	1.7020E+02	5.0000E-01	8,59000-02	6.00000-02	2,5900E=02	0.00V0E+00	
22 23	1.9620E+02	5,0000E-01 5,0000E-01	4,0900E-02 2.6230E-02	1,5000E-02 3,3000E-04	2.5900E=02 2.5900E=02	0,0000E+00 0,0000E+00	
24	1.9934E+02	5.0000E-01 5.0000E-01	3.6900E-02	1.1000E-02	2,5900E=02	A,0000€+00 A,0000€+00	
26	2.5140E+02	5,0000E-01	5.6900E-02	3.1000E-02	2,5900E=02	A 0000E+00	
28	2,85745.+02	5,00006-01	4.0000E-02 5.5100E-02	2.92885-82	2.59005=02	4,0000E+00 8,0000E+00	
29 30	3,0549E+02 3,2890E+02	5,0000E-01 5,0000E-01	5.2900E-02 9.7900E-02	2.7000E=02 7.2000E-02	2,5900E=02 2,5900E=02	8,0000E+00 7,0000E+00	
31	3,4180E+02	5,0000E-01	6.3400E-02	3,75000-02	2,59005-02	A 0000E+00	
33	3,6930E+02	5.000000-01	5,1900E-02	2.60000-02	2.5900002	A DODDE+00	
34 35	4,2080E+02	5,0000E-01 5,0000E-01	3.6700E-02 2.6300E-02	1,0800E-02 4,0000E-04	2.5900E-02 2.5900E-02	4,0000E+00 4,0000E+00	
36 37	4.5434E+02 4.6250E+02	5,0000E-01 5,0000F-01	2,71000-02	1,2000E=03	2.59000-02	000000+00	
38	4.8870E+02	5.0000E-01	8.3900E-02	5,80000-02	2,59005-02	A 0000E+00	
40	5.2850E+02	5,0000E-01	4.0400E-02	1.4500E-02	2.5900E+02 2.5900E=02	0,0000E+00 0,0000E+00	
41	5.4010E+02 5.6980E+02	5.0000E-01 5.0000E-01	2,5980E-02 5,1900E-02	8.0000E-05 2.6000E-02	2.5900E-02 2.5900E+02	Ø,ØØØØ€+ØØ Ø,ØØØØ€+ØØ	
43	5,7820E+02	5.0000E-01	2.8300E-02	2,4000E=03	2.5900E=02	A . 0000E+00	
45	6,17995+02	5,0000E-01	3.02006-02	4.30002-03	2.59000-02	A.0000E+00	
47	6.6524E+02	5,0000E-01	7,0900E-02 4,6900E-02	4,5000E-02 2,1000E-02	2,5900E=02 2,5900E-02	7,0000E+00 7,0000E+00	
48	6,7524E+02 6,8734E+02	5,0000E-01 5.0000E-01	2,2790E-01 B.4900E-02	2,0200E-01 5,9000F-02	2.5900E-02 2.5900F=02	8,88485+88 8,88485+88	
50 51	7,0110E+02	5,0000E-01	3 8900E-02	1.30002-02	2,5900E=02	0,0000C+00	
52	7,40900-02	5,000000-01	2.25906-01	2,00000000	2.59002-02	0.00002+00	
54	8,04306=02	5,0000E-01	3,7200E-02 2,1090E-01	1,1000E=02 1,8500E=01	2,5900E=02 2,5900E=02	0,0000E+00 0,0000E+00	
55 56	8.2134E+Ø2 8.4254E+Ø2	5.0000E-01 5.0000E-01	2,6900E-02 5,2900E-02	1,0000E-03 2.7000F-02	2.5900E=02 2.5900F=02	8,0000E+00 2,0000F+00	
57	6,508#E+02	5.0000E-01	2,68000-02	9.0000E-04	2.5900E-02	A 4000E+00	
59	8.9020E-02	5,000002-01	5,9900E-02	3.4000E-02	2.5900E-02	4.0000E+00 1.10000F+00	
60 61	9.4340E+02	5,0000E-01 5,0000E-01	2,8000E-02 6,7900E-02	2.1000E-03 ▲,2000E-02	2.5900E-02 2.5900E-02	0,0000E+00 0,0000E+00	
62 63	9,6280E+02 9.8290F+0>	5,0000E-01 5,0000F-01	3,2100E-02	6,2000E-03	2.5900E=02	9,0000E+00	
64	9,9050E+02	5.0000E-01	1,0590E-01	6,0000E-02	2,5900E=02	A, 0000E+00	
66	1.0393E+03	5.0000E-01	1,4290E-01 3,6900E-02	1.2000E-01 1.1000E-02	2,5900E-02	4,0000E+00 9,0000E+00	
67 68	1,0650E+03 1,0772E+03	5.0000E-01 5.0000E-01	3,0900E-02 3,4900E-02	5.0000E-03 9.0000E-03	2,5900E-02 2,5900E-02	9,0000E+00 8,0000E+00	
69	1,09385+03	5,00002-01	2,8500E-02	2.6000E-03	2,5900E-02	7 . 2000E + 00	

- 197 -

-						
70	1,11006+03	5.0000E-01	4.8900E-02	2.30000-02	2.5900E=02	0.00005+00
71	1.114>E+Ø3	5.0000E-01	2.8600E-02	2.7000F-03	2.5900E=02	8. 88285+98
72	1,120>E+03	5.0000E-01	2.92105-02	3.31005-03	2 59005=02	0.0000C+00
73	1.13986+03	5.00005-01	3.99685-69	4 40005-02	3 59885-43	A. 44444-444
54	1 18065+03	5 90905-94	4 5044C-40		2,370000002	N 00000 00
75	1 40435+03	5 6000C-01	4,5900 - 02	2,000000-02	2,59000 02	N. N
	1,19402,003	5,00000-01	3.1800E-02	5,9000€=03	5.2005-05	0.000000+00
70	1,20442+03	5.00001-01	2.7300E-02	1,4000E-03	2,5900E-02	0,0000E+00
77	1,2274E+03	5.0000E-01	5,0900E-02	2,50005-02	2,59000-02	0,0000E+00
78	1,2431E+Ø3	5.0000E-01	4.1400E-02	1,55000-02	2.5900E-02	0.00005+00
79	1.248/E+Ø3	5.0000E-01	1.15005-01	9.00005-02	2.5900F=02	а аанаг аа
89	1.2695E+Ø3	5.000000-01	4.49885-83	4.98885-82	2 89885-82	a. addac + aa
e 1	1.20215+03	5 6000F-01	0 00005-00	4 E0005-00	0 50005-02	0 0000 <u>0</u> 0.00
	1 70165+03	5 6000C 04	1 30035 00	H, 50000-902	2.57000002	0,0000,000
	1 78475.07	5,0000C-D1	0.07000-02	3.00000-02	5,340,05,05	N N0000 + 00
	1.334/6.803	5,00000-01	2,8823E-02	2,9227E=03	2.59000-02	0 0000E+00
	1.34501+03	5,00002-01	2.0744E-02	8.4370E-04	2.59000-02	₫ ,0040€+00
82	1,354°E±03	5.0000E-01	9.2154E-02	6,6254E-02	2,5900E=02	M,ØØØØE+00
86	1,3599E+03	5,000000-01	3,0325E-02	4,4252E-03	2.59ØØE=Ø2	9,00005+00
87	1.3779E+03	5.0000E-01	6.4876F-02	3.89765-02	2.5900E-02	0.00005+00
68	1.3871E+Ø3	5.0000E-01	2.81355-02	9.23465-03	2 59005-02	0.00005+00
89	1.39775+03	5 . 0000F . 01	1 10365-04	0 34655-02	2 50605-02	a addac+aa
60	1 44736403	5 0000F_01	2,1,0000-01	4 77455 04	2,370000-02	
	1 40466403	5 0000C-01	2,03/01-02	5,//032,404	2,590000002	0,00001-00
	1,42802403	5,00000-01	1,0144E-01	7.55418-02	2.5900E=02	0,0000E+00
95	1,433/6,+93	5,00001-01	5.8842E-02	3.2942E-02	2.5900E=02	a,@@0ØE+0@
93	1,5092€+03	5,0000E-01	2.8619E-02	2.71946-03	2.5900E-02	a,0000E+00
	1,51848+03	3,0000E-01	1.5839E-01	1.32496-01	2.5900E=02	0 0000F+00
95	1.52415+03	5.0000E-01	1.5864E-01	1.3274E-01	2.5900E=02	a.a00ar+0a
96	1.5554E+83	5.000000-01	3.22105-02	6.31026-03	2.59005-02	a.aduar+aa
07	1.58105+03	5.00005-01	3.86945-09	1 27245-02	2 80005-02	a. addac+aa
0.R	1.54915-03	5.000dc_u	3 85045-04	0 60145-A4	212/2005-02	a. a00ac+00
	1 40075-03		2,00010-01		2:370PL-02	0100002700
	1 470-2-07		0,9937E-02	4,403/L-02	5.24005-05	N NEWBE+00
100	1.030°E+03	- 10000E-01	3,8933E-01	3.0343E-Ø1	2.5900E-02	0040E+00
101	1,64ذE+Ø3	5,0000E-0 <u>1</u>	6.4379E-02	3.84796-02	2.59000-02	a,0000E+30
102	1,661%E+Ø3	5.0000E-01	1.1964E-01	9.37376-02	2,5900E-02	0,0000E+00
193	1,6778E+03	5,0000E-01	4.43328-02	1.84328-02	2.5900E=02	R. 88085+88
104	1.70525+03	5.0000E-01	2.96165-02	3.7165F-03	2.59005-02	0.00005+00
1 / 1 / 5	1 71975+03	5 00005-01	5 57585-02	0 08585-02	3 = 0 0 0 5 = 0 3	a augar+00
1.06	1 70005403	5,0000E-01	0.74705-00	4 63965 03	2,37001-02	* 00000C+00
100	1 77045400	5.0000C-01	2./4071-02	1.00001-00	2.590000002	N 00000 000
10/	1,73976+03	5.000000-01	3.21576-02	6.2005E-Ø3	5.5900E-02	9 0000E+00
100	1,7402E+03	5,00000-01	5,2040E-02	2.6746E-02	2.59000-02	4 0000E+60
109	1,762/E+03	5,0000E-01	1.0567E-01	7,9771E-02	2,5900E=02	8'0000E+00
110	1,8032E+03	5,0000E-01	9,38432-52	6.7943E-02	2.59085-02	3,99995+99
111	1,8118E+03	5,0000E-01	6.2087E-02	3.61800-02	2.59006-02	0.0000E+00
112	1.82445+03	5.0000E-01	9.42415-02	A.8341F-02	2.5900F=02	7.00005+00
113	1.84815+03	5 00005-01	2 84705-02	2 67945-03	2 69005-02	a.a0vac+a0
4 4 4	1 85395+03	5 0000F-01	4 03465-00	3 44445-02	3 59005-03	3.0000C+00
117	1 04405+07	5 0000C-01	0,000000-02	3,4440000	2,99001-02	A 000000-000
12	1,881-1,403	5,000002-01	5,05106-02	2.70131-02	2,59805-65	1,00001-00
110	1.90005+03	9,0000E-01	1.1310E-01	8.71966-02	2.59001-02	6 0000E+00
117	1,9302E+03	5,0000E-01	4,3913E-02	1,8013E-02	2,5900E-02	7,0000E+00
118	1,9512E+Ø3	5,0000E-01	1,0541E-01	7,95106-02	2.5900E-02	0,0000E+00
119	1.9712E+03	5,000000-01	1,90175-01	1,6427E-01	2,5900E=02	A.0000E+00
120	1.9882F+Ø3	5.00000-01	6.1571E+02	3.5671F-02	2.5900E=02	A A000E+00
1 2 1	2.00525+03	5.0000F-01	1.15465-01	A.9559F_02	2 59005-02	a.0000F+00
102	2 03475+03	8 66965-91	2 84045-02	2 70455-03	2 B900Fe02	a.00005+00
163	3 45165+03	5 0000C-01	4 34505-02	4 47505 40	2 50005-02	a aBuar+aa
125	2,00100,000	5,000000-01	4.20372-02	1.0/376+02	2,37000-02	N D D D D E + 00
12-	2 001/103	5,000002-01	7.13000-02	A. 3400E-02	2,59002402	N . 0000E+00
122	2.0739E+03	5,00001-01	3.1365E-02	5.4048E-03	2.5900L=02	3.00005+00
125	2,0789E+03	5.000025-01	3,9578E-02	1.3678E-02	2,5900E=02	A,0000E+00
127	2,116/E+03	5,000000-01	9.9512E-Ø2	7.3612E-02	2,5900E=02	A,0000E+00
128	2.1474E+Ø3	5.000000-01	9.0776E-02	6.4876E-Ø2	2,5900E≠02	A,0000E+00
129	2.1624E+Ø3	5.0000E-01	1,0960E-01	8.37Ø3E-02	2.5900E=02	0,000ØE+00
130	2.1783E+03	5.0000E-01	7.7239E-02	5.1339E-02	2.5900E=02	3,0000E+00
131	2 19705+03	5.0000F-01	7 27725-02	4.68725-02	2.5900E902	0.0000F+00
132	2 21595+03	5.0000F+01	3 20415-02	7 06105-03	2 5900F+02	3.00005+00
1 7 1	2 222224	5 GGMGE_04	5 3449F-00	5 65680_07	2 50005-03	0.00000000
100	2 07035+07	B 000000-01	7 40530-00	0 05310 03	2 59005-02	6.0000C+00
122	2 27 802 800	,	5 4564F	7.0001C=00	0 = 0000 - 00	a abust-ca
137	2.2/02L+03	3,00002-01	2.4720L-02	2.00201-02	2.77000-002	A BOUDETOP
130	2,280/E+03	7,0000E-01	2,4287E-01	2,19976-01	2,5900E-02	N 100005-100
137	2,3212E+03	5,0000E-01	3.1200E-02	5.2997E-03	2.5900E-02	0 0000E+00
138	2,3361E+Ø3	5.0000E-01	1.1290E-01	8.70002-02	2.5900E-02	A 0000E+00
139	2,35246+03	5,0000E-01	5.25776-02	2,6677E-Ø2	2.5900E=02	0,0000E+00
140	2.361YE+Ø3	5,0000E-01	3,0760E-02	4.8599E-03	2,5988E=82	0,0000E+00
141	2.37485+03	5.0000E-01	1.0387E-01	7.79715-02	2.5900E=02	A,0000E+00
4 4 2	2 381 85+03	5.0000F-01	3 27335-02	A.8325F-03	2.5920F=02	7. 0000F+30
	2 30040-07	5.0000E-01	2 88345-00	0 03355-03	2 69005-00	a.0000c+ca
140	2 370 1. 103	5.00000C-01	2.00341402	X 90071+00	5 5750L VDC	0.0000C-00
144	2,41046+03	- 00000L-01	4.40E-02	0.00401-02	61976PL-02	0 000000-00
145	2 4399E+03	5,0000E-01	3.1.333E-02	5.40355-03	2.37001=02	0.00001-00
146	2,4561E+Ø3	5,0000E-01	1,6962E-Ø1	1 4372E Ø1	2,5900E=02	A 9000E+00
147	2,4917E+03	5.0000E-01	3,0892E-02	4,9917E-Ø3	2,5900E=02	0,0000E+00
148	2,5087£+03	5.0000E-01	2.76338-01	2,5043E-01	2.5900E-02	A.0000E+00
40	2.52655+03	5.0000E-01	7.1138F-02	4.52381-02	2 5988E-82	A.8888E+00
4 5 0	2 66345-04	5.0000F-04	2 28405-04	2 02505-01	2.5900F=02	A.0000F+00
190	2 5000LTD0		4 43000-001	3 5490F.05	2 80005-02	3. 3000C .00
121	E . DOYLE . TOO	2,00000-01	0.13801-02	0,04000-02	C. 37006402	0.000000-000
152	2.011/E+03	5,0000L-01	1.2360E-01	1,2//0E-01	2.3700L-02	N 1 N N N N N N N N N N N N N N N N N N
153	2.6233E+03	5.0000E-01	3.20466-02	6,1462E-Ø3	2,54005=02	X . 0000E + 00
154	2,6342£+03	5,0000E-01	2.8252E-Ø1	2,5662E-01	2.5900E-02	A . 0000E+00
155	2,65405+03	5,0000E-01	2,8476E-Ø2	2.5758E-Ø3	2,5900E=02	9,0000E+00
156	2.6642E+03	5.0000E-01	3.3560E-01	3,09705-01	2,5900E+02	7,0000E+00
187	2.67735+03	5.0000F-01	3.52145+02	9.3137F-03	2.5900E-02	7.0000E+00
1 6 9	2 68815-03	5.00005-01	1.03475-04	7,77705-00	2.5900E-02	A.2020F+00
100	2 14 34C+01	5 0000E-01	1.54445-01	1 70215-04	2 E900F=02	0.0000F+00
157	6,/1201.*03	7,00000-01	1,20116-01	1,0021L-01	C.J.UNC-WC 0 80005-00	8.0000C-20
160	2 72101-03	S. BRUBE - 01	3.02046-02	1 ORDAF-RO	2,37000-02	0 0000C+00
161	2,7332E+03	5.0000E-01	2,8/306-01	2.01406-01	5.2200F-05	~ * * * * * * * * * * * * * * * * * * *

142	2 74745+63	5 00005-01	7 48415-02	8.01075-03	2 59006902	a.0000E+a0
705			2,40146-06			
163	2./0316+03		2.00201-02	2.02031-03	5,22005=05	** D D D D C * N D
164	2.7730E+Ø3	5.0000E-01	7.8559E+02	5.26595-02	2.59005-02	A 0000E+00
	0 70005.07	F 00005-04		4 4 4 9 4 7 94	0 FD485-40	
162	2 /92 / 03	5,00001-01	1, ~2101 ~01	1.10205-01	5.24005405	N N N N N N N N N N N N N N N N N N N
166	2.8154E+Ø3	5.0000E-01	4.7124E-02	2.12245-02	2.5900E-02	0.0000E+00
4 4 7	0 81075463	5 00005-04	5 25.25-02	3 66125-02	2 89305 893	a. 00005+00
10/	2,63271-05	5,00002-01	2.22122-02	2,0012EMDE	2.97000-02	N10000C-00
168	2.852/E+Ø3	5.0000E~01	1.7545E-Ø1	1,49556,01	2.59001-02	N 10000E+00
440	2.88285+03	5.0000F-01	3 66385-02	1.07385-02	2 69005 802	# . 0000F + 00
	21002-2-00		D. COULL DA			
170	2,89476403	5,00001-01	3.42076-02	P.000/EAD3	5,54005-05	N 1 N D D D F = N D
171	2.9140E+03	5.0000E~01	3.34576-02	7.5574E~03	2.5900E+02	4 400000+00
	0 01925 4 87	E 4444E-44	4 91095-94	# 6883C 82	2 50005-03	4.00005+00
174	2.94/42403	9,0000E-01	1,01905-61	/, CDDJE=02	2.99000-02	%T00000C+00
173	2.9559E+Ø3	5,ØØ0ØE~01	5.4715E-02	2.88155-02	2.5900E-02	M,0000E+00
474	2 04616-03	5 00005~01	4 22765-02	4 63365-02	2 B900F+02	а. Приргези
+/-	2,307=2400		4.1.2.30L .0.2	1,000001402		
175	2,97811+93	5,00001-01	3.7723E-02	9,82306-03	2.59001-02	N * R R R R F + R R
176	2.9888E+03	5.000002-01	5.4328F-02	2.8428E-02	2.59002002	3 • 8 9 9 9 E + 7 9
	7 00405+07	E 0000E-04	7 70005-00	2 49786 01	2 60836-23	4.00000+00
1//	3,00000-003	5,00002-01	3,00201-02	/.12/02400	2.90000002	N I CODE TOD
178	3.0164E+03	5.00000-01	4.9516E-02	2,3616E-02	5.24005405	9 0000E+60
170	3.02785+03	5 20005-01	1 99535-01	4.73335-01	2' 6900F=02	7.0000F+00
111	7 07035 07				0. 50006-00	
160	3,03935+03		0.44911-02	3,83916=04	2.94000000	A . DDDDE +00
181	3.Ø497E+Ø3	5.0000E-01	3.584ØE∽Ø2	9.94Ø3E+Ø3	2,5900E=02	0,0000E+00
4.8.2	3 04015403	5 0000F-01	5 63955-02	\$ 0425F-02	2 6900F=02	A. 9940F+00
105	0.000-0-00	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,00251-02			
183	3,08111.+03	5,00001-01	7,3082E-02	A.7182E-02	2,54005-05	0 0000E+60
4 8 4	3.1024E+03	5.0000E-01	2.8685F+82	2.7850F=03	2.5900E+02	1.0000F+30
	1 40045-01	* 144AC-44	5 07575-00	1 74576 00	3 60006-63	1.00000-00
162	3,10946403	2.000000-01	J.705/L-62	0.04076=02	2.97002-02	N10000C+00
186	3.1479E+Ø3	5.0000E-01	3.6254E-ø1	3.3664E-01	2.5900E=02	0,0000E+00
407	3 4 5 3 4 5 + 0 3	5 00005-01	2 00075-04	3 44975 01	2 BOADE-02	a.00005+00
201	0,102-L-00		3,708/2-01	3.04072=01	2,77000.02	
1,88	3,1630£+03	5.00000-01	4,3899E-02	1.7999E-02	2.5700L=02	0,0000E+00
189	3.1A71F+03	5.00002-01	9.6468F=02	7.0568F-02	2.5900E=02	a.0000F+00
	7 00745.07	e agage a			3 F0445-40	a 99995.48
196	3.20/02.003	5.0000E-01	1,2/831-01	1.01.35-01	2.94800.402	N . 0 0 0 0 0 4 0 0
191	3,2297E+03	5,0000E-01	3.7266E-Ø2	1,1366E-Ø2	2,3900E-02	a,0000E+00
102	3 2421F±03	5.0000F-01	3 7288F-02	4.13885-02	2 8900F=02	a.0000F+55
	2 0 0 1 0 1 0 1		O, TEBOL DE	1,10002002		
142	3.25231+03	5.0000E-01	8.00321-02	0.2732L+02	2.54000-002	0 • 0 0 0 0 + 0 0
194	3,2674E+03	5.000000-01	6,8198E-02	3,42985+02	2,38806=05	4 1 0 0 0 0 E + 0 0
105	3.2060F+03	5.0000F-01	3.70375-01	3.44475-01	2 8900E=02	a.aaaar≠aa
	7 7.445.43	B 0000E-01	0 97005-00	8 87845 61	2 80005-02	- 00000-+00
1.40	0.010-2-00	2,00000-01	2.010/2-02	2.0/702.004	2.37000002	1000000+00
197	3.33011.+03	5.0000E-01	8.3607E-02	5.7707E-02	2.59002002	0 10000E+00
198	3.34046+03	5.0000E-01	1.7040E-01	1.4450E+01	2,5900E+02	7,0000E+00
109	3.3714F+03	5 0000F-01	3 88435-42	9 90325-03	2 6000F 02	4.00005+00
	7 70755 47		2.000000-02			
200	3,003-2403	2.0000E-01	1.2/092-01	1.01/95 01	5.24005.005	0 0000E+00
201	3.410/E+03	5,00002-01	5.51000-02	2,9200E-02	2 5900E=02	x 88885+88
202	3.4210F+03	5.0000F-01	3 46745-02	8.77425-03	2 59005 02	a.0000F+00
	7 10045 07	F 70776 44				
502	3.42000+03	000000-01	0,/4742-82	A.17/4E-02	2.34005-02	0.0000E+00
204	3.443/E+Ø3	5,000000-01	7.2847E-02	4.69476-02	2.5900E=02	9 BBBBE+98
285	3.47166+03	5.00006-01	5 5340F-02	0.94685-82	2"8900F=02	4.00405+00
2112	7 40445 07		5.56602-92	2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.30000002	
560	3,491-6,403	5,00006-01	3,77186-02	1.10106-02	2.59006-02	6 • 6 6 6 6 E + 6 6
207	3.51998+03	5.000000-01	1.2972E-01	1.03825.01	2.5900E=02	2 BODDE+20
268	3.54621+03	5 00005-01	3 83895-03	9 18875 03	2 BD005-00	5.0000F+00
200	7 00546.07		2102012-02	2,000/[000	2,97002-02	N TOODDE YEE
564	3.57501.+03	5,00000-01	3.78586-02	1.19586-02	2.5900L=02	N 00000E+60
210	3.59276+03	5.000000-01	4.74785-02	2.15786-02	2.5900E=02	ø,ø040F+00
0.1	3 41035-03	5 00005-01	4 07025-04	9 11195 02	3	d 00000.00
			1.0.000	0.11100.002	2,37001-02	N D D D D E + D D
21.2	3.62276#03	5,00006-01	5,5993E-g2	3,0093E-02	2,5900E=02	0,000000+00
213	3.6374F+03	5.0000F-01	4.39035-02	1.80935-02	2 6900F-02	4.00405+00
0.4	3 44055+03	B 0000F-04	0 47.45 40			4 00000 00
617	010#7-0.+00	2.000000-01	8,00111-02	0.04116405	5 240 NE - 05	N 1 0 0 0 0 E + 0 0
21.7	3.6730E+03	5,000000-01	4.52965-02	1.93965-02	2,5900E=02	M : 00000E + 00
216	3.69225+03	5.00005-01	5.62825-02	3.03825-02	2 59005-02	a.aadar+aa
247	3 70745 .01	5 00005-04	5 5105C-02	2 000EF 00	0. 50005-07	a 0000e.00
		>,0000L-01	2121525-05	C. 76675-02	5400C-02	NINDODE+00
210	J.7234E+03	>,0000E-01	2,6997E-01	2.4407E-01	2,5900E=02	0,0000E+00
219	3,732°E+03	5,00005-01	8.69955-02	6.10955-02	2.5900E=02	0.0020F+00
224	3 74505407		4 40445			
21.0	. /		4.10116-02	1.57116-02	5,5700E=02	N . NNNNE+00
221	3,757°€+Ø3	5,0000E-01	4,4290E-02	1.8390E+02	2,5900E=02	4,00005+00
222	3.7864E*Ø3	5.00006-01	5.05145-02	2.46145-02	2 5900F+02	0.00005+00
223	3 84865-03	5 00005-04	4 30430	1 11010 00	0''r000E-cc	A AU JAP . AA
	010100100	2,00000-01	4.0200E-02	1,/0005-02	5 2ANAF = 05	1 DONDE+50
224	3,82515+03	>.00000E-01	2,4237E-01	2.1647E-01	2,5900E-02	9,900DE+00
225	3,84745+03	5.000000-01	5.07135-02	2.48135-02	2 B900F902	4. 99995 +09
226	3 86775+07	5 00005-01	A 4304r	4 94245 90	0 = 0000 = 00	4 40.00
207	1 00/20.07		0,00245-02		2,97002-92	10000E+00
441	007-0,003	- 0000L-01	4,429/1+02	2.809/E-02	2,5900E=02	4 NNADE+00
228	3,9043E+03	5 ØØ0ØE-01	2.7584E-ø1	2.4994E-01	2,5900E-02	0.0000E+00
229	3.9312E+03	5,00006-01	1.08045-41	8.21365-02	2 59005-02	4.00000-+00
			***********	~		A CARLES AND A CARLES

ENERCY CROSS SECTION ENERGY CROSS SECTION EV BANNS 40066+06 6,00005-02 1,55905-06 1,00805-01 20085-06 1,22005-02 1,59065-06 1,08085-01 20085-04 1,28085-01 5,20805-04 1,40865-01 20085-04 1,40865-01 5,20805-04 2,20805-01 30055-05 5,20005-01 1,40005-04 2,20805-01 30055-05 5,20005-01 1,40005-04 2,20805-01 30055-07 5,20005-01 1,40005-04 2,20805-01 30055-07 5,20005-01 1,40005-04 2,20805-01 30055-07 5,20005-01 1,40005-04 2,20805-01 30055-07 5,20005-01 1,40005-04 2,20805-01 30055-07 5,20005-01 1,40005-04 2,20805-01 30055-07 5,20005-01 1,40005-04 2,20805-01 30055-07 5,20005-01 1,4005-04 2,20805-01 30055-07 5,20005-01 1,4005-01 30055-07 5,20005-01 1,4005-01 30055-07 5,20005-01 1,4005-01 30055-07 5,20005-01 1,4005-01 30055-07 5,20005-01 1,4005-01 30055-07 5,20005-01 1,4005-01 30055-07 5,20005-01 1,4005-01 30055-07 5,20005-01 1,4005-01 30055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 1,40055-01 30055-01 1,40055-01 1,40055-01 1,40055-01 30055-01 1,40055-00 1,40055-0 ENDF/B MATERIAL NO. 6296 1,490/1-00 2,200/1-00 6,000/1-02 2,200/1-01 2,2200/1-01 4,300/1-01 2,400/1-01 6,300/1-05 3,2000/1-01 8,300/1-05 3,2000/1-01 1,300/1-07 3,2000/1-01 UNRESOLVED SINGLE-LEVEL BREIT-HIGNER PARAMETERS ENERGY CROSS SECTION ENERGY CROSS SECTION 1 2000 - 20 2,5900E-02 2,5900E-02 RESONANCE DATA Resonance Parameters FISSION NEUTRON CROSS SECTION ENDF/R MATERIAL NO. 6296 AVERAGE RESONANCE WIDTHS (EV) DEG OF FREEDOM NEUTRON RADIATION 2,5900E=02 AVERAGE RESONANCE WIDTHS (EV) U-VALUE DEG OF FREEDOM ______NUTRON _____RDIATION 2.0400E-03 1.2500E-03 1.2417E-Ø3 1.00005+00 1.00005+00 1.00005+00 *6*, 4 ----INTERPOLATION LAW BETWEEN ENERGIES Range description 1 to 32 y Linear in X REACTION & VALUE 1.8440E+08 EV UNBER OF USTATES L VALUE ----- STATES---------5.8000E-01 1.5000E+00 5,8000E-01 J~VALUE THORIUM-232 THORIUM-232 1.7000E+01 8.5000E+00 LEVEL SPACING 1.7000E+01 LEVEL SPACING

- 201 -

REFERENCES FOR EXPERIMENTAL DATA

²³² Th(n,f)

YR.	Lab	<u>Author</u>	References
71	LAS	Muir, et al.	Third Conf. Neutron Cross Sec- tions and Tech., Knoxville Tenn. Vol <u>I</u> , 292 (1971)
70	KTO	Kobayashi, et al.	EANDC-(J)-19, 37 (1970)
69	STF	Barrall, et al.	AFWL-TR-68-134 (1969)
68	ANL	Behkami, et al.	Nuc. Phys./A <u>118</u> , 65 (1968)
67	NRD	Rago, et al.	Health Phys. <u>13</u> , 654 (1967)
63	CCP	Pankratov	At. En. <u>14</u> , 177 (1963)
61	KYU	Katase	Priv. Comm. (1961)
61	BET	Babcock	Priv. Comm. (1961)
60	CCP	Pankratov, er al.	At. En. <u>9</u> , 399 (1960)
58	CCP	Protopopov, et al.	At. En. <u>4</u> , 190 (1958)
58	CCP	Kalanin, et al.	Second Peaceful Uses At. En. Conf. Geneva Vol <u>16</u> , 136 (1958)
57	LAS	Henkel	LA-2122 (1957)
56	HAR	Uttley, et al.	AERE-NP/R-1996 (1956)

THORIUM-232

(N,GAMMA) NEUTRON CROSS SECTION

ENDF/B MATERIAL NO. 6296

	RANGE DESCRIPTION
4,7804E+05 EV	BETWEEN ENERCIES Aiption
REACTION Q VALUE	INTERPOLATION LAW

× z 21 DFeratation 101 .

	7					
	CROSS SECTIO BARNS 9.39196401 7.46866401 7.46866401	7,00% 4,1110 4,1110 4,1110 4,0000 4,0000 4,0000 4,00000000	2.5 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1410 1410	200 200 200 200 200 200 200 200 200 200
X I 2 I 2	E R R C C C C C C C C C C C C C C C C C	4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2000 2000 2000 2000 2000 2000 2000 200	44444444444444444444444444444444444444	00000000000000000000000000000000000000	4 2000 0 E + 400 8 1562 E + 600 8 1562 E + 600 8 2744 E + 600 8 3174 E + 600 8 3174 E + 600
	ROSS SECTION BARNS 1.00406+02 7.66826+01 6.6401+01	5,720902 5,20902 4,47092 4,47092 4,47092 4,4709 3,9150 4,01 3,9156 10 10 10 10 10 10 10 10 10 10 10 10 10	2.500 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.5000 2.50000000000	4484 4484 4484 4484 4484 4484 4484 448	2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4	4.125466 1.12476 1.12476 1.20406 1.20506 1.00506 1.01506 1.01 1.21506 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.
299 TO 332	Н	4 4 9 9 8 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2,2000E-03 3,0000E-03 5,0000E-03 5,0000E-03 6,0000E-03 7,0000E-03 8,0000E-03 9,0000E-03 0,0000E-03	2.8000 2.8000 3.8000 4.8000 5.80000 5.80000 5.80000 5.80000000000	- @ Q 4 0 10 4 2 0 / @ Q 4 0 10 4 8 2 0 / @ Q 4 0 10 4 8 2 0 / @ Q 4 0 0 / Q 4 / Q 4 0 / Q 4 0 / Q 4 0 / Q 4 / Q 4 / Q 4 / Q 4 / Q 4 / Q 4 / Q 4 /	6 6 6 6 6 6 6 6 6 6 6 6 6 6
	ROSS SECTION BARNS 1,06456402 8,06926401 6,6926401	У 9 9 9 9 9 1 1 1 1 1 1 1 1 1 1 1 1 1	2,55465+01 2,24295+01 1,724895+01 714885+01 1,55676+01 1,55676+01 1,55676+01 1,55676+01 1,55676+01 1,541461 1,541461 1,541461 1,541461	4 1 8 4 7 4 8 1 4 8 4 7 4 8 4 7 4 8 4 7 4 9 4 7 4 4 7 4 9 4 9 4 9 4 9 4 9 4		101101101101101101101101101101101101101
LINEAR IN X	E NER E NER 20025 20032 20032 20032 20032 20032 20032 20032 2004 2004	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 4 6 6 6 6 6 7 4 6 7 4 6 7 6 7 6 7 6 7 6	00000000000000000000000000000000000000	2,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	00000000000000000000000000000000000000
RANGE 0 17 то 299 Y	CROSS SECTION 9 ARNS 1.1880€402 8.4002€401 7.0993€401	6,00385+01 5,42185+01 4,05215+01 4,05275+601 4,235755+601 4,235755+601 3,70375+801 3,70375+801	2,79845+84 2,32775+84 4,9775+84 4,98836+884 4,58836+884 1,55886481 1,55886484 1,559867484 1,359874 1,359774 1,3597774 1,359777777777777777777777777777777777777	4.20735 20755 207555 207555 207555 207555 207555 207555 207555 207555 207555 207555	23 4 23 4 23 4 23 4 23 4 23 4 23 4 23 4	. 5994 . 2004 . 200
N X 27	Н Н Н Н Н Н Н Н Н Н Н Н Н Н	ы 4 € 4 V Ф V Ф Q Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф Ф	1,80705 2,60705 4,60705 5,00705 5,0005 5,0005	60.00 60	4 400% 4 400% 4 400% 4 400% 4 400% 4 200% 4 200% 200% 4 200% 4 200% 200% 200% 200% 200% 200% 200% 200%	700700 700700 700700 700700 700700 700700
CHIPTION V LINEAR IN L INEAR IN X	TIONS CROSS SECTION PARNS 3.75706+02 6.85476+01 7.36736+01	66,200 67,200 67,00 64,00 64,00 64,00 64,00 64,00 64,00 64,00 64,00 64,00 64,00 60,000 60,000 6	2,06845+81 2,35985+81 7,35985+81 1,73595+81 1,3555+81 1,3555+81 1,377355+81 1,377355+81 1,377355+81 1,377355+81		<pre>4</pre>	22222222222222222222222222222222222222
10 277 LN 1	N CROSS SPECTOR SPECT	0,400000000000000000000000000000000000	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	444400 444400 86880 868800 868000 868000 86000 86000 860000 86000000 8600000000	0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,	600 600 600 600 600 600 600 600
332 A	NEUTRO INDEX,	422 8 8 4 4 9 4 9 4 9 4 9 4 9	55.55778 19191919 191919	20101010101 20102201000 201010000 101011	こうかうゆうゆうゆうのうのうのうのののののののののののののののののののののののの	2010110110 201011011 2010110110 2010110110

E 400 2.95892408 E 400 2.95892408 E 400 2.9191549 E 400 2.913925408 E 400 1.213855408 E 401 2.2138564 E 403 1.7186540 E 403 2.41085401 E 403 2.41085401 E 403 2.41085401 E 403 1.728865401 E 403 1.72886401 E 403 1.72886400000000000000000000000000000000000
++++++++++++++++++++++++++++++++++++++
855 400 2
Параба и праварата на права на права права права на права на права права права права на права права права на права права права на права права на права права на права права на пр
11-12-12-12-12-12-12-12-12-12-12-12-12-1
222985-887 1,97 3320855-887 1,37 3420555-887 1,137 445655887 1,147 445655887 1,147 445655887 1,147 248655887 1,147 248655-887 1,147 228685583 1,53 808085883 1,53 808085885 2,24 808055885 2,24 80805585 2,24 80805585 2,24 80805585 2,24 80805585 2,24 80805585 2,24 80805585 2,44 80805585 2,45 80805585 2,45 80805585585 2,45 80805585
88, 33, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25
<i>๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛</i>

- 205 -

REFERENCES FOR EXPERIMENTAL DATA

²³²Th(n,Y)

<u>Yr.</u>	<u>Lab</u>	<u>Author</u>	References
72	FEI	Chelnokov, et al.	Jad. Fiz. Iss. <u>13</u> , 6 (1972)
71	LRL	Nagle, et al.	Third Conf. Neutron Cross Sec- tions & Tech., Knoxville, Tenn. Vol <u>II</u> , 259 (1971)
64	ORL	Gibbons	Priv. Comm. (1964)
63	ANL	Stupegia, et al.	J. Inorg. & Nuc. Chem. <u>25</u> , 627 (1963)
63	HAR	Moxon, et al.	T.R.D.W.P/R-8 (1963)
63	CCP	Tolstikov, et al.	At. En. <u>15</u> , 414 (1963)
62	LRL	Miskel, et al.	Phys. Rev. <u>128</u> , 2717 (1962)
61	CCP	Stavisskii, et al.	At. En. <u>10</u> , 508 (1961)
59	HAR	Hanna, et al.	J. Nuc.En. <u>8</u> , 197 (1959)
59	ALD	Barry, et al.	Proc. Phys. Soc. <u>74</u> , 685 (1959)
58	ALD	Perkin, et al.	Proc. Phys. Soc. 72, 505 (1958)
58	CCP	Belanova, et al.	Zh. Ex. Theo. Fiz. <u>34</u> , 574 (1958)

92- U-235 LASL, AI EVAL-MAR74 L.STEWART, H.ALTER, R.HUNTER DIST-1974 P.C. TO NORMALIZATION AND STANDARDS SUBCOMMITTEE MARCH 1974 PERTINENT HOLLDRITH FROM GENERAL FILE FOLLOWS (MAT 1261) ALL REFERENCES CARRIED OVER FROM GENERAL FILE PRINCIPAL EVALUATORS- L.STEWART LASL, H.ALTER AI, R.HUNTER LASL CONTRIBUTING EVALUATORS NU-BAR--B.R. LEONARD BNW, L. STEWART AND RAY HUNTER LASL, HUMMEL ANL. F.P.YIELDS-GR.SCHENTER HEDL. FISSION PROD. SUBCOMMITTEE DELAYED NEUTRON DATA--H.HUMMEL ANL RADIOACTIVE DECAY DATA--C.W.REICH ANC RESOLVED RESONANCE DATAG-J.R. SMITH ANC, R. GWIN, R. PEELE, AND G.DESAUSSURE ORNL

SMOOTH DATA

THERMAL RANGE C.LUBITZ KAPL: J.HARDY BAPL; B.R.LEONARD BNW 82 EV ~25 KEV--R.GWIN, G.DESAUSSURE ORNL, R.BLOCK RPI, J.R. SMITH ANC 25 KEV-1 MEV A.CARLSON NBS, W.POENITZ ANL, L.STEWART LASL; H.ALTER 1 MEV-20 MEV--R.HUNTER; L.STEWART LASL; H.ALTER INELASTIC SCAT--L.STEWART, R.HUNTER LASL SECONDARY NEUTRON DIST.--L.STEWART, R.HUNTER LASL GAMMA PRODUCTION=-R.HUNTER; L.STEWART LASL

EVALUATIONS WILL BE DESCRIBED AND REFERENCED IN---TBD---

BASES FOR EVALUATIONS

CURRENT FILE 1 COMMENTS ARE RELATIVE TO EVALUATION BETWEEN 25 KEV AND 20 MEV, ADDITIONAL FILE 1 COMMENTS ARE TO BE PROVIDED KAPL AND BAPL (DATA BELOW 1.0 EV), ORNL AND BNL WILL PROVIDE COMMENTS FOR UNRESOLVED ENERGY REGION-82.0 EV TO 25 KEV. ALL ADDITIONAL FILE 1 COMMENTS ARE TO BE FORWARDED TO STEWART WHO WILL COORDINATE AND SET UP NEW FILE 1 COMMENT FIELDS.

MF = 2

UNRESOLVED RESONANCE REGION COMMENTS ON EVALUATION IN THIS REGION WILL BE PROVIDED BY ORNL (PEELLE) AND BNL (BHAT) SMOOTH DATA

THERMAL DATA===COMMENTS===TBD.

1 EV TO 82 EV COMMENTS---TBD- J.R. SMITH 82 EV TO 25 KEV COMMENTS---TBD- PEELLE, BHAT 25 KEV TO 100 KEV

100KEV TO 1 MEV---FISSION CROSS SECTION TAKEN AS CURVE SUGGESTED BY U-235 TASK FORCE AND CSEWG STANDARDS AND NORMALIZATION SUBCOMMITTEE. IN THIS ENERGY REGION DATA TAKEN FROM REFERENCES 1 THROUGH 9. DATA OF REF.4 SZABO (71) RAISED BY 1.04. BETWEEN 1 AND 6 MEV CURVE DRAWN THROUGH DATA OF REFERENCES 3, 5. AND 7 THROUGH 11. WITH HEAVY WEIGHT GIVEN TO REF. 11. ABOVE 6 MEV CURVE DRAWN THROUGH DATA OF REFERENCES 7. 8. 12 AND 13. DATA OF REFS. 12 AND 13 NORMALIZED TO 2.152 BARNS AT 14.0 MEV.-=ALPHA CURVE BETWEEN 10 KEV AND 10 MEV BASED ON REFERENCES 1 AND 14 THROUGH 19 AS RECOMMENDED BY U-235 TASK FORCE. ABOVE 1 MEV ALPHA CURVE SMOOTHLY EXTRAPOLATED TO 20 MEV.---CAPTURE CROSS SECTION DERIVED AS THE PRODUCT OF THE FISSION CROSS SECTION WITH ALPHA----ABOVE 0.5 MEV TOTAL CROSS SECTION TAKEN FROM SPLINE FIT TO DATA OF REFERENCES 20 AND 21. BETWEEN 25 KEV AND 0.5 MEV A SMOOTH CURVE WAS FIT TO THE TOTAL CROSS SECTION OF ENDF/B-3.

REFERENCES

1, GWIN, R., ET.AL, PRIVATE COMMUNICATION (URNL, 1973) 2. KAPPELER, F. SYMPOSIUM NEUT, STDS., (ANL) CONF. 701002, 272(1970) 3. SZABO, I., ET. AL., (AS REF.5) CONF-701002, 257(1970) 4. SEABO, I., ET. AL., KNOXVILLE CONF, VOL, 2 573(1971) 5. KAPPELER, F., 2ND IAEA PANEL STANDARD X-SECTIONS, VIENNA(1972) 6. GAYTHER, D.B., ET.AL., (AS REF.8) (1972) 7. HANSEN, G., ET.AL., PRIVATE COMMUNICATION, L.STEWART(LASL 1970) 8. WHITE, P.H., J.NUCL, ENERGY 19,325(1965) 9. DIVEN, B.C., PHYS.REV, 105,1350(1957) 10. POENITZ, W., PRIVATE COMMUNICATION (ANL, 1973) 11. HANSEN, G., ET.AL., PRIVATE COMMUNICATION, L. STEWART (1972) 12. PANKRATOV, V.M., ET.AL., J.NUCL.ENERGY 16,494 (1962) 13. PANKRATOV, V.M., ET.AL., SOVIET J.AT.ENENGY 14,167 (1963) 14. DESAUSSURE, G., ET.AL., PARIS 1966, IAEA 2,233 (1967) 15. CEIRR, J.B., ET.AL., HELSINKI 1970, IAEA 1,331 (1970) 16. PEREZ, R.B., ET, AL., ORNL-TM-3696 (1972) 17. BANDL, R.E., ET.AL., NSE 48,324 (1972) 18. KONONOV, V.N., ET.AL., INDC(CCP)-21L, (1971) 19. KUROV, M,A., ET.AL., J. SOVIET AT, ENRGY, 315, (MARCH 1971) 20. HEATON, P.C. ET.AL., PRIVATE COMMUNICATION (NB5,1972) ET, AL., PHYS.REV, C3, 576 (1971) 21. FOSTER, D.G. 22. HUNTER, R.E. STEWART, L., HIRONS T.J., LA-5173 (1973) 23. KAMMERDIENER, J.L., UCRL-51232 (1972) 24. HUNTER, R.E. STEWART, L., LA=4901 (1972)

25, DRAKE, D.M., HOPKINS, J.C., YOUNG, C.S. AND CONDE, H., NSE 40, 290 (1970) 26. NELLIS, D.O., AND MORGAN, I.L., ORD-2791-17 (1966). ALSO BUCHANAN, P.S., OR0-2791-28 (1969) ERROR FILE ENERGY RANGE ESTIMATED ERROR REACTION (IN PERCENT) 25 KEV TO 1.0 MEV 4 FISSION 1.0 MEV TO 1.5 MEV 1.5 MEV TO 2.0 MEV 2.0 MEV TO 5.0 MEV 5 FISSION FISSION FISSION FISSION 3 47 5.0 MEV TO 6.0 MEV 6.0 MEV TO 20 MEV 25 KEV TO 1.0 MEV 0.5 MEV TO 20 MEV FISSION 10 ALPHA TOTAL 10 2 -----------------

	TABLE OF CONTENTS	NO. 6261
DATA TYPE	GENERAL INFORMATION REACTION	CARDS
GENERAL INFORMATION	COMMENTS	119
RESONANCE PARAMETERS Neutron cross section	TABLE OF CONTENTS Resonance data Fission	3 871 273

URANIUM-235

URANIUM~235

ENDF/B MATERIAL NG, 6261 Rebonance data Resonance parameters

RESOLVED SINGLE-LEVEL BREIT-WIGNER PARAMETERS

ISOTOP FRACTI NUMBER	ONAL ABUNDA OF ENERgy	ANGES	JAANIUM-235 1.0000E+00 2
ENERGY	RANGE NUME	3ER	1
LOWER	ENERGY LIMI	IT (EV)	1.000000.00
UPPER	ENERGY LIMI	T (EV)	8.20095+81
NUCLEA	R SPIN		3.5000E+00
SPIN S	CATTERING L	ENGTH (A+)-+	9.56635-01
NUMBER	OF L STATE	S	1

L VALUE	ø
NUMBER OF RESONANCES	130
SPIN SCATTERING LENGTH (A-)	0.0000E+00

				RESONANCE WID	THS (EV)	(EV)		
INDEX	ENERGY (EV)	J VALUE	TOTAL	NEUTRON	RADIATION	FISSION		
1	-1,49802488	3,50002+00	2.37685-01	5.68205+03	2.7000E=02	2.07005-01		
2	2,90005-01	3.5000E+00	1.35005-01	3.01575-06	3. AUDUE-02	9.9800F-02		
3	1,14842+88	3,500000+00	1.50A2E-01	1.51611-05	3 4600E-02	1.16205-01		
4	2,03502+00	3,5000E+00	4.4696E~#2	7.66055-06	3.4874E-02	9.81402-03		
5	2,9200E+00	3,5000E+00	2.2000E-01	4.8530F-06	2.0000E=02	2.00005-01		
6	3,1470E+00	3,5000E+00	1,3961E-01	2,2405E-05	3.3210E-02	1.0637E-01		
7	3,6090E+00	3,5000E+00	8.4379E-02	4,5594E=05	3,3696E+02	9,0637E-02		
8	4,8480E+00	3,50002+00	3.9592E-02	6,03522=05	3,5945E+02	3,587ØE-03		
9	5,448%E+ØØ	3,500ØE+00	9.0120E-02	3.3611E-Ø6	6,0000E-02	3,0117E-02		
12	5,600WE+00	3,50000+00	6.4192E-Ø1	3,3319E-05	2,0000E-02	6,2189E-01		
12	0.2180E#08	3,5000E+00	2.3090E-01	6.3795E-05	4,3469E+Ø2	1.87365-01		
12	0,382VE.+ØØ	3,5000E+00	4,478BE-02	2.6834E=04	3,4972E+02	9,548ØE-03		
15	7.0770E+00	3.5000E+00	6.3934E-02	1,2660E-04	3,5574E+Ø2	2.82336-02		
2.2	0,78102.400	3,500000+00	1,2329E-Ø1	1.1234E-03	3,1170E-02	9,1000E-02		
12	9,2860E+00	3,5000E+00	1.1076E-01	1.6364E-Ø4	3,5600E+02	7.5040E+02		
19	4,/3005+00	3,500000+00	2.09052-01	5,30288-05	3.2000E-02	2.3700E-01		
1/	1.01001+01	2,20005+00	1.00565-01	6,18985-05	3.80001002	6.25000-02		
10	1.000000001	3,30002+00	9.3509E-01	9.33326-05	6,70001-02	8,6800E-01		
17	1 01005+01	3.200001+00	4,72771-02	6,2744E+04	4,04001402	6 2500E-03		
20	1 00415-01	3,50000,400	0,02021-02	1,20221-00	3,49001-02	21/2005-02		
22	1 10795404	3,3000E+00	1,19522#01	5,30/01=00 # A3E0r 0E	3,390000002	5,59995-92		
24	1 77005-04	3,30002-00	1,914-1-01	3,90301-03	2,00000-02	1122986781		
24	1 200AF+01	3,50002+00	1.23042401	3,/0136-07	3,040000002	4.70405-02		
25	1 45445+01	3,500000-00	4,900HL-01	2.37232864	2,0000L-02	- 0000C-01		
26	1 54065401	3 50000100	3 99975-02	1,171/1=07	3,52000-02	4.33000-00		
57	1 40886401	3.50002+00	5 03415-02	T AROC-04	3,33000-02	4,350000-02		
58	1.6667F+01	3.5000E+00	1.33976-01	2.73001-04	3 21055=02	1,00805-01		
29	1.80525+01	3.5000E+00	1 60385-01	3.84516-04	3 5000F=02	1.25005-01		
30	1.8960F+01	3.5000E+00	1.05125-01	4.15826-04	5 00008-02	1.5000F-02		
31	1.92976+01	3.5000E+00	9.81945-02	3.19345-03	3 48215-02	4.91795-92		
32	2.01306+01	3.5000E+00	2.40095-01	8.77146=05	1.39106-02	2.26095-01		
33	2.02005+01	3.5000E+00	5.00135-02	1.30345-05	4 9280E-02	7.20005-04		
34	2.061PE+01	3,5000E+00	8.4191E-02	1.91176-04	4.0485E-02	4.35156-02		
35	2.10722+01	3.5000E+00	7.35038-02	4.50275-03	4 03428+02	3.16585-02		
36	2,2939E+01	3.5000E+00	7.5436E-02	4.3584E-04	3.2670E-02	4.2330E-02		
37	2.34126+01	3,5000E+00	3.2204E-02	7.03726-04	2.6500E-02	5.000000-03		
38	2.36275+01	3,500000+00	2.2586E-Ø1	8.5577E=Ø4	4.30000=02	1.8200E-01		
39	2,42476+01	3.5000E+00	5.8268E-02	2,68355-04	3,1000E=02	2.700000-02		

40	2 43705+01	3 5000F+00	1 00155-01	1 49585-04	3 BU00F-02	A.5000F-02
40	0 50005+01	3 EdadE+00	1.00100-01	4 76245-04	5 F000F-02	8.25005-01
41	2,52000.001	3,50002+00	0.00002-01		2,50000-02	- 40 MGC-04
42	5,2226F+01	3,500000+00	3.82501-01	2,04226-04	2.500000002	3100002-01
43	2,6480E+01	3,5000E+00	1,9248E-Ø1	4.7599E+Ø4	3.20006-02	1.6000E-01
44	2.67405+01	3.500000+00	2.5009E-01	8.5685E-Ø5	3.0000E-02	2.20005-01
45	2 74495+01	3 50005+00	1 15895-01	8 51395_05	4 0000F=02	7.35000-02
	0 77045 04	3 80000.00		4 7447C 04	7 - 4005 - 03	A. B0000-02
40	2,//YOE #01	3,50000-400	1.200/1-01	0,/77/2707	3,20000-02	8100000-02
47	2.8090E+01	3,5000£+00	6,50312-02	3,1104E+ØD	4,80006-02	512000E-05
48	2.8351E=01	3,50002+00	1.4919E-01	1.8854E-Ø4	3,1700E=02	1,1730E-01
49	2 87105-01	3.5000F+00	1 30045-01	4.50095-05	5.000000002	A 0000E-02
	0 04445+94	T BORDE-00	4 11 17 5-00	1 77445-04	1 40005-02	A. 4000F-02
26	2,98476401	3,5000000000	0.11//2-02	1.//		A0000 01
- 51	3,0590E+01	3,5000E+00	1.5523E-Ø1	2,2732E-04	4,50946-02	1.03305-01
52	3.0860E+01	3.5000E+00	5.4532E-02	5,3235E-Ø4	3,52696-02	1.87312-02
83	3 20705+01	3.5000F+00	0 9823F=02	A2335-03	3 7724E=02	6.0276F-02
	3 78005.0.	3 50307.35	E ADEDE OF	4 6565r 51	1 49415-02	9.31305-02
27	3,39202001	3,50002+00	2,0034F-85	1,87722+03	3,10010-02	2101076-06
52	3,43/0E*01	3,50006+00	8,7253E-02	2.202/E-00	4,31001002	4,10401-02
56	3,4850[+01	3.500000+00	1.1610E-01	1,09775-03	3,8247E-02	7,67>3E-02
57	3.5187E+01	3.5000£+00	1.03505-01	3.5004E_03	3.1402E=02	6.8598E-02
E A	3 53005+01	3 50005+00	A 01875-01	1 BA755-03	4 0000F-02	A.5000F-01
50	3 44005-01	3 84005+00	4 54945497	4 40045-04	1 00005-02	
28	3.04001.401	3,30002+00	1,24016-00	1.17772.807	4,00000-02	E E CHARLER
60	3,75002+01	3,5000E+00	1,5402E+00	1,6038E-04	4 80005-02	1.20005+00
61	3,830°E+01	3,5000E+00	3.0834E-01	3,3592E=04	4,2191E=02	2,6581E-Ø1
62	3.9419E+01	3.50002+00	9.5523E-02	2,5233E=Ø3	3,44885-02	3.8512E-02
43	3 00005-01	3 5000F+00	50045-01	3.36375-64	3 31775-02	1.16825-01
	4 05745-04	3 8000F-00	0.00005-01		1 41235-02	4.74685-01
04	4,05300-01	3,90002400	2,07301-01	3.000000	0,4020E-02	1 00000-01
62	4,13501+01	3,50000+00	4,42641+81	0,44041-04	4,50000-02	410000C-01
66	4,1590E+01	3,5000E+00	1,6522E~Ø1	2,2391E-04	3,0907E-02	1,3409E-01
67	4.187 JE+01	3,5000E+00	4.1233E-02	1,2325E=Ø3	2.8951E-02	1.1Ø49E+02
6 R	4.22305+01	3.5000F+00	1 45455-01	4.4722F-04	4 8240F=02	9.67605-02
40	4 94945481	3 50005+00	4 4 3 4 8 5 - 4 3	* 451AF_04	4 43225-02	4.66785-02
	1,207×L=U1		0,10425702		4" = 3 8 4T - 4P	
710	4.33Y0E+01	3.70002+00	1.0/34L+02	7.39478=04	4.5000L 02	2147605405
71	4,3900E+01	3,5000E+00	1.1020E~01	₽,ØØ96E=Ø4	4.10306+02	6:8904E-02
72	4.3970E+01	3.5000E+00	2.5034E+01	3.45475-04	1.73096-02	2,32695-01
73	4.44005+01	3.5000F+00	1 75846-01	A. 3866F-04	4 59785-02	1,29025-01
74	4 40505-01	1 BAAAF+AA	5 15745	T 57005_04	7 7795-02	4.04245-01
- 12			5.55702-01	7.57002-04	1.0/070-02	9104402-01
79	4,37996.001	3,50002+00	1,34191-01	1,8/911=04	4.000/2002	4,3173E-02
76	4.6792E+Ø1	3,5000E+00	1.5280E-01	8,0305E-04	3.70005-02	1,1500E-01
77	4.7011E+01	3,5000E+00	1.3994E-01	9.36598-04	4,20000-02	9,7000E-02
78	4.7970E+01	3.5000E+00	9.3988E+02	9.88345-04	4.5710E=02	4.7290E-02
79	4.83005+01	3.50005+00	1 65775-01	9 70945 04	2 47155-02	4.49285-01
	4 98845-04	7 50005-00		4 00415 04	0. 4715-00	- AR400- 42
80	4.08001401	3,50002+00	0'20AIF-RS	0. YEOLL - D4	2,54010-02	3199092-02
81	4.9000E=01	3,500000+00	2,4018E-01	1,7075E-04	2.00005-02	5,20005-61
82	4,9418E+01	3,50002+00	6.1013E-02	1,01326-03	4 2913E-02	1.70876-02
83	5.0104E+01	3,50000+00	5.4353E=02	S.1585E-04	3.1094E-02	2.2943E-02
84	5.04665+01	3.5000F+00	7 59445-02	8.43655-04	3 20305-02	4.29705-02
	5 07805-04	3 56665-66	7 74 05 44	00555 04	7. 40005-00	- AAUAC-44
09		3,50002-00	3.30192-01	1,07000-07	2.000000002	3.000000-01
86	2,120 <u>01</u> +01	3,50000 +00	1.8834E-D1	3.54486-03	5.1974E-02	1.3303E-01
87	5,1630E+Ø1	3,50006+00	7.4346E-02	3,4569E-04	3`3454E-Ø2	4,0546E-02
88	5.22210+01	3.5000E+00	3.6351E-01	2.50765-03	3.100000-002	3.3000E-01
89	5.3436F +01	3.5000E+00	1 35845-04	5 37295 04	3 74635-02	4.01545-01
64	5 41728-01	3 86665.00			4. 4000 - 00	1 44000-01
90		3,50002+00	1,50210-01	2.1.100-04	4,40000-02	1.00000-01
91	2.20041.401	3,50006+00	1,1117E-01	3,1085E-Ø3	4,8539E=02	5,9401E-Ø2
92	5,5840E+01	3,5000E+00	2,5135E-01	2.3549E-03	3,8719E-Ø2	2,10285-01
93	5.60708+01	3.5000E+00	1.9079E-01	7.8624E-04	3.0000E-02	1.6000E-01
04	5.6498E+01	3.5000E+00	1 19925-01	4.920BF-03	3 01675902	7.58335-02
08	5.7600F+01	3 50005.00	3 314 35 - 44	4 42525 03	7 = 0.005 - 02	A B6000-01
	B 8840C-01	3 50000-00	2,21102-01	1,16766#00	3,30000-02	1.000000-01
90	2.000ML-01	3,300002400	0,20945-02	1.3234E=#3	3,231-6-02	3,10006-02
97	5,8679E+01	3,50000+00	1,3633E-g1	1,33285-03	3,30006-02	1,02006-01
98	5,9760E+Ø1	3,5000E+00	2.5527E+01	2.7057E=04	4,20006-02	2,1300E-01
99	6.0188E+01	3,5000E+00	2.5513E-01	4.1265E-Ø3	3.40000-02	2.20005-01
188	A.0837F+01	3.50002+00	1 28445-44	4 42535-04	3 48005-02	0.00005-02
			1.20402-01	HIOKPOCED4	O'BDDOC-DS	ALDDODE-02
101	0.11306+01	3,500000+00	1.2>30E-01	3.62/8E=04	4.0000E-02	8,5000E-02
192	0.15/0E401	3,50006+00	5,3023E-01	2,2520E-04	3 Ø000E-02	5,0000E-01
193	6.190VE+01	3,5000E+00	5,3017E-01	1.7073E-04	3,0000E=02	5,00000-01
104	6,2400E+01	3,5000E+00	4.6026E-01	2.61635-04	6.0000E=02	4.888865-01
195	6.3020E+01	3.5000E+00	2.40095-04	9,08965-05	4 .0000F-00	2.00405-01
106	6.3320F +01	3.50005+00	5 50 05-04	A2005_04	5 40005-40	3.0000c -44
1 0 7	A 34005 104	1 BODDE-00	C		1.0000L-02	21000000-01
4.00	6 ATG/00 - 4-	5,5000L700	0,210/6-01	1.0/ 442-03	0.00000-02	2.0000E-01
100	0,43000.+01	3,700000+000	4,7049E-02	1,2447E-03	3,9000E=02	7,300ØE+03
189	0,580%E*Ø1	3,500000+00	9.6423E-02	A,2327E-04	5,0000E-02	4,6000E-02
110	6,64Ø2E+Ø1	3,5000E+00	8,9449E-02	4,4948E-04	4,5000E-02	4,4000E=02
111	6,7247E+01	3,50002+00	9.00815-00	8.09385-05	4.18006=00	4.99944-43
112	6.8440F+01	3.5000F-00	5 5004t-04	8 7641r #=	5 40005-00	
	6 85305-04	3 80000-00	2.20070-01	0./041E403	2 0000C-02	2.00005-01
110	0,00000001	3,50001+00	1.0011E-01	1.00302-04	0.0000E=02	1.0000E-01
114	0,9290E+01	3.5000E+00	2,00722-01	7,1530E-04	4,0000E=02	1.6000E-01
115	7,0404E+01	3,5000E+00	1,7272E-Ø1	2,7156E-03	5.0000E-02	1,2000E-01
116	7.0750E+01	3,3000E+00	2.37415-01	2.40915-03	3.5000E=00	2.00005-01
117	7.16105.01	3.5000F+00	1 60005-04	2 01345-04	4 00000-00	1. 20Mar_44
119	7 23005-04	S SODAF-AA	1 100270-01	C. 74002#04	7,00000-02	1120000-01
110	7 00400.401	3,30002400	1,00011-01	X.0772E-N2	0,1000L-02	100005-01
119	1.5ATAE+01	3.5000E+00	3,6037E-01	3.6717E-04	4,0000E-02	3,2000E-01
120	7,4544E+Ø1	3,5000E+00	1,0167E-01	2.72872-03	3,8000E-02	4,0937E-02
121	7.5170E+01	3.5000E+00	2.90895-01	8.8833F-04	5 0000F=02	2.40005-01
122	7.55415-01	3.50005.00	0 33745-0	1 36210 03	3 20005-23	5. 0000c-4+
103	7.67505-04	3 50005-04	1 16:45-01	4 07300 04	3.2000C-02	2100001-01
420	7 74090.00		1,10116-01	1,0/021-04	3.00000-02	H,0000E=02
124	/ / . / . /	3, 3000t +00	1.14998-01	9.8081E-Ø4	4,0000E⇒02	7,20006-02
125	7,811/E+Ø1	3,5000€+00	1,4822E-01	1.2245E-03	4,7000E-02	1,0000E-01
126	7,9672E+Ø1	3,5000E+00	1.29795-01	7.85576-04	4.4000E=02	8.5000F-02
127	8 Ø357E+01	3.50000+00	1.74845-01	A.3851F-04	4	1.34006-01
128	8.14345.01	3.50000+00	1.32045-04	4.04335-01	4 4000 -00	6.00000-00
120	8.3990F-01	3. 50005+00	1 18075-01	1.07030.07	4.10001-02	A DUDDDE DE
470	8 48805.0-	3 BORDE.00	1,102/1-01	1,1/036-03	4.8000F+05	8,710ØE-Ø2
798	0.000%E=01	3,20005+00	8,0120E-02	7.1728E-04	5.2000F+05	2.7400E-02

				Ε	NDF/8 MATERIA	L NO. 6261	
UR	ANIUM-235			RESONANCI	E DATA		
ISOTOPE PRACTIC	NAL ABUNDANCE- OF ENERGY RANK	URANIU	M=235 ØE+ØØ 2	RESUNANCE FI	AKANCICKS		
ENERGY	RANGE NUMBER		2 UNRE	SOLVED SINGLE	-LEVEL BREITA	SIGNER PARAMETERS	
LOWER E UPPER E NUCLEAR EFFECTI NUMBER	NERGY LIMIT (E NERGY LIMIT (E SPIN	EV) 8.200 EV) 2.500 RADIUS 9.566	10E+01 10E+04 10E+00 13E-01 2				
L VALUE Number	OF J STATES		Ø 2				
			DEGREES OF	FREEDOM USED	IN THE WIDTH	UISTRIBUTION	
		J⇒¥ALUE 3,0000€+00	COMPETÍTIVE 0.0000E+00	NEUTRON 1,0000E+00	RADIATION 0.0000E+00	FISSION 2.0000E+00	
			AVER	AGE RESONANCE	WINTHS (EV)		
			AVER		HIDING (EV)		
INDEX 1	ENERGY (EV) 8.2000E+01	LEVEL SPACING	COMPETITIVE	NEUTRON 9.32785-05	RADIATION	FISSION S. 27285-01	
2	8,6>00E+01	1.00000 + 00	0.00000-000	8,4486E-05	3.50000-02	3,40565-01	
3	9.100000+01	1.00002+00	0,00002+00	B,5939E-05	3.5000E-02	2.5394E-01	
5	1.000000-02	1,000000+00	0,00005+00	9,94346=05	3.5000E-02	2,0598E=01 8,4620E=02	
6	1,1000E+02	1.0000E+00	0.00000:+00	8,66205-05	3,5000E-02	1,3225E-01	
8	1.8000E+02	1.0000E+00 1.0000E+00	₽.99992E÷90 9.0000E÷00	1,04275-04 9.8358F-05	3.50002-02	2,9946E-0 <u>1</u> 2,4919F-01	
9	2,4000E+02	1,0000E+00	8.00005+00	1,3181E-04	3,50000-92	3,06955-01	
10	2,6000E+02	1,0000E+00	₽.0000E+00	2,1003E-05	3.50000-02	1,0310E+00	
12	2.94805+02	1.2000E+00	9.0000E-00	7 0914E-05	3,5000E-02	5,5909E-01	
13	3,0000E+02	1,0000E+00	0,000000000	8,04122-05	3,50000-02	3,2833E=Ø1	
15	3,300000+02	1.00002+00	8.8888E*88	9,91926-05	3,50000-02	1.85602~01	
16	3,49866+62	1.000000+00	0.00002.00	8,42862-05	3,5000E-02	3.42346-01	
18	4.5000E+02	1.0000E+00	0.0000E+00	9.3835E-05	3.500000-02	4,6869E=01	
19	5,20002+02	1.00002+00	0.00006+00	1.1974E-04	3.5000E-02	5,01492-01	
20	5.6500E+02 6.1000E+02	1.0000E+00 1.0000E+00	8.88888E+88 9.88886E+88	1.1742E~04 1.0711E~04	3.500002-02	1,0843E+00 9.2310F+01	
22	6,2000E+02	1.00005+00	0.00005.00	1.08256-04	3,50000-02	6,5530E-01	
23	6.3000E+02 6.4000E+02	1.0000E+00 1.0000E+00	8.999995+99 8.999995+99	9,5008E-05 1,1968E-04	3,50000-02	1./5545-01 1.07015-01	
25	6,5000E+02	1.00000-00	0.000000.00	1.0641E-04	3.50005-02	3,2751E-01	
26	6.6000E+02 7.1000F+02	1.0000E+00 1.0000F+00	0.0000E+00 0.0000C+00	8.6759E-05 9.8628E-05	3,5000E-02 3,5000F-02	4,2087E=01 6,4322E=01	
28	7 2900E+02	1,0000E+00	0,000000.00	1 1895E-04	3.500000-02	4.1630E-01	
29	7.4000E+02 7.5500F+02	1,0000E+00 1,0000F+00	0,00005+00	1,33785-04	3.5000E-02 3.5000E-02	1.9020E=01	
31	7 7000E+02	1.00002+00	0.00005+00	1,05125-04	3.5000E-02	3,90036-01	
32	8,8000E+02	1.0000E+00	0.000000400	8,7337E-05	3.5000E-02 * 5000E-02	2.3209E-01 2.1179E-01	
34	9,9000000	1.0000E+00	0,0000E+00	1,04576-04	3.5000E-02	1.37065-01	
35	1,0850E+03	1.0000E+00	0.0000E+00	1,1153E-04	3.5000E-02	3,3829E-01	
36	1,10000+03	1.0000E+00 1.0000E+00	0,0000E+00	1,21421-04 8,7624E-05	3,500000-02	3,25798-01	
36	1,30000-03	1,000ØE+00	Ø,Ø8002+00	9,8564E-85	3.50001-02	5,03012-01	
39 40	1.40002+03	1.0000L+00 1.0000E+00	8.88885.*88 8.88885.*88	1.36565-84	3.5000E-02	2,47042-01	
41	1,4500E+03	1.00000 + 20	0.00005+00	1,1221E-04	3.5000E-02	6.35192-01	
42	1,4000E+03 1,4800E+03	1.0000E+00 1.0000E+00	0.0000E+00 0.0000E+00	1,13916-04	3.500000-02	0,2704E-01 1,6471F-01	
44	1,5000E+03	1.00000 +00	0.00005+00	7 Ø660E-05	3.50000-02	1.9345E-01	
45	1,5450E+03	1.0000E+00 • 0000F+00	0.0000E+00	8,8144E=05 1,0195F=04	3.500000-02	4,2004E=01 5,38145-01	
47	1.7000E+03	1.00000+00	0,00000:+00	9,5054E-05	3,5000E-02	5,37435-01	
48	1 98885+83	1,000000+00	0,00002+00	9,42745-05	3,5000E=02	3,05255-01	
50	2,000000+03	1.000000+00	0,00005+00	1,0774E-04	3,5000E-02	2.9444E-01	
51	2,10001+03	1,0000E+00	Ø.0000:+00	8,51825-05	3.5000E-02	2,95992-01	
53	2,500000+03	1.000000+00	0.00005+00	9,6107E-05	3.5000E-02	5,42896-01	
54	2,70000 +03	1.0000E+00	0.00000-00	8.47002-05	3.50000-02	5.3117E=01	
55	3.3000E+03	1.0000E+00 1.0000E+00	0.0000E+00 6.0000E+00	9.33895-05	3 50005-02	6,5952E=01	
57	3,400000+03	1.00000 + 00	8.00005+06	8,83212-05	3,5000E-02	6.73816-01	
58	3./200E+03 4.1000F+03	1.0000E+00 1.0000F+00	0.0000E+00	9,2006E-05 9,7037F-05	3.5000E=02 3.5000E=02	0,0334E=01 3,6834E=01	
60	4.3000E+03	1.00000 +00	0.00002+00	1.1061E-04	3.50002-02	6,0392E-01	
61	4,4000E+Ø3	1,0000E+00 1,0000F+00	0,0000£+00 0,0000£+00	9,8661E-05 9.157AF-05	3,5000E-02 3,50005-0>	5,2563E-01 3,3330E-01	
63	4,9000E+03	1.0000E+00	0.00005+00	8,5575E-05	3.5000E-02	5,83875-01	
64	5.8000E+83	1.0000E+00	8.8888E+88	7 9647E-05	3.5000E-02	6,8119E=01 5,50895=0+	
66	5.20005+03	1.000000+00	0,00005+00	8,8593E-05	3.50000-02	3,00846-01	

67	5,55885+83	1.0000E+00	0.0000r±00	6.3996E-05	3.50000-02	5.35352-01
68	5.3000E+03	1.000000+000	0.00005+00	A.0355F-05	3.500000-02	6.2110F-01
49	5.6000F+03	1.0000F+00	0.0000-+00	9.62425-05	3.50000-02	9.12825-01
70	5 45005+03	4 00005+00	0 00000-00	0 20145-25	7 5000C-03	4.84055-04
/0	510560000	1,000000-00		912903E-03	0190000-02	
71	5.70002+03	1.00000.+00	R. RODDE + DO	0,9406L-07	3.50000-02	3.43326-01
72	5.90901+03	1.00000+00	0,0000E+00	1,3332E-04	3.50005-02	2.3718E-01
73	6.0000E+03	1.0000E+00	0,00006+00	1,0338E-04	3,5000E-02	1,54916-01
74	5.1000E+03	1.000000+00	0.0000E+00	1.00035-04	3,50000-02	3,00156-01
75	6.4500E+03	1.0000E+00	8.98805+88	9.3122E-05	3.50000-02	4.39925-01
76	6.8400E+03	1.000000+00	0.0000-00	8.28255-05	3.50000-02	4.32915-0
77	7 00005+03	4.00005400	0.00005+00	O. BROBE-08	3 5000F-02	5.630AF=04
	7 30005-03	1 00000-400	0 0000E+00	0 34405-08	5 50005 02	7 30875-04
70	14000-400	1 00000-00	0,00005.00	0 10425-05	3,90000-02	3,090/2-01
/*	0.10000-00	1 00000-000	0,00005+00	911247E-03	3.50000-02	5.00925-01
50	8.30005+03	1.000000+00	0,0000E+00	1,0003E-04	2.20005-05	1,75506-01
81	8.20001+05	1.00006+00	0,000VE+00	1,1115E-64	3.20005-05	2./862E-01
82	8,700000+03	1.0000E+00	0,0000E+00	1,1565E-04	3.5000E-02	2,9922E-01
83	9,90995+93	1.0000E+00	0,0000E+00	7,53252-05	3.5000E-02	4.3771E-01
84	9,20005+03	1.0000E+00	0.0000E+00	1.06525-04	3.50002-02	3,5324E-01
65	1.04005+04	1,0000E+00	0.00005+00	9.42426-05	3.5000E-02	2.01756-01
86	1 14005+04	1.0000E+00	0.00005.00	1.00695-04	3.50000-02	3 4881F-01
87	1,17005+04	1.000000+00	0.0000-00	8.02845-05	3.50006-02	2.56435-01
	1 19005-04	1.00005+00	0 00005+00	1.10505-04	3.50005-02	B.1800Fe04
40	1 20005-04	1 00005-00	0,000000-00	9 91745-05	3 5000C 02	3 40365-04
	1.07005+04	1,00000,00		1 (1005-0)	5.50000-02	0 874000-01
98	1.22002-07	1.000000-000	0,00001+00	1,01992-04	3.50000-62	2.03121.01
91	1,20005+04	1,00000+00	N 0000E+00	9 00/0E-05	3.90005-02	2.1790E-01
92	1.2/PBE+04	1.000000+00	0,00005+00	8,2683E-95	3.5000E-02	2,9169E-Ø1
93	1,33001+04	1.0000E+00	P.0000E=00	1.0260E-04	3.5000E-02	5.1896E-01
94	1,3600E+04	1,0000E+00	0.00002+00	9.1473E-05	3.5000E-02	4,0887E=01
95	1,4400E+04	1.000000+00	0.0000E+00	8.71050-05	3.5000E-02	3,6019E-01
96	1,5000E+Ø4	1.0000E+00	0.00000+00	9.52622-85	3.5000E-02	6.3045E-01
97	1,5100E+04	1,0000E+00	0.00005+00	7.2924E-05	3.5000E=02	3,75916-01
98	1.6400E+04	1,000000+00	0.0000-+00	9.65415-05	3.5000E-02	3.56995-01
99	1.7500F+04	1.0000F+00	0.0000F+00	8.2602F-05	3,50005-02	2.21505-01
100	1.76005+04	1.0000F+00	0 0000-+00	9.04415-05	3.50005-02	3. 4004F 01
1 15 1	1.84005+04	1.00005+00	0 0000C+00	A 94375-05	7.5000F=02	5.95405-01
102	1.92005+04	1 00005-00	0 0000-00	7.01655-05	5 50005-02	7 10745-01
403	1 D3005+04	1 00000-00	0,0000 <u>0</u> -00	4 45045-05	50000-02	F 14748-04
104	1 00000-04	1 00000-+00	0,00001+00	0,07711-07	3.20000-02	5 44716 01
104	1,77,002,04		0.00005-00	/ 0/212-05	3.90001-02	5,013/1-01
102	2.000002-04	1,00000-00	0,00005+00	9,1410F-05	3,20005-05	8,4043E-01
100	2.04005-04	1,000000-000	N NNNNE+NN	9,0913E+65	3.20005-05	4./85/E-01
10/	2.040000404	1,00001+00	0.00005+00	8,4088E-05	3,5000E-02	2,00925-01
198	5.10005+04	1.000000+00	8,80885+80	1.01040-04	3.5000E-02	2,6345E-01
109	2,12006+04	1.00006+00	0,00005+00	7,4929E-05	3.5000E-02	2,5036E-01
110	2.1708E+04	1.0000E+00	0,00005+00	8,8157E-05	3.50000-02	5.6047E-01
111	2,2200E+04	1.0000E+00	0,0000E+00	1.0120E-04	3.5000E=02	7,2994E-01
112	2,2300E+04	1.0000E+00	0,00005+00	1,2651E-04	3.5000E-02	1.00145+00
113	2,2400E+04	1,0000E+00	0,0000E+00	9,42255-05	3.5000E-02	5.68345-01
114	2,2800E+04	1,0000E+00	0.0000F+00	8.6872E-05	3.5000E-02	4.72165-01
115	2,32005+04	1.000000+00	8.00001.00	7.91005-05	3.5000E-02	2.35875
116	2.3400E+04	1.000000+00	0.0000-00	8.62985-05	3.50005-07	2.90405-0
117	2.42005+04	1.000000+00	0.00005.00	9.41235-05	3.50005-02	3.13335-04
118	2.4400E+04	1.00000 +00	6.0000C+00	0.07415-05	3 50005-02	5 60785-04
119	2.46005+04	1.00006+00	8 88885-80	7 05745-05	7 50005-02	5 B44 75 71
120	2.50005+04	1.000000-00	a adade - 20	A 5507C-25	5 50000-02	2.001/1-01
46.	**********	***********	6.0000E+00	0,22435-05	3'2000F+Q5	+,/128E×01

			DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
		JAVALUE	COMPETITIVE	NEUTRON	RADIATION	FISSION
		4.0000L+00	8,0000E+98	1,000000+00	8,80885+80	1,00306+00
			AVER	AGE RESONANCE	WIDTHS (EV)	
INDEX	ENERGY (EV) 8.2000F+01	LEVEL SPACING	COMPETITIVE	NEUTRON D 30705-DE	RADIATION	FISSION
2	8,6500E+01	1.0000E+00	0.000000000	1,0334E-04	3.50000-02	1.16905-01
3 4	9,1000E+01 9.5>00E+01	1.0000E+00 1.0000E+00	0,0000E+00	1,05128-04	3.5000E-02	9,0598E-02 7 07035-02
5	1,000000+02	1.0000E+00	P.0000E+00	9,9782E-05	3.5000E-02	8,4644E-02
57	1.1000E+02 1.2000E+02	1.0000E+00 1.0000E+00	0.0000E+00 0.0000E+00	1,0764E-04	3.5000E+02	1,31402-01
8	1.80000.+02	1.00000 +00	0.00000+00	9,9277E-25	3.5000E-02	1.01956-01
10	2.60002+02	1,0000L+00 1,0000E+00	0,0000E+00 2,0000E+00	1,3181E-04	3.5000E-02 3.5000E-02	1,53478-01
11	2,800000+02	1.0000E+00	0,00000000	1,3255E-04	3.50000-02	3,7665E-01
13	3.0000E+02	1,000000+00	0.0000E+00	1,0049E-04 8,0412E-05	3.5000002002	2,/955E-01 1.6417E-01
14	3,1500E+02	1.0000E+00	0,00002.00	9,93165-85	3.50002-02	1,10216-01
16	3 4500E+02	1.000000+00	0.0000E+00	1,0536E-04	3.5000E-02	1.1411E-01
17	3,6000E+02	1.0000E+00 1.0000E+00	0,0000E±00	9,14462-85	3.50000-02	1.78795-01
19	5,20006+02	1.000000+00	0,000000000	1,1974E-24	3.50000-02	2,50748-01
20	5,6908E+02	1.0000E+00 1.0000E+00	0.0000E+00 0.0000E+00	1,17428-04	3.5000E-02	2,71075-01
22	6,2000E+02	1.00005+00	0.000001+00	1,08255-04	3.5000E-02	1,63826-01
23	6,3000E+92 6,4000E+92	1.0000E+00 1.0000E+00	0.0000E±00 0.0000E±00	1,07088-04	3.50000-02	1,0901E-01 7,93415-03
25	6 5000E+02	1.0000E+00	0,00006+00	1,0641E-04	3.500000-02	8.1877E-02
26	6,6008E+02 7.1000F+02	1.0000E+00 1.0000E+00	0,0000E+00 0.0000E+00	9,7168E-05 1,1044E-04	3.500000-02	2,0137E=01
28	7.2500E+02	1,0000E+00	0,00000-00	1.1895E-04	3.5000E-02	1,3883E-01
29	7.4000E+02 7.5002E+02	1.0000E+00 1.0000E+00	0.0000E+00 0.0000F+00	1,3378E-04 1,1936E-04	3.5000E-02 3.5000F=02	9,5102E-02 1.0876F-01
31	7 70000 +02	1.0000E+00	D. COODE + DD	1,0512E-04	3.5000E-02	1,95020-01
32	8,8000E+02 9,1000E+02	1.000000+00	4.44465.+44 9.444645.+44	8,2353E~05 1,0180E-04	3.50000-02	1.1204E-01 1.0589E-01
34	9,900000+02	1.20006+22	0.00002+00	9,878ØE-05	3.5000E-02	6,854ØE-02
36	1.180ØE+Ø3	1.000000000	0.0000E+00	1,2142E-04	3.5000E-02	2,6837E~01
37	1,2200E+03	1.000000+00	P.0000E+00	8,7624E-05	3.50000-02	1,6316E-01
39	1.400ØE+Ø3	1.000000+00	8.99995-999	1,0446E-04	3.500000-02	3,0148E-01
46	1,43086+03	1.0000E+00 1.0000F+00	8.9889E+99 9.4609E+99	1,36562-04	3,5000E~02 1,5000E-02	1.23725-01
42	1,4000E+03	1.00000 + 20	0.000000+00	1,1391E-04	3.5000E-02	3,2326E-01
43	1,4800E+03 1,5000F+03	1,0000E+00 1,0000E+00	0.0000E+00 0.0000E+00	6,4821E-05 7.0660E-05	3.5000E-02 3.5000E-02	8,2489E+02 9,6713F-02
45	1,5450E+03	1.000000+00	0,0000E+00	8,6144E-05	3.5000E-02	1,4221E-01
46	1.70802+03	1.00000E+00 1.00000E+00	8.0000E+00 8.0000E+00	1,0195E-04 9,5054E-05	3.5000E-02	2,2717E=01 2,5683E=01
48	1.9000E+03	1.0000E+00	P.0000E+00	9.4274E-05	3.5000E-02	1,45878-01
50	2.000000+03	1.000000+00	0.0000E+00	1,0774E-04	3.5000E=02	1,57418-01
51	2,1000E+03	1,000000+00	P.0000E+00	8,5182E-05	3,50000-02	1,5824E=01
53	2,50806+03	1.000000+00	0,000000000	9,6107E-05	3.5000E-02	2,7144E-01
54	2,7000E+03	1,0000E+00 1 0000E+00	0,0000E+00	8,4700E-05 9,80455-05	3.5000E+02	2,6558E=01 2,0449E=01
56	3,30802+03	1,0000E+00	P, 2000E+00	9,3389E-05	3.5000E-02	2,19845-01
57	3,4000E+03 3,7500E+03	1,0000E+00 1,0000E+00	0,0000E+00 0,0000F+00	8,8321E=05 9,2666E-05	3,5000E~02 3,5000E~02	3.3689E-01 2.1118E-01
59	4,10002+03	1.0000E+00	0.00000-000	9,7037E-25	3.5000E-02	1.84275-01
60 61	4,3000E+03	1.0000E+00 1.0000E+00	0.0000E+00 0.0000E+00	1,1001L-04 9,6941E-05	3.5000E+02	2.62795-01
62	4,80000+03	1.0000E+00	0.0000E+00	9,1578E-05	3,5000E-02	1.0573E-01
64	5,0000E+03	1,000000000	0.0000E+00	7 96475-25	3,5000E-02	3.40596-01
<u>45</u>	5,100000+03	1.00002+00	0,0000E+00	8,37502-05	3.5000E-02	1.06635-01
67	5,20000+03	1.0000E+00	0.0000E+00	8.3996E-05	3.50000-02	1.78456-01
68	5,3000E+03	1,0000E+00 1,0000E+00	0,0000E+00	7,9635E-05 9,6242E=05	3,5000E+02 3,5000E-02	3,1054E+01 4,5641F=01
70	5.6700E+03	1.00000000	0,00000-+00	9,2935E-85	3.50005-02	2,28325-01
71	5,7000E+03	1.0000E+00 1.0000F+00	0.0000E+00 0.0000E+00	8,9486E-05 1,33395-04	3.5000E-02 3.5000E-02	1,0168E-01 1,1859F-01
75	6.0000E+03	1.00000 +00	0.00000-00	1.26591-84	3.50006-02	9,27305-02
74	6.1000E+03	1,00000E+00 1,00000E+00	0.00005+00 0.00005+00	1,00031-04	3.5000E-02 3.5000E-02	1.4748E-01 1.4664E-01
76	6 8000E + 03	1.0000E+00	0.00005-00	8 8171E-05	3.50000-02	2,12716-01
77 78	7.0000E+03 7.2000E+03	1,0000E+00 1,0000E+00	8.9000E+00	9,8898E-05 9,3412E-05	3.5000E-02 3.5000E-02	2,01556-01
79	8.1000E+03	1.0000E+00	9.8989E+00	9,1247E-05	3.50002-02	1,3346E-01
80 81	8,3000E+03 8,5000E+03	1,0000E+00 1,0000E+00	8.8666F=80 N.8666F=80	1,11155-04	3.50001-02	9,2875E=02
82	8.7000E+03	1.000000+00	0,0000E+00	1,15656-24	3.50008-02	1,50946-01
83 84	9,0000E+03 9,2000E+03	1.0000L+00 1.0000E+00	0.0000E+00 0.0000E+00	1,06522-04	3.50002-02	1,7652E-01
85	1,0400E+04	1,0000E+00	8,80000+00	9,4242E-05	3,50006-02	1,4087E-01

- 214 -

86	1.14000+04	1,0000E+00	0.0000E+00	1,00695-24	3.5000E-02	1.74408-01
87	1,1700E+04	1,00000.+00	0,0000E+00	8,Ø284E-05	3.5000E-02	1,28212-01
88	1.1900E+04	1.0000E+00	0,00002+00	1,10506-04	3.5000E-02	2,09452-01
89	1.2000E+04	1,999986+99	0.0000E+00	8,9174E-05	3.50002-02	1.7018E-01
90	1,2200E+04	1,0000E+20	0.00000-000	1.0199E-04	3.5000E=02	1,4156E-01
91	1.23006+04	1.0000E+00	0.00005+00	9,0670E-05	3.5000E-02	1,10216-01
02	1.2700E+04	1.0000E+00	0.00000+00	8.2683E-05	3,5000E-02	1,45356-01
03	1.3300E+04	1.000000+00	0.00005+00	1.0260E-04	3,5000E-02	2,59486-31
04	1.3500E+04	1.0000E+00	0.00000+00	9.1473E-05	3,5000E-02	2,04435-01
95	1.44002+04	1.0000E+00	0.00000-00	8,7105E-05	3.5000E-02	1,80096-01
96	1.50006+04	1.0000E+00	0.00006+00	9,5262E-05	3.5000E=02	3,16012-01
97	1.5100E+04	1.0000E+00	0.00002+00	7 2924E-05	3,50005-02	1.88432-01
68	1.64002+04	1.00002+00	8.39995-39	9.65412-05	3,50002-02	1,78505-01
69	1.7500E+04	1.0000E+00	0.00005+00	8,2602E=05	3,50002-02	1,10756-01
198	1.7000E+04	1,0000E+00	0.00000:+00	9,0441E-05	3.5000E-02	1.70475-01
101	1.84005+04	1,0000E+00	0.00000 +00	8,94376-05	3.50005-02	1,98536-01
102	1.9200E+04	1,00002+00	0.0000E+00	9.611ØE-05	3.5000E-02	3.56306-01
103	1.9300E+04	1,000000+00	0.00000 .00	8 Ø845E+Ø5	3,5000E-02	2.3735E-01
104	1.9900E+04	1.0000E+00	0.0000E+00	8.5859E-05	3.5000E-02	2,8Ø68E-01
185	2.000000404	1,0000E+00	8.2000E+00	1,10672-04	3,5000E-02	3,7162E-01
106	2.0200E+04	1,0000E+00	0.00000:+00	9.09132-05	3.5000E=32	1,59526-01
107	2.04805+04	1,00000+00	8.00002+00	8,4088E~05	3,5000E-02	1,0023E-01
108	2 1000E+04	1.0000E+00	0.0000F+30	1.0104E-04	3.5000E-02	1.3143E-01
199	2.12005+04	1,9000E+00	0.00000+00	7,4929E-05	3,50005-02	1,24905-01
110	2.1700E+04	1.000000+00	0.00000 +00	8.8157E-05	3.5000E=02	1,8682E-01
111	2.2200E+04	1.0000E+00	9.00005+00	1.01205-04	3,50002-02	3.65905-01
112	2,2300E+04	1.000000+00	0.00000+000	1.2651E-04	3.5000E-02	5.0199E-01
113	2,2400E+04	1,000000+00	0.00002+00	9,4225E-05	3,50008-02	2,04755=01
114	2.28006+04	1,00000+00	0.0000E+00	8.6872E-05	3.5000E-02	1,57395-01
115	2,32000+04	1.000000+00	0,0000E+00	7,9109E-05	3,5000E-02	1,18235-01
116	2,34886+84	1.000000+00	2,0808E+88	8,6298E-05	3,50006-02	1.49702-01
117	2,42005+04	1,000000+00	0,0000E+00	9,4601E-05	3,5000E-02	1,54758-01
118	2,44006+04	1,000000+00	0,0000E+00	1,00275-04	3.5000E-02	2,01165-01
119	2,4000E+04	1.20005+00	0,2000E+00	7,9975E-05	3.3000E-02	2,89505-01
120	2,5000E+04	1,0000E+00	Ø,Ø000E+00	8,5593E-05	3.5000E-02	2.35386-01

L VALUE 1 NUMBER OF J STATES 4

	DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
J-VALUE 2,0000E+00	COMPETITIVE 0.00000-00	NEUTRON 1.2000E+20	RADIATION 0.0000E+00	FISS10N 2.0030E+00

AVERAGE RESONANCE WIDTHS (EV)

INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	8.2000E+01	1.1600E+00	0.20005+30	2,3200E-24	3.50000 -02	3.3230E-01
2	8.6702E+01	1.1600E+00	0.00001+00	2.3200E-04	3.50000-02	3.32001-01
3	9.10006+01	1.16000 + 00	0.00005+00	2.32005-04	3.50000-02	3.32/05-01
4	9.5000F+01	1.16005+00	0.00005+30	2.32005-04	1.50000-02	3.32105-0
5	1.00006+02	1.16005+00	0 0000000	2.32005-04	7 52025-02	3.33005-04
í.	1,10005+02	1 16005+00	0 0000 00	2 3000t-04	7 50005-72	3 30 105-01
ž	1.20005+02	1.16005+00	0 00000-00	2.32005-04	7 50000-02	3 30005-01
Ŕ	1 BURAF+02	1.16005+00	0,000000000	2.32005-04	7 60000-00	3 30305-01
ā	3 40005-02	1 14005-00	0,00002-00	2 30005-04	3.50000-02	3,02000-01
4 4	2 AUGRE+02	1 16005+00		2,32001-04	3.90000-02	3.32000-01
11	0 000000-00	1 14305-00	D.00000E=00	2132001-04	3190001-02	3,32002-01
15	5,000005+05	1.10000-000	0,00001+00	2102001-04	3.90001-02	3.32302-01
17	7 84885-83	1.10000-000	0.000000.000	2,32005-04	3.90000-02	3. 22005-01
10	7 18000-00	1.160000-000	0,0000F-00	2,32001-04	3.50000-02	3.32002-01
1	3 1000C+02	1.10000-000	0,00001+00	2:32005-04	3.20005-02	3.32006-01
15	3 4500C-02	1,10000+00	0.00005.00	2,32001-04	3,50001-02	3.32005-01
17	3 60000 -00	1.10000-00	0,00005+00	2102001-04	3.2000E+02	3.32001-01
18	4 BOODE+02	1.10002-00	0,0000E000	2,32001-04	3.20001-02	3.32002-01
10	5 20000C+02	1,100000000	0100005=00	2102005-04	2,20005-05	3.32002-01
24	5 45055400	1.10000-000	0.000000000	STOSADE-AN	3.20005-05	3.32006-01
20	5.0.00000	1,10001+00	N, NNNNE+NN	2.32001-04	3.20005-05	3.32002-01
53	6 1000L+01	1,100000400	0.0000E+00	2,32605-04	3,20005-05	3.32305-01
63	4 TMARCARD	1,100000-000	0,00005+00	2102005-04	3.20005-05	3.32305-01
25	6 4MAAC+42	1,100000400	N NNNNE+NN	2,32001-04	3.20005-05	3.32005-01
25	4 5000C+02	1,100000+00	0 0000F+00	2,32005-04	3.20005-05	3.32005-01
24	6 6000C-00	1,100000400	0.00005+00	2,32001-04	3,20005-05	3.32902-01
27	7 10005-02	1 16000-00	0.00005.00	2,32005-04	3,20005-02	3.42305-01
28	7 25805+02	1 16000-+00	0.0000E+00	2,32002-04	3.20005-02	3.32305-01
20	7 40005+02	1 16005+00	0.0000F+00	2,02001-04	3.20005-02	3,32000-01
34	7 5-005-02	1 16005+00	0.00005000	2,32005-04	3.20005-05	3.32306-01
31	7 70005+02	1 16000-+00	0,00005+00	2.32001-04	3.50005-02	3,3230E-01
70	8 avanc	1 14005-00	0,00005+00	2,32000-04	3.20005-02	3,32005-01
33	Q 1000E+02	1 16005+00	0.0000E=00	2,32001-04	3.30001-02	3.32000-01
74	0 00005-02	1 16005-00	0,00005400	2132305-04	3.3000E-N2	2.25005-01
35	1 08506+03	1 16000-+00	0.0000F+00	2,02001-04	3.50001-02	2.25905-01
36	1 18005403	1 16005+00	0 0000E+00	2132001-04	3.30000-02	2.25985-01
37	1 22005+03	1 16006+00	0,00005-00	2 32001-04	3.20005-02	3.4230E-01
38	1.30005+03	1 16005+00	0.00005-00	2,32991 - C4	3.50001-02	2.22005-01
30	1.40005+03	1 16006-00	0 0000F=00	2136001-04	3.20005-005	5.02001-01
49	1.43005+03	1.16006+00	8 98885+88	2,32001-04	3.2000F-05	3,3200E-01
41	1.40006-03	1.16000+00	5 00000F=00	2.32005-04	2.2000L-82	3, 32,005-01
42	1.40005+03	1.16000+00	0 0000E=00	2 32005-04	3.30001-02	3.9200E-01
43	1.48005-03	1 16005+00	0 0000E+00	0 30000-04	2.20006-05	3.32301-01
40	T 4 4 6 1 1 C 4 10 G	1.10005-00	N ■ 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0 = 0	519500F-04	3.20005-05	3,3200E-01

- 215 -

44	1.50000+03	1.1600€+00	0.00005+00	2.3200F-04	3.50005-02	3.32205-01
45	1 54505+03	1 16005+00	0 00005.00	0 30000-04	* FG005. 00	3 30 00 01
	Eliger al	1,10002400	5.0000F-00	2132605-64	3.30000-02	3.3240E-01
40	1,5*001+03	1,10001+00	0.0000E*00	2,3200E-04	3.5000E-02	3,32306-01
47	1.70005+03	1.1600E+00	8,88886.488	2.32005-04	3,50008-02	3.52005-01
48	1,9000E+03	1.1600E+00	3. 68005+88	3 32005-04	3.50005-03	1 10105-04
49	1 01005+03	1 16005+00	8 0 9 8 8 5 4 9 8	12005-04	5 5000-000	10000-01
	1,71,00,00	1,100000000	0.00000.000	2.32002-04	3.30005-05	3.32306-01
50	5.0000E+00	1.10006+00	N.0000E+00	2,32006-64	3.5000E-02	3,32005-01
51	2.1000E+03	1,1600E+00	0.0000E+00	2.32006-04	3.5000E-02	3.32/05-01
52	2.3000F+03	1.1600F+00	0.00000-+00	2.32005-04	3.50005-00	3 30005-04
63	3 50005+03	1 16005+00	0,0000,00	2 20005 04	a pagag up	7 70 000 01
	2,000000000	1.10001-00	0.00005-00	2.02002-04	3.50005-02	3.32201-01
54	2,70886+03	1.16091+90	8,00005+00	2,32005-24	3,5000E-02	3.32006-01
55	3,2000E+03	1,1600E+00	0.0000F+00	2.3200E-04	3.50000-02	3:32005-01
56	3.30006+03	1.16005+00	0 00000-00	3 33005-04	3 50005-000	3 30005-044
87	7 44005-03	4 46005.00	0,00002-00			0105005-01
27	3,45005403	1.10000-400	N. NONNE+NO	5.0500F-0+	3.50005-005	3.32001-01
58	3.7500E+03	1,1500E+00	0,000E+00	2.320ØE-04	3.50000-02	3,32000-01
59	4.10006+03	1.1600E+00	0.00006+00	2.3200F-04	3.50005-02	3.32305-04
60	4.30005+03	1 16005+00	0 00000+00	3 33945-94	* B0005-00	7 30005-0.
4.4	A AMAREARI	4 16905.00		2 702000-04		D. DEBDE - PI
01	4.40002-00	1,100000+000	N. NONNE NN	510500F-R#	3.50005-02	3.32000-01
62	4.8000E+03	1.1600E+00	0.0000E+00	2,320ØE-04	3.5000E=32	3,32305-01
63	4.9480E+03	1,1600E+00	0.00005+00	2.3200E-04	3.50000002	3.3270F=01
6.6	5 GUGGE + G.	1 16005+00	0 00005+00	0 33000-04	7 50005-02	3 30005-31
2 =	5 40005.03	1,10002-00	P. DODDE DO	2132000-04	3.50002-02	3.35405-01
02	2,1000E+00	1,10002+00	0.00005+00	2.32001-04	3.50006-02	3,32006-01
66	5,2000E+03	1.1600E+00	0,0000E+00	2,320ØE-04	3.5000E-02	3,32305-01
67	5,200E+03	1.1600E+00	0.0000-+00	2.32005-04	3.50000-02	3.32005-01
4.4	5 30035+43	1 16005+00	0 00000-00	0 300dr_44	3 50005-00	1 10.000
	5 6 6 6 6 6 5	1,10000-000	0.0000F+00	2102000-004	2.2000E-N2	3.32001-01
67	5.0PM0F+03	1.10005+00	0,0000E+00	2,3200E-24	3.5000E+02	3.32005-01
70	5,6500E+03	1.1600E+00	8.0000E+00	2,32505-04	3.50002-02	3,32005001
71	5.7000E+03	1.1600E+00	0.00005+00	2.32005-04	3.50005+02	3.32105-01
72	5 9000E+03	1 16005+00	0 00005.00	2 32005-04	7 64045-00	7 10000-01
44	6 90000 03	1,100000,000	0,000000,000	2152662-6-	3.50000-62	3.02762-01
/3	D DDUNE+03	1,10000+00	N*000NE+96	2.3200E-04	3.50006-02	3.32000=01
74	6,1000E+03	1.1600E+00	0.0000E+00	2,3230E-04	3.5000E+02	3.3200E-01
75	6.4500E+Ø3	1.1600E+00	0.0000F+00	2.32C0F-K4	3.5000Fen2	3.32405-01
76	6.8000F+03	1.1600F+00	0 0000-00	3.32005-04	1 50005-00	3 30 105 - 44
47	7 00005 +01	4 16005-00	0,0000000000			3 2 2 2 2 2 2 2 2
	, DUNDE + DO	1.10005+00	P.0000E+00	5'25CRF-04	3.50005-02	3.32305=01
78	7.2000E+03	1,1600E+00	0.0000E+00	2.32006-04	3.5000E=02	3,3200€≈01
79	8.1000E+03	1.1600E+00	0,00005+00	2.32000-04	3.5000E-02	3.32005-01
ė Ø	8 30005+03	1 16005+00	0 00005+00	3.32005-04	2 60005-00	T 30405-01
	0 64045-01	1 14000	0.0000000000		3.50002.02	3.02302-01
81	0.50002-03	1.10005+00	0.0000E+00	512500F904	3.50005-02	3,32301-01
82	8,7400E+03	1.1600E+00	0,0000E+00	2,3200E-04	3.5000E-02	3,3200E>01
83	9.0000E+03	1.16000.+00	0.00005+00	2.32005-04	3.5000F-02	3.32.105-01
	9 20005+03	1 16995+99	0 00005-00	3.33085-94	3 54445+33	3 33-195-0-
		1110000.00	0,00000.000	2102002 04	3.90001-02	STORADE-DI
82	1.04006+04	1.16000-00	0.0000E+00	2.32001-04	3.20005-05	3,32005-01
86	1,1402E+04	1.1600E+00	0,0000E+00	2,3200E-04	3.50002-02	3,32006-01
87	1.1700E+04	1.1600E+00	0.00005+00	2.32005-04	3.5000E-02	3.32305-01
A A	1 19005+04	1 16005+00	0 0000-+00	3 32005-04	3 50005-03	3 30305-04
	1 34005+04	1 16005.00	0.00002.00	0 30005-04	5.50000 02	3 30 100 01
89	1.20002+04	1,10000+00	0.00005+00	51250F-04	3.20005-05	3.02365-01
90	1,24006+04	1.10006+00	0,0000[+00	2,3200E-04	3.5000E-02	3.32306-01
91	1.2300E+04	1.16000+00	0.00000+000	2.3200E-04	3.50002-02	3.32305-01
62	1 2700F+04	1.16005+00	0.0000+00	2.32005-04	1.50005-02	3.32105-01
	1 73005+04	1 14005400	a aggar. ag	0 30000-04	3 50005-03	3 30000-01
43	1.301.02-0-	1.10000-400	0,00005+00	£132682-24	3.30000-12	3142005-01
- 94	1.3000E+04	1.1600E+00	0.00005+00	2,32005+04	3.5000E-02	3,3200E-01
95	1 4400E+04	1,1600E+00	0.00002+00	2.32005-04	3.5000E-02	3,3200E-01
06	1 5000F+04	1.1600F+00	0.00005+00	2.32005-04	1.5000F-02	3.32105-01
	1 51005-04	4 14005+00	0 5000 00	0 30005-04	3 50005-03	7 30 105-04
		1 10000-00	1. NONDE - NO	CINEDRE	0.00000000	0102002001
98	1.04001+04	7.10005+00	0.0000E+00	2,32001-04	3.20005-05	3.3200E-01
99	1,7000E+04	1,160ØE+ØØ	0,0000E+00	2,3200E-04	3.5000E-02	3.3200E-01
1 10 10	1.76905+04	1.16005+00	0.000000	2.32005-04	3.5000F=02	3.32205-01
1 4 1	1 84005-04	1 16005-00	a aaaar + 44	3 32005-04	1 50005-02	3.32305 0
101	1.07002-04	1,10000400	D. CODOF OD	2,32000-04	3.90000 02	0.02000-01
102	1,9200E+04	1.1600E+00	N,0000E+00	2,32005-04	3.5000E-02	3.3200E-01
103	1,9300E+04	1.1600E+00	0,00005+00	2,320ØE-04	3.5000E-02	3,32005-01
104	1.9900F+04	1.1600E+00	0.00005+00	2.3200F-04	3.5000E-02	3.32000-01
	3 00005-04	1 16005-00	a agear_ee	2.32005-04	1.50005-00	3.30000-01
102	<, 0.0 0 0 C + 0 4	1.10000-400	0.0000F+00	2102002-04	010000E-02	T ROADE AL
100	2,0<00L+04	1.10006+00	N°0000E+00	2. J2001-04	3.50001-02	3.02001=01
107	2,0400E+04	1.1600E+00	0,0000E+00	2,320ØE-04	3.50002-02	3,32302-01
1 0 8	2.1000E+04	1.1600E+00	0.0000F+00	2.3200E-04	3.50000-02	3.32305-01
1 1 0	2 1200E+04	1 1600F+00	0 0000 + 00	2.32005-04	3.50005-02	3.32705-04
7.62	C	7.10000-000	n. Departant	C, UCUUL-04	3 50000 06	3 30 400
110	2,1/00L+04	1.10000+00	0.0000E+00	2,52000-04	3.30005-65	0.02001-01
111	2,2200E+04	1.160ØE+ØØ	0,0000E+00	2,3200E-04	3.5000E-02	3.323ØE-Ø1
112	2.2300E+04	1.1600E+00	0.00005+00	2.3200E-04	3.5000E-02	3,32305-01
	0 04005-04	1 16005-00	a adaar	3 32005-04	5000-00	3.30305-04
11.9	5.51005+04	1.10005+00	0.0000F.00	CIUCEDE - DA	3,30000-702	3 30000 01
114	2,2000E+04	1.1600E+00	0,0000E+00	2,3200E-04	3.2000F-05	2.2200E-01
115	2.3200E+04	1,16002+00	P.0000E+00	2,3200E-04	3.5000E=02	3,32000-01
	34005-04	4.16985.00	0.00000-100	2.32005-04	3.50005-02	3.32705-01
110	2.07002704			5 1000C-04	5 50005-03	3 33395-94
11/	2.42001+04	1.10001+00	0.0000E+00	C, JCDDL-DA	3.30001-02	0,0g001-01
118	2,44000+04	1,1600E+00	0,0000E+00	2,3200E-04	3.5000E-02	3.3230E-01
119	2.46005+04	1.1600E+00	0.00005+00	2,3200E-04	3.5000E-02	3,320ØE-01
100	6 6000C + 04	1 16005-00	0 0000-100	3 32005 -04	3.50000-00	3.32705-01
120	2,30001404	TITDD0C400	► DEDEF 400	EIOE002 -004	3120000-02	ATAENAC.01

	DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
J⇒VALUE 3.0000E+00	COMPETİŤIVE Ø,0000E+00	NEUTRON 2.0000E+00	RADIATION Ø.Ø000E+00	FISSION 1.2000E+00
		ALEE BECONANCE	UTOTHS (EV)	

AVERAGE RESONANCE WIDTHS (EV)

			AVEP	AUL RESUMANUE	MIDING (EV)	
INDEY	FNERGY (FV)	LEVEL SPACING	COMPETITIVE	NEUTRON	HADIATION	FISSION
1	8.2000F+01	1.000000+00	0.00005+00	2.00005-04	3.5000E=02	1.27005-01
2	9 45005-01	1 00005+00	0 00000L-00	2 00005-04	3 50005-02	1.27105-01
3	0.10005-01	1.00005+00	0.000001400	2.000000-04	1,50000-02	1.27408-01
, in the second s	0.55005+01	1.00005+00	0.00000-00	2.00005-04	3.50000-02	1.27005-01
5	1 00005+02	4.00005+00	0.00005+00	2.00000-04	50005-02	1.27405-01
	1.1000F+02	1.000005+00	8.88885.88	2.00005-04	3.50005+02	1.27005-01
7	1.2000F+02	1.00000 +00	0.0000-00	2.0000F-04	3.5000F-02	1.27005-01
à	1.8000F+02	1.0000E+00	0.00005.00	2.0000F-04	3.5000F-02	1.27005-01
9	2.4009E+02	1.00005+00	0.00005-00	2.00005-04	3.50005-02	1.27000-01
10	2.6000E+02	1.00000.00	0.0000F+00	2.00000-04	3.5000E-02	1,27005-01
11	2.80000+02	1.00000 +00	0.00005+00	2.0000E-04	3.5000E-02	1,27005-01
12	2,90006+02	1,000000+00	0.00000.00	2.00000-04	3.5000E-02	1.27005-01
13	3.000000+02	1,000000+00	0.00000+00	2.0000E-04	3.5000E-02	1,2700E-01
14	3,1700E+02	1.000000+00	0.00005+00	2.0000E-84	3,5000E-02	1.27005-01
15	3,300000+02	1.00006+00	0.00005+00	2,00000-04	3.5000E=02	1.27005-01
16	3,4500E+02	1.0000E+00	0.0000E+00	2.0000E-04	3,5000E-02	1,27302-01
17	3,600000+02	1.0000E+00	0.0000E+00	2,0000E-04	3.5000E-02	1,27306-01
18	4,588825+82	1.000000+00	8.99995-99	2,0000E-04	3.5000E-02	1,27305-01
19	5,2000E+02	1.0000E+00	0.0000E+00	2.0000E-04	3,5000E-02	1,27001001
20	5,6500E+02	1.0000E+00	0.0000E+00	2,0000E-04	3.5000E-02	1.27005-01
21	6.1000E+02	1.00006+00	0.0000E+00	2.00000-04	3,5000E=02	1,27005-01
22	6,200ØE+Ø2	1,0000E+00	0,0000E+00	2,9000E-04	3.5000E-02	1,2700E-01
23	6.3000E+02	1,0000E+00	0.0000E+00	2,0000E-04	3,5000E=02	1,27002-01
24	6,4000E+02	1.0000E+00	0.000000000	2,8000E-04	3.5000E-02	1,2700E=01
25	5,7000E+02	1,99991.499	0,0000E+00	5,0000Fead	2,20005-05	1,27002-01
20	0,00002+02	1,00001+00	0.0000E+00	2,00001-04	3.20005-05	1,2730E-01
27	7,10000-02	1,000000-00	0.0000E+00	2,00001-04	3,00000-02	1 27305-01
20	7 40005-02	1 000000-00	0.00001+00	2,000000-04	3.500000-02	1 27 305 -01
27	7 53005402	1,0000E-00	0.00005-00	2,0000004	3.50000-02	1,27001-01
31	7.70805-02	1.00005+00	0.00000.00	2,000000-04	3.5000E-02	4.27305-01
32	8.80005+02	1.000000+00	8.0000E+00	2.00005-04	3.50905-02	4.27305-01
33	9,10005+02	1.000066+00	0.00000.000	2.00002-04	3.50000-02	1.27005-01
34	9,90002+02	1,0000E+00	0.00000+00	2.00000-04	3.5000E-02	1.27305-01
35	1,00506+03	1.0000E+00	0.000000000	2 0000E-04	3,5000E-02	1,2730E-01
36	1,1800E+03	1,0000E+00	0,00000 +00	2,00006-04	3.5000E-02	1,2700E-01
37	1,2200E+03	1.0000E+00	0.00000:00	2,0000E-04	3.5000E-02	1,2700E-01
38	1.3000E+03	1.0000E+00	0.0000E+00	2,0000E-24	3.5000E-02	1.27005-01
39	1.4000E+03	1,0000E+00	0.0000E+00	2.0000E-04	3.5000E-02	1.27005-01
49	1,4300E+03	1.0000E+00	0,00000:+00	2,0000E-04	3.5000E-02	1,2700E-01
41	1,45082+83	1,00000+00	0.00000.000	2,0000E-04	3.5000E-02	1.27005-01
42	1.400000+03	1,00001+00	0.000000.000	2.0000E-04	3.5000E-02	1.2700E-01
40	1,40001403	1.000000+00	0.000000000	2,0000E-04	3.5000E-02	1.27005-01
77	1 54605-03	1,000000400	0 0000E+00	2,00001-04	3.20000-02	1 2/00[-01
46	1.59005+03	1 000005+00	0.00002±00	2,0000E404	3.50000-02	1,27001-01
47	1.7000F+03	1,0000E+00	0.0000000000	2.000000004	3.555555-02	1 37001-01
48	1.90005+03	1.0000E+00	0.0000E+00	2.000000-04	3.50000-02	1.27305-01
49	1.9100E+03	1.0000E+00	0.0000F +00	2.00000004	3.50005-02	1.27005-04
50	2.0000E+03	1,0000E+00	0.00000+000	2.0000E-04	3.50000-02	1.27005=01
51	2,100000+03	1,0000E+00	0.0000-+00	2.00005-04	3.50008-02	1.27305-01
52	2,3000E+03	1,9000E+00	0,00002+00	2,00005-04	3.5000E-02	1.27305-01
53	2,5000E+03	1.0000E+00	0,0000E•00	2,000000-04	3.5000E-02	1.27005-01
54	2,7000E+03	1.0000E+00	0,00000=00	2,0000E-04	3,50000002	1,27305-01
55	3,24886+03	1.0000E+00	0,00002+00	2,00002-84	3.50001-02	1,27305-01
56	3,3000E+03	1,0000E+00	Ø,0000E+00	2,000000-04	3.5000E-02	1.27005-01
57	3,4000E+03	1.0000E+00	Ø,0000E+00	2,00000-04	3.50006-02	1,27205-01
58	3.7500E+03	1.0000E+00	Ø.0000E+00	2,0000E-04	3.5000E-02	1,27005-01
59	4,1000E+03	1.0000E+00	0,0000E+00	2,0000E-04	3.5000E-02	1.27002-01
60	4.3000E+03	1,0000E+00	0.0000E+00	2,0000E-04	3.5000E-02	1,27305-01
61	4,40000+03	1,000000+000	0,0000E+00	2,0000E-04	3.5000E-02	1,2700E-01
62	4,90005+03	1.0000E+00	0,0000E+00	2,0000E-04	3.5000E-02	1.2700E-01

63	4,9000E+03	1,000000+00	0.0000r+00	2,000000-04	3.50005-02	1.27/06.201	
64	5.000000+03	1,0000E+00	0.0000=+00	2.0000F-04	2 50005-02	1.27395-01	
45	5.1000F+03	1.000000+00	0 0000-+00	2,000005-04	3.59005-03	1 27005-01	
4.6	8 00005403	1 100000-00	0.000000.00		5 5000E-02	1.27000-01	
	5,25,65,70	1.000000400	D, DDDDF+DD	2,00002-04	3.30000-02	1.2/001-01	
67.	5.2500E+03	1,00005+00	0,0000E+00	2,000000-04	3.5000E-02	1,27305-01	
68	5.3000E+03	1.0000E+00	0,0000£+00	2,0000£-04	3,50000-02	1,27005-01	
69	5,6000E+03	1.0000£+00	0.00005+00	2.0000E+04	3.50005-02	1.27305-01	
70	5.6200F+03	1.000000+00	0.0000-+00	2 00005-04	1.50005-02	1.27005-01	
71	5 70005+03	1. 00000-000	0 00000c+00	2 00000-04	- E000C-00	4 27495-44	
10	5 040ar + a3	1 40705.00	0.00000000000	2,000000-04	3.50000-02	1,2/005-01	
/ 5		1,000000400	0,00001+00	2,000000-04	3.90000-02	1.2/005-01	
73	0 BODDE + DO	1.00001.00	N'000AE+00	2,0000E-04	3 20005-05	1,2700E-0 <u>1</u>	
74	6.1002E+Ø3	1.0000E+00	0,0000E+00	2,0000E-04	3.50005-02	1,27006-01	
75	6,4°A0E+03	1,0888E+88	0,00005+00	2,0000E-04	3,5000E-02	1.27305=01	
76	6,8000E+03	1.0000E+00	0.00005+00	2.0000E-04	3.50000-02	1.27305-01	
77	7.00005+03	1.00000 +00	0.00005+00	2.0000F-04	3.50005-02	1.27005-01	
78	7 24005+03	1.0000E+00	0 0000-+00	0 00005-04	3 B0005-03	1 27005-01	
70	a 10005-03	1 300000-400	0.00000-000		5 50000-02	1,27001-01	
	0.14000-03	1.000000-000	0,00001,000	2,000000-04	3.90005-02	1.2/006-01	
80	0,30002+03	1.00000.+00	N. 0000E+00	2,00001-04	3.2000E-02	1,27002-01	
81	8,50001+03	1.000000+00	0.00000-00	2,000000-04	3,50005-02	1,27002-01	
82	8,70006+03	1.00000E+00	0,0000£+00	2,99295-24	3.50002-02	1,27006-01	
83	9,0000E+03	1,000000+00	0.00005+00	2.0000E-04	3.500000-02	1.27005-01	
84	9.2000E+03	1.0000E+00	0.00005+00	2.0000F-04	3.50005=02	1.27305-01	
A5	1.0400E+04	1.000000+00	0.00000+00	2.00005-04	3.50005-02	1 27 105 -01	
86	1.14005+04	1.00005+00	0 0000C+00	3 00005-04	3 80005-02	1 27705-01	
97	1 17005+04	1 30305.40	0,0000000000		3130000-02	1,27002-01	
07	1 ABOOC OF	1.000000400	0,00005.00	2100001-00	3.30005405	1,2/001-01	
80	1,17000-404	1.00000.000	N.0000E+00	5.0000E-K4	3.2000E-02	1.2700E-01	
87	1,20905+94	1.00001+00	8.0000E+00	2,000000-04	3.5000E~02	1,2708E-81	
99	1,2200E+04	1.0000E+00	0.0000E+00	2,0000E-04	3.5000E-02	1,27006-01	
91	1,2400E+04	1.0000E+00	0,00005+00	2.00000-04	3.5000E-02	1.2700E=01	
92	1.2/00E+04	1.0000E+00	0.00005+00	2.00005-04	3.50005-02	1.27005-01	
03	1.3300F+04	1,0000F+00	0.0000-00	2.00005-04	1.50005-02	1.27.305-01	
64	1 3600F+04	1.0000F+00	0 00005+00	5 0000C Pt	7 5000C-02	1 27405-44	
05	1 4400 - 404	1 0000L+00	0,0000000000	2100000-04	5 50500 - 52	1 27405-01	
	L T PRODUCTON	1.000000000	0.00005400	2,000000-04	3.50000-02	1,2/001-01	
90	1,50000+04	1.00005+00	D. BONDE + DD	5,00001-0-	3.20005-05	1.27001-01	
9/	1 91006+04	1.00000+00	0,0000E+00	2,000000-04	3.5000E-02	1,2700E-01	
98	1,6400E+04	1.0000E+00	0,00005+00	2,00001-04	3.50000-02	1,2700E-01	
99	1.7500E+04	1.000000+00	0.00000=+00	2.0000E-04	3.5000E-02	1,27000-01	
100	1.7400E+04	1.000000+00	0.00005+00	2.000005-04	3.5000E-02	1.27005-01	
101	1.8400E+04	1.0000E+30	0.00005+00	2.00001-04	3.50005-02	1.27005-01	
	1 02005+04	4 90005-00	0.0000c-00	0 00000-04	* = # # # # # # # # #	4 27405-04	
1	1 03005-04	1 000000000	0.0000000000		566665-02	1 33395-01	
103	1,70020707	1.000000000	0.00005+00	2.000000-04	3.50000-02	1.27001-01	
104	1,77005+04	1.000000+00	0.0000E+00	2.00006-04	3.50005-02	1,27006-01	
105	5.00005+04	1.0000E+00	8.06085+38	2.00005-04	3.50000-02	1.27306-01	
106	2.0200E+04	1.0000E+00	0.0000€+00	2,0000E-04	3.5000E-02	1,27005-01	
107	2.0400E+04	1,0000E+00	0.00000+00	2.0000E-04	3,5000E-02	1,27000-01	
108	2 1600F+04	1.0000E+00	0.00005.00	2.00005-04	3.50000-02	1.27305-01	
4 6 9	3 12005-04	1.0000E+00	0 00000-00	2.00005-04	3.50005-02	1.27005-01	
1.0	5 17005-04	4 00000-00	0 000000-00	0 00005-04	7 50695-00	1 27005-01	
110	2,17000-00	1.000000-00	0.0000F+00	2.00000000	5.50000-02	1,27000-01	
111	2.22406+04	1.00002+00	0.00005+00	5,00005-04	3.50006-02	1,27000-01	
112	2,23002+04	1.0000E+00	8.0000E+88	2,00006-04	3.50005-02	1,2700E=01	
113	2,2400E+04	1,0000E+00	ଡ,øøøø⊊≠øø	2,00000-04	3.5000E-02	1,27005-01	
114	2,2800E+04	1,0000E+00	0,00000+00	2,00000E-04	3.5000E-02	1.27305-01	
115	2.3200E+04	1,000000+00	0.00000+00	2.000005-04	3,50000-02	1.27002-01	
	34005+04	1.00006+00	0 00000-00	3.0000 - 04	3.50005-02	1.27705-01	
110	0 A2005 404	4 00000C+00			3 50005-02	1.23.305-04	
11/	5 4 4 F W F + Ø 4	7.00000-00	n beecf = 00	2,00001-04	3 50000 - 0Z	4 37 00 C - 01	
118	2.44001404	1.00001+00	0.0000E+00	2,000002-04	3.20001-02	1.27001-01	
119	2,40002+04	1.00001+00	N.0000E+00	2 . 0000E - 04	2.20005-05	7.41.305-01	
128	2,5000E+04	1.000000+00	0.00006+00	2,0000E-04	3.5000E=02	1,270PE-01	

			AVER	AGE RESONANCE	WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	8,200ØE+Ø1	1.0000E+00	0,00000 +00	2,00005-04	3,50000-02	2.86002-01
2	8.0700L+01	1.0000E+00 1.0000E+00	0.0000E+00	2.00000-04	3.50001+02	2.86305-01
4	9,500E+01	1.0000E+00	0,0000E+00	2,00005-04	3.5000E-02	2.0600E-01
5	1.0000E+02	1,00002+00	0,0000E+00	2,00002-04	3.50002-02	2,8600E-01
6	1.100000+02	1,0000E+00	9,0000E+00 5,0000E+00	2,0000E+04 3.0000E+04	3.50000-02	2,86005-01
á	1.8000E+02	1.0000E+00	0.0000F+00	2.000005-04	3.50002-02	2,86000-01
9	2,4000E+02	1.0000E+00	0.00005+00	2.00005-04	3.5000E-02	2.0630E=01
10	2.6000E+02	1.0000E+00	0,0000E+00	2,00005-04	3.5000E-02	2,8600E=01
12	2.90000E+02	1.000000+00	0.00005+00	2.000000-04	3,5000E-02	2,060000-01
13	3.0000E+02	1,0000E+00	0.0000E+00	2.0000E-04	3.5000E-02	2.8630E-01
14	3,1500E+02	1.0000E+00	0,0000E+00	2,000000-04	3.5000E=02	2,86305=01
10	3.45002+02	1,0000E+00	8.888865+88	2.000000-04	3.5000E-02	2.06000-01
17	3,6000E+02	1.00005+00	0.00005+00	2,0000E-04	3,5000E-02	2,86005-01
18	4,5000E+02	1.0000E+00	0.00000.+00	2.0000E+04	3.5000E=02	2.06202-01
19	5,2000L+02	1.0000000-000	8.88888F+88	2.000000-04	3.50000-02	2,8600E-01
21	6,1000E+02	1.0000E+00	0,0000E+00	2,0000E-04	3.5000E=02	2.0620E-01
22	6.2000E+02	1.000000+00	0,00000=00	2,0000E-04	3.5002E+02	2,86802-01
23	6.4000E+02	1.00006+00	8.0000E+00	2,0000E-04	3.500000-02	2.0630E-01
25	6,5000E+02	1.0000E+00	0,00001+00	2,00C0E-04	3.5000E-02	2.06002-01
26	6.6400E+02	1.000000+00	0,000000000	2,0000E-04	3.5000E-02	2,8600E+01
2/	7.1000E+02	1,000000+00	0.0000E+00	2.00006-04	3.5000E-02	2,00001-01
29	7.4000E+02	1,00005+00	0.0000E+00	2 0000E-04	3.5000E=02	2,86302-01
30	7.5>00E+02	1,000000000	0.0000E+00	2,00005-04	3,5000E-02	2.86002-01
31	A . 8000E+02	1,0000E=00 1,0000E+00	0.0000E+00	2,00001-04	3.50005-02	2.8620F-01
33	9,1000E+02	1,00005+00	0.000000.000	2,0000E-04	3,5000E-02	2.86000-01
34	9,9000E+02	1.000000+00	0.0000E+00	2,00005-04	3.5000E-02	2.86305-01
32	1,000000000	1.0000C+00 1.0000F+00	8.0000E+00	2,00001-04	3,50000-02	2:0000E001 9.8690E001
37	1,2200E+03	1.000005+00	0.0000E+00	2,0000E-04	3.5000E-02	2,8600E-01
38	1,300000+03	1.0000E+00	0.0000E+00	2,00005-04	3,5000E-02	2.8600E-01
40	1.40001+03	1.0000E+00 1.0000E+00	8.88895.489 8.88895.489	2,00001-04	3,50001-02	2,00000001
41	1,4500E+03	1.0000E+00	0,0000E+00	2,0000E-04	3,5000E-02	2.56000-01
42	1.4000E+03	1,0000E+00	0.0000E+00	2,0000E-04	3.50002-02	2.8630E-01
44	1.5000E+03	1.0000E+00	0.0000E+00	2.000005-04	3.500000-02	2.86005-01
45	1,5450E+Ø3	1.0000E+00	0,00005+00	2,00000-04	3.50002-02	2.8630E-01
46	1.5900E+03	1,0000E+00	0.0000E+00	2,000005-04	3.50802-02	2,86302-01
48	1.9000E+03	1.0000E+00	0.0000E+00	2.00000-04	3.50000-02	2,86000-01
49	1,9100E+03	1.0000E+00	0.0000E+00	2,00000-04	3,50006-02	2,8630E-01
50	2.0000E+03	1,0000E+00	0.0000E+00	2,00005-04	3,50000-02	2,8630E-01
52	2,30000+03	1.000000000	0,00005+00	2.000000-04	3.50000-02	2.06001-01
53	2.5000E+03	1.0000E+00	0.0000E+00	2,00000-04	3.50002-02	2,86302-01
55	2.700000+03	1.0000L+00 1.0000F+00	0.0000E+00	2,00000-04	3,5000E-02	2,8600E-01
56	3,3000E+03	1,0000E+00	0.000000400	2.00000-04	3.5000E-02	2.060000-01
57	3.40002+03	1.0000E+00	0.00000.00	2.00005-04	3.500ØE-02	2.86005-01
70 59	4.1000E+03	1,0000E+00 1,0000E+00	0.0000E+00	2,00005-04	3.5000E-02	2.86300-01
610	4 JUBBE+B3	1,900ØE+00	0.0000E+00	2,0000E-04	3.5000E-02	2,86002-01
61	4,4000E+03	1.000000+00	Ø.0000E.00	2,00005-04	3.5000E-02	2,86305-01
63	4,9000E+03	1.0000C+00 1.0000E+00	0,0000E+00 0.0000F+00	2.00005-04	3.50000-02	2,86305-01
64	5.8090E+93	1.0000E+00	0.000000+00	2.000000-04	3.5000E=02	2,86300-01
65	5.1000E+03	1,0000E+00	Ø.0000E+00	2.00005-84	3.50005-02	2,86302-01
67	5.200E+03	1.0000E+00 1.0000E+00	0,0000E+00	2,00000004	3-50002-02	2,86000-01
68	5,30002+03	1.0000E+00	0.00005+00	2.00000-04	3,50000-02	2,06001-01
69	5,60886+03	1.00000+00	0.00002+00	2.0000E-84	3.50002-02	2,86382-01
71	5,7000E+03	1.000000+00	8.8888C-988	2.0000L-04 2.0000c-04	3.50000-02	2.06000-01
72	5,9000E+03	1.0000E+00	0.00005+00	2,00000-04	3.5000E-02	2,86001-01
73	0,0000E+03	1,0000E+00	0.00000.00	2,00005-04	3.5000E-02	2,86005-01
25	6.42006+03	1.0000E+00	0.0000F+00	2.0000t=04 2.0000f=04	3.50000-02	2,000000001
76	6,8498E+83	1.08885-88	8.88885.88	2.000000-04	3.5000E-02	2,6600E-01
77 78	7.0000E+03 7.20005+03	1.0000E+00	0,0000E+00	2,00005-04	3.50000-02	2.86000=01
79	8,1000E+03	1.0000E+00	<i>≈.0000€+00</i> 0,0000F+00	2.0000E-04	3.50000-02	5.9900E=07
80	8,3400E+03	1.0000E+00	0.0000E+00	2,0000E-04	3,5000E-02	2.86000-01
81 82	8.7000E+03 8.7000F+03	1.0000E+00	0,0000E+00	2,0000E-04	3.50000-02	2.8600E-01
83	9.00000-03	1.000000000	0.0000E+00	2,00001-04	3.5000E-02	2.000000001
84	9,2000E+03	1.0000E+00	8.8888E+00	2,0000E-04	3.5000E-02	2,86002=01
82	1.0900E+04 1.1400F+04	1.0000E+00	8,00000+00	2,000000-04	3,50000-02	2.86082-01
			~	CINNNRC	3120005-05	2.0000000001

DEGREES OF FREEDOM USED IN THE WIDTH DISTRIBUTION J-VALUE COMPETITIVE NEUTRON RADIATION FISSION 4.0000E+00 0.0000E+00 2.0000E+00 0.0000E+00 2.0000E+00

87	1,1700E+04	1,00000 +00	0.00005+00	2.00000-04	3.50000-02	2.86000-01
88	1,1980E+84	1.00002+00	D. DODDE . DD	2,000005-04	3.50002-02	2,66302-01
89	1,2000E+04	1.0000E+00	0,0000E+00	2,0000E-04	3.5000E-02	2,86305-01
90	1,2200E+04	1.0000E+00	0,00000000	2,000000-04	3.5000E-02	2.46306-01
91	1,23000+04	1.00002+00	0,00005+00	2,00000-04	3,5000E=02	2.86305-01
03	1 3.5005+04	1 000000-+00	P.0000€≠00	2,00001-04	3.50001-02	2,86705-01
95	1.3000E+04	1.0000E+00	0.00001+00	2.00001-04	3.50001-02	2,00005-01
95	1.4400E+04	1.000000+00	0.00000-00	2.000000-04	3.50000-02	2.86005.001
9 O	1,5000E+04	1.0000E+00	0,000001+00	2,00002-04	3.50000-02	2.06001-001
97	1,5100E+04	1.00002+00	0,00005+00	2,00000-04	3.50000-02	2.46405-01
98	1.6400E+04	1.0000E+00	0,00005+00	2,0000E-04	3.50002-02	2,86305-01
99	1,/900E+04	1.0000E+00	0.00006.00	2,0000E-04	3.5000E-02	2,06202-01
100	1 700000-04	1.000000-+00	0.0000E+00	2,00000-04	3.5000E-02	2,86205-01
102	1 02005-04	1 000000+00	0.00005+00	2,00001-04	3.50002=02	2,06305-01
103	1.9300F+04	1.000000+00	0.00001+00	2,000000-04	3.50000-02	2.00000-01
194	1.9480E+04	1,0000£+00	0.00005+00	2.00005+04	3.50000-02	2.86305-01
105	2,0000E+04	1.0000E+00	0.00000.00	2.0000E-04	3.50005-02	2.86905-01
106	2,0200E+04	1.0000E+00	0.00006+00	2,0000E-04	3.5000E-02	2,06306-01
107	2,0400E+04	1.0000E+00	0,0000E+00	2,0000E-04	3.5000E-02	2,0630E-01
108	2,1000E+04	1.00000+00	0,00005+00	2,0000E-84	3.5000E-02	2.06JØE-01
109	2,1200E+04	1,0000E+00	0,0000E+00	2.0000E-04	3.5000E-02	2.8600E-01
110	2,1/001+04	1.00001.+00	0,000000000	2,000000-04	3.5000E-02	2,86305-01
412	2,22002-04	1 000000-+00	0,00001+00	2.00001-04	3.20801-02	2,000000-01
113	2.24005+04	1.00000E+00	0.000000000	2.00000-04	3.50000-02	2,06302-01
114	2.2000E+04	1.0000E+00	0.00000.00	2.0000F-04	3.50005-02	2.86305-01
115	2.3200E+04	1.0000E+00	0.00005+00	2.00005-04	3.50005-02	2.86205-01
116	2,3400E+Ø4	1.00000 +00	9.0000E+09	2.00C0E-04	3.5000E-02	2.56305-01
117	2,4200E+04	1,0000E+00	0.0000E+00	2,0000E-04	3.5000E-02	2,0630E-01
118	2,4490E+04	1.0000E+00	0,0000E+00	2,0000E-04	3.5080E-02	2,86305-01
119	2,400000+04	1.0000E+00	0.0000E+00	2,0000E-04	3.5000E-02	2,8630E-01
126	5,20006+84	1.90005+00	N.6868E+88	2,0000E-04	3.20005-85	2,86385-01
			DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
					D.D.T.A.T.O.N	
		5.00005+00	A ARAGETARS	4 . 00.00C+X0	A ADIATION	r 13310N
		5.000000400	0,00005-00	1.000002-00	DIDODDE-DD	1.00005.00
			AVE	AGE RESONANCE	E WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	8.2000E+01	1.1200E+00	0.00000+00	2.24005-04	3.5000E-02	1.43205-01
2	8,6700E+01	1.1200E+00	0.0000E+00	2.2400E-04	3,5000E-02	1.43305-01
3	9,1000E+01	1.1200E+00	0.0000E+00	2,24005-84	3.58888-02	1.43305-01
4	9,500E+01	1.1200E+00	0,0000E+00	2,240ØE-04	3,5000E-02	1.4330E-01
5	1,0000E+02	1.12006+00	0,00005+00	2.24005-04	3.50005-02	1.43302-01
2	1,10001+02	1.12005+00	0.00005+00	2,24005-04	3.50000-02	1.43005-01
,	1.8000F+02	1.12005+00	0,00001-00	2.24005-04	3.50000-02	1.43005-01
ş	2.40005+02	1.1200E+00	0.00005+00	2.2400E-04	3.50006-02	1.43005=01
10	2,60996+92	1.12006+00	0.0000E+00	2,24005-04	3.50002-02	1,43006-01
11	2,800005+02	1.1200E+00	0.00005-00	2.2400E-04	3,50006+02	1,4300E-01
12	2.94905+02	1.12005+00	a.aaaac.aa	2.24005-04	3.50006-02	1.43005-01

INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	8,2000E+01	1.1200E+00	0,00000 +00	2,2400E-04	3,5000E-02	1.43306-01
2	8,6>00E+01	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1,43%05-01
3	9,1000E+01	1.1200E+00	0,0000E+00	2,24002-04	3.50005-02	1.43305-01
4	9,5>00E+01	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1.4330E-01
5	1,0000E+02	1.1200E+00	0,0000E+00	2.24ØØE-04	3.5000E-02	1,43308-01
6	1.1000E+02	1.1200E+00	0,000000.00	2,2400E-04	3.50000-02	1.4300E-01
7	1,2000E+02	1.1200E+00	0,0000E+00	2.2400E-04	3.50006-02	1,4300E-01
8	1,8000E+02	1,1200E+00	0,00006+00	2,2400E-04	3.50006-02	1,4300E-01
9	2,4000E+02	1.1200E+00	0,00000:000	2,240ØE-04	3.50006-02	1.4300E=01
10	2,60996+92	1.1200E+00	0,000000000	2,2400E-04	3.50002-02	1,4300E-01
11	2,8000E+02	1.1200E+00	0,0000E+00	2,2400E-04	3.50006-02	1,4300E-01
12	2,94906+02	1,1200E+00	8,20285+20	2,2400E-04	3.50006-02	1.4300E-01
13	3.0000E+02	1,1200E+00	0,00006+00	2,2400E-04	3.50000-02	1,4300E-01
14	3,1>00E+02	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1.4300E-01
15	3,3000E+02	1.1200E+00	0.0000E+00	2,2400E-04	3.50000-02	1,4300E=01
10	3,4700E+02	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E+02	1.4300E-01
17	3,6000E+02	1.1200E+00	0,0000E+00	2.2400E-04	3.5000E-02	1,4300E-01
18	4,500ØE+Ø2	1.1200E+00	0.0000E+00	2.24005-04	3.5000E-02	1.4300E-01
19	5,20925+22	1,1288E+88	0.0000E+00	2,24005-04	3,50000-02	1.4300E-01
20	5,67ØØE+Ø2	1.1200E+00	0,0000E±00	2,2400E-04	3.5000E-02	1.4390E=01
21	6.1000E+02	1.1200E+00	P.0000E+00	2.2400E-04	3.5000E-02	1.4330E-01
22	6.2000E+02	1.12001+00	0.0000E+00	2.24006-04	3.20005-05	1.43006-01
23	6.3000E+02	1.1200E+00	0.00005+00	2,2400E-04	3.50001-02	1.4330E-01
24	6.4000E+02	1.1200E+00	0.0000E+00	2.2400E-04	3.90006-02	1.4300E-01
25	6.5000E+02	1.1200E+00	0.00005+00	2.2400E-04	3 50002 02	1.43006-01
20	9 905 95 + 65	1.1200E+00	0,0000E+00	2,24885-04	3.20005-02	1.3305-01
27	7.1000E+02	1.1200E+00	0,0000E+00	2,240ØE-04	3.20005-05	1,4300E-01
26	7 29986+82	1,1208E+80	0,0000E+00	2,2400E-04	3.90005-05	1.4300E-01
29	7 40001+02	1.12006+00	0,00005+00	2,2400L-04	3.50000-02	1.3001-901
310	7,5900E+02	1.1200E+00	0,00002+00	2,24005-04	3.50001-02	1.43005-01
31	7 70000 +02	1.12006+00	0,0000E+00	2,24005-04	3.90005-02	1,43002-01
32	8.8000E+02	1,12001+00	0,000VE+00	2,2400E-04	3.20005-05	1,43006-01
33	9,10002+02	1.12005+00	0,00006+00	2.24005-04	3.5000E-02	1.43005-01
34	9,9000E+02	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1,43005-01
35	1.0050E+03	1.1200E+00	0.0000E+00	2,24005-04	3.5000E-02	1,43005-01
36	1.1800E+03	1.1200E+00	0,0000E+00	2,240ØE-04	3.5000E-02	1.43002=01
37	1,2200E+03	1,1200E+00	0,0000E+00	2,2400E-04	3,5000E-02	1.4300E-01
38	1.30PØE+Ø3	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1.43205-01
39	1,4000E+03	1.1200E+00	00#30000, N	2,2400E-04	3.5000E-02	1,4300E-01
40	1,4300E+03	1,120ØE+ØØ	0,0000E+00	2.2400E-04	3,5000E-02	1.43002-01
41	1,4500E+03	1.1200E+00	0,00005±00	2,240ØE-04	3,5000E-02	1,4300E-01
42	1,4000E+03	1,1200E+00	0,0000E+00	2,2400E-04	3,5000E-02	1.43002-01
43	1,4000E+03	1,1200E+00	0,0000E+00	2.2400E-04	3.5000E-02	1.4300E-01
44	1,54002+03	1,120ØE+00	0,0000E+00	2,2400E-04	3,50005-02	1,4300E-01

4 E	4 E4505+03	1 13035+33	a aga@c.aa	2 34595-84	7 50005-00	4 47385-04
	1,34300400	1,12000-000		0 04005-04	5 50000-00	1 13000-01
40	1,54006+03	1,12006+00	0.0000E+00	212460E-64	3. 3000E-02	1, 1, 0001-01
47	1,70006+03	1,12006+00	0.0000E+00	2,2400E-04	3.20005-02	1.4300E-01
48	1,9000E+03	1.1200E+00	0,0000E+00	2,24006-04	3,5000E-02	1,43002-01
49	1.9100E+03	1.1200E+00	0.0000F+00	2.2400E-04	3.5000E-02	1,43005-01
20	D HUBBE +0.3	1 12905+00	A. 0000F + 00	2.24005-04	3.50005-02	1.43305-01
50		4 40005 400	0.0000000000	0 04005-04	7 B0005-00	1 47305-04
51	2.10000+03	1,12006+00	0.0000E+00	2.2400E-04	3.30005-02	1.43001-01
52	2,3000E+03	1,12005+00	0,0000E+00	2.2400E-04	3.2000E-05	1,93306-01
53	2,5000E+03	1,1200E+00	0.0000E+00	2.2400E-04	3.5000E-02	1.4300E-01
54	2.7000F+03	1.1200E+00	0.00005+00	2.24005-04	3.5000E-02	1 4300F-01
12	7 04005+03	1 12805+00	a aaaar. aa	2 24035-04	3 60005-02	1 47000-04
22	3,20000-003	1.12000-+00	2.000000000	2124000 -04	5 50005-00	4 47305-04
50	3.30001+03	1.12001+00	8.0000E*00	2,24606-64	3.20005-05	1 43005-01
57	3.4000E+03	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1.43002-01
58	3.7500E+03	1.1200E+00	0.0000E+00	2,2400E-04	3,5000E-02	1,4300E-01
59	4.10005+03	1.12805+88	0.00005+00	2.24005-04	3.5000E-02	1.43205-01
10	4 74005+03	1 12005+00	a aaaac+aa	2 24005-04	- BOODE - 02	1.43305-01
06	4.30002400	1,12000-000			STOCOL-UL	1,40000-01
67	4,40000+000	1,12006+00	0.00005+00	2,24001-04	3.30005-02	1,43205-01
62	4 8000E+03	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1,4300E-01
63	4.9000E+03	1.1200E+00	0.0000F+00	2.2400E-04	3,5000E-02	1.4300E≠01
4.4	5 44005+03	1 12005+00	a aaaac+aa	2 24005-04	3. 5000F-02	1.43305-01
04	5 100005-01	1 12005+00	0.000000000	3 34995-84	3 50005-02	4 4330 - 04
62	2 10005-02	1.15005-00	N. NONNE + NO	2124005-04	3.50000-022	1,43306-01
66	5.2000E+03	1.12001+00	0,00005+00	2,2400E-64	3.20005-05	1,43002-01
67	5.2>00E+03	1.1200E+00	0.0000F+00	2.2400E-04	3.5000E-02	1,4300E-01
68	5.30005+03	1.1288E+88	9.49995+99	2.24005-04	3.50000-02	1.43305-01
	5 4 400 5 403	1 10005-00	a agage . ag	2 24005-04	3 50005-02	4 4100-01
DY	5.66462465	1.12001-00	0.00001+00	2,24096-04	310000E-92	4 47000 -01
70	2.0200F+03	1.12002+00	0,00006+00	2,24001-04	3.20005-05	1,43066-01
71	5,7000E+03	1.1200E+00	0.00005+00	2,2400E-04	3.5000E-02	1.4300E+01
72	5,9000E+03	1,1200E+00	0.00000+00	2,2400E-04	3,5000E-02	1,43005-01
73	6. 0000F+03	1.1200F+00	0.00005+00	2.24005-04	3.5000F-02	1.43085-01
70	6 10005-03	1 10005+00	0 00000-00	3 34005-04	3 50005-02	1.43005-01
/7	0 IDDDE-DO	1.12000-400	0.00005.000	2124002-04	3,300000-02	1140000-01
75	6.4700E-03	1.12001+00	5.99995E+99	2,2400E-04	3.2900F-05	1.43006-01
76	6,8000E+03	1.1200E+00	9,0000E+00	2,2400E-04	3.5000E-02	1.4300E-01
77	7.0000E+03	1.1200E+00	0.0000+00	2.24005-04	3.5000E-02	1.4300F-01
78	7 20005+03	1.1200F+00	0.0000-+00	2.24005-04	1.5000F-02	1.43005-01
70	0 40005401	1 10005-00	0 0000- 00	0 04005-04	3 EddME_02	4 43000-04
/ 9	O TERRETES	1.12002-00	0.00001+00	C127605-04	3.500000-02	1,43005-01
80	8.30002+03	1.12001-00	0.0000E+00	2,24006-64	3.20005-05	1,43006-01
81	8.5000E+Ø3	1,1200E+00	8,0000E+00	2,2400E-04	3.5000E-02	1,4300E-01
82	8.7000E+03	1.1200E+00	0.0000г+00	2.2400E-04	3,5000E-02	1.4300E=01
83	9, 00005+03	1.1200F+00	0.0000-+00	2.24005-04	3.50005-02	1.43705-01
	9 94445443	1 10005400	0 00000,00	0 04005-04	50005-02	4 43000-04
	7 Z DE C DO	1,12000-00	0,0000000000	212700C-04	3.500000002	1,43002-01
85	1.04006404	1,12005+00	N*0000E*00	2,24001-24	3.20005-05	1.4330E-01
86	1,14006+04	1.1200E+00	6.0000E+00	2,2400E=04	3.5000E-02	1.4300E-01
87	1.17005+04	1.1200E+00	0.0000F+00	2.2400E-04	3.5000E-02	1.4300Fe01
AB	1,19005+04	1.12005+00	0.0000-+00	2.24005-04	3.50005-02	1.43205-01
40	1 24045+04	1 10005-00	A 0000 - 00	0 24005-04	3 BRARE 40	4 43305-01
	I COURCEDT	1.12000-000	D'BBBBF - DD	C+C700L-04	3.300005-02	1, 3000-01
90	1,24001+04	1.12001+00	0,00005+00	2,2400E-04	3.20006-05	1.4300E-01
. 91	1,23002+04	1.1200E+00	0,0000E+00	2,2400E-04	3.50000-02	1.4300£-0i
92	1.2700E+04	1.1200E+00	0.0000F+00	2.2400E-04	3.5000E-02	1.430001
93	1.3300F+04	1.1200E+00	0.0000E+00	2.24005-04	1.5000F-02	1.43005-01
	1 30005+04	1 10005-00	0 0000-00	2 24665-64	3 B0005-00	1 47995-0-
22	1.00000000		0,0000000000	CIETURE D4	3.50000-92	1.43000-01
95	1,47000-04	1,12000+00	0.0000E+00	2.24001-04	3.20005-05	1.43005-01
96	1,5000E+04	1.12005+00	0,0000E+00	2,2400E-04	3,5000E-02	1,4300E-01
97	1,5100E+04	1.1200E+00	0,0000E+00	2,2400E-04	3.50006-02	1,4300E-01
98	1.6400E+04	1.12008+00	0.000000	2.2400E-04	3.50000-002	1.43205-0
69	1 75005+04	1 12005+00	0 0000-+00	3 24005-04	3 50005-02	1 47395-04
4 00 /	1 76045404	1 1 2005-00	0 0000-00	0 04005-04		4 470000-01
7.00	1 0 4 7 0	1.12.200-200	ຍ,ຽວລາວ[⇒ວຽ	2127001-24	3130005-02	1. 1. 401 - 01
101	1,84006+04	1,12001+00	0,0000E+00	2,2400E-04	3.50005-02	1,4320E=01
102	1,9200E+04	1.1200E+00	0.00000+00	2,2400E-04	3.5000E-02	1.4300E-01
103	1.9300E+04	1.1200E+00	0.0000-00	2.2400F-04	3.50005-02	1.43005-01
1 84	1 99005+04	1 1200F+00	0 00005+00	2 24005-04	3 50005-02	4 43000-04
1.05	3 00005+04	1 10005+00	2 20000-000	2 24005-04		1,40000-01
102	2,00000-04	1.15000-000	0.00005400	2124001-04	3.20005-05	1.43006-01
100	C.DCHOL+D4	1.12001+00	N.0000E+00	2,240ØE-04	3,5000E-02	1.4300E-01
187	<,89981+84	1,12006+00	0,0000E+90	2,2400E-04	3.5000E-02	1,43006-01
108	2,1000E+04	1.1200E+00	0,00000+00	2.2400E-04	3 50005-02	1.43205-0
109	2,1200E+04	1,12000+00	0.0000-00	2.2400F-04	1.50000-00	1.43005-04
1 4 1	2.17045-04	4.1000F+44		0 0404E-01	315000L-02	1,70002-01
4 1 V 1 4 1	0 020-5-04	1 10005-00	0.0000F+00	2124001-04	212000F-05	1,4300E-01
114		1.75000-00	6. RORDE + 00	2,4400E-04	3 2000E-02	1.4300E-01
112	2,2300E+04	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1,4300E-01
113	2,2400E+04	1.1200£+00	0,00000-00	2,2400E-04	3.50005-02	1.43005-0-
114	2,28995+94	1,1200E+00	0.00000.000	2.24005-04	3.50005-02	1.43666-0
115	2.32006+04	1.12000+00	0 00000-100	2.24005-04	1 60005-02	4 41400-01
116	2 34005+04	1 1000F+40			3130005-05	1, 3006-01
110		1.15000-000	NONDE + NG	2, <900E=04	3.20005-05	1,43306-01
11/	C. 4600L-04	1.12001.00	N,0000E+00	2,2400E-04	3.5000E-02	1,4300E-01
118	2,4900E+04	1.1200E+00	0,0000E+00	2,2400E-04	3.5000E-02	1.43005-0-
119	2.40006+04	1.12000+00	P.0000F+00	2.2400E-04	3.50005-02	1.43005-0
1.20	2.50005+04	1.12005.00	0 00000	2.24005-04	5 6000F-00	4 470002-01
			N DEFECTED	C . C . U U C . U .	3120005-02	1,93006-01

- / (-	
NEUTRO	CROSS SECTIONS							
INDEX.	ENERGY CROSS SECTION	ENERGY CROSS SECTIO	N ENERGY	CROSS SECTION	ENERGY	CROSS SECTION	ENERGY	CROSS SECTION
	EV PARNS	EV BARNS	£ν	BARNS	ΕV	BARNS	EV	BARNS
1	1.0000E=05 3.1310E+04	1.00005-63 3.12346+03	5.0000E=03	1.38322+03	1.0000E+02	9.66235+02	1,50000-02	7,7939E+02
6	2.00045-02 4.66876+02	2.53005+02 5.65406+02	3.0000E=02	5,31596+02	3.5000E-02	4.86335+02	4 00005-02	4,4961E+02
11	4.5000E+02 4.1898E+02	5.00005-02 3.92015+02	5.5000E=02	3,70396+02	6.0000E-02	3.5069E+02	6,5000E-02	3,333ØE+02
16	7.00005-02 3.17845+02	7.50005-02 3.04056+02	8.00005-02	2,91755+02	8.5000E-02	2.80725+02	9.0000E-02	2.7072E+02
21	9.5000E=02 2.6159E+02	1.00000-001 2.53296+02	1,1000E-01	2,38226+02	1.2000E-01	2.25255+02	1 32005-01	2,1413E+02
26	1.4000E-01 2.0486E+02	1.50005-01 1.97265+02	1,6000F=01	1.9082E+02	1.7000E-01	1.8561E+Ø2	1,8000E-01	1,8158E+02
31	2.0334F=01 1.7701E+02	2.23345-01 1.77955+02	2,43345-01	1,8385E*Ø2	2.63346-01	1,91406+02	2.83346-01	1.9642E+02
36	3.03345-01 1.01825+02	3.23345=01 1.74255+02	3.43345-01	1.53946+02	3.6334E-01	1.39016+02	3.8334E-01	1,2603E+02
41	4.03346-01 1.15165+02	4.28125-01 1.04065+02	4.64925-01	9,15865+01	5.84925-01	8.19505+01	5.4492E=01	7,4805E+01
46	5.8492F=01 6.9431E+01	6.24925+01 6.53915+01	6.64925=01	0.2223F*Ø1	7.0492E-01	5.9661E+01	7.44926-01	5.76512+01
61	7.84925-01 5.42855+01	8.24925-01 5.54995+01	8.64925-01	5.59835+01	9.04925-01	5.7644F+Ø1	9.44925-01	6.0738E+01
56	9.84925-01 6.82385+01	1.0000E+00 A 811AE+01	1.00005+00	1.18566+01	1.0550E+00	1.1430F+01	1.0730E+00	1.0640E+01
61	1.00105+00 9.29005+00	1.18206+00-1.02006+01	1.20005+00	-2.35705+01	1.21805+00	=2.5000F+01	1.2360E+00	-2.5000E+01
66	1.32745+00-1.42905+01	1.36406+00-1.21406+01	1.45505+00	-8.2100F+00	1.54505+00	-6.07005+00	1.63686+08	-4.6400E+00
71	1.72705+00-3.97005+00	1 81805+00-2 84005+00	1.90906+00	-2.1400F+00	2.00005+00	=2.1400F+00	2.1820E+00	-1.4300E+00
76	2.36405+000-7.10005+01	2.45505400-4.07805400	2.54505+00	-1.74005+00	2.63405+00	-3.57005+00	2.6910E+02	+4.2900E+00
81	2.74505+00-4.29005+00	2. 80005 +00 0.00005 +00	2.81805+00	7.10005-01	2.8550F+00	7.1000E-01	2.927ØE+Ø8	-7.1000E-01
86	2.94505+00+7.10005+01	3.01805+00 3.57905+00	3.07205+00	3.57005+00	3.18205+00	•3.5700E+00	3.2180E+00	-3.2100E+00
91	3.27305+00-1.43005+00	3.36405+00 2.14005+00	3.45500+00	6.5000F*00	3.49105+00	7.10005+00	3.5450E+00	8.00000+00
46	3.54205+00 2.50005+00	3.63605+00 0.00005+00	3.69105+00	-6.9800F+00	3.72705+00	-9.19001+00	3.8180E+00	*7.1400E+00
4 0 1	3.90905+00+5.36005+00	4.00005+00-4.40005+00	4.09105+00	-3.7000F+00	4.1820F+00	-3.1400E+00	4.36405+00	-2,2988E+00
1 06	4.54546+00-2.14006+00	4.63666+00-1.79006+00	4.72705+00	-1.4300E+00	4.7820F+00	00005+00	4.8000E+00	7.1000E-01
111	4 83405+00 7 40005-01	4 95505+90 7 10005-001	4.89105+00	-1.43005+00	4.90000-000	-2.14005+00	4.9450E+00	-2.8600F+00
116	4.98105+00+2.86005+00	5 00105+00-2 84005+00	5.14505+00	-2.5000F+00	5.16205.00	=2.1400F+00	5.27306+00	•1.0700E ◆00
1 91	5.30945400+7.40005+01	5 54505400-2,10005-01	5.65505+00	-1.7900F+00	5.7270 +00	-1.4300F+00	5.8180E+00	0.00005+00
106	5 90906400 1 44006400	A 00005+00 > 8+005+00	6.09105+00	2.50005+00	6.16405+00	1.43005+00	6.21806+00	+1.7900E+00
4 3 1	6.2550F+00-1.7900F+00	6 20105+00 0 0000E+00	6.41805+00	0.00005+00	6.45505+00	-2.8600F+00	6.49106+00	-5.0000F+00
4 86	5 5450F+00+6 5000F+00	6 63605+00-4 20005+00	6.70705+00	-3.71000+00	6.81805+00	+2.1400F+00	6.98205+00	8.9888F+88
1 4 1	7 18205-00 0 00005-00	7 20105-00-1 59005-00	7.81805+00	-3.93005+00	8.00005-00	-4.2900F+00	A.1810E+00	#4.2900F+00
446	8 34305+00-3 03005+00	8 ABIDE+00 0 000000+00	8.92595+60	8.8888F+88	9.81505+00	2.14305+01	9.05205+00	2.5000F+01
461	9 10645+00 2 80005+01	0 1300E+00 1 0080E+00	9.23305+00	0.00000+00	9.34005-00	a.aaaar+aa	9.43205+00	1.0000F+01
456	9 48195400 1 44305404	9 50505-00 1,00000-01	9.54105+00	8.21005+00	9.70405+00	0.00005+00	9.7590F+00	-2.1400F+00
100	9 00505+00-2 44005+00	1 00002-00 1,00002-01	1.01745+01	0 04005+40	1 07475+01	0.0000E-00	1.03305+01	2.14005+00
4 6 6	1 04345+01 2 14005+00	1 04305+01-7 10005-01	1.07205+01	-7.1000F-01	1.08115+01	-3.60006-01	1.09376+01	-5.7000F-01
1 71	1 40026+41 8 40006+40	1 13645+01 3 00005+00	1.14005+01	2.75985+80	1.14455401	2.88005+00	1.14812+01	2.90005+20
176	1 18545+01 8 00005+00	1 10425401 0 00005400	1.18985+01	2.70005+00	1.20005+01	5.40005+00	1.20916+01	7.43005+00
1 41	1 21455+01 1 43505+01	1 22005-01 4 00005-00	1.23505+01	0.00000+00	1.40955-01	0.00005+00	1.42675+01	2.86005+00
196	1 43575+01 5 71005+00	1 44120+01 5 71005+00	1.44495+01	4.71005+00	1.44115+01	-5.5000F+00	1.4647E+01	-5.50005+00
401	1 47375+01-3 87005+00	1 49845481 5 88885-81	1.50000-01	-7.10005-01	1.50015-01	0.00006+00	1.51826+01	7.1000F-01
194	1 63736+01 0 00006+00	1 54555401 0 000000 01	1.55455+01	-1.43095+00	1.54346+01	=3.5800F+00	1.5727E+01	-3.5700F+00
0.01	1 58185-01-2 80005-00	1 50995+01-1 21005+00	1.60005+01	N. 00005+00	1.61825-01	0.00005+00	1.62736+01	-3.5800F+00
0.76	1 43445-401-6 46005-00	1 44765401 4 47805400	1.64845481	- 4 4 7 9 9 5 + 9 9	1 66455 -01	-4.29005+00	1 66366+01	0.00005+00
200	1 43376404 0 00000000	1 404000-01-0,43000-00	1.60/05+01	3.07005400	1.60455+01	4.29005+00	1.70006401	3.57005+00
016	1 70015-01 2 66005-00	1 74845401 4 43805400	1.70735+01	7.10005-01	1.73445+01	8.88885+88	1.74555+01	0.00005+00
021	1 78455+01-7 40005-01	1 74365401_4 03805400	1.77275+01	+1.4300F+00	1.78185+01	-1.8630F+00	1.79095+01	-7.1000F-01
224	1 98015-01 0 00005-001	1 85732201 0 00002400	1.83645404	3.57005+00	1.84655+01	3.93005+00	1.85455+04	3.57005+00
220	1 44366401 2 46005400	1 83375401 3 14005400	4,80105-01	1.43005+00	1.80006+01	1.07005+00	1.00005401	a. aaaar+aa
201	7 93812 TO4 N 98802 TO9	1 04365401 0 84005400	1.04655+01	7.14005+00	1.94015401	1.42005401	1.05005+01	1.71405+01
200	4 08275404 4 91405499	1 08455401 4 59405404 1,79395902 8,00005-00	1.04105-01	1.07405401	1 96725401	8.29005+00	1.07275+04	A.4300F+00
£41	14792/L-D1 14/1400401	1140425-DT 110/105-01	1110105401		+	0121002-00	21111212-01	0140502400

UPANTUM=235

REACTION & VALUE 1,9250E+08 EV INTERPOLATION LAW BETWEEN ENERGIES RANGE DESCRIPTION 1 TO 87 LN Y LINEAR IN LN X

FISSION NEUTRON CROSS SECTION

RANGE DESCRIPTION 57 TO 478 Y LINEAR IN X

ENDF/B MATERIAL NO. 6261

RANGE DESCRIPTION 478 TO 810 Y LINEAR IN LN X

2. 30915 1.01
2. 30915 1.01
2. 30915 1.01
2. 30915 1.01
2. 30915 1.01
2. 30915 1.01
2. 30915 1.01
2. 30915 1.01
2. 30915 1.01
3. 30925 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.01
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00
4. 50905 1.00 2.120265 401 1.120005 401 2.120355 401 1.120005 408 2.22120355 401 1.120005 408 2.22120355 401 1.120005 408 2.22120355 401 1.120005 408 2.22120355 401 1.120005 408 2.22120355 401 1.120005 408 2.22120355 401 1.120005 408 2.22120355 401 1.120005 408 2.221505 401 1.120005 408 2.220005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.220005 408 2.221505 401 1.120005 408 2.220005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.221505 401 1.120005 408 2.211505 408 2.21

 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0</td

- 225 -

REFERENCES FOR EXPERIMENTAL DATA

²³⁵U(n,f)

<u>Yr.</u>	<u>Lab</u>	<u>Author</u>	References
74	ANL	Poenitz	Nuc. Sci.&Eng. <u>53,</u> 370 (1974)
73	KFK	Kaeppeler	KFK 1772 (1973)
73	SAC	Blons	Nuc. Sci.&Eng. <u>51</u> , 130 (1973)
71	LAS	Lemley, et al.	Nuc. Sci.&Eng. <u>43</u> , 281 (1971)
71	GEL	Deruytter, et al.	J. Nuc. En. <u>25</u> , 263 (1971)
71	CAD	Szabo, et al.	Third Conf. Neutron Cross Sec- tions and Tech., Knoxville Tenn. Vol. <u>II</u> ,573 (1971)
70	LAS	Cramer	LA 4420, 45 (1970)
70	HAR	Patrick	J. Nuc. En. <u>24</u> , 269 (1970)
68	ANL	Poenitz	Second Conf. Neutron Cross Sec- tions & Tech., Washington D.C. Vol <u>I</u> , 503 (1968)
67	KUR	Mostovaya	I.A.E. 1302 (1967)
66	LAS	Brown, et al.	Conf. Neutron Cross Sections & Tech., Washington D.C., Vol II, 971 (1966)
65	ALD	White	J. Nuc. En. <u>19</u> , 325 (1965)
65	DUB	Wang, et al.	Phys. & Chem. of Fission, Salzburg, Aust., Vol <u>I</u> , 287 (1965)
65	SAC	Michaudon, et al.	Nuc. Phys. <u>69</u> , 545 (1965)
63	LRL	Bowman	Phys. Rev. <u>130</u> , 1482 (1963)
63	CCP	Pankratov	At. En. <u>14</u> , 177 (1963)
62	CCP	Smirenken, et al.	At. En. <u>13</u> , 366 (1962)
61	MOL	Deruytter, et al.	J. Nuc. En. A/B <u>15</u> , 165 (1961)
59	CCP	Gorlov, et al.	At. En. <u>6</u> , 453 (1959)
58	ANL	Bollinger, et al	Priv. Comm. (1958)
58	COL	Melkonian, et al.	Nuc. Sci.&Eng. <u>3</u> , 435 (1958)

REFERENCES FOR EXPERIMENTAL DATA

²³⁵U(n,f) cont'd

<u>Yr.</u>	Lab	<u>Author</u>	References
57	LAS	Smith, et al.	Bull. Am. Phys. Soc. <u>2</u> , 196 (1957)
57	LAS	Henkel	LA-2122 (1957)
57	HAN	Seppi, et al.	HW-53492, 22 (1957)
57	HAR	Allen, et al.	Proc. Phys. Soc./A <u>70</u> , 573 (1957)
56	SAC	Ballini, et al.	Priv. Comm. from Netter (1956)
55	SAC	Auclair, et al.	Int. Peaceful Uses of At. En. Conf. Geneva Vol <u>IV</u> , 235 (1955)
55	SAC	Szteinsznaider, et .	al. Int. Peaceful Uses of At. En. Conf. Geneva Vol <u>IV</u> , 245 (1955)
55	CCP	Adamchuk, et al.	Int. Peaceful Uses of At. En. Conf. Geneva Vol <u>IV</u> , 216 (1955)
54	KAP	Yeater, et al.	KAPL -1109 (1954)
54	HAN	Leonard	HW-33384, 33 (1954)
44	LAS	Williams	LA-150 (1944)

- 228 -

92- U-238 WARD

EVAL-SEPT73N.C.PAIK DIST-MAY74 REV-NOV74

P.C. TO NORMALIZATION AND STANDARDS SUBCOMMITTEE MARCH 1974 PERTINENT HOLLORITH FROM GENERAL FILE FOLLOWS (MAT 1262) ALL REFERENCES CARRIED OVER FROM GENERAL FILE

MF = 2 RESONANCE PARAMETERS

RESOLVED RESONANCE PARAMETERS

F.J. MCCROSSON (SAVANNAH RIVER LABORATURY) . IN THE EVALUATION RESULTS OF TESTINGS OF PRELIMINARY PARAMETERS ON ISOLATED ROD RESONANCE INTEGRAL GALGULATIONS BY J. HARDY (BETTIS ATOMIC POWER LABORATORY) WERE CONSI-DERED, COMMENTS BY G. DESAUSSURE (ORNL) AND BY PAIK CONSIDERED IN THE FINAL VALUES.

- MT=151 RESOLVED RESONANCES PARAMETERS INCLUDED FOR 190 S-WAVE AND 220 P-WAVE RESONANCES BASED PRIMARILY ON DATA OF REF 1-7. MEASURED PARAMETERS WERE MODIFIED TO IMPROVE FIT TO POINTWISE CAPTURE MEASUREMENTS OF REF 8. RESOLVED RANGE: 1 EV-4 KEV. UNRESOLVED RESONANCES - AVERAGE RADIATION WIDTH=0.0235EV, ENERGY RANGE 4 KEV TO 45 KEV.STATISTICAL FIT TO DATA BY PAIK (REF. 36; SAME TECHNIQUE AS WAS DONE FOR ENDF/B III. AVERAGE S-WAVE LEVEL SPACING=20.0 EV.S-WAVE STRENGTH FUNCTION =1.05E-4BASEP ON EVALUATED RESOLVED RESUNANCES. P-WAVE STRENGTH FUNCTION OBTAINED BY ADJUSTING CALCULATION TO THE EVALUATED CAPTURE CROSS SECTION. NEUTRON WIDTHS AND LEVEL SPACING ARE GIVEN AS ENERGY DEPENDENT AT 15 ENERGIES BETWEEN 4.00 AND 45.0 KEV. P-WAVE PENETRATION FACTORS TO BE CALCULA-TED USING A RADIUS OF 8.4 FERMI PER REVISED ENDF/B FORMATS. THE TECHNIQUE IS ESSENTIALLY SAME AS WAS FOR ENDF/B 3. MF = 3
- MT=18 FISSION RATIO RELATIVE TO U~235 EVALUATED FROM 0,98 TIMES LAMPHERE(REF.25) BELOW 2 MEV, REFS, 26 AND 27 BETWEEN 2,0 -5.4 MEV, AND REFS, 27 AND 28 WITH CORRECTIONS TO REF. 28, THESE RATIOS ARE IN GOOD AGREEMENT WITH MEASURED VALUES OF REFERENCES 31 AND 32, THESE FISSION RATIOS WERE COMBINED WITH THE ENDF/B IV U=235 FISSION CROSS SECTIONS,
- MT=102 (N,GAMMA) METHODS OF REF, 9 USED BELOW 1 EV, BUT VALUE OF 2.70 B USED AT .0253 EV, RATHER THAN 2.72 B. SMOOTH CROSS SEC (1 EV=45 KEV) INCLUDE CONTRIBUTIONS FROM (A) BOUND LEVELS (1-100 EV), (B) UNRESOLVED P=WAVE RESONANCES (.68-4 KEV), AND (C) A SMALL D=WAVE COMPONENT (10=45 KEV), BETWEEN 4 AND 100 KEV, BASED ON AVERAGE OF REFS, 38 AND 8. ABOVE 100 KEV, THE EVALUATION ARE DETERMINED BY FRIESENHAHN (REF,33), RYVES(REF, 34)AND REFERENCE 35, ABOVE 2 MEV THE EVALUATION BY DEVANEY (REF,37) WAS ADOPTED

REFERENCES 1, ASGHAR, M., ET AL., NUC, PHYS, , 85, 305(1966) 2, BOLLINGER, L. M., THOMAS, G. E., PHYS, REV., 171, 1293(1968) 3. CARRARO, G., KOLAR, W., NUC. DATA FOR REACTORS, VOL. 1, LAEA(1970) 4. CARRARO, G., KOLAR, W., CONF=710301, 701(1971) 5. MALETSKI, KH., ET AL, , SOV, AT, ENG, , 32, 45(1972) 6. RAHN, F., ET AL., PHYS, REV., 6C, 1854(1972) 7. ROHR, G., ET AL., NUC, DATA FOR REACTORS, VOL, 1, IAEA(1970) 8, DE SAUSSURE, G., ET AL,, ORNL-TM-4059(1973) 9. LEONARD, JR., B.R., BNWL=1586(ENDF=153) (1971) 10, SOLEILHAC, M., ET, AL., J.NUC.EN. 23,257(1969) 11. UTTLEY, C.A., PRIVATE COMMUNICATION(1967) 12. KOPSCH, D., ET. AL., NUC.DATA FOR REACTORS, VOL.2, IAEA(1970) 13, WHALEN, J., ET. AL., PRIVATE COMM. A.B. SMITH(1969) 14, FOSTER, D.G., UNPUBLISHED (1967) 15, HEATON, W. ET AL., USNBS TO CSEWG: PRIVATE COMMUNICATION(1973) 16. SMITH, A, B., COMMENTS ON THE INELASTIC SCATTERING OF U-238. PRIVATE COMMUNICATION TO CSEWG, SEPT.24 (1974) 17. BATCHELOR, R. ET AL., NUC. PHY. 65, 236 (1965) 18. BETHE, H. A., ET. AL,, LA=1939 (1955) 19. MACGREGOR, M.H., ET. AL., PHY, REV. 130,1471(1963) 20. DEGTYAREV, Y.G., ATOMNAYA ENERGIYA 19, 496(1965) 21. BARNARD, E., ET. AL., NUC. PHY. 80, 46 (1966) 22. KNIGHT, J.D., PHY, REV. 112, 259(1958) CORRECTED BY D. BARR(1966), 23, GRAVES, ET AL, QUOTED BY REF. 18 AND CORRECTED BY V. BARR(1966) 24. MATHER.D.S. PAIN.L.F., AWRE 047/69 (1969) 25, LAMPHERE, R.W., PHY, REV. 104, 1654 (1956) 26. STEIN, W.E., ET. AL., CONF, WASHINGTON, D.C., NBS PUB. 299 (1968) 27. WHITE, P.H., WARNER, G. P., J. NUC. ENERGY, VOL. 21. P 671 (1967) 28. SMITH, R.K., HENKEL, R.L., NOBLES, R.A., BULL, AM, PHYS, SOC. 2(1957) 29. PITTERLE, T.A., N.C. PAIK, C. DURSTON, WARD-4210-1(1970) 30, BNL-400, THIRD EDITION, VOL. 2(1970) 31. MEADOWS, J.W., NUCL. SCI. ENG. 49, 310 (1972) 32, POENITE AND R.J.ARMANI, J.NUCL. ENERGY 26,483(1972) 33, FRIESENHAHN, S.J. ET AL., GA-10194, JUNE (1970) 34, RYVES, T.B. ET AL., NATIONAL PHYSICAL LABORATORY. ENGLAND, PRIVATE COMMUNICATION WITH W-ARD (1972) 35. MENLOVE AND W.P.POENITZ, NUCL. SCI. ENG. 33,24 (1968) 36, PAIK, N.C., EY AL,, WARD-XS-3045-2, JULY, 1973 37, DEVANEY, J.J., NUCL.SCI. ENG. 51, 272-277(1973) 38. MOXON, M.C., AERE=R6Ø74 (1969) AND PRIVATE COMM. (1971)

ENDF/B MATERIAL NO. 6262 Table of contents General information Reaction ca DATA TYPE CARDS 93 4 471 33 91 GENERAL INFORMATION COMMENTS TABLE OF CONTENTS RESONANCE DATA FISSION (N.GAMMA)

RESONANCE PARAMETERS
NEUTRON CROSS SECTION

URA	NIL	M-238
-----	-----	-------

URANIUM-238

ENDF/B MATERIAL NO. 6262 Resonance data Resonance Parameters

RESOLVED SINGLE-LEVEL BREIT-WIGNER PARAMETERS

18070PE------URANIUM-236 Fractional Abundance------ 1,0000E+00 Number of energy ranges----- 2

L VALUE-----

NUMBER	OF RESONANCE	S	190			
SPIN S	SCATTERING LEN	IGTH (A-}-= e	3.0000E+00			
INDEX	ENERGY (EV)	E VAL IEF	TOTAL	NEUTRAN	RADIATION	FISSION
THORY	FULLO, JEIL	2 18205	IOIAL	NEWINDA	NADIKITON	1100104
1	5.670°E+00	5.000000-01	2.7100E-02	1,5000E-03	2.56006-02	0,000000+00
2	2.09005+01	5.00002-01	3.5600E-02	8.8000E.03	2.68005-02	0.0000E+00
3	3.680 ⁰ E+01	5.000000-01	5.7100E-02	3.11005-02	2.6000E-02	8.0000E+00
4	6.6150E+01	5.0000E-01	4.8800E-02	2.5300E-02	2.3500E+02	0.0000E+02
5	8.0749E+01	5.0000E-01	2.5500E-02	2,00000,03	2.3500E=02	0,000000+00
6	1.0254E+02	5.8888E-81	9.7000E-02	7.1000E-02	2. 90895-05	8,09082+00
7	1,16805+02	5.0008E-01	5.17708-02	2.8270E-02	2.3500E=02	A,0000E+00
8	1,4560E+02	5,0000E-01	2,4390E-02	8,9000E.04	2.35006-02	0,20005+00
9	1.6520E+02	5.0000E-01	2,6900E-02	3,4000E-03	2 3500E-02	0,0000E+00
10	1.8960E+02	5.0000E-01	1.9370E-01	1.6900E-01	2,4700E+02	0,0000E+00
11	2.0840E+02	5.0000E-01	7,8590E-02	5,5090E+02	2` 3 500E-02	0,000000+00
12	2,372°E+Ø2	5.0000E-01	5.261ØE-Ø2	2,9110E-02	2,3500E-02	0,00006+00
13	2,73695.+02	5,00002-01	5,0100E-02	2.7000E-02	2,3100E-02	8,88,985,488
14	2.910VE+02	5.0000E-01	4,00802-02	1.6980E-02	2.3100E-02	9.00P0E+00
15	3.1120E+02	5.0000E-01	2,4600E-02	1.1000E-03	2,35006-02	4,00005+30
10	3.4770E+02	5,00001-01	1.0710E-01	8,3000E-02	2.3500E-02	0.0000E+00
1/	0./000L+02	5,00001-01	2,4760E-02	1,20005-03	2.32001-05	N.0000E+00
10	3.97401+02	5,0000E-01	3,1600E-02	6,4000E-03	2.5200E-02	N. 0000E+00
17	4.1020L002	3,00000-01	4,3200E-02	5,0000E-02	2,20000002	010000101000
20	4 84105400	5,0000E-01	3,34601-02	A 4000E-00	2,30000-02	0 10000E+00
24	4 40805+02	5,0000E-01	2.39501-02	8 6000F-04	2,33001-02	0 0000E+00
23	4.78305+02	5,0000E-01	2,90000-02	T 6000E-03	2,39000-02	0,00000E+00
24	5.18305-02	5.00005-01	7 60005-02	5,500000-00	2"4400F-02	0,0000E+00
25	5.3520F+Ø2	5.0000E-01	7 05000-02	4.70005-02	2 35005-02	0.0000E+00
26	5.5590E+Ø2	5.000000-01	2.43005-02	6.0000F 04	2 3500E-02	0.00005+00
27	5 7990E+02	5.0000E-01	6.76005-02	4.4100E-02	2.350DE-02	0.00005+00
28	5,9480E+02	5,00000-01	1,08205-01	8,5100E-02	2,3100E-02	0.0000E+00
29	6,1984E+Ø2	5,0000E-01	5,65002-02	3,30005-02	2,35005-02	8,99495+39
30	6.2850E+02	5,0000E-01	3,02005-02	6.7000E=03	2,3500E-02	a,0000E+00
31	6.611 ⁶ E+Ø2	5,00000-01	1.6070E-01	1.35602-01	2,5100E-02	00+3000E+00
32	6,929NE+02	5,0000E-01	6,7900E-02	4.3800E-02	2,4100E-02	4.0000E+ 00
33	1,08000+02	5,0000E-01	4,7000E-02	2,1000E-02	2,6000E-02	9.0000E+00
34	7.21406+02	5,00002-01	2,5900E-02	1 2000E-03	5.3200E-05	1.2000E-03
32	7 45445.40	5,00002-01	2,00001-02	2,5000E-03	2.35001-02	3,00005+00
30	7 70305-02	5,0000C-01	3,11201-02	7,5200E+03	2,35001-02	0,000005+00
7.6	7 00705+02	5 000000-01	2,770005-02	A E1000 03	2.35000-02	0 00000E+00
79	8 21545462	5 00005-01	5.0030C-02	6 6000E-02	2,3200C-02	0.00000C+00
44	8 50605+02	B 0000F-01	7 81 005-02	5 51005-02	2 30005002	0.0000E+00
41	8.5610F+02	5.0000E-01	1.0630F-01	8.2700F-02	2.3600E-02	0.00005+00
42	8.6600F+02	5.0000E-01	2.9200F-02	5.7000F-03	2 3500E-02	7.0000F+00
43	9.8450E+82	3.000005-01	7.8800E-02	5.2000E-02	2.68005-02	0.00005+00
44	9.245WE+02	5.000000-01	3.7400E-02	1.3900E-02	2.3>00E=02	0,000000+00
45	9,3660E+02	5,00006-01	1,6020E-01	1,36602-01	2,3600E-02	0,0000E+00
46	9,58Ø4E+Ø2	5,0000E-01	2.1310E-01	1.9040E-01	2,2700E-02	A,0040E+00
47	9.9140E+02	5,0000E-01	4,20006-01	3.9000E-01	3,0000E-02	0,0000E+00
48	1,0110E+03	5,0000E-01	2,5090E-02	1,59002-03	2.3500E-02	0 . 00005 + 00
49	1,0229E+03	5,0000E-01	3,1800E-02	8,3000E+03	2.3500E=02	0100005+00
50	1,0294E+03	5,0000E-01	2,6000E-02	2.5000E-03	2.3500E-02	0,0000E+00
51	1.05406+03	5,00000-01	1,1250E-01	8.90006-02	2.3500E-02	8.0000E+00
53	1,0990E+03	5,00000-01	3.9080E-02	1,7000E-02	2.2000E-02	9,000ØE+00
50	7'INDAF+N3	3,00001-01	5,0000E-02	2,70005-02	2,35001-02	N,0000E+00

ø

- 231 -

22	1,13111.403	2,0000E-01	2,00001-02	3,00006-03	2,35001-02	3+0000E+00
55	1,14041403	5,00005-01	2,4350E-01	2.2000E-01	2,32005-02	Ø\$\$\$\$\$£+00
56	1,1672E+Ø3	5.0000E-01	3,2000E-02	8.5000E-03	2.3500E+02	0,0000E+00
57	1.1760E+Ø3	5.0000E-01	8.3500E-02	6.0000F-02	2.35000-02	8.0000F+00
58	1.1942E+03	5.00000-01	1.12505-01	8.9000F-02	2 3500F=02	a.aaaac+aa
80	1 21115-03	B 00005-01	7 96905-03		2'26005-02	4 00002-00
40	1 04495+03	5 00005-01	3 93695-04		0''35005-00	1 200000-04
0.0			3.03502-01	5.90005-01	2,330000002	N . B B B B F + C B
62	1.20002+03	5,00002-01	4.3100E-02	2.2100E-02	2,1000E-02	7,000ØE+00
62	1,272/E+03	5,0000E-0 <u>1</u>	5.0500E-02	2,7000E-02	2,3500E=02	7,000002+00
63	1,2981E+Ø3	5,0000E-01	2.8000E-02	4.5000E-03	2,3500E=02	0,00005+00
64	1.31636+03	5,0000E-01	2.7500E-02	4.0000F-03	2.3500E=02	0.0000F+90
65	1.3327E+03	5.00005-01	2.51005-02	1.60005-03	2 35005-02	3.00V0C+00
4.6	1.30325+03	A. 00005-01	2 45645-41	4 67005-01	2.35005-00	A ABMAC+00
47	1 40525+01	B 00000 01	2.00901-01	1.04000-001	C.3700C-02	010000000000
44	1 44020+03	B 46445 . 64	9.35000 92	7.00002-02	2,35000-92	0,00000+000
	4 40745 407	3.0000C-01	3.23005-02	A'98888E-03	2.33002002	N,0000E+00
67	1,42/76+03	5,00002-01	5.51002-02	2,9100E-02	2.6000E-02	0,0000E+00
70	1.44326+03	2,00001-01	4.1500E-02	1.8000E-02	2,3500E=02	0 0000E+00
71	1,4734E±Ø3	5,00006-01	1.48502-01	1.25002-01	2,3500E=02	8,0000E+00
72	1,5223E+03	5,00006-01	2.6350E-01	2.4000E-01	2,3500E-02	7,0000E+00
73	1,5330E±03	5,0000E-01	2,3900E-02	4.0000E=04	2.3500E-02	0.0000E+00
74	1,5467E+03	5,0000E-01	2.75008-02	A.0000F-03	2.35005-02	a.aagar+aa
75	1.566PE # 03	5.000000-01	2.89005-02	9.4000F-03	2 3500E=02	2.0000F+00
76	1.59726+03	5.0000E-01	3.78505-01	3 55005-01	5 36005+00	0.000000-000
77	1.60205+03	B 00005-01	0 15400-00	3 30000-03	0 34005-00	0 00000-00
28	1 42745-03	8 0000C-01	9.35000-02		2,39000002	0100002400
	1 4 4 3 5 4 9 3	5,0000c-01	1.35001-02	2,00005-02	2,32005-02	9 9 9 9 9 9 F + 9 9
	1,00102-00	5.00002-01	1.93502-01	1.70001-01	2.35001-02	6 0000E+00
80	1,08052-03	5,00001-01	1,1050E-01	9.2000E-02	2.35001-02	0,00005+00
81	1.70906+03	5.0000E-0 <u>1</u>	1.1200E-01	8,4000E-02	2,8000E-02	0,000000+00
82	1,7222E+Ø3	5,00000-01	3,85000-02	1,5000E-02	2.3504E-02	A.0000E+00
83	1,7552E+Ø3	5,0000E-01	1.3200E-01	1,0500E-01	2,700000-02	0,000DE+00
84	1.78212+03	5.0000E-01	6.9360F-01	6.7000F-01	2.3500F=42	8. 8000F+00
85	1.79555.03	5.0000F-04	2.65005-00	3.00005-03	2 35045-00	A. AAMAC+0A
86	1 80795403	B 00005-01	1 80405-02	4 45000-02	2,00000 00	0.000001-00
	1 04555407		3.00001-02	1,40000-02	2.35000-02	0100005400
87	1,845-1-03	2,00000-01	3,07001-02	1.30005-02	2.39001-02	0.000E+30
68	1.86801+03	5,00000-01	2.62006-02	2,7000E-03	2.3500E+02	0,0000E+00
89	1.8700E+03	5,00000-01	2.6200E-02	2,70000-03	2,3500E-02	0000E+00
90	1,9024E+03	5,0000E-01	5,350ØE-Ø2	3,0000E-02	2.3500E-02	A,0000E+00
91	1.9165E#Ø3	5.0000E-01	4.84005-02	2.49005-02	2.3500E=02	0.0000E+00
62	1.9534F+03	5.0000E-01	2.72005-02	3 78885-83	2.3500F-02	a.auuar+aa
63	1 04865+03	B 00005-04	4 05/05-04	4 70005-01	2 60005-02	0.00/05+00
	1 074 15493	# 0000C_01	6 37895-04		2 76005-02	5 3000CA00
-5	1.9/40E+03	2.00005-07	3,20302-01	5,0000CH01	2,30000-02	0 000000-00
95	2,92201-03	5,00000-01	2.06501-01	2,1001-01	2,35000.02	0,00005-00
96	2.0290E+03	5.0000E-01	8,4500E-02	6.1000E-02	2.35001-02	9.0000E+00
97	2,07092+03	5.0000E-01	2,6500E-02	3,00006-03	2,3300E-02	0,0000E+00
98	2,Ø881E+Ø3	5,0000E-01	5,0500E-02	2,70006-02	2,3500E=02	0,0000000000
99	2.09546.03	5.0000E-01	4.6500E-02	2.3000E-02	2.3500E+02	0,0000E+00
100	2.12305.03	5.0000E-01	2.6700F-02	3.20005-03	2.3500E+02	a.a00a5+20
101	2.14405+03	5.000000-01	8.5508F-02	6.20005-02	2.3500F+02	0.00005+00
102	2.15225+03	5.00005-01	2.63505-01	2 40005-01	2 25046-02	A. AUVAL+UA
	2 18605+03	B 00005-01	6 4380C-04	4 90000-01	2,32020 00	a autor_uo
10.0	2 30005.000	5,20000-01 5,20000-01	0.40501-01	0,200000001	5,33005-05	0,000005700
107	2,20000,900	5,000000-01	1.43501-01	1.20006-01	2.35005-02	N 10000E +00
105	2,21/01+03	5.000000-01	2,75002-02	A. 0000E-03	2.35001-02	0,00005+00
100	2.24101+03	9.00001-01	5,5000E-02	1.5000E-03	2.320pF=05	N 10000E+00
107	2,2580E+03	5,00008-01	1.09502-01	8,6000E-02	2,3500E-02	⊴,0040€+00
108	2.26702.03	5,00006-01	2.3350E-01	2.1000E-01	2,3500E-02	9,0000E+00
109	2.281/E+Ø3	5,00002-01	1.5850E-01	1.3500E-01	2.3500E=02	0,0000E+20
110	2,315>E+03	5.0000E-01	4.45008-02	2.1000E-02	2.3500E=02	8.00006+30
111	2.3390E+03	5.0000E-01	3.3000F-02	9.5000F-03	2 35006-02	3.0000F+00
112	2.35286+03	5 00006-01	7 05005-02	4 70005-02	2 36005-02	0.00005+00
44.3	2 35535+03	5 0000F-01	B 450000-02	A 1000E-02	2 75005-05	0.000000.00
110	2 20145-03	B GOUGE OI	4 95005-02	0,10000-02	2.32000000	0.000005-00
117	2 ALBHELD3	3.00000C-01	9.77002-02	4 4000E 402	2.3700C-02	0100000C-00
112	2,41002,000	5,00002-01	2.01006-02	4,00005=00	2.33005-02	8 1 R R R R P + R R
110	2,425/1.403	5,00000-01	1,28506-01	1.3200E=01	2.30000-02	0,00005+00
117	2,44526+03	5.000000-01	2.18502-01	1,95000-01	2.3500E-02	0,0000E+00
118	2,49406+03	9.0000E-01	4,2000E-02	1.9000E-02	2.3500E-02	0100005+00
i19	2,4884E+Ø3	5,0000E-01	1.1150E-01	8,8000E-02	2.3500E-02	0.0000E+00
120	2,5207E+03	5.00002-01	3,7500E-02	1,4000E-02	2,3500E-02	M,0000E+00
121	2,5472E+03	5,000000-01	5.7350E-01	5,5000E-01	2,3500E-02	0,000ØE+00
122	2.558>E+Ø3	5,000000-01	2.5350E-01	2.3000E=01	2.3500E-02	0,00002+00
123	2.5799E . 03	5,000000-01	3.53505+01	3.30005-01	2.3500E=02	0,000000+00
124	2.59655+03	5.00005-04	6.93505-01	6.7000F-01	2 35005-02	8 8800F+00
4.95	2 41015-07	5.0000F_04	4 8500C-01	4 5000C-01	2 25005-03	a. dauar
169	0 47475-00		0,07001-02	* FUGGE of	0.0-0-0-00	1. 6000C-00
120	2,031/1.003	3,0000E-01	2,70001-02	3,70005-03	2.33001-02	A 400001 - 40
12/	2.0/101+03	2.00000-01	2.00001-01	2 +000E-01	5,3288F=85	N 10000L +00
128	2,6950E+Ø3	5.0000E-01	4,2500E-02	1.9000E-02	2.3500E-02	0,00002+00
129	2,716>E+03	5.0000E-01	1,685ØE-Ø1	1.4500E-01	2,3500E=02	3,0000E+00
130	2,7324E+Ø3	5,0000E-01	2,5300E-02	1,8000E-03	2.3500E•02	0,0000E+00
131	2,749/E+03	5,0000E-01	6.8500E-02	4.5000E-02	2.3500E-02	0,0000£+00
132	2.7616E+03	5.0000E-01	4.6600F-02	2.3100F-02	2.3500E-02	A.0000E+08
133	2.78405-02	5.00406-01	3.56005-00	21005-02	2 3500F-02	0.00M0F+00
174	2 80545107	8.00005-04	3 15000-02		2 18005-02	0.00005+00
137	2 000000000		3,1/002-02 4 10005-00	1 7500C-00	0 750UC-02	0.00001-00
102	e acortena	2,0000C-01	4.1000F-05	1.72001-02	2,00005-02	N 00000-100
130	2,0041L+03	5.0000L-01	1,90506-01	1,700E-01	5,3300E=02	N 0000L-00
137	2.8820E+03	5,0000E-01	5.73501-01	5,5000E-01	2,3500E-02	0,0000E+00
138	2,8963E+Ø3	5,0000E-01	3,8500E-02	1,5000E-02	2,35006-02	8,3998E+68
139	2,9330E+03	5,0000E-01	5,4500E-02	3.10005-02	2.3500E-02	0,0000E+00
140	2,9557E+Ø3	5.0000E-01	4,45002-02	2.10002-02	2.3500E-02	0,0000E+00
141	2.96586+03	5.000005-01	2.68005-02	3.30006-03	2.35000-02	A . DOUDE + 00
142	2.986.45 .0.2	5.0000F-01	2.90005-02	5.50005-03	2.35005-00	0.00005+00
446	3 00045-07	5,00000-01 5,00000-01	4 20P05-06	1700C_04	2 26005-02	8.0000C+00
143	3 01 245 07	5,0000C-01 8 0000C-01	1	1.1.000-01	6.320VL-02	A. 000001-00
144	3,01928.403	5.0000L-01	2,01501-02	1.02001-03	5.3200E-02	0 00000L-00
145	3,0270E+03	5,0000E-01	1.4850E-01	1.22005-01	5.3200F-05	N 0000E+00
146	3.042°E+03	5.0000E-01	2.700ØE-Ø2	3,50000E-03	5.3200F-05	00+2000E+00

147	3.0581E+03	5.0000E-01	5.5500E-02	3.2000F-02	2.3500E=02	0.000000+00
148	3.1088E+03	5.0000E-01	2.13505-01	1.90005-01	2.3500E-02	8.0000F+00
149	3.1320E+03	5.000000-01	3.15005-02	A.0000F.03	2 3500E-02	8 0000F+00
150	3.1481E+03	5.0000E-01	9.8500F-02	7.5000F-02	2.3500E-02	0.0000F+00
151	3.1482F+03	5.00006-01	3.55005-02	1,20005-02	2 3508E-02	A. ABUMF+00
152	3.17785+03	5.00005-01	0 75005-02	7 49395-92	2 35005-02	6.0000-+00
163	3.1881F-03	5.00006-01	1.03605-01	A. 00005-02	2 3500F-02	a.aanae+aa
164	3.20495+03	B. 0040F-01	0 45005-02	7 30005-02	2 35005-02	a.audar+aa
165	3 21705 03	5 0000E-01	7 15000-02	A AAAAC_03	2 35005-02	A. AUNAL+30
156	3 22496+03	5 0000E-01	5.15000-02	3 30005-02	2'3500E=02	0.0000E+00
457	3 24816-03	B 0000F-01	5,05000-02	9 80005-02	2 35005+02	A. 000005+00
168	3 27205+03	5 00005-01	3 15005-02	A 0000C-03	2 35005-02	a.aadac+aa
420	3 27825-03	B 000000-01	3 58605-02	3 35005-01	2.722005-02	4.00000-00
107	3 00625+03	5,0000C-01	2,00000-01	F 0000 03	2.37000-02	A. 00 M0C+00
100	3,29942403	5,000000-01	3.19002-02		2,30000-02	A 000000-00
161	3 31001+03	5,00001-01	1,40501-01	1.20001-01	2.30001-02	0.00000E+00
102	3 32040403	5 0000C-01	1,20506-01	2 00001-01	2.32001-02	0 00000 +00
160	3 33272403	2,000005-01	9,00000-02	1.000000-02	2.35000-02	0.0000E+00
10	3 30945.03	5.00000C-01	1,01901-01	1 46000 -03	2.32001-02	0.00000-00
105	3 40745 407	5,0000C-01	3.00000-02	1,400000402	2.355005-02	0.0000E+00
100	3 40/70403	5,000000-01	2,10502-01	1,90000000	2 28005-02	A. 30000_+00
16/	3.41//2003	5,00000-01	2,70000-02	B 50005 01	2,32000-02	3. 30000C+00
160	3,43532,403	5,000000-01	3./3501-01	0,5000E-01	2,30000-02	A AAMAC+00
167	3,45036+03	5,00000-01	5,20501-01	2.0000E=01	2.32000-02	0 00000E+00
170	3,48402483	5,0000E-01	1,28501-01	1.02005-01	2,33005-02	0 00000E+00
171	3 49331 +03	5,00001-01	3.2900E-02	9,4000E-03	2.32000-02	0 0000E+00
172	3,52078.403	5,00000-01	2,65001-02	5,0000E+03	2,35000-02	0 0000E+00
173	3,560/0.07	5,00000-01	2,40501-01	2,20001-01	2.37000-02	0 000000+00
174	3.5/2/2.403	5,00000-01	3.53501-01	3.30000-01	2,30000000	# #####E+##
172	3,59336403	5.00000-01	6.3500L-02	* 0000E+02	2,39001002	0 0000E+00
170	3,82102.03	5,00000-01	4.02001-02	2,00002-02	2,32000-02	0 0000E+00
1//	3,02002003	5,00006-01	4.43501-01	4.2000L-01	2,30000-002	4 440000E+00
1/0	3 40000 403	5,00000-01	3.14001-02	7,99091=03	2,30000-002	0 000000-+00
279	3,09201,403	5,00006-01	3.43501-01	3,2000E-01	2,39002-02	0,0000000+00
150	3 77772 00	5,000000-01	1.00505-01	8.0000E#02	2,33000-02	A 00000E+00
181	3,73/25+83	5,0000c-01	2.10501-01	1.92001-01	2,33901-02	0 00000E+00
184	3 70085-03	2.0000t-01	9.3380E-02	7,20001-01	2,300000002	0,000000-00
100	3 83035+03	5,00006-01	3./3502-01	0.3000E-03	2,35000-02	5 0 0 0 0 0 C + 0 0
107	3 95645-07	5,0000E-01	5 19505-02	1.10000-02	2.30000-02	3 000000-000
102	3 8#216+03	5.0000C-01	010000-01	4 3000EPDT	2 30000 02	0 0000E+00
107	3 00135-03	5 00000-01	1.70501-01	1,10001-01	2,39905-02	* 000001400
198	3 94345-03	B 0000F-01	1 13805-01		2 2 3 4 4 4 5 - 4 2	0.000000-00
100	3 02005-03	B GGGGE-GA	1 53505-01	- 7000E=02	2 3 5 6 6 5 6 6 2	3,0000000400
407	3 95395403	5 0000F-01	1 33505-01	1.0PD0[-01	2 35005-02	0.0000E+00
746	0130015980	- Manube - al	1,34306-01	1,07005-01	5.3380C-82	210040F+00

L VALUE	1
NUMBER OF RESONANCES	220
SPIN SCATTERING LENGTH (A-)	0,0000E+00

				RESONANCE WIDT	THS (EV)	
INDEX	ENERGY (EV)	J VALUE	TOTAL	NEUTRON	RADIATION	FISSION
1	1.0229E+01	5.0000E-01	2.35028-02	1.5600F-06	2.3500E=02	а.аайаг+аа
2	1.9500F+01	5.0000E-01	2.35015-02	1 00005-0A	2 35005-02	a.aa0ar+aa
3	4.5190E+01	5.0000E-01	2.35016-02	1.0000E-06	2'3500F-02	0.000000+00
4	4.950VE+01	5.0000E-01	2.35015-02	6.00005-07	2.3500F-02	0.00000-+00
5	6.3540E+01	5.0000E-01	2.3506F-02	5.50005-06	2.3500Ee02	0.0000F+00
6	8.3870E+01	5.0000E-01	2.3506F-02	A. 3000F-06	2.3500E-02	0.00005+00
7	8,9190E +01	5.0000E-01	2.3500E-02	9.0000F-05	2.3500E-02	0.00405+00
8	9,10000.+01	5.0000E-01	2.3506E-02	6.00005-06	2.35005-02	8.8840F+88
9	9.3300E+01	5.0000E-01	2.35055-02	5.00000-06	2.3500E-02	0.00405+00
10	9.8200E+01	5,0000E-01	2,35Ø8E-02	8.0000E-06	2.35006-02	0.000000+00
11	1,1140E+02	5,0000E-01	2.3510E-02	1,000000-05	2.3500E-02	0.0000E+00
12	1.21605+02	5,0000E-01	2.35ø6E-ø2	6.000000-06	2.3500E-02	0,0000E+00
13	1,2430E+02	5.0000E-01	2.3516E-02	1,6000E-05	2.3500E=02	8 0000E+00
14	1,3330E+02	5.0000E-01	2.3513E-Ø2	1,3000E-05	2,3500E=02	0,000000+00
17	1,5240E+02	5,0000E-01	2.3537E-02	3,7000E-05	2,3500E-02	0.0000E+00
16	1,5890E+02	5,0000E-01	2.3512E-Ø2	1,20006-05	2.3500E-02	0,0000E+00
17	1.7310E+02	5.0000E-01	2.3530E-02	3,00006-05	2,3500E=02	A,0000E+00
18	1,9640E+02	5.0000E-01	2.3530E-02	3,00006-05	2,3900E=02	0.0000E+00
19	2,00506+02	5.0000E-01	2.354ØE-Ø2	4,00002-05	2,3500E-02	00000E+00
22	2,0300E+02	5.0000E-01	2.3520E-02	2,00006-05	2.3500E-02	9,0000E+00
21	2,1500E+02	5,0000E-01	2.3541E-02	4,1000E-05	2,3900E-02	0,00002+00
22	2.1889E+92	5.0000E-01	2,3530E-02	3,0000E=05	2,3500E=02	9,0000E+00
23	2,3990E+02	5.00006-01	2.355ØE-Ø2	5,00006-05	2,3500E=02	0,00002+00
2	2.42005+02	5,2000L-01	2,3656E-Ø2	1,56005-04	2,3500E=02	1,0000E+00
22	2.53401-02	5,00001-01	2,3600E-02	1,00000-04	2,3900E=02	0,0000E+00
20	2.570PE+02	5.00001-01	2.3525E-Ø2	2,5000E-05	2.3500E-02	8 8000E+00
2/	5.0340F+05	5.00001-01	2,3730E-02	2,3000E-04	2,3500E-02	0,0000E+00
20	2,79001+02	5,00001-01	2.3640E-02	1,40002-04	2.35002-02	A.0000E+00
27	2.82301-02	5,000000-01	2,30101-02	1,10001-04	2,32005-02	0.0000E+00
36	2,970-0-02	2,0000C-01	2.35501-02	5,0000E=05	2,35001-02	0.00005+00
10	3 3389245482	2,00001-01	2,35201-02	2,000000.05	2,35000002	0,0000E+00
77	3 74705400	5.0000E-01	2.00401-02	4,50005-05	2,35001-02	9,0000E+00
74	3 77005-02		2.35501-02	5.0000tm05	2.35001-02	0.0000E+00
75	3 54905402	9,00000E-01	2.00101-02	1,10000-04	2.37005-02	9 10000E+00
32	3 64706402	5,0000t-01	2.3/001-02	2,00001=09	2,35001-02	0 0000E+00
17	3 44400-002		2.000000-02	3,00001-00	2.39001-02	8 8 8 8 8 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8
38	3 79705+02	5,0000E-01	2,37241402	2,40001-05	2.30001-02	0.0000E+00
		2122222-07	2102405-02	e COmponete	2,33001-02	N M H H H H F + N H

39	3,9550E+Ø2	5,0000E-01	2.3560E-02	6.0000E-05	2.3500E=02	8.0000F+00
42	4.0050E+02	5.0000E-01	2.3540F-02	4.00005-05	2 35005-02	a. aaaar + aa
41	4.0750E+02	5.00005-01	2.36005-02	1 00005 04	3 36045-02	1.00V0C+00
42	4.13585.02	5.00005-04	0 35805-00		0.00000000	010000E+00
43	4 18545-02	- 4000C-04	2100001-02	5,0000E-03	2,30000-02	310000E+00
	4 30705+00	5,00000-01	2,00205-02	2,50000-05	5.3200F-05	6 90008E+08
	4 48446.00	3,00000-01	5,20705-05	3.10005+04	2.35001-02	010048E+00
	4 44990,902	5,000000-01	2.3560E-02	6,00002-05	2,3500E-02	0,0000E+00
	7,00000,402	2,00005-01	2,3600E+02	1,00002-04	2,3500E-02	0,00002+00
47	4.8400E+02	5.0000E-01	2.362ØE~Ø2	1.20006-04	2.3500E-02	0,000000+00
45	4,8820E+02	5,00006-01	2.412ØE~Ø2	6,2000E+04	2.3500E=02	8.00406+08
49 -	4,98995+82	3.0000E-01	2.3620E-02	1.2000E-04	2,3500E-02	2.0000E+00
50	5,2320E+Ø2	5.0000E-01	2,3770E-02	2.7000E-04	2.3500E-02	0,00405+00
51	5,4230E+02	5,0000E-01	2.36685-02	1.68885-84	2.3800F=02	a. aanar+aa
52	5.50502+02	5,0000E-01	2.350ØE+02	9.00005-05	2 33005-02	8.0940E-00
53	5.8470E+02	5.0000E-01	2.3628F+#2	1.20005-04	2 19005-002	A. AAMAE+40
54	6,0610E+02	5,00006-01	2.37705-02	2.70005-04	2.35005=02	9.0000C+00
55	6.1474E+82	5.0000E-01	2.36405-02	4 40005-04	2 26005-02	a aguar+00
56	6.2480E+02	3.0000E-01	2 43405-42	A 0000E-04	2'3B00E-00	0100000E-00
87	6.3250F+82	B. 66966-01	2 34005-00	4 00000-04	2,35000-02	N 80005+00
58	6.67845+02	8. 4444F-01	2,000000-002	1,0000L+04	2,39994-92	0.0000
89	6.77506+02	5.0000F-01	2.43405-02	2,00000000	2,30000402	N 000005+00
A 10	6.84105+02	B. 0000E-01	0 35405-40	A 000000 05	2.350000000	0100005400
41	6 88205-02	5 00000-01	2,35892 402	B,00001-05	2.350005902	010000E+00
42	6 07505-00	3 0000C-01	5.32405-02	9.00005-05	2,35001-02	0.0000E+00
43	7 10505.00	5 0000L-01	2.3/401-02	2.4000E-04	5.3200F+05	0,00002+00
	7 112000002	5.00001-01	2.4100E-02	6,0000E=04	2.350NE-02	9:0000E+00
6.	7,13702002	5,00000-01	2.3750E=02	2,50000-04	2,3500E+02	0,0000E+00
63	1.50405+85	5.0000E-01	2.4500E-02	1,000000-03	2.3500E-02	0,0000E+00
60	7.34801+02	5,00001-01	2,3650E-02	1,5000E-04	2.3500E-02	8,0000E+00
67	7.398PE+02	5,0000E-01	2,3600E-02	1,0000E-04	2.3500E-02	0,00002+00
60	7,4320E+02	5,0000E-01	2,38øØE-Ø2	3,0000E-04	2.3500E+02	0,0000E+00
69	7,5609E+02	5,0000E-01	2,395ØE-02	4,5000E-04	2,3500E=02	0,0000E+00
710	7,8740E+02	5.0000E-01	2.3880E-02	3.80006-04	2.3500E+02	0.0000E+00
71	8,0820E+02	5.0000E-01	2.39005-02	4.00005-04	2.350ØE-02	0.0000F+00
72	8.2880E+82	5.0000E-01	2.38005-02	3.00005-04	2 35865-92	8.00005+00
73	8.32405+02	5.0000E-01	2.36605-02	4 ADD05-04	2 75005-82	0.000000-000
74	8.46985+82	5.00005-01	2 43005-02	a addar_04	2 78085-02	a aawar .aa
75	8.40005+02	B 00006-01	0 34505-00		2.33605-02	
76	8 71605402	8 0000E-01	2,30500-02	1,50000-04	2,33005-02	0,000002+00
70	8 04695482	5,0000E-01	5.00005-05	1,00005-04	2.35000-02	0,0000000000
77	0,90000,002	5,00000-01	2.42302-02	7.50002-04	2.35000-002	8,0000E+00
/8	A 04305+05	5.00002-01	2.4700E-02	1.20005-03	2.35001-02	0,000000+00
/*	9.323PL=02	5.00002-01	2.3700E-02	2.00006-04	2.32001-02	010000E+00
80	9,4010E+02	5,0000E-01	2.4000E-02	5.0000E-04	2.3500E-02	0009E+00
81	9.6230E+82	5,0000E-01	2.3700E-02	2,0000E-04	2,3500E=02	ଶ ,ପସାସର ୧+ସର
62	9,6490E+02	5.0000E-01	2,4000E-02	5,0000E-04	2.3500E-02	R,0000E+00
83	9.7680E+02	5,0000E-01	2.43006-02	8.0000E-04	2,3500E-02	a,0000E+20
84	9.856VE+Ø2	5,0000E-01	2,3800E-02	3.0000E-04	2,3500E-02	0,0000E+00
85	1,0040E+03	5,0000E-01	2.3710E-02	2,1000E-04	2,3500E-02	8.0000E+00
86	1,03106+03	5,0000E-01	2,43005-02	8.0000E-04	2.3500E-02	3,00002+00
87	1,0470E+03	5,0000E-01	2,4000E-02	5.0000E-04	2 3500E=02	0.0000E+00
88	1.06205+03	5,0000E-01	2,4400E-02	9,0000E-04	2.3500E-02	0,000000+00
89	1.06802+03	5.0000E-01	2.45005-02	1.0000E-03	2.3500E-02	0.00005+00
98	1.07105+03	5.0000E-01	2.37005-02	2.00005-04	2.3500E-02	a acuar+aa
	1.07405+03	5,0000E-01	2 42005-02	7 00005-04	2 35005-02	a.0040c+00
62	1 08105-03	5 00006-01	2 45005-02	00005-03	2 3500F-02	3.00005+00
63	1 00405+03	B 0000F-01	0 48095-02	1 300000-03	2 35005-02	a. 999995 + 99
	1 10305-03	B 00005-01	0 54000-02	1,30000-03	2 76005-02	1.00V0C+00
77	1 10000-000	B 300000-01	2,04000-02	1,70000,000	2,35000-92	0 0000 <u>0</u> .00
95	1,11901403	5,000000-01	2,42001-02		2,30001-01	010000E+00
98	1,10000+00	5,00000-01	2.3/301-02	2.30000-04	2.33002-02	0100005400
97	1,15592,993	5.00000-01	2.4300E-02	8.00002-04	2,33000-02	010000E-00
98	1,15901.403	5,00001-01	2.4300E-02	8.0000E-04	2.32006-02	0 0000E+00
99	1,18506+03	5.00000-01	2.3700E-02	2.00001-04	2,30000-02	7 00002+00
100	1,20102=03	5,00006-01	2.3950E-02	A.5000E-04	2.3500E+02	0.000DE+00
101	1,22006+03	5,0000E-01	2.4100E-02	6,0000E~04	2,3500E+02	4 00005+00
102	1,230VE+03	5.00000-01	2,4000E-02	5.0000E-04	2.3500E-02	8.80495+68
103	1,2330E+03	5.00002-01	2,4100E-02	6,0000E-04	2.3500E=02	4 0000E+00
104	1,25106+03	5.0000E-01	2,4400E-02	9,0000E-04	2.3500E=02	6 10000E+00
105	1,26005+03	5,0000E-01	2.3700E-02	2,0000E-04	2.3500E=02	9,00006+50
196	1,2630E+03	5.0000E-01	2,38005-02	3.0000E-04	2.3500E-02	2,0000E+00
107	1,2750E+03	5,00002-01	2.47ØØE-02	1.2000E-03	2,3500E-02	9.9000E+00
108	1,28502+03	5,000000-01	2.3900E-02	4.0000E-04	2.3500E=02	A.0000E+00
109	1,28906+03	5,0000E-01	2.3800E-02	3.0000E-04	2.3500E-02	0,0000E+00
110	1.3120E+03	5.0000E-01	2,3800E-02	3,0000E-04	2.3500E-02	3,0000E+00
111	1.3250E+03	5.000RE-01	2.3700E-02	2.00000-04	2.3500E-02	8,00002+30
112	1.3380E+03	5.0000E-01	2.3720E-02	2.2000E-04	2.3500E-02	0,00002+00
443	1.36005.+03	5.08406-01	2.44005-02	9.0000E-04	2.3500E=02	A,0040E+00
114	1.3860E+03	5.0000E-01	2.41005-02	6.0000E-04	2.3500E-02	3,000002+00
445	1.39906+03	5.00005-04	2.36005-02	1.0000F-04	2.3500E-02	0.00005+00
	1.41105-03	5.0000F-04	2.36000-02	1.00005-04	2.3500F-02	0.00005+00
110	1 44405-07	8.0000E_04	2 650000-02	3 00005-01	2.35006-02	0 0000F+00
11/	1 40305-03	5,0000C-01	2.0700C-02	3 00005-04	2 35005=02	3.00Vac+00
118	1 44745.07		2.00001-02		2 36045-40	a. aavac+aa
119	1,44/01+03	2,0000L-01	2.47001-02	T'RARAC 04	5.3900C-02	0.000000-000
128	1,43301,403	2.00001-01	2.0700E-02	A 500001-04	2,3900C-02	0.00000C-00
121	1,48701+03	2.0000E-01	2.3750E-02	A, DUUUE-04	5,30005-05	
122	1,5054E+83	5,0000E-01	2.4100E-02	6.0000E-04	2.3500F=05	0 10000E -00
123	1,5100E+03	5.0000E-01	2,4700E-02	1.2000E-03	2.3500E-02	0,00001-00
124	1.52002+03	5.0000E-01	2.41005-02	6.0000E-04	2.39001-02	NI DONUL TUD
125	1,5270E+03	5,0000E-01	2.4600E-02	1.1000E-03	2.3500E-02	0 0 0 0 0 0 E + 0 0
126	1,5350E+03	5,00008-01	2.4100E-02	6.0000E-04	2.3500E-02	8.0000E+00
127	1.5400E+03	5,0000E-01	2,3570E-02	7.0000E-05	2,3500E=82	8.8040E+90
128	1,55005+03	5,00000-01	2,7500E-02	4,0000E-03	2.3500E=02	0,0000E+00
129	1,5550E+03	5.0000E-01	2,4050E-02	5,5000E-04	2,3500E-02	0,0000E+00
1.30	1.5690E+03	5,000000-01	2.4788E~82	1.2000E-03	2.3500E-02	010000E+00
4 21	1.57905+03	5.0000E-01	2.3600E+02	1.0000E-04	2,35002-02	0,0000E+00
÷						

- 234 -

0						
1.57	1,20105400	5,00001-01	2,5100E-02	1.60002-03	2.3500E=02	\$ • \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$
130	1.01401.403	5,000000-01	2.3900E-02	4.0000E-04	2,35000-02	0,0000E+00
134	1.04001.403	2.00001-01	2,3600E-02	1.00005-04	2,3500E-02	0,0000E+00
132	1,6730E+03	5.00000-01	2.3700E-02	2.0000E-04	2,3500E-02	8,0800E+00
130	1,08201+03	5.00002-01	2.3900E-02	A.0000E-04	2,3500E-02	#,0000E+00
137	1.6960E+Ø3	5,0000E-0 <u>1</u>	2.4000E-02	5.0000E-04	2,3500E-02	0,0000E+00
138	1.7190E*03	5.0000E-01	2.4100E-02	6,0000E-04	2.3500E=02	0,000000+00
139	1,7290E+03	5.0000E-01	2.3600E-02	1,0000E-04	2.3500E=02	0.0000E+00
149	1.7360E+Ø3	5,000000-01	2.3700E-02	2.00000-04	2.3500E-02	0.00006+00
141	1,7450E+03	5.0000E-01	2.55002-02	2.00005-03	2.35000-02	4,00005+00
142	1,7660E+03	5,000000-01	2.4000E-02	5.00000-04	2.3500E=02	0.00005+00
143	1.7750F+03	5.000005-01	2.45005-02	1.00005-03	2 35095-02	4.000005+00
144	1.8040F+03	5.0000E-01	2.4000F-02	5.00005-04	2 35005-02	0.0000F+00
145	1.82205+03	5.0000E-01	2.4600F-02	1.10005-03	2 3500F = 02	0.0000F+00
146	1.8340F+03	5.000000-01	2.4300E-02	8.0000F-04	2 3500E - 42	0.00005+00
147	1.8550F+03	5.0000E-01	2.37006-02	2.00005-04	2 3500F=02	* . ØØØØF + ØØ
148	1.88005-03	5.00005-01	2 53005-02	1 9000F-03	2 35005=02	3.00005+00
1 4 9	1.89305+03	5.00006-01	2 54005-02	1 06001-03	2 350000-02	A ANNAE + NA
164	1 91305-03	5 00005-01	2 85485-02	5 00005-03	2 35000 02	4.00000C+00
1 2 3 9	1 00505-03	2.000000-01	2.03002-62	4 4000L-03	2.330000-02	3 00000E+00
154	1 03305+03	5,000000-01	2.21005-02	1.00000-00	2.32005-02	0 00000 <u>0</u> +00
176	1 04205+03	5 000000-01	2,00000-02	1.000000404	2,30002402	A AAXAC + 00
150	1 00405.400		2.45000-02	1,00000-03	2,350000002	
124	1 000000.07		2,40001-02	8.00001-04	2.30000002	0 0000E+00
152	1,99006+03	5.000000-01	2.4/002-02	1.20006-03	2,35001-02	N 0000E+00
150	2,000000+03	5.000000-01	2,4000E-02	5.0000E-04	2,3500E=02	0,0000E+00
157	2,04001+03	בפ-שטטטע- כ	5-2200F-05	5.00005-02	2,30005=02	9 0000E+60
150	2,0510E+03	5,00000-01	2.51006-02	1.6000E-03	2,3500E=02	P,0000E+00
159	2,06306+03	5,000000-01	2,39806-02	4.8000E-04	2,3500E=02	0,0000E+C0
160	2,08005+03	5.00001-01	2.58006-02	2.3000E-03	2,3500E-02	0,0000E+00
161	2,1030E+03	5.00006-01	2.6300E-02	2.80006-03	2.3500E-02	0,0000E+00
162	2.1140E+03	5,0000E-01	2,4700E-02	1,2000E-03	2.3500E-02	9 · 09996E + 60
163	2,1720E+03	5,0000E-01	2.57øØE-ø2	2,2000E-03	2,3500E-02	0,0000E+00
164	2.1820E+03	5,0000E-01	2,44ø0E-02	9,000005-04	2,3500E-02	3 • 399985 + 99
165	2.2370E+03	5,000000-01	2.3970E-02	4.70005-04	2,3500E-02	0.0000E+00
166	2,2950E+03	5,0000E-01	2,8000E-02	4,50000-03	2,3500E-02	0,0648E+60
167	2,3Ø40E+Ø3	5,00002-01	2,41002-02	6,0000E-04	2,3500E-02	A,0040E+00
168	2.3274E+03	5.00000-01	2.4300E-02	8.0000E-04	2,3500E-02	0,0040E+00
169	2,36806+03	5,000000-01	2.7500E-02	4.0000E-03	2.3500E-02	8 BUDDE+00
170	2,38505+03	5,00000-01	2.450BE-02	1.00000 - 03	2.3500E • 02	7,0000E+00
171	2,39605+03	5.0000E-01	2.7200E-02	3.7000E-03	2.350VE-02	3.000000+00
172	2.4020E+03	5,0000E-01	2.7200E-02	3.7000E-03	2.3500E-02	9.0000E+00
173	2,41846+03	5.0000E-01	2.4500E-02	1.00001-03	2.3500E+02	0.00405+00
174	2.4360E+Ø3	5.00006-01	2.4500E-02	1.00005-03	2.3500E-02	0.0000F+00
175	2.500VE+03	5.0000E-01	2.66005-02	3.10005-03	2.3500E-02	A. 9949F+99
176	2.52605+03	5.000000-01	2.4500F-02	1.00005-03	2 35005-02	9.00006+00
177	2.60505+03	5.000000-01	2.61005-02	2.60005-03	2 3500E-02	A. AAUAF + AA
178	2.6100F+03	5.0000E-01	2.61005-02	2.60005-03	2 35005-02	0.00006+00
179	2.6350F+03	5.0000E-01	2.61005-02	2. 40005-03	2 3500F-02	3.0000E+00
190	2.64805+03	5.00005-01	2.43005-02	A 00000 - 04	2 35005-42	3.00005+30
181	2.6580F+03	5.00000-01	2.70005-02	3 50005-03	2 35005-02	A . 04405+00
182	2.68105+03	5.0000F-01	2.54005-02	0 10005-03	2 35005-02	5.000005+00
183	2.70105+03	5 00000-01	2120000-02	2.100000-03	2.350000000	8,0909C+00
104	2.77405+03	5.00006-01	2,55006-02	2,0000E-03	2.300000002	A . 000000-+00
405	2 70805+03	5.0000C-01	2,35001-02	2,00001-03	2,33606402	4 1 0 0 0 0 E 7 0 0
104	2 84105+03	5.0000C-01	2,99001-02	6,0000E=03	2.30000-02	3.000001+00
100	2 84505.00	5.0000t-01	2,95005-02	9.0000E-03	2.33001-02	6 0000E+00
10/	2 04745+03	5,0000C-01 B 0000C-01	2.20001-02	5,10005-00	2.35006-02	0.000000000
100	2 04 805 -07	B 40445-04	2.37001-02		2,35000-02	0,0000E+00
100	2 00305-03	5,0000E-01 E #0000E-04	2,9002-02	6.00001-03	2,33001302	810000E400
101	2 04BMC -03		3.12005-02	8,00001-03	2.35001-02	0,00005400
191	3 07305.003	5,0000C-01	2.5/001-02	2.20001-03	2,35001-02	0,0000E+00
192	3 00105-03	5,0000E+01	2,40001-02	1,10006-03	2.35001-02	N 10000E+00
1.44	3 400000.400		2.5/001-02	2,20005-03	2.32006-02	8,0000E+00
105	3 07746+07		2,75001-02	A,0000E-03	2,35001=02	A, DDODE + DD
199	3 04800.07	5,0000C-01	2,20001-02	1.2000E-03	2,35005-02	0.00005+00
190	3,26000,400	במ-זממממ, כ	3,15002-02	9.0000E-03	2,35001-02	9 1 2000E + 00
19/	3 74745.47	5,0000C-01	2,9500E-02	6,0000E=03	5,3200F-05	9,00005+00
190	3,34/01+03	5,00000-01	2,6400E-02	5,90005-03	2,3500E-02	7,000000+00
199	3 30000 +03	5.00002-01	2.4600E-02	1.10000-03	2,3500E=02	0,0000E+00
200	3,37/01+03	5,00001-01	3.0500E-02	7,0000E=03	2,3500E=02	0040E+00
201	2,39905+03	5,00001-01	3,0500E-02	7,0000E-03	2,3500E-02	0,0000E+00
202	3,47005+03	5.0000E-01	2,4700E-02	1.2000E-03	2,3500E-02	0,0000E+00
203	3.50/0E+03	9,00002-01	2,6300E-02	2.80002-03	2,3500E-02	0.0000E+00
204	5190E+Ø3	5.0000E-01	2.6500E-02	3.0000E-03	2.3500E-02	0,00002+00
242	3 54105403	3.00000-01	2.4700E-02	1,20000-03	2.3500E-02	9,00002 +00
200	3 5400E+03	3,00001-01	2.4700E-02	1,2000E-03	2.3500E-02	R.0000E+00
201	0,0000E+03	3,0000E-01	2.6500E-02	3,0000E-03	2,3500E-02	N,0000E+00
200	3,0110E+03	5.0000E-01	2.4500E-02	1.00002-03	2.3500E-02	0,00402+00
209	2,63805+03	5,0000E-01	3,2500E-02	9.00005-03	2.3500E-02	0,0000E+00
210	3,6530E+03	5.0000E-01	2.6500E-02	3,0000E-03	2,35000-02	0,0000E+00
211	3.660VE+03	5,0000E-01	2,6500E-02	3,00006-03	2,3500E-02	0,0040E+00
212	3,6810E+83	5,0000E-01	2,7588E-82	4,20005-03	2,3500E-02	8188485+88
213	3,7420E+Ø3	5.0000E-01	2,6500E-02	3,00006-03	2.3500E-02	9 1 0 0 U U E + 0 0
214	5,7900E+03	5,0000E-01	2,6500E-02	3,00006-03	2.35000-02	0,00005+00
215	3,8Ø70E+Ø3	5,0000E-01	2,5500E-02	2,00005-03	2,35002-02	a,0000E+00
216	3,8260E+03	5,0000E-01	2,9500E-02	6.0000E-03	2,3500E-02	8.0000E+00
217	3.8950E+03	5.0000E-01	3,5500E-02	1,20005-02	2,3500E=02	0,00005+00
218	3,9280E+Ø3	5,0000E-01	1,4350E-01	1,20005-01	2,3500E-02	0,000000+00
219	3,9774E*Ø3	5,8000E-01	2,6500E-02	3,00000-03	2,3569E-82	0,0000E+00
220	2.9900E+03	9.0000E-01	2.8500E-02	5,0000E-03	2,3500E-02	8 1 8 8 A 8 E + 8 B

UR	AN1UM-238			RESONANC Resonance P	ENDF/B MAYERI E DATA ARAMETERS	AL NO, 6262
ISOTOPE FRACTIONNUMBER	NAL ABUNDANCE OF ENERGY RAN	GES	1M=238 1ØE+ØØ 2			
ENERGY LOWER E UPPER E NUCLEAR Effecti Number	RANGE NUMBER- NERGY LIMIT (NERGY LIMIT (SP1N VE SCATTERING OF L STATES	EV) 4.000 EV) 4.500 EV) 0.000 RADIUS 9.184	2 UNRE 00E+03 00E+04 00E+04 00E+00 00E+00 00E-01 2	SOLVED SINGLE	-LEVEL BREIT-	WIGNER PARAMETERS
L VALUE NUMBER	OF J STATES		Ø 1			
			DEGREES DF	FREEDOM USED	IN THE WIDTH	UISTRIBUTION
		J-VALUE 5.0000E-01	COMPETITIVE 0,0000E+00	NEUTRON 1,0000E+00	RADIATION 0.0000E+00	FISSION D. DDDDE+00
			AVE	AGE RESONANCE	WEDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	4,000000+03	2.000000+01	0.0000E-00	2.1000E-03	2.3500E-02	0,00000000
3	5,5000E+03	1.9950E+01	0.0000E+00 0.0000E+00	2.0979E-03 2.0947E-03	2.3500E-02	0,0000E+00 0,00000E+00
4	6,5000E+03 7.5000F+03	1.9928E+01 1.9880E+01	0.0000E+00 0 0000E+00	2,09165-03	2,35005-02	0,00000000
6	8,509ØE+Ø3	1.984ØE+Ø1	0.00002+00	2,0832E-03	2.3500E-02	0,00002+00
8	1.20006+04	1.9800E+01 1.9710E+01	0.0000F+00 0.0000F+00	2,0790E-03 2.0695E-03	2,3500E-02 2,3500F-02	0,0000E+00 0,0070F+00
9	1.5000E+04	1.961ØE+Ø1	0.0000E+00	2,0590E-03	2.3500E-02	0,00000000
10	2.500000+04	1.9260E+01	0,0000E+00 0.0000F+00	2,0412E-03 2.0223E-03	2,3500E=02 2.3500E=02	0,0000E•00 0.6000F•00
12	3.84885+84	1.98986+81	9,00002+00	2,00445-23	2.35002-02	0,00305+09
14	4.000000404	1.875ØE+01	0,0000E+00 0,0000E+00	1,9687E-03	2.3500E-02	0.4030E+00
15	4,50006+04	1.8590E+01	0,000000000	1,9519E=03	2,3500E-02	6.00305+00
L VALUE			1			
NUMBER	OF J STATES		2			
			DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
		JEVALUF	COMPETITIVE	NEUTRON	RADIATION	FISSION
		5.0000E-01	0,00005+00	1,000000000	Ø,0000E+00	0.00005+00
			AVE	RAGE RESONANCE	WIDTHS (EV)	
TNDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	4.0000E+03	2.000025+01	9.0000E+00	3.0269E-03	2.3500E-02	0,00306+00
2	4,5000E+03	1.998ØE+Ø1	0,00000+00	3.16725-03	2.3500E-02	0,0000E+00 0,0000E+00
4	6.54P0E+03	1.9920E+01	8.0000E+00	3.2073E-03	2.3500E-02	0.40306+00
5	7.5000E+03 8.5000F+03	1.9880E+01 1.9840E+01	0.0000E+00	2,9739E-03 2,7591E-03	2.3500E-02 2.3500E-02	0.0030E+00 0.0030E+00
7	1 00005+04	1.9800E+01	0,00005+00	3,0997E-03	2.3500E-02	0.00306+00
8	1.2000E+04 1.5000E+04	1.9710E+01 1.9610E+01	0.0000E+00 0.0000E+00	3,0109E-03 3,0944E-03	2.3500E-02	0,2030E+00
10	2,00005+04	1.9440E+01	P.0000E+00	2,9362E-03	2.3500E-02	0,000000+00
11	2.5000E+04	1,9200E+01 1,9090E+01	2,2200E+00 0,0000E+00	2,9895E-03 2,8398E-03	2.35005-02	0,00306+00
13	3 50002+84	1.892ØE+81	0.00005+00	2,7951E-03	2.35005-02	0.40206+00
14	4,0000E+04 4,5000E+04	1.8790E+01 1.8590E+01	0.00005+00 0.00005+00	2.8279E-03 2.9299E-03	2.3500E-02 2.3500E-02	0,0030E+00 0,0030E+00
4-						

DEGREFS OF FREEDOM USED IN THE WIDTH DISTRIBUTION

JSVALUE	COMPETÍTIVE	NEUTRON	RADIATION	FISSION
1,500000+00	P, 2000E+00	1,000000+00	Ø,0000E+00	0,00002+00

AVERAGE RESONANCE WIDTHS (EV)

INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	4,0000E+03	1,0983E+01	0.0000E+00	1,6622E-03	2.35ØØE=02	0,00006+00
ž	4,5000E+03	1,0972E+01	0,00005+00	1,73926-03	2.35ØØE-Ø2	0,0000E+00
3	5,5000E+03	1,0955E+01	0,00005+00	1,78052-03	2.3500E-02	0,0070E+00
4	6,5000E+03	1.0939E+01	0,0000E+00	1,7613E-03	2.35ØØE-Ø2	0,6000E+00
5	7.5000E+03	1,0917E+01	8,0000E+00	1,63316-03	2.3500E-02	0,0030E+00
6	6,5000E+03	1.0895E+01	8,0000E+00	1,51516-03	2.3500E-02	0,0000E+00
7	1,00002+04	1.0873E+01	B,0000E+00	1,70228-03	2.35002-02	8,4000E+00
8	1.20006+04	1.0824E+@1	0,0000E+00	1.6534E-03	2.35ØØE-Ø2	0.00306+00
9	1,50986+84	1,0769E+01	0,0000E+00	1,6992E-03	2.3500E-02	0,00306+00
1.0	2.0000E+04	1.0675E+01	0.00006+00	1,6124E-03	2.35ØØE-Ø2	0,0000E+00
11	2,5000E+04	1.0576E+01	0,0000E+00	1,6417E-03	2.3500E-02	0,0000E+00
12	3.000000+04	1,0483E+01	0,0000E+00	1,55946-03	2.3500E-02	0,000E+00
13	3,5000E+04	1,0390E+01	0.0000E+00	1,5349E-03	2.35002-02	0,00000+00
14	4,000000+04	1,0296E+01	0,00000=00	1,5529E-83	2,3500E-02	0,000DE+00
15	4 5000E+04	1.0209E+01	0,0000E+00	1,6089E-03	2.3500E-02	0,0000E+00

URA#1UM-238

FISSION Neutron Cross Section

ENDF/B MATERIAL NO. 6262

E۷	RGIES
• 0 B	ΕNΕ
1,9400E	BETWEEN
VALUE	ION LAW
o T	AT
REACTION	INTERPOL

RANGE DESCHIPTION

	N									
	CROSS SECTIC Pårns	8.7000E-05 4.0000E-05	2,3400E-04 3,1160E-03	1.6093E-02 4.0491E-02	2,2857E-01 5,1369E-01	5,4199E-01 5,5466E-01	6.6120E-01 9.5700E-01	9,9788E-01	1.0190E+00 1.2599E+00	1,3330E+02 1,4350E+00
	ENERGY	3.0000E+04 8.0000E+04	5 2000E+05 8 0000E+05	9,7000E+05 1,2000E+06	1,4500E+06 1,9000E+06	3,0000E+06 5.0000E+06	6.2000E+06 7,2000E+06	8,7500E+06 1,0000E+07	1.2500E+07 1.5003E+07	1,7500E+07 2,0000E+07
	ADSS SECTION Rarns	3.70005-05 1.0006-05	2200E-04 9850E-03	1.6302E-02 5.4892E-02	L.5125E=Ø1 1.8146E=Ø1	5.4980E=01 5.6336E=01	6.0356E-01 9.3000E-01	. 7708E-00	,.9500E-01 2100E+00	.3438E+00
	ENERGY CF	2.0000E+04 8	4.0000E+05 1 7.5000E+05 1	9.5000E+05 1 1.1500E+06 3	1,4000E+06 1 1,8000E+06 4	2.7500E-06 5 4.5000E-06	5.8000E+06 5 7.0000E+06 5	8.5000E+06 1 9.7500E+06 9	1.20006+07 9 1.45006+07 1	1.7000E+07 1 1.9500E+07 1
	SS SECTION	7608E-05 0000E-05	0020E-05 3400E-03	2785E-02 3500E-02	3289E-02 3693E-01	5480E-01 6580E-01	6551E-01 9700E-01	96005-01 82005-01	8780E-01 1400E+00	34935+00 2 9 785+00
	ENERGY CRC	. POBRE+24 8.	.0000E+05 7, .0000E+05 1,	2000E+05 1.	,3580E+25 9. 7000E+06 4.	528225+265 5, 000005+06 5,	5000E+00 5	25006+06 9	.1500E+07 9, 4080E+07 1,	65886 + 07 1. 98886 + 07 1.
	SS SECTION Babage	00000000000000000000000000000000000000	0000E-05 3 2400E-03 7	71606-03 9 8119E-02 1	77256-02 1 82286-01 1	45196-01 2 54836-01 4	62616-01 5 35176-01 6	90005-01 8 87005-01 9	83886-01 1 89885-01 1	31576+00 1 30096+00 1
	ENERGY CRO	.5000E+03 0. .0000£+04 4.	.00006+05 4.	.9000E+05 8. .0502E+06 1.	.3000E+06 5. .6000E+06 3.	1000E+06 5.	4000E+06 5.	.0000E+06 9.	15285+87 9. 35885+87 1.	.6000E+07 1.
RINX	4S SS SECTION	9000E+00 8 9000E+05 5	1000E-05 1 5600E-04 6	3710E-03 8 5170E-02 1	2599E-02 1 3387E-01 1	5508E-01 2 4126E-01 3	5955E=01 5 2318E=01 6	0005-01 8 02005-01 9	78885-81 1 34885-80 1	2992E+00 1 5237E+00 1
50 Y LINE.	ROSS SECTION ENERGY CHOS	0000E-05 0.1	0000E+04 4.	5000E+05 5.	2580E+86 4.	88895.86 5. 10006-06 5.	20005-06 7.	5000E+06 9.	85806+87 9. 30806+87 1.	5980E+07 1.
1 10	VELITRON C INDEX,	년 4 년 4	1 1 0 1 0 2 0		31 36 1	41 46 3	51 56 56	61 7 66 9	10,11	81 86 11 10 11

- 239 -

REFERENCES FOR EXPERIMENTAL DATA

238U(n,f)

<u>Yr.</u>	Lab	<u>Author</u>	References
71	KUR	Vorotnikov, et al.	Jad. Fiz. Iss. <u>12</u> , 22 (1971)
69	STF	Barrall, et al.	AFWL-TR-68-134 (1969)
67	ALD	White, et al.	J. Nuc. En. <u>21</u> , 671 (1967)
65	CAT	Emma, et al.	Nuc. Phys. <u>63</u> , 641 (1965)
63	CIS	Mangialajo, et al.	Nuc. Phys. <u>43</u> , 124 (1963)
63	CCP	Pankratov	At. En. <u>14</u> , 177 (1963)
61	KYU	Katase	Priv. Comm. (1961)
61	ALD	Adams, et al.	J. Nuc. En. <u>14</u> , 85 (1961)
60	CCP	Pankratov, et al.	At. En. <u>9</u> , 399 (1960)
58	CCP	Flerov, et al.	At. En. <u>5</u> , 657 (1958)
58	CCP	Kalanin, et al.	Second Peaceful Uses of At. En. Conf. Geneva Vol <u>16</u> , 136 (1958)
57	LAS	Smith, et al.	Bull. Am. Phys. Soc. <u>2</u> , 196 (1957)
57	LAS	Henkel	LA-2122 (1957)
57	HAR	Allen, et al.	Proc. Phys. Soc./A <u>70</u> , 573 (1957)
56	ORL	Lamphere	Phys. Rev. <u>104</u> , 1654 (1956)
56	SAC	Ballíní, et al.	Priv. Comm. Netter (1956)
56	HAR	Uttley, et al.	AERE NP/R-1996 (1956)
URANIUM-238

(N, CAMMA) Neutron Cross Section

ENDF/B MATERIAL ND. 6262

× Ż Ľ

DESCRIPTION LN Y LINEAR

4.80445+26 EV	BETWEEN ENERGIES
ICTION & VALUE	FERPOLATION LAW
REACTION	INTERPOL

RANGE 1 TO 186

RANGE 214 TO 263 DESCRIPTION Y LINEAR IN X RANGE 186 TO 214 × z z DESCHIPTION LN Y LINEAR

SECTION CROSS ENERGY I ON

2,20005+06 4,30005-02 5,00005+06 0,37005-03 1,00085+07 2,00085+03 1,00085+07 2,00085+03
2,00005406 5,10005-02 4,00005406 1,33005-02 9,00005406 2,49905-03
1,8000E+06 6,0000E-02 3,6000E+06 1,6500E-02 8,0000E+06 3,1700E-03 2,0000E+06 3,1700E-03 2,0000E+07 4,7910E-04
1,5000E+06 8,0000E-02 3,0000E+06 2,4000E-02 7,0000E+06 4,1000E-03 1,4000E+07 1,0000E+03
1,4000E406 8,7500E402 2,5000E406 3,4500E402 6,0000E406 5,7400E403 1,2000E407 1.3700E403
2234 2534 2540 2540

- 243 -

REFERENCES FOR EXPERIMENTAL DATA

²³⁸U(n,Y)

<u>Yr.</u>	<u>Lab</u>	<u>Author</u>	References
72	FEI	Chelnokov	Jad. Fiz. Iss <u>13</u> , 6 (1972)
72	FEI	Panitkin, et al.	At. En. <u>33</u> , 762 (1972)
71	GA	Fricke, et al.	Third Conf. Neutron Cross Sec- tions &Tech., Knoxville, Tenn. Vol <u>I</u> , 252 (1971)
71	LAS	Drake, et al.	Phys. Lett./B <u>36</u> , 557 (1971)
71	LRL	Nagle, et al.	Third Conf. Neutron Cross Sec- tions &Tech., Knoxville, Tenn. Vol <u>II</u> 259 (1971)
70	LEB	Bergman, et al.	I.C.D. (Obninsk) <u>6</u> , 32 (1970)
68	KFK	Menlove, et al.	Nuc. Sci.&Eng. <u>33</u> , 24 (1968)
65	FEI	Belanova, et al.	At. En. <u>19</u> , 3 (1965)
64	ORL	Macklin	Priv. Comm. (1964)
64	ALD	Barry, et al.	J. Nuc. En. <u>18</u> , 481 (1964)
63	HAR	Moxon, et al.	TRDWP/P-8 (1963)
63	CCP	Tolstikov, et al.	At. En. <u>15</u> , 414 (1963)
60	DUK	Bilpuch, et al	An. Phys. <u>10</u> , 455 (1960)
60	LAS	Diven, et al.	Phys. Rev. <u>120</u> , 556 (1960)
60	CCP	Belanova	At. En. <u>8</u> , 549 (1960)
59	ORL	Lyons, et al.	Phys. Rev. <u>114</u> , 619 (1959)
59	HAR	Hanna, et al.	J. Nuc. En. <u>8</u> , 197 (1959)
58	ALD	Perkin, et al.	Proc. Phys. Soc. <u>72</u> , 505 (1958)
58	CCP	Leipunsky, et al	Second Peaceful Uses of At. En. Conf. Geneva Vol <u>15</u> , 50 (1958)
46	LAS	Linnenberger, et al.	LA-467 (1946)
45	CAV	Broda, et al.	BR-574 (1945)

93-NP-237 ANCILASL EVAL-JUN73 J.R. SMITH (ANC), W.E. STEIN (LASL) DIST-MAY74 P.C. TO NORMALIZATION AND STANDARDS SUBCOMMITTEE MARCH 1974 PERTINENT HOLLORITH FROM GENERAL FILE FOLLOWS (MAT 1263) ALL REFERENCES CARRIED OVER FROM GENERAL FILE 237-NEPTUNIUM EVALUATED JUNE 1973 BY J.H.SMITH (AEROJET NUCLEAR CO) AND W.E.STEIN (LOS ALAMOS) * THE BASIC CHANGES FROM THE VERSION III EVALUATION ARE: 1. A NEW FISSION EVALUATION BY W.E.STEIN, FROM 40 KEV TO 20 MEV. 2. NEW RESONANCE PARAMETERS, BOTH RESOLVED AND UNRESOLVED 3. REVISED CAPTURE CROSS SECTIONS, 4. RENORMALIZED (N, 2N) AND (N. 3N) DATA, 5. READJUSTMENT OF THE INELASTIC CROSS SECTIONS TO ACCOMMODATE THE ABOVE CHANGES, FILES I, IV, AND V AND THE LOW ENERGY POINTWISE DATA IN FILE III ARE UNCHANGED. CROSS SECTION VALVES AT E=0,0253 EV ARE: 186,63 BARNS TOTAL 17.51 BARNS SCATTER CAPTURE 169.10 BARNS 16.63 MILLIBARNS FISSION BELOW 0,3 EV THE FISSION CHOSS SECTION IS GIVEN BY MT=18 THE SAME POINTWISE FILE THAT WAS USED IN VERSION III, THE FISSION CROSS SECTION AT 0,0253 EV IS 16,63 MB. ABOVE 40 KEV THE FISSION CROSS SECTION HAS BEEN REEVALUATED BY W.E.STEIN. THE EVALUATION FOLLOWED WHITE ET AL (14) FROM 40 TO 505 KEV, KLEMA(15)(RENORM) TO 1,0 MEV, STEIN(16), 1,0 TO 4,5 MEV, AND PANKRATOV (17), 4,5 TO 20 MEV, NORMALIZED TO WHITE AND WARNER(18). THE ESTIMATED ERRORS IN THE FISSION CROSS SECTION ARE AS FOLLOWS: ENERGY RANGE STANDARD ERROR (MEV) (PER CENT) RES, RANGE 50 0,040<E<0,505 10 Ø,505 Ø,505<E<1,0 5 10 1,Ø<E<5,4 -3 5,4<E<14.1 10 14.1 4 14,1<E<20,0 10 *** REFERENCES *** G.E.HANSEN, QUOTED IN R.B.LEACHMAN, P/665, PROC 2ND UN CONF ON PUAE (1958)
 B.D.KUZMINOV ET AL. SOV JOURN AT ENERGY VOL 4, P250 (1958) 3. V.I.LEBEDEV, V.I.KALASHNIKOVA, SOV JOURN AT ENERGY

	VOL 10, P357 (1961)	
4.	L.D.GORDEEVA, G.N. SMIRENKIN, SOV JOURN AT ENERGY,	
	V108, P783 (1957)	
5,	N.E.HOLDEN, CHART OF THE NUCLIDES, 11TH ED (1973)	
6,	R.S. IYER ET AL, PHYS AND CHEM OF FISSION, VOL 1,	
	P439, IAEA, VIENNA (1965)	
7.	G.P.FORD AND J.S.GILMORE, LA-1997 (1956)	
8.	D. PAYA, THESIS, UNIVERSITY OF PARIS-SOUTH, CENTER	
	D-ORSAY (1972)	
9.	E.PENNINGTON, PRIVATE COMMUNICATION	
10.	R.C.BLOCK, PRIVATE COMMUNICATION	
11.	D.T.GOLDMAN, TRANS AM NUCL SOC. VOL 7, P84 (1964)	
12.	S. PEARLSTEIN, NUCL SCI ENGR, VOL 23, P238(1965)	
13.	J.H.LANDRUM ET AL, UCRL-74262 (1972)	
14.	P.H.WHITE ET AL, PHYS AND CHEM OF FISSION, P219,	
	IAEA, SALZBURG (1965)	
15	E.D.KLEMA, PHYS REV VOL 72, PB8 (1947)	
16,	W.E.STEIN ET AL, CONF2660303, P623, WASHINGTON 196	6
17.	V.M. PANKRATOV, SOV JOURN ATOMIC ENERGY, VOL 14.	-
	P.197 (1963)	
18.	P, H, WHITE AND G, P, WARNER, J NUCL ENERGY VOL 21,	
	P671 (1967)	
19	J.J.NAGLE ET AL, CONF=710301, V1, P259,	
	KNOXVILLE (1971)	
2ø	J. TERRELL, PHYS & CHEM OF FISSION, VOL2, P3,	
	IAEA, VIENNA (1965)	

NEPTUNIUM-237

ENDF/8 MATERIAL NO, 6263 TABLE OF CONTENTS

	GENERAL INFORMATION	
DATA TYPE	REACTION	CARDS
GENERAL INFORMATION	COMMENTS	78
RESONANCE PARAMETERS	TABLE OF CUNTENTS Resonance Data	3 995
NEUTRON CROSS SECTION	FISSION	109

NEPTUNIUM-237 ISOTOPE FRACTIONAL ABUNDANG NUMBER OF ENERGY RA	E 1 NGES	°TUNIUM-237 •0000E+00 2	RESONANCE	ENDF/B MATER] NCE DATA Parameters	IAL ND. 6263
ENERGY RANGE NUMBER LOWER ENERGY LIMIT UPPER ENERGY LIMIT NUCLEAR SPIN- SPIN SCATTERING LEN NUMBER OF L STATES-	(EV) 3 (EV) 1 GTH (A+) 9	1 F .0000E-01 .3000E+02 .5000E+00 .1410E-01 1	RESOLVED SINGLE	E-LEVEL BREIT,	-WIGNER PARAMETERS
L VALUE		ø			
NUMBER OF RESONANCE Spin Scattering Len	SØ GTH (A=)-= Ø	170 .0000E+00			
			RESONANCE WID	THS (EV)	
INDEX ENERGY (EV)	J VALUE	TOTAL	NEUTRON	RADIATION	FISSION
1 -2,5000E+00 2 -2,2200E+01 3 4,9000E+01 4 1,3200E+00 5 1,4800E+00 6 1,9700E+00 7 3,8400E+00 8 4,2600E+00 9 4,8600E+00	2.5000E+00 2.5000E+00 2.5000E+00 2.5000E+00 2.5000E+00 2.5000E+00 2.5000E+00 2.5000E+00 2.5000E+00 2.5000E+00	4.0957E-02 3.2041E-02 3.9841E-02 4.6346E-02 4.1219E-02 4.1648E-02 3.7528E-02 3.8735E-02	A.9546E;23 3.7693E;405 3.2550E;405 1.4501E;405 1.4501E;405 2.4401E;405 2.4401E;805 3.4391E;405 3.4391E;405	3.2000E=02 3.2000E=02 3.3000E=02 3.9000E=02 4.8200E=02 4.1200E=02 4.1400E=02 3.7500E=02 3.8700E=02	2,77402-06 3,50402-06 1,24402-06 3,49402-06 9,805402-06 7,35402-06 3,71402-06 1,68402-06 5,90402-07

- 246 -

18	5.77002+00	2.500000+00	4.4828E+02	6.21905-04	4.4200E-02	A.5600E-06
11	6.370 PF+00	2.5000E+00	3.81045-02	9.2879F-05	3. A100E=02	9.40005-07
12	6 67005+00	2 50005+00	4 78935-00	18806-05	4 79005-02	4.11145-05
14	7 40000.00	2.500000-000	9,79202-02	1.10000-000	7 04005-00	1 1 1 1 4 0 - 0 -
13	1.10005+00	5,20006+00	3.24116-02	7.77076-00	3.54000=02	21/8005-00
14	/.4100E+00	2.5000E+00	3.9850E-02	1.4591E-04	3.97001=02	4.39006-00
13	8,3004€≠00	2,500000+00	3,78ø8E-02	1.Ø688E-Ø4	3.7700E=02	9,7000E-07
1.6	8.97045+00	2.5000E+00	3.8529E-22	1.21005-04	3.8400E=02	8.3700E-06
17	9.36000-00	2.5000E+00	4.27225-02	5.22095-04	4.2200E=02	2.80005-07
	1 00305+01	3 50005+00	7 81045-02	4 49485-45	3 81005-02	4.34005-06
10	1 04045.04		3,61200 02	E 4690E 44	7 54005-00	1 04002 00
1,2	T'RGOALANT	2,500000000	3.01000-02	2.02071-04	3.50000002	1100000
20	1,08401.+01	2.50001+00	4,5381E-02	8.80001-04	4.45001-02	A.1000E-07
21	1,10946+01	2,5000£+00	4,3885E-02	8.8482E+Ø4	4.3000E-02	3.2000E-07
22	1.22Ø0E+Ø1	2.500000+00	4.9664E-02	6.25228-05	4.9600E-02	1,0900E-06
23	1.2610E+01	2.5000E+00	4.22955-02	7.95ØBF-04	4 1500E902	1.7000E-07
24	1.31405+01	2.50005+00	4.13225-02	1.95755-05	4 13005-02	2.24465-06
55	1.58006+01	2.5000F+00	4 14045-02	02165-04	4 13005-02	1.94005-06
64	1 40805-01		4 97045-00	A 0100C 04	A 6800E-02	4.00/00-07
20	1,00000000	2,50000-00	4,77242-92	9,20702404	7,80000000	
2/	1.08205+01	5.20005+00	3.4044E~@2	2.4301E-04	3.44001-02	1.21006-00
28	1.7020E#01	2,50000+00	4,1311E-Ø2	5.7757E-00	4.1300E-02	4.92005-00
29	1,7390E+01	5.5000E+00	3,95856-02	1,8412E-04	3.9400E=02	1,3400E-00
30	1.7890E±Ø1	2.5000E+00	4.1322E-02	1.81886-05	4.1300E=02	3.8000E-06
31	1.8880E+01	2.5000E+00	4.1339E-02	3.6499E-05	4.1300E=02	2.89000-00
32	1.01205-01	2.50005+00	4 82095-02	1.05825-04	4 B100E=02	2.94005-06
11	1 00205-01	5 50005+00	7 68385-40	7 40910 05	3 EH00E-02	0.05//0F=//A
30	1,77200-01	2,500002,000	3.56762-02	/	4 54000-002	4 4 0 /05 - 03
34	2,0370E+01	2.50002+00	4,1/30E-02	1,12901-000		
32	5.18405+01	2.500000+00	3,5418E-Ø2	5.10186-04	3.49001-002	1.4/202-00
36	2,1300E+01	2.500ØE+0Ø	4.1332E-02	2.3076E-05	4.1300E-02	8.56902-06
37	2.2010E+01	2,5000£+00	4.1561E-02	1.26016-03	4.0300E=02	7.4000E-07
38	2,2860E+01	2.50002+00	4,0050E-02	4.4704E=04	3,9600E=02	3,25006-06
39	2.3670E+01	2,5000E+00	4.160ØE-02	1.69026-03	4.0000E=02	1,9000E-07
					4	A (0000-06
40	2.3974E+01	2,50002+00	6.0973E-02	1,7087E-04	0.0000L-02	2.00000-00
41	2.4970E+01	2,50002+00	4,8713E-Ø2	4,6097E-03	4,4100E-02	3.2000E-00
42	2.6180E+01	2,3000E+00	4,0080E~02	2.3895E#04	3.9800E-02	4,11906-05
43	2.6540E+01	2,500000+00	4.4661E=02	2.8401E-03	4.1800E=02	2,11906-05
44	2.70786+01	2.50005+00	4.13415-02	2.44545-05	4.1300E+02	1.63706-05
45	2 84805-01	2 50005+00	A 1449E-02	4 46225 04	4 1300F 02	2.44005-06
	2 80305+01	2 BOODE-00	4 144 85-40	09715-04	4 3005 02	8.3700-06
40	C'DACACANT	2,50000-00	4.14101-02	1,07/10,007	4,10000-002	
47	2.94001.401	2,50001+00	4,1427E-02	B. 9790E-09	4,1000C-02	318778E-02
48	3,04005401	5.20005+00	4,2039E-02	3.759/E-03	3.8200E-02	7 9/10E-00
49	3,0720E+01	2,50006+00	5.3431E×C2	3.27Ø1E-Ø4	5,3100E-02	4,12006-06
58	3.1290E+01	2.50006+00	3,62852-02	2,7801E-04	3,6000E=02	8,8700E-06
51	3,1650E+01	2,5000E+00	4,1352E-02	4,78202-05	4.1300E-02	3,8408E-06
52	3.3410E+01	2.5000E+00	2.80425-02	4.3813E-04	2.7600E-02	4.3700E-06
83	3.30006+01	2.5000F+00	A 59425-02	4 58225-04	6 5500F=02	4.18005-06
54	3 44705-01	2 5000C+00	A 14035-02	4 93715-04	4 + 300F+02	0.02005-06
24	3 540/02401		4,14906-02	1.00/10-04	4,100000-02	# 74 Wac - 04
22	0.01APL 001	2.50000000	3,72332-02	3.20001-04	3.57001.002	21/140E-00
50	3,0300F+01	2,50006+00	6,56721-02	1.57178-04	0.8200L=02	1.2/005-05
57	3,6810E+01	2.500ØE+00	4,1392E-02	7.2199E-05	4,1300E=02	2,02705-05
58	3,7140E+01	2,5000E+00	4.6411E-Ø2	1,3602E-03	4,4900E=02	1,50436-04
59	3,7920E+01	2,500ØE+00	4,1380E-02	6.4Ø42E-Ø5	4.1300E-02	1.554ØE+05
6Ø	3.81602+01	2,50000+00	6.3518E-02	1.60985-03	6.1900E-02	8.40005-06
61	3.89296+01	2.5000E+00	5.7271E-02	1,29015-03	5.5600E+02	3,81365-04
62	3.9220F+01	2.5000E+00	4.70435-02	6.5006F-04	4 A000E-02	4.32835-04
41	3 000000401	3 50005+00	7 80071-00	4 40095-04	7 37005-02	3.66715-03
4.4	4 13446-01	5 60005+00	7 68675-60	0.06000-03	3 4005-02	3.37435-04
48	A 37886+01		13007-00	A #4800 08	4 4 3005 -00	A 4900-04
69	7.2300C+D1	2,900000000	4.13971-02	9,04072400	4,10000-02	B,0000E-00
00	*.2010E+01	2.90001+00	4.1/932-02	1.1/122-04	4,13000-02	31303/2-04
6/	4,30391+91	5,20005+00	4.19921-02	5.8AA1E+84	4,1/001-02	2155005-00
68	4,57001+01	5.20005+00	6,2568E-Ø2	4.82085-04	6,2100E-02	5,50402-00
69	4,6010E+01	2.500ØE+00	4.2228E-Ø2	6.5864E-Ø4	4.1300E+02	2,6901E-04
7Ø	4.6340E+Ø1	2.5000E+00	4.6774E-Ø2	3,0701E-03	4,3700E-02	3.6400E-06
71	4,7310E+01	2.5Ø0Ø£+0Ø	4.57012-02	2,3998E-03	4.3300E=02	9,4000E-07
72	4.8470E+01	2,5000E+00	4.1422E-02	1,10000-04	4.1300E-02	1,21906-05
73	4.8780E+Ø1	2.5000E+00	4.1836F-02	5.30116-04	4.1300E=02	5.97005-06
74	4.9889E+81	2,5888E+88	4.63936-02	5,09016-03	4.1300E-02	2 40005-06
75	5.0380F+01	2.5000F+00	4.82825-02	A.92981-03	3 0300F-02	2.17205-05
76	5.16906-01	2.5000F-00	4.14005-02	0.130AC_05	4 +3005-00	. 77445-95
÷7	5.21005-04	2.5000F-00	4.16775-00	3.72776-04	4 3005-00	4.63005-06
78	5.26205-01	2.5000F-00	4.20075-02	7.02911-04	4 3005 49	A. 3500E-06
	5 30306-0-	A 50005-00	4.600/0-02	A A BOAC OF	4 10000-02	4 84305-00
17	5 1060FLMD1		1.1.000L-02	0,1070L000	4,10000-02	1 0 4 9 0 5 7 0 2
		2,00001+00	4.10936-02	3.80/0E+04	4.1000F-02	61700NE-ND
81	2.92201.001	2.0002+00	4,24382-02	1.31078-04	4.1300E-02	6. 97002-06
82	2.2020F+01	5'2000F+00	4,1638E-02	3,10736-04	4.1300E=02	2,10/0E-05
83	2,6030E+01	2,5000E+00	1,0900E-01	1,9896E-03	1,0700E-01	6,5400E-06
84	5,8360E+Ø1	2,5000E+00	4.1766E-02	4,6295E-04	4,13005-02	2,63006-06
85	5,8600E+01	2.5000E+00	4,1606E-02	2.9472E-04	4.1300E-02	1,1180E-05
86	5,9490E+01	2,5000E+00	4.5011F-02	2.01005-03	4.3000E-02	1,26005-06
87	6.0020E+01	2.5000E+00	4.59051-02	2.69995-03	4.3200E-02	3.06005-06
88	6.0930F+01	2.5000F+00	4.06315-00	1 82970 61	3 28005-03	4.29005-06
20	6.16205404	2.50006-00	4 18045-40	5 02890-04	4 43845-40	1.03000-04
64	6 2450C+01	5 BOOME - 04	4,10£01-02	2,2600L909 9 48075 47		3 8 9 9 8 5 - 9 5
40	6 3000F 0	2,3000C+00	0,22001-02	C,077/L-03	0.0100L+02	3102402-00
91	2070L+01	2,20002+00	4./2216-02	1,7201E-03	4.5900L-02	1.2400E-00
92	0.3940E+01	2,3000E+00	4,1581E-02	2 72876-04	4.1300E-02	5,44402-06
93	0,4940E+01	2,500ØE+00	4.4712E-Ø2	1.0097E-03	4.3700E-02	2,2900E-06
94	6,5680E+01	2,5000E+00	5,0552E-02	A,5498E-03	4.6000E-02	2,5100E-06
95	0,7460E+01	2,50000+00	4.39825-02	5,7798E-03	3.8200E-02	1,91000-06
96	6.7940F+01	2.50005+00	4.59025-00	2.39035-03	4.36005-02	1.3800E-06
9 7	6.87505-01	2.50000.00	4.16495-00	3 58000 -04	4 43005-02	1.32005-06
0.8	7.00305-01	2.50005-00	6 80/45-02	0 44075-07	4 EDMME-40	7.74046-04
00	7.04645-04	2,5000C+00	4 18085-02	2.1700L400 8 00157 01	0,37002-02	01/7085 "VD
47	7 44040 41	2,20002+00	4.1002E-02	2,0010E-04	4.1000L-02	4,4020E-00
1 1 10	.1180E+01	2.20005+00	4.36Ø1E-Ø2	2,2999E-03	4.1500E-02	1,34000-06
101	7.1440E+01	2.50000+00	4,3981E-Ø2	2,6802E-03	4,1300E-02	7,40005-07
102	7.3860E=01	2.5000E+00	4,1613E-02	3,1025E-04	4,1300E-02	2,79005-06
103	7,4260E+01	2.50002+00	4,2772E-02	1,4701E-03	4,1300E-02	1,81000-06
184	7.45482+91	2,58885+88	4,1818E-02	3.1825E-84	4.13005-02	8.23005-06
		· · · ·				

1.00	7					
105	1.30705+01	5.20005+00	4,1470E-Ø2	1,10025-04	4,1300E+02	616848E-05
106	7,6830£+01	2,509000+000	4.1489E-02	1.8634E-04	4.1300E-02	2.22005-06
107	7.6970E+01	2.5000E+00	4.16765-02	3.74625-04	4 1300F-02	1.8600E-06
108	7 83305+01	3 80005+00	3 97415-00	a 4408r 07	7.44045-40	1100000-04
1.00	7 0000-000	2,000000000	1.01011-04	5,44405480	1.03805485	1141485-80
104	1.9240E+01	5,20005+00	5,4120E-02	2,5201E-03	5,1000E=02	2,10006-07
110	8,03506+01	2,5000£+00	4.1466E-02	1.5687E=04	4113206-02	9.27005-06
111	8.06045+01	2.500000+00	4.18455-02	5.42265-04	4 3005-02	2.62005-06
1.9	8 16905-01	5 6000F+00	4 1 2 9 7 5 - 6 9	4 00000 04	4	
			4.1.505-85	H, 20021-07	4.10000-02	2100001-00
113	0,58405+01	5.20006+00	4,2119E-02	8,1015E=04	4 1300E-02	1.23006-06
114	8,3390E+01	2,50006+00	4,44126-02	3,11032-03	4113005-02	1.27002-06
115	8.37045+01	2.5000€+00	4.68515-02	5.5496F-03	4 3005-02	4.13995-96
114	8 54905+01	3 50006+00	4 40 - 30 - 40	4 47075 07	A DadE-ag	1 16600 - 06
	8 40705.0	500000-00	6. TU/JL 02	1.1/036403	C. SABREARS	3.10005-00
11/	0.00/05+01	5.20005+00	4,2140E-02	8.3496E+Ø4	4,1300E-02	5,3100E-06
118	8.6500E+01	2,30001+00	4.9022E-Ø2	5.7198E-Ø3	4~3300E=02	2.55000-06
119	8.765 ⁰ E+Ø1	2.500000+00	4.500ØE-02	3.69996-03	4 1300E=02	3.20005-07
120	8 8+30F+01	2.50005+00	4 23785-49	4 02085-03	4 3005-00	4 77000-04
101	8 80805-81	0 80008.00	4.20356-92	1.04702400	4.1000C-02	-1/300E-00
121	O O O POCLADI	2,0000000	4.01511-82	7.84445-80	4,13885-82	1.30005-00
12%	0 94265481	2,20085+08	5,1293E-02	4.2896E-03	4 70601-02	3,82002-06
123	9.0840E+01	2.50006+00	5.48836=02	4.97995-03	A``090ØE⇒02	3.29005~06
124	9.1320F+01	2.5000F+00	4 14445-00	1 B7685-04	4 3005-02	4 49000-04
105	9 10545.01	A 50005.00	4114000-02			0102002-00
122		2.20001400	4.10191-02	5.10146-04	4,1300E-02	8,7900E*00
120	9.275PE+01	2,5000E+00	4.1498E~Ø2	1.8876E-04	4 1300E 02	9,1600E~06
127	9,3360E+01	2.500000+00	4.88ø3E-ø2	1.80015-03	4.7000E-02	3.2400E-06
128	9.4220F+01	2.5000F+00	4 14485-02	3 47895-84	4 43685-89	
100	9 87705-0	0 \$000E+00		3.87002-04		5100002-07
	100/01/001	2.20002400	4.1067L-02	3,20405404	4,79865-85	9 24885-80
130	9,0140E+01	5.20005+00	4 .1368E -Ø2	5.4909E-05	4 1300E-02	1.34602-05
131	9.6610E+Ø1	2,5000E+00	4.1661E-02	3.49916-04	4.1300E+02	1.1480E-05
132	9.7729E+01	2.5000E+00	6.5281F-02	3 47965-03	A 1800F-02	1.54006-04
1 3 3	9 84685401	3 5848F+00	7 71016-02	6 17050.41	7	4 42/405-04
130		2,500000000	/./3011-02	2.3/95E+03	7,500000-02	7145005400
134	A 9446F+61	5.20005+00	4,1417E-Ø2	9,94948-05	4,1300E-02	1.729ØE+05
135	9,94902+01	2,5000€+00	5,1743E-02	1,94000-03	4,9800E-02	2,62006-06
136	1.001YE+02	2.5000E+00	5.84015-00	5.3000F-03	5 31005-02	1.24865-26
1 7 7	1 0 0 0 5 - 0 2	> 50005+00	1 25426-00	# 1004F AT	5 31005-00	20000-06
107	1 01 AUE - 00		0.29121-02	D. 4070[403	5,71000-02	5120005-00
130	T'NTO <f+n5< td=""><td>5,20005+00</td><td>4,25336-02</td><td>1,2%486~03</td><td>4.13000-02</td><td>3.01005-00</td></f+n5<>	5,20005+00	4,25336-02	1,2%486~03	4.13000-02	3.01005-00
139	1.0192E+02	2,50002+00	4 2971E-Ø2	1.66985-03	4,1300E-92	1,38000-06
140	1.0217E+02	2.5000E+00	4.1605F-02	3.00187 04	4 3005-02	5.1100F-06
1.41	1 01705-02	2 5000F+00	1 20026-02	4 80825-03	4 3006-02	3. 81 // 65 - 66
1.0	1 04630.00	- #4995.44		1.99020-00	1,10001-02	3101002-00
144	1,00020402	2,500000+00	4.10421-02	3.39426-04	4.13000-02	9 . 0 / 0 0 E ~ 0 0
243	1,00106+02	2,500000+00	7,9688E-02	2.17835-03	7,75000-02	9,6000E-06
144	1.0570E+02	2.5000E+00	4.4400F-02	3.2868F-Ø3	4.11000.002	1.3540F+05
145	1.07025+02	2.50005+00	4 18936-00	B 13115-04	4 1 1005-02	1.02005-05
	1 0 0 7 4 5 4 6 6	5,505000,00	4,1020L-02	9.10110-01	1.70000-00	1102002-00
140	T*88/2F+85	2,50000+00	4.21171-02	8,10201-04	4.13000-02	9.0000F-00
147	1,0912E#02	2,5000E+00	4.35916-02	2,2898£-Ø3	4,1300E-02	9.40002-07
148	1.1030E+02	2.5ØØØE+0Ø	4.25125-02	1.20996-03	4.1300E=02	1.81006-06
949	1.10585402	2.5000F+00	4 23425-02	4 08945-03	4 3005-02	2.23005-06
1 10	1 40055400	0 50005-00	1 17916-02	2 26057 01	1 10000-002	1 38466-06
190	TTD/OF-DZ	2,500000000	H.HO/1E-02	3.00752-00	4.1000E-0E	1130002-20
1,72	1.11/16402	5,20005+00	4,45726-02	3.27016-03	4.13006002	1.01001-00
152	1,12226+02	2,58885+48	4.1717E-82	3,9831E-04	4.13005-02	1,86202-05
143	1. 1333F+02	2.5000E+00	4.25195-02	1.21046-03	4.43005=02	A.8900F-06
1 = 4	1 13715+02	5 50005+00	4 54845-00	4 00055-03	A . TOUL - 02	4.44495-96
127			7.00972 02			
152	1,14/01+02	2,500000+00	4.3511E-02	5.50ALE-03	4,13005-02	1./0001-00
156	1,1540E+02	2,500ØE+0Ø	4.18116-02	4.97502-04	4,1300E-02	1,37506-05
157	1.1579F+02	2.500000+00	4.34025-02	2.0757F=03	4.13005-02	2.5870F=05
	1 14765-02	3 5040F+00	4 4 7705-00	4 10705	4 3005-03	7.90705-05
190			4.1//20-02	H.37/71-04	1.10000-000	
194	1,17040-02	2,20001+00	4.33691-02	2.02035-03	- 1000L-02	#10000F+03
160	1,1907E+02	2.500ØE+00	4,3724E-02	1.2396E-Ø3	4.1300E-02	1.1843E-03
141	1,1946E+02	2,5000E+00	4.34595-02	7.4978E-04	4.1300E-02	1 40906-03
	1 00145-00	3 50005-00	4 17745-00	3 25495-04	4 3005-00	50010-04
102	7.50705405	2,00002-00	- 1//ot-02	0.23701-04	1.10000-02	1 1700C-05
163	1.2190E+02	2,5000L+00	4.1722L-02	3.9000L-04	4.13006.002	/11/701-03
164	1.237 <u>0</u> E+Ø2	2,5000E+00	4,1769E-02	4,Ø383E=Ø4	4.1300E-02	6.5000E-05
165	1.25018+02	2.5000E+00	4.254ØE-02	1,20985-03	4.1300E-02	3,0120E-05
	1 08685+40	3 30005+00	4 40155-00	2.78965-03	4.13085-02	5.72005-06
100	1.20096402		4 7012C UZ	A 74845.47	4 . 1045 - 42	0.41405-04
167	1,20201+02	2,50000+00	9.3050L-02	T'LENTE-NO	-,10000002	* 01 10C CC
168	1,2712E+02	2,5000E+00	4,1829E-02	5.000005-04	4,1300E-02	S19706-02
162	1.27506+02	2.5000E+00	4.1715E-02	4.Ø763E-Ø4	4,1300E-02	7,75402-06
70	1 20485+02	2.5000F+00	4.22816-00	0.6948F-04	4.13002=02	1,19806-05
710	-161406406					

NE	PTUNIUM-237			RESONANC RESONANCE P	ENDF/B MATERI E DATA ARAMETERS	AL NO. 6263	
ISOTOPE FRACTIO NUMBER	NAL ABUNDANCE OF ENERGY RAN	1.000 GES	NIUM=237 BRE+00 2				
ENERGY RANGE NUMBER 2 UNRESOLVED 51NGLE-LEVEL BREIT-MIGNER PARAMETERS LOWER ENERGY LIMIT (EV) 1.3000E+02 UPPER ENERGY LIMIT (EV) 4.0000E+04 NUCLEAR SPIN							
L VALUE Number	OF U STATES		Ø 2				
			DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION	
		J=VALUE 2.0000€+00	COMPETITIVE 0.0000E+00	NEUTRON 1,0000E+00	RADIATION 0.0000E+00	FISSION 1,0000E+00	
			AVE#	AGE RESONANCE	WIDTHS (EV)		
INDE 12345678901234567890123456789 1112345678901222222289	ENER <u>G</u> Y (EY) 1,3000E+02 2,0000E+02 2,0000E+02 2,3100E+02 2,4000E+02 2,4000E+02 2,5900E+02 2,5900E+02 3,3000E+02 3,3000E+02 3,3000E+02 3,4700E+02 3,4700E+02 3,4700E+02 4,2900E+02 5,5100E+02 5,500E+02 5,	LEVEL SPACING 1.0000E+000 1.0000E+000 1.0000E+000 1.0000E+000 1.0000E+00	COMPETITIVE COMPETITIVE COMPETITIVE COMPETER COMPETE	NEUTRON 1.004E-04 1.1075E-04 1.1075E-04 1.10875E-04 1.1082E-04 1.1082E-04 1.1082E-04 1.1102E-04 1.112E-04 1.1080E-04 1.1086E-04 1.1086E-04 1.1086E-04 1.1086E-04 1.1086E-04 1.1085E-04 1.1098E-04	RADIATION RADIATION RADIATION RODELAC RADIATION RODELAC RODE	FISSION 5.4391E=06 3.971BE=04 2.40031E=06 9.1923E=05 1.3643E=05 1.2935E=04 3.436E=06 9.4655E=05 2.2074E=06 2.2074E=06 2.2074E=06 2.2074E=06 2.2074E=06 4.9022E=06 4.922E=06 4.922E=06 4.922E=06 3.928E=06 2.9998E=06 2.9998E=06 2.5478E=06 2.5318E=06 3.5318E=06 3.5318E=06 3.5318E=06 3.5318E=06 3.5318E=06 3.5318E=06 3.5318E=06 3.5318E=06 3.5318E=06 3.5378E=04 5.5511E=06 3.1378E=04 5.9318E=04 5.9318E=06 3.1378E=04 5.9318E=06 3.1378E=06 3.1298E=06 3.1298E=06 3.1298E=06 3.1298E=06 3.1298E=06 3.1378E=06 3.1298E=06 3	
3Ø 31 32	9.4100E+02 9.5100E+02 1.0069E+03	1.0000E+00 1.0000E+00 1.0000E+00	0,0000£+00 0,0000£+00 0,0000£+00	1,1093E-04 1,1091E-04 1,1158E-04	4.0000E-02 4.0000E-02 4.0000E-02	1.0742E-05 6,5490E-06 2.5609E-04	
33 34	1,0158E+03 1,0220E+03	1.0000E+00 1.0000E+00	0.0000E+00 0.0000E+00	1,1092E-04 1,1100E-04	4.0000E-02 4.0000E-02	1.7004E-05 4.4391E-05	
35 36 37	1,0520E+03 1,0550E+03 1,0920E+03	1.0000E+00 1.0000E+00 1.0000E+00	0.0000£+00 0.0000£+00 0.0000£+00	1,1090E-04 1,1120E-04 1,1096E-04	4.0000E-02 4.0000E-02 4.0000E-02	6,8636E-Ø6 1,2182E-Ø4 3,5497F=Ø5	
38 39	1,1210E+03 1,1310E+03	1.0000E+00 1.0000E+00	0,0000£+00 0,0000£+00	1,1182E=04 1,1087E=04	4.0000E-02 4.0000E-02	3,5439E-04 7,2361E-06	
4Ø 	1,20906+03	1.0000E+00 1.0000E+00 1.0000E+00	0.0000E+00 0.0000E+00	1.1106E-04 1.1084E-04	4,000000-02	8,1452E-05 7,5211E-06 7,7,5211E-06	
43	1,2400E+03	1.0000E+00	0.00000000	1.10835-04	4,00006-02	7.03236-06	
45	1,2830E+03 1,3130E+03	1.0000E+00 1.0000E+00	8.8688E+80 8.8688E+80	1.10822-04	4.0000E-02	7,7846E-06 5,0586E-06	
47 48	1,3230E+03 1,3760E+03	1.0000E+00 1.0000E+00	0,00005+00 0,00005+00	1,1081E-04 1,1137E-04	4.0000E-02	7,9241E-06 2,2033E-04	
49 50	1,3#60E+03 1,4290E+03	1.0000E+00 1.0000E+00	0,0000E+00 0,0000F+00	1,1078E-04	4.00000-02	8,1419E-06 7,0345F-05	
51 52	1 4390E+03 1 4608E+03	1.0000E+00 1.0000E+00	0.0000E+00 0.0000E+00	1,1077E-04	4.0000E-02	8,3214E-06 4,8745F-06	
53	1,4700E+03	1.0000E+00	0.0000E+00	1,10756-04	4.0000E-02	8,4257E-06	

	4 40000.000					
54	1,49901+03	1.0000004000	0,0000E+00	1,10816-04	4.0000E-05	3,3268E-05
55	1,5090E+03	1,000000+00	0.0000E+00	1.10755-04	4.ØØØØE-Ø2	8,5545E-Ø6
56	1.547ØF+03	1.00006.000	0.00005+00	1.10885-04	4.00005-02	6.36722-05
87	1 55705+03		8 88885+88	1 10000-04	44445-43	8 74007-04
	4 5700C+03		DIDODDECDD	1110/21-04	4,000000002	01/1272-00
20	1,5/002-03	1.00000-00	0.0000E+00	1,10981-04	4.00001-02	9,0928E-05
59	1,50886+83	1,00005+00	6.96995+90	1,10715-04	4,0000E-02	8,81376-06
69	1.622DE+Ø3	1,000000+00	P.0000E+00	1.10715-04	4.0000E-02	1,76546-05
61	1.6320E+03	1,0000E+00	0.00000+00	1.1069E-04	4.0000F-02	8.95576-04
62	1.47475+03	1. NARAF + 40	0 00005+00	1 10035-04	4 00005-03	1 34485-04
17	1 48495-01	1 000005.00	0.000000000	1 10932-04		1.04402-04
63	1,00402400	1.00005-00	0.0000F+00	1,10076-04	4.00005-02	9,12126-06
64	1.7040E+03	1.0000L-00	0.0000E+00	1,1117E-04	4.0000E-02	1.9614E-04
65	1,714ØE+Ø3	1,0000E+00	0,0000E+00	1.1066E-04	4.000000-02	9.21575-06
66	1.7540E+03	1.00000.+00	2.44665+466	1.10895-04	4.0000F=02	9.77695-05
67	1.74405+03	1.00000 +00	0.0000-000	1.10685+04	A. 0000F-02	9.31715-04
48	1 87005+03	1 00005-00	8 0000C-00	1 10505-04	4 44445-42	7 54748-04
			0.00000000000	1,16285-004	4,00000-02	1,20/45-24
67	1.80001-03	1.00002+00	0.00005.00	1,10591-04	4.00005-02	A*158RE=09
70/	1.8960E+Ø3	1,0000E+00	0,0000E+00	1,10826-04	4.0000E+02	9.8610E-05
71	1,9060E+03	1.0000E+00	0.0000E+00	1,1058E-04	4.0000E-02	9,80775-06
72	1,9240E+03	1.000000+00	0.0000F+00	1.1077E-04	4.0000E=02	8.4718F=05
73	1.95405+03	1.000000.000	0.00005+00	1.10545-04	4.00005-02	9.8936Colls
74	1 09705+01	1 MARGE + 00	0 00000-00	1 10105-01	1 00005-00	7 47746-00
	1	1.000000-00	N. DODDE DO	1.10046-04	4.00002-02	1.0/346-05
75	2.00/0E+03	1,00001+00	0.00005+00	1,1053E-04	4.00000-02	1,01106-05
76	2,0390E+03	1.0000E+00	0.0000E+00	1,1059E-04	4.0000E+02	3.83086-05
77	2.10106+03	1.0000E+00	0.000000+00	1.1047E-04	4.0000E-02	6.75022-06
78	2.1280F+03	1.0000E+00	0.00000+00	1.10445-04	4.0000F-02	1.77955-05
79	2 19405+03	1.00000-00	0 00000-00	1 10475-04	4 00005-02	1 60305-04
	2 17602 00	1000000000		1110436 04		0,0,0000000
8.0	5.11205-00	1.00000.+00	N. NNNNE+NN	1,10441-04	* . 00000F = 05	7.00205-02
81	2,18506+03	1.00005+00	0,0000E+00	1.1Ø42E-04	4,0000E-02	4.7820E=06
82	2.214ØE+Ø3	1.000000+00	0.0000E+00	1.10498-04	4.00000-02	3.53848-05
8.3	2.22405+03	1.000000+000	0.00005+00	1.10445-04	A. 0000F-02	2. 36405-04
9.4	2 23406+03	1 00005.00	0 00000-00	10445-04	4 00005-02	0 81905-00
22	2,20400400	1,00000.000	0.00005+00	1,10042-04	A. 000001-02	1.00376-05
82	2.20406+03	1.000000+00	0.00005+00	1,10361-04	4.00001-02	1.04006-06
86	2.3050E+Ø3	1.0000E+00	0.0000E+00	1.1039E-04	4.0000E-02	1.92036-05
87	2,31505+03	1.9090€*99	8,88885+88	1.10365-04	4.20225-92	5,49725-06
88	2.33605+03	1.00006+00	0.00005+00	1.10335-04	4.0000E-02	1.10525-06
	3 35806+04	1 46006 +00	0 00000-00	10705-04	4 00005-00	3 13435-04
	2,02022.00	11000000000	0,00001-000	1,10020.04		
90	2.3/405+03	1,00005+00	0.0000E+00	1,10361-04	4.0000E-02	2,40411-05
91	2,4010E+03	1,000000+00	0.0000E+00	1.1030E-04	4.0000E=02	2,2454E-Ø6
92	2.4230E+03	1,0000E+00	0.0000E+00	1.10516-04	4.00005-02	8,78736-05
93	2,4460E+03	1,0000E+00	0.00005+00	1.1030E-04	A. 0000E-42	1.30666=05
0.4	3 48005+03	1.00005+00	0 4000-400	1 10075-04	A DODDE-02	A. 20BDE-MA
27	0.81400-03	1 000001+00		1 1 0 2 7 2 104		
95	5 2700F - 03	1,00002+00	R 9000E+00	1.10471-04	4.00006-02	8,3442E-05
96	5,22486+82	1.00001.000	₽,00005+00	1,10265-04	4 00005 02	1,85886-05
97	2,50406+03	1.0000E+00	0,0000E+00	1,10572-04	4.0000E-02	1,3196E-04
98	2.6130E+03	1.0000E+00	0.0000F+00	1.1019E-04	A.0000E-02	7.07756-04
00	2.66495+03	1.00006+00	0.0000-00	1.10205-04	4.00005-02	1.01325-08
4 9 13	2 73005+03	4 00005+00	0 0000	4 10545-04		1 50346-01
100	2,700002+00	1,000000-000	0,00000.*00	1,10042-04	4.00000-02	1.29/12-04
101	2./2/01+03	1.00005+00	C'ODRNE-DR	1,10181-04	4.0000E-02	3.23388-05
102	2,7/10E+Ø3	1.0000E±00	0,0000E+00	1,10226=04	4.00000-02	5,02196-05
103	2,81206+03	1.00002+00	0.0000E+00	1.1083E-04	A.0000E-02	7,97592-06
1 0 4	2.8400E+03	1.000000+00	0.00005+00	1.10045-04	4.00005-02	4.75736-05
105	2 86905+03	1.00005+00	0.0000-+00	1.10845-04	4.00005-02	1.61455-05
1.04	0 09905-03	1 00005.00		1 14040-04		8 80476-07
100	2.0000000	1,0000000000	0,00005-00	1,11046-04	4.00002-02	0.094/6-05
10/	5,42805.402	1.00000.+00	0.0000E+00	1,10812-04	4.0000002	1.20105-05
108	3,0190E+03	1.0000E+00	0,00006+00	1,11448-04	4.0000E-02	2,5043E-04
109	3,00602+03	1,0000E+00	0,00000+00	1.1078E-04	4.0000E-02	1,22656-05
110	3.1310E+03	1.0000000+000	D.0000F+00	1.111AF-8A	4.00005-02	1.59035904
111	3.10406+03	1.0000F+00	0.000000	1.10815-04	4.00005-02	3.42216=0=
	3 19846-41	1 00005-00	0 0000L-00	1 11105-04	A. 00000-40	1.43470-04
115 C	3 3 3 3 5 5 5 7 5 9	1,00000-900	D 200005400	*********	4 00000-02	4 24400-04
113	3,2320E+03	1.00001+00	N. 0000E+00	1,10816-04	4.0000F-05	9,4060L205
114	3,2490E+03	1,0000E+00	0.0000€+00	1,1100E-04	A.0000E-02	1.1060E=04
115	3,3020E+Ø3	1.00006+00	0.00005+00	1.1072E-04	4.0000[-02	1,48346-05
116	3.3>60E+03	1.0000E + 00	0.000000	1.110AE-04	A,0000E-02	1.53965-04
117	3 39305403	1 00005+00	0 0000-+04	1.10705-04	A. 90005-002	2.44725-08
	7 45005+03	4 00000-400		1 10005-04		4 274 25-04
110	3 4 PDBE - 03	T DDDDE DD	0.00005-00	1,10905-04	4.00002-02	1.0/132-04
119	5.4000L+95	1.0000E+00	0.00005+00	1,10/10-04	4.00000 - 02	3,4740E=05
120	3,5470E+03	1.0000E+00	0,00005+00	1,1069E-04	4.0000E-02	1,0876E-05
121	3,6070E+03	1.0000E+00	0,00000+00	1,10746-04	4,0000E-02	5,54956-85
122	3.6900E+03	1.00000 +00	0.0000-00	1.10626-24	4.0000E-02	2.3034E=0=
101	3 754=5+03	1.00005-00	0.0000-100	1.10045-04	4.00005-02	1.52785-04
120	7. 46495-00			4 4 4 4 4 4 5 4 4 4 4	4 0000002	9 1005F-04
124	3.00402403	1.00001.00	0.0000E+00	1,10336-04	410000E-02	0.224722-06
125	3.9100E+03	1.00001+00	N*0000E+00	1,1078E-04	4.00005-05	1,0531E=04
126	4,02702+03	1.0000E+00	0.0000E+00	1,1052E-04	4,00005-02	2.27252-05
127	4,0760E+03	1.00000+00	0.000000	1,1062E-04	4,0000E-02	6.4997E-05
408	4 33105 -03	1.00005.400	0.00001.00	1.10405-04	4.00005-02	4.66A2F-08
100	4 18406494	1 30000-00	6 6866c.90	4 10845-04	4 00005-00	7 90435-07
129	4,30006-03	1.000000.000	0.0000F+00	1110205-04	- 00000C-02	7 . THOUL - US
130	4,4970E+03	1.0000E+00	6.9666E+96	1,10371-04	4.0000E-02	217004E-02
131	4,6720E+Ø3	1.0000E+00	0,0000[+00	1,1044E-04	4.0000E-02	2,1266E-Ø4
132	4,7940E+03	1,0000E+00	0.000000	1.0993E-04	4.0000E-02	2,7195E=05
173	4 9340F+03	1.0000F+00	0.0000-00	1.10145-04	4.0000E-02	1.02115004
174	4 000AE_04	I DODOCIAN	0 00000-	1.10405-04	4.00005 00	2.70145
139	+. <i></i>	1.00000-+00	n.0nonf=00	TITROSCARA	4100005-02	C 1 / 7102 -04

			AVE	PAGE RESONANCE	WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	1.39806+02	1.00006+00	0.00000-00	1.10645-04	4.0000F-02	5.43915-04
2	1,9800E+02	1,000000+00	0.00000+00	1.1157E-04	4.0000E-02	3.07185-04
3	2.0800E+02	1,0000£+00	0,00000:+00	1,1075E-04	4.0000E-02	2,80315-06
4	2,3100E+02	1.00005+00	0.00005+00	1,1102E-04	4.00005-02	9,19232-05
5	2,4000E+02	1,00000+00	0.0000E+00	1,10826-04	4,0000E-02	1,36432-05
6	2.4900E+02	1,00006+00	0.00000:+00	1,1114E-04	4,0000E-02	1,29352-04
7	2.5900E+02	1,00006+00	0.0000E+00	1,10805-04	4.0000E-02	3,13926-06
8	2,7800E+02	1,00006+00	0.00000000	1,1112E-04	4.0000E-02	1.1138E-04
9	2,8699E+92	1.00086+00	8.82895.08	1,10835-04	4.00005-02	3,3486E-06
10	3.30001+02	1,00085+30	0.000NE+00	1.1112E-04	4.00002-02	9,9855E-05
11	3,4000E+82	1,000000+00	8,90005+90	1,1086E-04	4.0000E-02	3.0693E-06
12	3,07001+02	1,00000.+00	0.00005+00	1.11476-04	4.0000F-05	2.20/41004
14	4 19005-02	1 00000-00	0.0000F+00	1.11415-04	4 00000 02	4.90310-04
45	4.29006+02	1.00006+00	0.0000-000	1.10005-04	A.0000F-02	4.17465-04
16	4.6000F+02	1.0000E+00	0.000000	1.11245-84	4.08005-02	1.20005-04
17	4.7500E+02	1.0000E+00	0.0000.00	1.10915-04	4.0000E-02	4.43445-04
18	5.4100E+02	1.00006+00	0.0000-00	1.11046-04	4.00000 - 42	4.92845-05
19	5,5100E+02	1,000000+00	0,00000 +00	1,1093E-04	4.00000-02	4.80235-06
20	5,7100E+02	1,0000E+00	0,00005+00	1,1117E-#4	4.0000E-02	8.9990E-05
21	5,8100E+02	1.0000E+00	0,00000+00	1,1094E-04	4,0000E=02	4.9479E-06
22	6,5300E+02	1.0000E+00	0,0000E+00	1,1162E-04	4.0000E-02	2.247ØE-Ø4
23	6.63P0E+02	1.00000+00	0.000000+00	1.1094E-04	4.0000E+02	5.3310E-06
24	7.0200L+02	1.0000E+00	0,000000000	1,11322-04	4.0000E-02	1.4373E-04
25	7.12001+02	1.00001+00	0.000DE+00	1,1094E-04	4.0000E-02	5.25112-06
20	7.87M01+02	1.00001.000	9,000×E+00	1,1150E-04	4,00001-02	2.11286-04
27	A PAGAL+82	1,000000+00	0,00005+00	1,10936-04	4.00001-02	5.9191E-06
20	8.69005+02	1.000000-000	0 0000000000	1,10005-04	A. 0000E-02	A.2101E-04
30	9.4100E+02	1.0000E+00	0.00005+00	1.10935-04	4.00005-02	1.07425-05
31	9.5100E+02	1.0000E+00	0.00000+00	1.10916-04	4.0000E-02	6.54985-06
32	1.0060E+03	1,00002+00	0.00000+00	1.11588-04	4.00002-02	2.56098-04
33	1,0150E+03	1,0000E+00	0.00000.000	1,1092E-04	4.0000E-02	1,70742-05
34	1.0220E+03	1,00006+00	9.88882 + 88	1,1100E-04	4,00000-02	4,43916-05
35	1.0320E+03	1.0009€+99	0.0000E+00	1,1090E-04	4.0000E-02	6,8636E-Ø6
36	1,0850E+03	1.000000+00	0.0000E+00	1,112ØE-04	4.0000E-02	1.2102E-04
37	1,09201+03	1,00001+00	6.0000E+00	1.1096E-04	4.0000E-02	3,54972-05
38	1,1<105+03	1.000000+000	0.00005+00	1,11826-04	4.00000002	3.54395-04
40	1 19000-00	1,00000-400	0.0000F+00	1,10071-04	4,00001-02	/+4001E=00
41	1.20906+03	1.0000000000	0.00005-00	1 10045-04	4.00005-02	7.50115-04
42	1.23006+03	1.20000E+00	0.00005+00	1.11655-04	4.000000-02	3.01275-04
43	1.2400E+03	1.0000E+00	0.00005.00	1,10835-04	4.0000E-02	7.63235-86
44	1,2730E+Ø3	1.0000E+00	0.00002+00	1,11765-04	4.000000-02	3.5073E-04
45	1,2830E+Ø3	1,0000E+00	0,00000000	1,1082E-04	4,000005-02	7,7846E-06
46	1.313ØE+Ø3	1.0000E+00	0.0000E+00	1,1092E-04	4.0000E-02	5,0586E-05
47	1.32306+03	1.0000L+00	0.0000E+00	1,10816-04	4.000BE-02	7,9241E=06
48	1,3/801+03	1.00001+00	0,00002+00	1,11378-84	4.00002-02	2.2033E 84
80	1 42805-43	1,00000-+00	n.0000E+00	1.10/85-04	4.00000-02	8,14196-06
51	1.439#F+#3	1.000000+00	0,00001-00	1.10775-04	4.000000-02	8.30145-03
52	1.40005+03	1.000000+00	a. aadar . aa	1.10875-04	A. 000000-02	4.87455-05
53	1.4700E+03	1.0000E+00	0.0000-00	1.10755-04	4.000000-02	8.42575+04
54	1.4998E+03	1.0000E+00	0.0000-+00	1.10815-04	4.00008-02	3.32686-05
55	1,5090E+03	1.20002.00	0.0000E.00	1,1075E-04	4.99995-92	8,55452-06
56	1,54706+03	1.0000E+00	00001000	1,10885-04	4.00002-02	6,35022-05
57	1,5978E+03	1,0000E+00	0,00005+00	1,1072E-04	4.0000E-02	8,7129E-06
58	1,5/80E+Ø3	1.0000E+00	0.0000E+00	1,1096E-04	4.00006-02	9,6928E-05
59	1,3080E+03	1.000000+00	0.00005+00	1,1071E-04	4.00000-02	8,8137E-Ø6
610 4 1	1,04201+03	1.00001.000	0.0000E+00	1,10718-04	4.0000E-02	1,/8545-05
64	1.67405+03	1.000025400	0.0000E+00	1 10095-04	4.00005.002	0.700/EP06
63	1.6840F+03	1.0000F+00	0.0000E=00	1.10675-04	4.00002-02	194901-04 0.19195-004
64	1.7040E+03	1.0000E+00	0.00000-00	1.11175-04	4.0000002	1.96145-00
65	1,7140E+03	1.0000E+00	0.0000.00	1,1066E-04	4.00000-02	9.2157E-ØA
66	1.7340E+03	1.0000E+00	0.0000E+00	1,10896-04	4.00000-02	9.7769E-Ø5

DEGREES OF FREEDOM USED IN THE WIDTH DISTRIBUTION J-VALUE COMPETITIVE NEUTRON RADIATION FISSION 3.00006+00 0.00006+00 1.00006+00 0.00006+00 1.00006+00

|

					11	
67	1,/2406403	1.00001.000	0.0000E+00	1,1065E-04	4.0000E-02	9.3121E-06
68	1.8700E+03	1.0000E+00	0.00005+00	1.12585-04	4.00005-02	7.56745.004
20	4 9975-07	4 44445.44				
07	T 0000E=00	1.00005-00	N°0000E+00	1,10591-04	4.00005-05	A''5ARE-09
72	1.8960E+03	1.0000E+00	ଡ.ଜେଷିଷଷିଟୁୁକ୍ଷିଷ	1.10825-04	4.0000E-02	9.86105+05
	1 04445 + 01	1 30005+00	A 4000-100	4 40805-04	1 0000C-00	0 40370-01
/1	1,00000-000	1.00000-000	0.00005-00	1,10385-04	4.00005-02	A*00//F=09
72	1,9240E+03	1.0000E+00	0.0000E+00	1.1077E-04	4.00000-02	8.4718E=05
75	1.9340F+03	1. ИЙИЙF+ АЙ	0 00000+00	1 10545-04	4 000000-002	0 80345-04
	00000	11000000.00	E. DEDEE - DO	1,10,000	4. DUNDE DZ	7,07202-00
/4	1.77/02+03	1.00000+00	0 0000E+00	1,10692-64	4.0000E-02	7,0734E-05
75	2.0070E+03	1.0000E+00	0.0000-+00	1.10535-04	4.00005-02	1 01105-06
76	0.0005+04		a	100000		1,-11,-19
10	2.00702-03	1.00000400	A RRARE*RR	1,10595-04	4.00005-02	3,03081-05
77	2,1010E+03	1.000025+00	0.00005*00	1.1047E-04	4.00001-02	6.75926-06
78	2 12801+0.5	1 00001-00	0 0000-00	1 10405-04	4 88845-33	1 77055-0-
		1,0000000000	D. BOBDE + DO	T+1040C .04	4.00000-02	1.77956-05
7♥	2,12006+03	1.00006+00	0,00002+03	1,1043E-04	4.0000E-02	3,6900E-06
60	2.1/50E+03	1.000000+00	0.00005+00	1.10445-04	4.00001-02	1.06105-05
	0 18546.44	4 00005.00				
6 L	2.14906703	1.00000000000	N, 0000E+00	1,10426-04	4.00006-02	4./820E+06
82	2.2140E+03	1.00000+00	0.00005+00	1.1Ø49E-04	4.0000E-02	3.53846~05
63	2 224#F+03	1 00005-00	0 0000-00	1 10445-04	4 40495-43	5 44405-05
	2,22,402,00	1.0000004000		1.10405-04	4.00000-02	2.00402.009
84	2,23496+03	1.00006+30	0.000000+00	1.1064E-04	4.00005-02	9.83896-05
R5	2.2447F+03	1.0000F+00	0 0000-00	1.10345-04	A 0000F=02	1 40765-044
	2 745 - 5 - 5 -	100000.00		TITOOOL		1109306-00
80	5,24205+03	1.00006+00	0,00005+00	1,10396-04	4,00006-02	1.92036-05
87	2.3150E+03	1.00000.000	0.0000-+00	1.10366-04	4.00000-02	5.49725-06
68	3 3445444	4 99995+99	0 40446.44	4 4 4 7 7 - 4 4		1 10000 01
	2,0000,000	1.00000-400	O DEDEFADE	1+10035-04	4.000000-02	1.10926-00
89	2 3580E+03	1.0000E+00	8.0000E+00	1.1032E-04	4,0000E-02	3.3342E=06
90	2.3790E+03	1.000000 + 00	0 00005+00	1.10365-04	A. 0000F-02	3.40415-05
	D. Alas DT - 0.4	1 33335	0,0000000000	11000C Of		
91	2,40100403	1.00005.00	0.000E+00	1,10305-04	4.00002-02	2,24641-06
92	2.4230(+03	1.00000E+00	0.0000F+00	1.1051E-04	4.000000-02	8.7873Fe05
	0 44406+44	4 444445 444	0 0000 00	4 40705-04	0.00000-00	4 79445 00
93	21440BC+Ba	7.00005480	8.8000F+08	1,10305-04	4.0000E-02	1.30005-05
94	2,4500E+03	1.0000E+00	0.0000E+00	1.10276-04	4.00000-02	6.298ØE-Ø6
5	2.51605+03	1.00006F+00	0 0000C+00	1.10475-04	A. 0000F-02	A 1442E-05
- 12	5 510 at . 07	100000	5,00000000	11104/1000		
96	5,20406+05	1.00006.00	0.00005+00	1,10261-04	4.00005-05	1,05986-05
97	2.564ØE+Ø3	1.0000E+00	0.0000F+00	1.10575-04	4.0000E=02	1.3196E=04
64	0 6130F+03	1 00005.00	0 00000.00			7 67967-04
90	2,01002784	T.0000C.00	0.0000.+00	1.10745-0-	4.00005402	1.0//22-08
99	2.604ØE+Ø3	1,0000E+00	8,0000E+00	1.10205-04	4.0000E-02	1.0132E-05
100	2 7300F+03	1	0 00000-00	1.10545-04	A 0300F-02	1 10715-04
		1.000000000	0,00000-000	1,10,40-04		1
101	2,/5/0E+03	1.00006+00	0,00005+00	1.10186-04	4.00006-02	3.23386-05
102	2.77105+03	1.0000£+00	0.0000F+00	1.10228-04	4.0000E-02	5.42198-05
	0 81005+03	1 00005-00	a agage . ag	1 10075-04	4 00000 - 43	7 97895-04
TNO	5,01505+80	1.00000-000	5 BODDF 600	1.10036-04	4.00002-02	/ /
104	2.8400E+03	1.0000E+00	P.0000E+00	1.1094E-04	4.00001-02	4.7573E-Ø5
105	2.8590F+03	1 00000 = + 00	0 000000	1.10845-04	4.000000-002	1.61455-05
100			0.00005400	1.10046-04	4.00000-92	1.01421-03
100	5,64905+80	1.00006+00	8.8888E+88	1.11046-64	4,00002-02	8,094/2+05
107	2.9580E+03	1.000000+00	0.00005+00	1.10816-04	4.200000-02	1.20108-05
	1 01005+04	4 44445.44	0 00000.00	A A A A F - 0 A		0 5435-44
100	3.01905-03	T.00005400	N. NANNE - NN	1.11445-04	4.00005-05	2. 0436-04
109	3.00606+03	1,0000E+00	0.0000E+00	1.10785-04	4,00006-02	1,22656-05
4 4 12	3 14105+04	1 00005-00	8 44400 - + 00	1 11145-04	4 00000 - 42	1.30135-04
110	3 TOTEL DO	1.00000-00	1.00002-00	1111102 0		1.00000000
111	3,1040E+03	1.0000E+00	8,00005+00	1,10816-04	4.00001-02	3,42216-05
112	3.1980F+0.5	1.0000E+00	0.00005+00	1.1110F=04	4.000000-02	1.4363F-04
222		00005.00		1 1 1 1 1 1 - 0 4	00005-00	A 2.40F-05
110	3.23202703	1.00000-+00	0.0000F+00	1.10016-04	4.000000-02	4.20001-00
114	3 2490E+03	1.00006+00	0.0000E+00	1.11002-04	4,00005-02	1,10602-04
115	7 30305+03	4 00005+00	0 0000C+00	1 10725-04	4 00005-00	4.49745-05
110	3.32005+03	7.00005+00	V,0000E+00	1,11086-04	4.00005+05	1,03900-04
117	3.3930E+03	1.000000+00	0.0000-+00	1.1072E-04	A 0000E-02	2.46725-05
	1 45405 4 57	4 44445.45		4 40005-24	4 00000-000	. 27.35-41
110	2.42605403	7.90005.400	5.0000F+00	1,10,00-04	4.0000C-02	T
119	3.4880E+03	1.0000E+00	0.0000E+00	1.1071E-04	4.00005-62	3,2746E-05
	7 54705+03	1 00005+00	0 00000-000	1.10655-24	A.0000F=02	1.68765-05
124	3.3.7.82.7.80	1.000000-000	N. 00002400	THEFT		
121	3.6070E+03	1.0000E+00	9,0000E+00	1,1074E-04	4.00005+05	5.74975-05
1 2 2	3.69000+03	1.0000E+00	0.0000F+00	1.1062E-04	A 0000E-02	2.3Ø34E-05
	75455.07	4 00000.00		1 1 1 1 1 1 1 1 1	- AUGOC-40	1 6078F-d4
125	3,72401+03	7.00005-20	N. NONDE-NO	7,18205-04	4,00000-02	1.2/01-04
124	3,80402+03	1,0000E+00	0,0000E+00	1.1053E-04	4.0000E-02	8.1295E+Ø6
125	7 01005+04	1 00005-00	0 0000-00	1.10785-04	4.00005-07	1.05315-04
14	3,74002-00	1.00000-100				
120	4,0270E+03	1,0000E+00	0.0000E+00	1,10526-04	4.00005-05	2.4/226-05
127	4.0760E+03	1.0000E+00	0.0000F+00	1.1062E-04	4,00000-02	6,4997E-05
	74445.43		a aaaac . 22	10405-04	100005-00	A . 66475-00
128	4.33101+03	1.0000F+00	N 00000E+00	1,10495-04	4 0000 NS	4190041-05
129	4,3860E+03	1,0000E+00	0,0000г⇔00	1,1056E-04	4.0000E-02	7,9053E-05
	ANTREAM	1 3655-445	0 0000c+00	1.14375-04	A . 0000F + 42	2.10045-05
1.50	4.47/02403	1,00000-700	0.00005=00	TITUTE		
131	4,6/20E+03	1.000ØE+00	0,0000E+00	1.1044E-04	4.0000L-02	2, 2005-04
172	4.79405-03	1.00005.00	0.000000	1.09935-04	4.00005-02	2.51056-05
		4 00000-00			40005-00	A DOLLE-44
13\$	4, Y7401+03	1.00001.000	0.00005+00	1.10145-04	4.00001-02	4122346 84
134	4.00P0E+04	1.0000E+00	0,000000+00	1,1062E-04	4.0000E-02	2./910E=04

		1.0000E+00	0.0000E+00	1,0000E+00	Ø.0000E+00	1,0000E+00
			AVER	AGE RESONANCE	WIDTHS (EV)	
thety	ENERGY (EV)				BADIATION	5105100
1	1.3000F+02	1.0000E+00	0.0000F+00	4.34285-04	A.00005=02	5.4101E=04
2	1.96085+02	1.00000 +00	2.00000+00	1.35402-04	4.00005-02	3.07185-04
3	2,080005+02	1,00000 +00	0.0000E+00	1 3441E-D4	4.00001-02	2.80312-06
4	2,3100E+02	1.00006+00	0,0000€+00	1,3474E-04	4.0000E-02	9,1923E-05
5	2.4000E+02	1,0000E+00	0,0000E±00	1.3449E-04	4,00006+02	1.3643E-05
6	2,49005+02	1,0000E+00	0,00005+00	1,34888-04	4.00000-02	1.2935E-04
	2,37006+02	1.00000+00	0.0000E+00	1,34482-04	4.00005-02	3,1592E-06
ő	2.88005+02	1.000000-000	R.0000E#00	1.34505-04	4 000000-02	3. 34365-04
10	3' 3P00E+02	1.000000+00	0.0000F+00	1.3486E-04	4.00006-02	9,98555-05
11	3,4000E+02	1,00002+00	0,00002+00	1,3454E-04	4,0000E=02	3,6693E-06
12	3,6700E+02	1.00002+00	0.20025+00	1,35295-04	4.0000E •02	2.20748-04
13	3,7700E+02	1,0000E+00	0,20000.+00	1,3456E-04	4.00006-02	3.8853E-06
14	4.1900E+02	1,00001+00	0,00002+00	1,35218-04	4,00000-02	1,90216-04
10	4 68005+02	1.000002*00	8.0000L-00	1.35005+04	4.000000-02	1.20905-04
17	4,7800E+02	1.000000+00	0.0000F+00	1.34618-84	4,00005-02	4.4344E-06
18	5,4100E+02	1.000002+00	0,00000:+00	1.3477E-24	4,00002-02	4,92842+05
19	5,5100E+02	1.0000E+00	0,000000+00	1,3463E-04	4,00006-02	4.8023E-06
20	5,7100E+02	1.0000E+00	0,0000€+00	1.3492E-04	4.00000-02	8,9990E-05
21	5.01000+02	1.00002-00	0,000000	2 34041-04	4,00000-02	4.74/9E-00
23	6.6300F+02	1.0000E+00	8.0000E+00	1.34645-04	4.00000-02	5.3310F+0A
24	7.0200E+02	1.00000 +00	0.00000+00	1.3510E+04	4.00002-02	1.4373E+04
25	7,1200E+02	1,0000E+00	0.0000E+00	1,3464E-84	4.0000E-02	5,5511E+Ø6
26	7.870@E+02	1,0000E+00	Ø,0000E+00	1,3532E-04	4.00006-02	2.1128E-Ø4
27	7.9702E+02	1.0000E+00	0,0000E+00	1,3463E-04	4.0000E-02	5.91915-06
28	8,5900E+02	1.00001+00	0,0000E+00	1,35655-04	4.00001-02	3.13736-04
70	0.4100F+02	1.0000E+00	0.0000F=00	1.34436-04	4.00000-02	1,07425-05
31	9,5100E+02	1.0000E+00	0.00000.000	1.34605-04	4.00000-02	6.5490E-06
32	1,0060E+03	1,0000E+00	0.00000+00	1.3542E-24	4.0000E-02	2.36092-04
33	1.0150E+03	1.0000E+00	0,00002+00	1,3462E-04	4.0000E-02	1,7ØØ4E-05
34	1,02202+03	1,0000E+00	0.0000E+00	1,3471E-04	4,00000-02	4,4391E-05
32	1.08505+03	1,00006+00	0.0000E+00	1.34591-04	4.00001-02	0.00300-06
37	1.0920E+03	1.0000E+00	0.00002+00	1.34666-04	4.0000F-02	3.54975-05
38	1,1210E+Ø3	1,0000E+00	0,0000E+00	1.35716-04	4 0000E-02	3,54396-04
39	1,1310E+03	1,0000E+00	0,0000E+00	1,3456E-04	4,00002-02	7.2361E-06
40	1.1990E+Ø3	1,00006+00	0,0000E+00	1,3478E-04	4 0000E-02	8,14928-05
41	1.20901+03	1.0000E+00	N,0000E+00	1,3452E-04	4.20001-02	7,5211E=Ø6
42	1.24000+03	1 000000-000	0,0000E+00	1 34545-04	4,00000-02	3.012/8-04
44	1.2730E+03	1.00002+00	0.00000-+00	1.35646-04	4.00005-02	3.50735-04
45	1,28306+03	1.0000E+00	A,0000E+00	1,3449E-04	4,00005-02	7.78462-06
46	1,3130E+03	1,0000E+00	8.0000E+00	1,3462E=04	4.0000E-02	5,0586E-05
47	1,32301+03	1,0000E+00	0.000000000	1,3449E-04	4,0000E-02	7.9241E-06
40	1 38685+03	1,00000-000	0,00005+00	1,35178+04	4,0000E=02	2.20335-04
50	1.42906+03	1.000000+00	0.00002-00	1.33105-04	4.00000-02	7.43455-08
51	1,43906+03	1,0000E+00	0.00005+00	1,3443E=84	4.0000E-02	8.32145-04
52	1,4000E+03	1.0000E+00	0.00005+00	1,34556-04	4.0000E-02	4.8745E-05
53	1,4700E+03	1.0000E+00	0,00005+00	1,3441E-84	4.0000E-02	8,4257E=Ø6
54	1,49998403	1.0000E+00	0,00005+00	1,34496-04	4,00006-02	3,3268E-05
56	1.54705+03	1.0000E=00	0.0000E+00	1.34416-04	4.00001-02	8,2545E-Ø6
57	1 59785+03	1.000000+00	8.989995-909	1.34375+84	4,00001-02	8.71395-44
58	1,5780E+03	1.0000E+00	0.0000E+00	1.3467E-04	4.00002-02	9.69285+05
59	1,5880E+03	1,0000E+00	0,00005+00	1,34366-04	4.00005-02	8.01375-06
60	1,6220E+03	1.0000E+00	0,0000E+00	1,3437E-04	4,0000E-02	1.7854E-05
42	1 03205+03	1.0000E+00	0,000000000	1,3433E-04	4.00000-02	8.9557E-06
43	1.68405+03	1.0000E+00	0,0000E+00	1.34031-04	4,00005-05	1.04485-04
	*********	7	T. I DODOFADD	T104055404	4.0000E-05	*+7515E=00

DEGREES OF FREEDOM USED IN THE WIDTH DISTRIBUTION

					11		
64	1./0406+03	1,00001+00	0.0000E+00	1.34912-04	4.0000E-02	1.96146-04	
65	1'.7148E+03	1.0000E+00	0.0000 - A00	1.34305-04	4,00005-02	9.21575-04	
4.4	7.1405 403	4 00005+00	0 00000-00	14805-04	1 00005-00	0 77405-00	
		1.0000000000	0.0000E-00	1,34945-64	A DODDE-DE	A1110AF-000	
6/	1./4406+00	1.00006+00	0,00005+00	1,3428E-04	4.0000E-02	9,3101E⇒06	
66	1.87006+03	1,000000+00	0.0000F+00	1.36646-04	A.0000E=02	7.56745-04	
40	1 BB00E+03	1 . NORDE + 00	0 0000-+00	4 34345-84	4 0000C-00	0 70001-04	
			D. DODDE DD	1104515-04	4. DDDDL-D2	7,7290L-00	
710	1.07006+00	1.00005+00	0.00006+00	1,34502-04	4 DODDE-02	9,86106-05	
71	1 9060E+03	1,0000E+00	0.0000-+00	1.3420E=04	A.0000E-02	9.80775-04	
72	1.92405+03	1.999995+499	8	1.34445-04	1.0000F-02	8 47185-45	
47	03405.03	1 20000-00	0100002-00	1 0 4 4 4 5 6 4		014/105-03	
/3	1,93402+03	1.000000+000	0 0000E 00	1,34185-04	4.999955 92	9,09202-06	
74	1,9970E+03	1.0000E+00	0,00006+00	1.3434E-04	4,0000E-02	7.07345-05	
75	2.00706+03	1.000086+00	0,00005+00	1.34145-04	4 00005-02	1 01.05.04	
74	2 03006+03	4 9000F+40	8 48886+88	1 14005-44	4 00000-00	1 9740F-44	
		1,200000000	D. BPDCE-DD	TIGAESE		01000000000	
11	5,10101-00	1,00005+00	0.00005+00	1,3406E-04	4.0000£=02	0.7582E=06	
78	2,1280E+03	1,000000+00	0.0000E+00	1.3408E-04	4.00002-02	1.77958005	
79	2,1>6BE+Ø3	1.999985+80	8.00001400	1.34025-04	4.00085-02	3.69385-84	
a 71	2.17585+03	1.00005.000	0 0000-+00	4 34945-04	4 40405-42	1 04346-05	
	0 48545-07	1.000000000	0.00001-00	1104002-04	ALDODUL-DZ	1,00000000	
81	2.10581+85	1.00000-+00	0,00006+00	1,34016-04	4,000000-02	4,/820E-06	
82	2,2140E+03	1.0000E+00	9,0000E+00	1,3409E-04	4,0000E-02	3,5384E+Ø5	
83	2.2248E+03	1.0000E+00	0.00006+00	1.34085-04	4.0000F-02	2.36405=05	
	2 24405+93	1 0000F+00	a	4 14045-04			
		1.00001.000	D. DODDE - 00	1104275-04		7,03072-05	
62	2,2048L+83	1.00005+00	0.0000E+00	1,3394E-04	4.0000E=02	1.0936E-06	
80	2,3050E+03	1,0000E+00	0.0000E+00	1,33985-24	4.000000-02	1.92038-05	
87	2.3150E+03	1.0000E+00	0.0000-+00	1.33046-04	A . 00005-02	5.40725-04	
	33405+03	1 00005-00	0,000000-00	1 33005-04	4,00000-00		
	E GOODE-DO	7.00005-00	N. 00005-00	1,00085-04	4 BODAC-DC	1,10921-08	
89	2.32886+03	1.0000E+00	0,0000E+00	1,3389E~04	4.0000E-02	3,33422-06	
9Ø	2,3790E+03	1.0000E+00	0.0000E+00	1.3394E+04	4.0000E-02	2.40418-05	
91	2.4010E+03	1.0000E+00	0.00005+00	1.33875-04	4.00005-02	2.24445-04	
62	3 42365+03	4 90005+00	0,00000-00	1 74.05.04		2124042-00	
96	2,42382.80	1.00000-000	0,00005+00	1,34121-04	4 00000 02	0,/8/32-05	
93	2,4400E+03	1.00005+00	0.00005+00	1,3387E-04	4.0000E-02	1,30662-03	
94	2,4800E+03	1.0000E+00	0.0000E+00	1,33836-04	4.00000-02	6.29805-06	
05	2.516#F+83	4 . 0000F+00	6 4000C+00	1.34075-04	4 0000F+42	1.442E-0E	
	0 5400C+04	1 99995+99	0 00000.00	4 33045-04			
90	2,30902+03	1.000000-000	0,0000E+00	1,03816-64	4.00002-02	1.00306-05	
97	2,00401+03	1,000000+00	0,000000+00	1.34195-04	4.00006-02	1.31965-04	
<u>98</u>	2,6130E+03	1.0000E+00	0.00006+00	1,33736-04	4.00006-02	7.07755-06	
69	2.6640F+03	1.000000+00	0 0000-00	1.33755-04	4.00005-02	1.61325-05	
1 4 4	0 73045+43	1 00005.00	d daac. aa	34445-94	1 00000-00	A SOJAR-G.	
1.010	2.70BBL-BD	1,00002-00	0.00005-00	1,34105-04	4.00000-02	1, 97/16-04	
101	2,/370E+03	1.0000E+00	0,00006+00	1,3372E-24	4.0000E-02	3.23385-05	
1072	2.7710E+03	1.000000+00	0,00000000000	1.3376E~04	4.80886-82	5,02192005	
103	2.812#F+#3	1.00005+00	0 00005+00	1.34515-04	4.00001-02	7.97995=24	
	0 9494C - 03	4 44445		74445 44		. 75.75-05	
76.0	5,04485483	7,00005+00	0.0000F+06	1,34041-04	4 BOBOF - NS	4./3/01-03	
105	2.8090E+03	1.0000E+00	7,0000E+00	1,3452E-Ø4	4.00002-02	1,6145E-05	
106	2.8¥8øE+ø3	1.0000E+00	P.0000E+00	1.3476E-04	4.000000-02	8.89475-05	
107	2.95A0F+03	1.00005+00	0 00005+00	1.34485-64	4.00005-02	1.20105-05	
	7 01045-03	1 40005.00	0,00000,00	TRAFT 04			
100	2.01405+03	1.000002.00	0,0000E+00	1.35251-64	4.00000-22	20431-04	
109	2 00005+02	1.00001+00	0.0000E+00	1,3444E-04	4,00002-02	1,4265E-05	
110	3.1310E+03	1.0000E+00	0.0000E+00	1.34916-04	4.0000E-U2	1,59036+04	
444	3,16446+03	1.00005+00	9.00005+00	1.34486-04	4.00005-02	3.42215=06	
115	7 19845 - 03	1 00005-00	a adade . aa	34846-84	4,00000-00	4 47478-34	
115	O TONETRO	7. PPPPC-700		110-046-04	9100002-02	1	
113	3.23201+03	1.0000E+00	00000E+00	1.34496-64	4.00006-02	4,<660E=05	
114	3,2490E+03	1.0000E+00	0,0000E+00	1.34716-04	4.0000E-02	1,1050E-04	
115	3. 3020E+03	1.0000E+00	0.00005+00	1.34375-04	4.00001-02	1.48346-05	
116	3 35405 403	1.00005-00	0 000000	1.34PAT-94	A . 0.5000 - 0.7	1.53965-94	
1.4	3. 303002700	1.00000-700	0,0000L-00	110-016-04	4.0000L-W2		
11/	3,37302+03	1.00006+00	N'&N&NE+NN	1.3437E-04	4.00001-02	2.46725-05	
118	3.4000E+03	1.0000E+00	0,0000E+00	1,34695-04	4.00000-02	1,27135-04	
119	3.48R0E+03	1.000000+30	0.00006+00	1.34365-84	4.00005-02	3.27465-05	
	3 54705-01	1 20005-04	0 00000-00	34001 -04	4.00000-00	1.68765-05	
1.64	0.27762780	1.000000000	0,00000-00	1104235-04		1100/02009	
121	3.0070E+03	1,00001+00	0,0000E+00	1,344ØE-04	4.0000F-05	D, 2492E-115	
122	3.6900E+03	1.0000E+00	0.00006+00	1,3426E-04	4.00005-02	2.JØ34E-05	
123	3.7548E+03	1.0000E+00	0.00000+00	1.34672-84	4.0000E-02	1.5278E-04	
	3 86405+03	1 00005+00	0 00000-00	4.34145-84	4.00005-03	8.12055-04	
127	3.00402400	1,000000400		3 3 4 4 5 5 4 4		4 96745-00	
122	3 ATMRE+02	1,00001+00	0.0000E≠00	3134435-64	+ 10000F-65	1.07312-04	
126	4,0270E+03	1,0000E+00	Ø,0000E+00	1.3413E-04	4,0000E~02	2,2725E-05	
127	4.8/686+03	1.000000+00	0.00005+00	1.34256-04	4.00005-02	6.4997E+05	
108	4.33105-03	1.00005+00	0 00005-00	1.34005-04	4.00005-02	4.06625-05	
120	4.20101400			3 3 4 4 6 5 . 6 4	1 0000	7 0002C-05	
754	4,3060L+03	1,00005+00	6.9000E+06	1.04181-64	4.0000F-02	1 + 7033E=05	
130	4,497ØE+Ø3	1.0000E+00	0.0000E+00	1,3395E-04	4.0000E-02	2.10345-05	
131	4,6720E+03	1.0000E+00	0.00000.000	1.3404E-04	4.0000E-02	2,12665=04	
132	4.79485+83	1.0000E+00	0.00005+00	1.33495+84	4.00005-02	2.21955-05	
105			~				
	A 08485.8**	• (40,000,					
133	4,954ØE+Ø3	1.9000E+60	0.00005+00	1,3367E-04	4.00000-02	1.02112-04	

		2.000000+00	0.0000E+00	1.0000E+00	0.0000E+00	1,9000E+00
			4.V.F	BACE RESONANCE	WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	1,3000E+02	1.0000E+00	0,0000E+00	1,34286-04	4.0000E-02	5,43916-06
2	7.90005+05	1.000000+00	9,0000E+00	1,33496-04	4.00000-02	2.80315-04
4	2.3100E+02	1,0000E+00	0,00000 +00	1.3474E-04	4.0000E-02	9,19236-05
5	2,4000E+02	1,0000E+00	Ø,ØØØØE+ØØ	1,3449E-84	4,00001-02	1.3643E-05
6	2.4VØØE+02	1.0000E+00	Ø,ØØØØE+ØØ	1,3488E-04	4,00002-02	1.2935E-04
7	2,5900E+02	1.00000000	0.0000E+00	1,34485-04	4.000000-002	3,15922-06
°.	2.85095+92	1,000000-000	8.88885-488 8.88885-488	1.34505-04	4.000000-02	3.34865+04
19	3,3000E+02	1.0000E+00	0.00000-000	1.34865-04	4 .0000E -02	9,9855E-05
11	3,400000+02	1,0000E+00	0,00000-00	1.34546-84	4.00000-02	3.6693E-06
12	3.6700E+02	1.0000E+00	Ø.0000E+00	1.3529E-04	4.0000E-02	2.2074E+04
15	3,7700E+02	1,0000E+00	0.00000000	1,34566-04	4 00000 -02	3,08532-06
17	4.2900F+02	1.000000+00	8.88885 - 88	1.3450F-04	4.000000-02	4.1746F+ØA
16	4.60000-02	1,000000+00	0.00000+00	1,35006-04	4.0000L-02	1,2090E-04
17	4,7800E+02	1,0000E+00	0.00000-00	1,3461E-04	4.0000E-02	4.4344E-Ø6
18	5,418%E+Ø2	1,000000+00	8.88886+88	1.3477E-04	4.0000E-02	4,92846-05
19	5.5100E+02	1.0000E+00	0.0000E+00	1,34638-04	4.00000-02	4.80232-06
20	5 8100E+02	1.00000.+00	0.0000E+00	1 74445-94	4.0000E-02	0.79901-05
22	6.5300F+02	1.000000+00	0.00000-00	1.35466-04	4.00005-02	2.54705=04
23	6,6300E+02	1,0000E+00	0,0000E+00	1.34646-24	4.0000E-02	5,3310E-06
24	7.0200E+02	1,0000E+00	0.0000E+00	1.35108-04	4.0000E-22	1,4373E-04
25	7.12006+02	1.0000E+00	P.0000E+00	1,34642-04	4.00002-02	5,55112-06
20	7.8/00L+02	1,00001+00	0,00005+00	1,35328-04	4.00000-02	2.11285-04
27	8.59001+02	1.000000+00	0,00005+00	1.35686-04	4.000000-02	3,13735-04
29	8.64P0E+02	1,000000+00	0.0000E+00	1.34626-04	4.00000-02	6.21915-06
30	9.4100E+02	1.0000E+00	0,0000E+00	1,3463E-04	4.0000E-02	1.0742E-05
31	9,5100E+02	1,00000+00	Ø,Ø000E+00	1,3460E-04	4.00005-02	6.54902-06
32	1.00001+03	1.00002+00	0,0000[+00	1,35428-84	4.00002=02	2,56098-04
34	1.92205+03	1.0000E+00	0.0000F+00	1.34716-04	4.000000-02	1.43915-05
35	1,0320E+03	1,0000E+00	0.000000000	1.34595-04	4,00000-02	6.8636E-Ø6
36	1.0850E+03	1,0000E+00	0.00005+00	1.3495E-84	4.0000E-02	1.21026-04
37	1.0920E+03	1.0000E+00	0.0000E+00	1,3466E-04	4,00002-02	3.5497E+05
38	1,1/101+03	1,00001+00	0,000000+00	1,35718-04	4.00000-02	3,5439E=04
40	1.1990F+03	1.0000E+00	0,0000E=00	1.34785-04	4.00002-02	7.2301L-06 8.14925-05
41	1.20906+03	1,000000+00	8.08901+00	1.34526-04	4.000001-02	7.52115-06
42	1,2300E+03	1.0000E+00	0.00002+00	1,3550E-04	4.0200E-02	3.0127E-04
43	1,2400E+03	1,0000E+00	0.0000E+00	1,3451E-04	4.0000E-02	7.03235-06
44	1,2/30E+03	1.00000+000	0,0000E+00	1,3564E-04	4.00000-02	3,50735-04
46	1.3130E+03	1.0000E+00	0.0000E+00	1.34625-04	4.000000-02	5.0586F=05
47	1.3230E+03	1,0000E+00	0.0000E+00	1.34495-04	4.0000E-02	7.9241E-06
48	1,3768E+Ø3	1,888852+88	8.00002=00	1,3517E-04	4.0000E-02	2.2033E=04
49	1.3860E+Ø3	1.0000E+00	0.0000000000	1,3445E-04	4.00005-02	8.1419E-06
54	1 43905+03	1,000000+00	0,00005+00	1,33100-04	4.000000-02	/ .03452=05
52	1.4000E+03	1.0000E+00	0.0000000000	1.34585=04	A.0000E-02	4.87495-06
53	1,4700E+03	1,000000+00	0.0000E+00	1,3441E-04	4.0000E-02	8,4257E=06
54	1,4990E+03	1.0000E+00	Ø.ØØØØE+ØØ	1,3449E-04	4.0000E-02	3,3268E-05
55	1,5090E+03	1,0000E+00	0.0000E+00	1,3441E-04	4.90002-02	8,5545E-D6
57	1.55705+03	1.000000-000	0.00000000000	1,3457E-04	4.0000E-02	0,3592E+05 8 71385-01
58	1.5780E+03	1.0000E+00	0.00005-00	1.34675-84	4.00005-02	9.69285-05
59	1,5880E+03	1,0000E+00	0.0000E+00	1,3436E-04	4.00002-02	8,8137E-Ø6
60	1.6220E+Ø3	1,00006+00	0.00005-00	1,3437E-04	4.0000E-02	1,7854E-05
61	1,6320E+03	1.0000E+00	0.0000E+00	1,3433E-04	4.0000E-02	8,9557E=06
62	1.68405+03	1.000000+000	0.00005+00	1,34632~04	4.0000E-02	1,04482=04
	7100405400	7.00000-00	n.0000F+00	1104055-04	4 DODDE-DS	1212F-00

DEGREES OF FREEDOM USED IN THE WIDTH DISTRIBUTION J-VALUE COMPETITIVE NEUTRON RADIATION FISSION

T.

64	1 /040E+03	1.00006+00	0,0000E+00	1,3491E-04	4.0000E-02	1.9614E-Ø4
65	1.7148E+03	1.000055+00	0.0000r +00	1.34305-04	4.0000F-02	9.2-575004
	1 74405-07	1 00005.00	4 4448- 44	71505 34		
60	1,70402403	1.00000-000	0.00005-000	1,34541-04	4.0000E-02	9./70YE#05
67	1,7440E+03	1.000000+00	0.0000-+00	1.3428E-04	4.000000-02	9.31/11F-ØA
Å8	1 A700F+03	1.0000F+00	A AAAAF+AA	36645-04	4 0000E-02	7 54745-04
		100000-00	E. CODOCENDO	1100045-04	4,0000C-DZ	1120125-04
6¥	1,80006+03	1.00000+00	0,0000E+00	1,3421E-04	4,00000-02	9,72905-06
70	1.8960E+03	1.000000+00	Ø.0000€00	1.34505+04	A.0000F=02	9.84+0F=0E
	1 04485+07	4 99905.00				, COLLECTON
/1	1 40005403	1.00000.00	0.0000E+00	1,04200-04	4.00005-02	9.00775-06
72	1,9240E+03	1.0000E+00	0.0000F+00	1.3444F-DA	4.0000F-02	8.47185-05
7.5	1 03405+03	1 00001-00	4 4444	1 74105-04	4 99995-99	0 00040-04
/0	1,70 - 00 - 00	1.000000-000	0.0000-000	1104195-04	4.00005-65	A*0450F-00
74	7 94\8F+R2	7.00005+00	ଡ଼,୫୨୫୫୫€ୁ⇔୫୫	1,34345-04	4.00005-02	7,47345-05
75	2.00705+03	1.0000000000	d. 0000 - 400	1.34145-04	4.00000-02	4 44405-05
	0 04000 +07	1 90005 - 00				1101105-03
/0	2103702-03	1.00000-00	0.00005+00	1,34226-04	4.00005-02	3.83085-05
77	2.1010E+03	1.0000E+00	0.0000-00	1.340AE-04	4.0000E-02	6.75025+94
78	2 12805-03	1 44446	4 44445.44	1 34005-04		1 71055-05
/0	2112002-00	1.00000-00	D. CODDE DD	1104085-04	4 DODDE-02	1+//901-05
79	2,17601+03	1,00000+000	0,0000E+00	1,3402E-04	4.0000E-02	3,6900E-06
AØ	2.1750E+03	1.0000E+00	0.000000	1.34035-04	4.0000F=02	1.04000-005
	0 48605.401	4 00005400		745.5 84		LIGOODE OJ
n +	5170305400	7.00005-00	N•NNNNE+NN	1,34615-64	4.00005-02	4,/8206-06
82	2.2140E+03	1.0000E+00	0.0000-+00	1.34095+04	4.3000F-02	3.53945-06
83	2 22405+03	1 00005-00	4 44445.44	1 34055-04	00000-00	2 4448-47
		T PEPEL-OF	0.00000 00	1,37096-04	4.0000E-02	2.JO901-05
84	2.2740L+03	1.0000F+00	A'0888E+65	1.34276-04	4.000000-02	9,8389E-05
85	2.2040E+03	1.0000E+00	0.0000-+00	1.33945-04	4.0000F=07	1.00065004
86	2 30505+43	1 00005454	d g000c+00	1 33045-04	4 90005-00	4 00002-00
	2.000000-000	7.00000-400	A BRARF + BB	1,3398E-04	4 . RAARE - 05	1.7200E-05
87	2.3150E+03	1.0000E+00	0,0000E+00	1.3394E-04	4.0000E-02	5,4972E-ØA
88	2.33685+03	1.000005+000	0 33300 - 400	1.33945-04	4.00005-02	1.10825-04
		1.0000000000	0.00005.000	1100305-04	4.00000-02	1110355-00
89	2,32801+03	1.00006+00	0,00006+00	1,33896-04	4.00005-02	3,3342E-06
90	2.379ØE+03	1.0000000+00	d.0000-+00	1.33945-04	A.0.000F=02	2.40415-08
61	3 AMA 85 AMA	1 00005100	4 4444	1770-5-04	00000-00	
ÅT.	2,40102-03	1.00000-00	0.0000F+00	1,00071-04	4,00005-05	2.24845-06
92	2,4230E+03	1,000000+00	0.00005+00	1.3412E-84	4,0000E-02	8.7873E-05
6.3	2 4460E+03	1 00005+00	0 00000-00	1 13895-04	1 0000F-03	1 10445-00
	2.41002.00	1.00000-000	0,00005+00	1,000/1-004	4.DDDDE-02	1,50002-05
94	5.4000F+00	1.00001+00	8.0000E+00	1,3383E-04	4,000000=02	0,2980E~06
95	2.5160E+03	1.0000E+00	0.0000-+00	1.34075-94	A.00005-002	8. 54425 - 95
0.6	5 53005 +03	1 30005+00	d angage ag	1 13045-04	100005-00	4 85 88 5
20	2.93902-03	1.00000-00	0.00005+00	1,00811-04	4.0000505265	1,09301-05
97	2,5040E+03	1,0000E+00	0.00005+00	1.3410E-04	4.0000E-02	1.31965-04
0.8	2 61 305 603	1 DODDEADD	0 0000-+00	1 33775-04	4 00005-00	7 67755-04
	ETGROUPL DO	1,00002-00	D. DODDE - DD	1.00/35-04	4.00000.02	110112-08
ġ9	2,60406+03	1,00006+00	0,0000E+00	1,33755-04	4.00005-02	1,01326-05
108	2.7300E+03	1.000000+00	0.0000-+00	1.34146-04	4.00000-02	1.59715-04
1 / 1 / 1	2 75745+43	I HARAF + AA	6 0000c+00	1 33705-04		3 27280-08
161	2,77702-00	1,00000-000	0.00005-00	1,00/21-04	4.00002-02	3,23302-09
102	2.7/10E+03	1,00000+00	0,0000E+00	1,33766-04	4.000000-02	5,02195-05
103	2.8120F+03	1.00000E+00	0.0000-100	1.34545-04	4.00005-02	7.97495-04
			1100002-00			
194	2.5-1951-103	7.00006-000	8.88885.488	1,34646-04	4,00005-055	4,/5/35-05
105	2.8690E+03	1.0000E+00	0.00005+00	1.34502-04	4.00002-02	1.61452+05
	0 89895+03	1 80505+00	0 0000-00	1 34745-04	1 00005-02	8 80475-05
1610	2.0.000-000	1.00000-000	0.00000.000	1,04/01-04		0107472-05
107	2,9>80E+03	1,0000E+00	0.0000E*00	1.3448E~04	4.0000E-02	1,20106-05
108	3 01005+03	1.00005+00	0 00005-00	1.35266-04	4.00005-02	2.50435-04
	7 46405.07	4 00005.00	0 0000 00	34315-03		4 30455-07
109	2.00005.002	1,000000-000	0,00005+00	1,34442 -04	4.00002-02	1,42026-02
110	3.1310E+03	1,000000+00	0.0000r+00	1.3491E-04	4.000000-02	1.5903E-04
	3 46485 -43	1 00005100	0 00000.00	4 344 5-04	A	3 42215-05
424	5.10402400	1.000000-00	0.000000000	1,01702-01	ALDODOL-DC	01-6242-03
112	3,1980E+Ø3	1.00000.000	N.0060E+00	1,3484E+04	4.00001-02	1,4363E-04
113	3,23202+03	1.0000E+00	0.00005±00	1.34498-04	4,0000E-02	4.2660E+03
	3 34005-01	00005-00	0 000000	34745-94	A 0000F-02	1.10405-04
114	0.27702400	1100006-00	C. DODDE-DE	1127/15-07	- ADDDDC-DC	
115	3,3020E+03	1.00001+00	0,0000E+00	1,34375-84	4,0000E-02	1,46346-05
116	3.32606+03	1.0000000000	8.0000-+00	1.3481E-04	4.000000-02	1.5396E-04
	7 79705-01	00005-00	a adaar	1 147-5-04	1 00005-42	2 44725-74
11/	3.3-306-03	1.00002+00	0.0000E*00	1,0-376-04	4.00002-02	4170/22-05
118	3.4300E+03	1,0000E+00	₽.0000E+00	1.3469E-04	4.0000E-02	1,2713E=04
110	1 4880F - 03	1.0000E+00	0.00005+00	1.34345-24	4.0000E-02	3.27465-08
417				1 34000-01	- a00005-0-	4 44-4
120	3,54706+63	1,00000+00	A.0000E+00	1,34291-04	4 DEPORT-05	1.98706-05
121	3.6070E+03	1.00000+00	0.₫₫00г≠00	1.344ØE-04	4.Ø000E-02	5,54956-05
	7 49005-01	00005.00	0 0000-00	4 34345-04	4 00005 -03	3.30345-05
755	2101005+02	7,00005-00	שמי ששששע ש	1107201-00	7100000-02	E 1 0 0 3 76 703
123	3,7540E+03	1.00000+00	7.0000∈+00	1,3467E-04	4.0000E-02	1,92786-04
124	3.8640E+03	1.00000 +00	0.00005+00	1.3414E-04	4.0000E-02	8.1295E+ØA
167	0100402-00				- AAAAE44	I DETAC
122	3.4100F+03	1.00005+00	N 80000E+00	1,04451-84	4 . DOODE - 22	1,00011-04
126	4.02706+03	1.00008+00	0.0000F+00	1.3413E-04	4.0000E-02	2,27256-05
	4 47445 107		a agaa	34955-04	4.00005-03	6.40075-0=
12/	4.0002+03	7.00000-000	D. 00005.000	T10452C464	9.00000-02	
128	4.3310E+Ø3	1.0000E+00	0,00000+00	1,3409E-04	4.0000E-02	9,06626-05
100	4 3860F+03	1.00000€+00	0.0000-+00	1.34188-04	4.0000E-02	7,90536-05
	10000000000	anadr		77052 - 14	00000 - 00	10046-00
130	4.4¥/0E+03	1.00005+00	R*26666E+66	1.33491-04	4.00000-902	C. 10040.905
131	4.6720E+03	1.0000E+00	0.00000+00	1.3404E-04	4.0000E-02	2,12668-04
	A 7044514	4 84445-44	A A0AA00	1 3340F-DA	4.00005-03	2.51055-01
132	A,/740E*03	7.00000-400	6000F+00	1 00 2 00		21-17-L-UJ
133	4,9040E+03	1.0000E+00	0,0000E+00	1.3367E-04	4.0000E-02	1,02116-04
474	4	1	8. 8888C+88	1.3428F-04	4.0000E-02	2.79168-04
704						

			DEGREES OF	FREEDOM USED	N THE WIDTH	ISTRIBUTION
		J-VALUF	COMPETITIVE	NEUTRON	RADIATION	FISSION
		3,0000E+00	0.0000E+00	1,0000E+00	0.0000E+00	1,00306+00
			AVE	RAGE RESONANCE	WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	1,3000E+02	1,0000E+00	0,00002+00	1,34286-04	4.0000E-02	5,4391E-06
2	1,900000402	1,00001+00	0,000000000	1 34445-04	4,00001-02	3,07185-04
4	2.3100E+02	1.000000+00	0.00000000	1.3474E-04	4.00000-02	9,19236-05
5	2,4000E+02	1,0000E+00	0,0000E+00	1,3449E-04	4. DDDDE - D2	1,36435-05
6	2,4900E+02	1,00000+00	0,0000E+00	1,3488E-04	4,0000E=02	1,2935E-04
7	2,37006+02	1,000000000	0,000000000	1,34481-04	4,00005-02	3,15922,006
ŝ	2.45005+02	1.000000.000	0.00005+00	1,34505-04	4.00000-02	3.34865-04
10	3.30000+02	1,000000+00	0,0000E+00	1,34865-04	4.00000-02	9,98556=05
11	3,4088E+82	1,00000=00	0.0000E+00	1,3454E=84	4,0000E-02	3,4693E-06
12	3.6/00E+02	1.000000400	0,000000+00	1.35298-04	4,0000E-02	2.20745=04
13	4.1900F+02	1.00000=000 1.0000F+00	D.0000E+00	1.35218#84	4.00000-02	1.90215-04
15	4.2900E+02	1.000000+00	0.00000=+00	1.34596-84	4.00000-02	4.1746E=Ø6
16	4,6888E+82	1,00002+00	8.9890E+99	1,35002-04	4.00000-02	1.20985-04
17	4,7800E+02	1.90906+00	0.0000E+00	1,3461E-84	4.0000E-02	4,4344E-06
18	5,4100E+02	1.0000E+00	0,00005+00	1.34778-04	4,000000-02	4,92845905
20	5.7100E+02	1.0000E+00	0.000000000	1.34926-04	4.0000E-02	8,99905-05
21	5,8100E+02	1.0000E+00	0,00000,000	1.3464E-04	4 0000E-02	4,9479E-06
22	6,5300E+02	1.0000E+00	0.0000E+00	1,3546E-04	4 0000E-02	2.5478E+04
23	6.6388L+82	1,000000+000	8.99999E+99	1.34048-04	4,99995-92	5,3310E906 1 4373C-04
25	7.1200E+02	1.0000E+00	8.88885+88	1.3464E-04	4.0000E-02	5.55116-04
26	7.8700E+02	1.0000E+00	0.00000 +00	1,3532E-04	4.0000E-02	2,11285-04
27	7,9700E+02	1.0000E+00	0.0000E+00	1,3463E-84	4.0000E-02	5,9191E-Ø6
28	8.5900E+02	1,000000+00	0,0000E+00	1.35655-04	4.000000-02	3.13735-04
30	9.4100E+02	1.0000E+00	0,00000-00	1.3463E-84	4.000000-02	1.07425-05
31	9,5100E+02	1.0000E+00	0,000000-00	1,346ØE-04	4.0000E-02	6,5498E-06
32	1,00602+03	1.000000+00	Ø,ØØØØE+ØØ	1,35426-04	4,00005-02	2.56095-04
33	1,01001+00	1.00001+00	0,0000E+00	1.34021-04	4.00001-02	1./004E=05
35	1.0420E+03	1.0000E+00	0.00005+00	1,34596-64	4.0000E-02	6.86365-06
36	1,0850E+03	1.0000E+00	0.00005+00	1,34955-24	4.0000E-02	1.21025-04
37	1,0°20E+03	1.0000E+00	0.0000E+00	1,3466E-B4	4.0000E-02	3.54972-05
30	1,14106-00	1,000000+00	0,0000E+00	1.33711-04	4.00005-02	3,2439E004 7,23415-04
40	1,1990E+03	1.0000E+00	0,00000+00	1.3478E-04	4.0000E-02	8.14525-05
41	1.2090E+03	1.0000E+00	0.00002+00	1,3452E-04	4.00005-02	7.52115-06
42	1,2300E+03	1.0000E+00	0.000E+00	1,3550E-04	4.0000E-02	3,0127E-04
40	1.27306+03	1.0000E+00	0.0000E+00	1,39516-04	4,00005-02	7,03235-06
45	1,283ØE+Ø3	1.000000+00	0.0000E+00	1,34498-84	4.00000-02	7,78465-06
46	1,3130E+03	1.0000E.00	0.0000E+00	1,3462E-04	4,0000E-02	5,05862=05
47	1,32306+03	1.0000E+00	0,0000E+00	1,3449E-04	4,00001-02	7,9241E-06
40	1.3660E+03	1,000000400	0.0000E+00	1.32176-04	4.00001-02	2,20335-04
50	1 4290E+03	1,0000E+00	0,00000000	1.331ØE-04	4.0000E-02	7,63456-05
51	1,4390E+03	1.0000E+00	Ø,ØØ0ØE+ØØ	1,3443E-04	4.0000E-02	8.3214E=06
52	1,40001+03	1,000000+00	Ø,0000E+00	1,34556-04	4.0000E-02	4.87452-05
54	1,4990E+03	1.0000C+00 1.0000E+00	0.0000E+00 0.0000E+00	1.34405-04	4.000000002	0,9237E906 3,32486904
55	1,5090E+03	1,0000E+00	8 88886 + 88	1,3441E-84	4 00005-02	8,55452-06
56	1,5470E+03	1,0000E+00	0,00005+00	1,3457E-04	4.00002-02	6.35322-05
57	1,99706+03	1.0000E+00	0,000000000	1.3437E-04	4.0000E-02	8,71292-06
59	1.5680E+03	1.0000E+00	0.0000E+00	1.34345-04	4.00001-02	9,0928E-05 8.8137E-04
60	1.6220E+Ø3	1.0000E+00	0.00001+00	1,34378-04	4.0000E-02	1.78546-05
61	1,6320E+03	1.0000E+00	Ø,ØØØ6E+ØØ	1.3433E-04	4.00000-02	8.9537E=Ø6
62	1.0/481+83	1.0000E+00	6.8880E+88	1,34632-04	4.00000-02	1.04485-04
00	1.00-01-000	74-2000C+00	0.0000E+00	1,34321-04	4.00006-05	7.1212E-06

- 257 -

64	1.7040E+03	1.0000E+00	0.0000++00	1.34916-24	4.0000F-02	1.96145-04
65	1.71405+03	1.000000-000	0 00005+00	1 34395-04	4 00001-00	0 21576-04
	1 74405+03	4 80005.00	0,000000000	1 74505 74		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	1,70482-83	1.0000000000	0.0000E+00	1134291-04	4.00005-02	9.77096-05
67	1,/4402+03	7.00005+00	Ø,Ø9ØØ£≜ØØ	1,3428E-04	4.0000E-02	9,31316-06
68	1.8700E+03	1.00000.000	0.0000E+00	1.3664E-04	4.0000E-02	7.56745-04
69	1.80006+03	1.00000E+00	0.0000F+00	1.34215-04	A. 0000F -02	9.7200r-04
70	1 8960F+03	1. 0000F+00	3 44445-444	4 34695-04	4 00001-43	D 84400-00
<u></u>	1,0,000,000	1.000000.000	5.00005.000	1,34505-64	4,00000-02	A.0010F002
/1	1,90002-03	1.00005+00	0,0000E+00	1,34286-64	4.0000E-02	9.8Ø77E⇒06
72	1,9240E+03	1.0000E+00	0.00005+00	1.3444E=04	4.00000-02	8.4718E-05
73	1.93406+03	1,0000E+00	0.00005+00	1.34105-04	4.00005-02	0.80346-04
74	1.99705+03	1.0000F+00	0 00000-000	1.34346-04	4 000000	7 07 141-05
	0.04705.07	1 000000-00			A DODOE-DE	1.01346-03
12	2.00701-03	1.000000-+00	0,00005+00	1,34146-04	4.00005-05	1,01108-05
76	2,0390E+03	1.0000E+00	0,0000E+00	1,3422E-04	4,0000E-02	3.83086-05
77	2.1010E+03	1.0000000+000	0.00000+000	1.340AE-04	4.0000E-02	6.75026-04
78	2.14806+03	1.0000000+000	0.00005+00	1.340AF-24	4.00005-02	4.77956-45
	0 18406403	1 00000-00		1 748-5-84		40000
	2,1-000-000	1.000000-900	0,00001+00	1.34026-04	4.00000-02	3,09000-06
80	2.1/502+03	1.00000+00	0.0000E+00	1,3403E-04	4.00006-02	1.0600E=05
81	2.1850E+Ø3	1.0000E+00	8.0900E+00	1,34016-04	4.00008-92	4.78206-06
82	2.2140E+03	1.0000E+00	0.0000-+00	1.340oF-04	4.00001-02	3.53846-05
6.4	3 72405+03	1 . 0000E+00	8 48485.00	1 34045-04	4 99995-43	3 44400-00
		1,00000-00	8,00005400	1104095-04	4.20002.002	2.00405-03
84	2.23401+03	1.00005+00	0,00005+00	1,34276-64	4.0000E-02	9.83892-05
85	2,24406+03	1.0000E+00	0,00005+00	1,3394E-04	4.0000E-02	1.09365-06
86	2.30506+03	1,0000E+00	0.00005+00	1.3398E-04	4.0000E=02	1.92/36-08
87	2.315AF+03	1.0000F+00	0.000000	1.33045-04	4.00005-07	5.49725-6
67 62	2 334AC101	4 100000-00	0 000000000	1 33847-04	4,0000C-02	4 1000
80	2,30800-003	1,00000-000	0,00005+00	1.33901-04	4.00005-05	1,1032E=06
89	2,3280E+Ø3	1,00006+00	P,0000E+00	1,33898-04	4.00006-02	3,33426-06
98	2,3798E+03	1,000000+00	9.0000E+00	1,3394E-04	4,0000€-02	2.40416-05
91	2,4910E+03	1.0000E+00	0.00005+00	1.33875-84	4.00085-02	2.24645006
62	2 42305+03	1 0000F+00	0 00000-00	1 3410E-PA	4 00005-03	8 78376-00
		1,000000000	0,00001+00	1,34122-04	4.000000-02	0,/0/31-05
93	2,47002-93	1,00000-000	0.00005+00	1,00871-04	4.00005-02	1.00001-09
94	2.40001+03	1.00001+00	0,00005+00	1,3383E-04	4.00006-02	6,29805-06
95	2.516ØE+Ø3	1,00000+00	0.00006+00	1.34078-04	4,0000E-02	8.34422-03
06	2.5390E+03	1.0000E+00	0.0000-+00	1.33845-04	4.00005-02	1.85885-085
67	3 5648E+03	1 00005+00	a addar+da	1 144 06 -04	4.00000-02	1 31345-04
24	2 44705 407	1,00000-00	0.000000000	1.01142.04		1101405-004
90	2.01302+03	1.00005+00	0.0000E+00	1,33736-04	4.00005-02	/.0//51-06
99	2,604ØE+Ø3	1.0000E+00	0.00006+00	1,3375E-04	4.00005-02	1.01322-05
180	2.73086+03	1.0000E+00	0.0000F+00	1.3416E-04	4.0000E-02	1.59718=04
1 0 1	2.7570F+03	1.0000F+00	0.0000-+00	1.3379FeØ4	4.00005-02	3.23185-05
	0 77405407	4 00005+00	0.00000.00	1 777/2-04		* 30.00-05
102	2,77102-03	1.00000-000	6.00006+00	1,33/82-04	4.000000002	5.22192-05
103	2,61206+03	1.0000E+00	8,85305+30	1,3451E-04	4.00005-02	7.97595-06
104	2.8499£+03	1.0000E+00	6.86995.+98	1,34645-04	4,0000E+02	4,75732005
1.05	2.8690E+03	1.0000E+00	0.00001+00	1.3452E-04	4.00000-02	1.01452-05
106	2 8988F+03	1 00005+00	0 0000-+00	1.34745-04	A. 00005-02	8.80475-08
		1,000000-000				
10/	2,49806403	1,00000-000	0,0000E+00	1.34486-04	4.00005-62	1.40101403
108	3,0190£+03	1,0000E+00	8,00005+00	1,3529E-04	4,00002-02	2.20435-04
109	3.0¢60€≠03	1,00006+00	Ø.9000F+00	1.3444E-04	4,00005-02	1,2265E+05
110	3.13105+03	1.0000E+00	0.00000+00	1.34015-84	4.000000-02	1.59235904
***	3 16485-83	1 9588E-488	6 8688c+88	34445-04	A 00005-02	3 40015-0E
111	3,10,000,000	1.00000-000	1.0000E-00	1104405-04		42475.44
112	3,17806+83	1.00001+90	N. NONNE+00	1.04846.004	4.0000F-05	1.73031-04
113	3,23206+03	1.0000E+00	0.0000E+00	1,3449E-04	4.00001-02	4.40502-05
114	3,249ØE+Ø3	1,0000E+00	0,0000£+00	1.3471E-04	4.0000E-02	1.1060E-04
115	3.3020E+03	1.0000E+00	0.0000-+00	1.3437E-04	4,000000-02	1.48346-05
	7 35685+97	1 00005+00	a addar_aa	34845-04	4.00000-03	1.53045-04
110	3.0-001-00	1.00000-700	n benef + 00	1 848-6-04	4 00000-06	
11/	3.37382+83	1,00000-+00	0.00005+00	1.04376-04	4.0000L-02	2.70/2L-03
118	3,4>00E+03	1.0000E+00	0.00006+00	1.3469E+04	4,0000E-02	1,27135-04
119	3.4880E+03	1.0000E+00	8.0000E+00	1.3436E-04	4.0000E-02	3,2746E-05
100	3.54705+03	1.000000+00	A. AAAAC . AA	1.34295-04	4.00086-02	1.68765-05
	7 44705 43	1 00005+00	0 000000000	- 7440E-04	A 0000E-02	5 54055-00
124	3 44445 43		5 0000 - 00 5 0000 - 00	1 340/5-04	4 00000-02	2127722502
122	3.07002+03	1.00000-+00	n 00000E+00	1.34201-64	4.000002-02	2.30341-05
123	3,754ØE+Ø3	1.0000E+00	0,0000E+00	1,3467E-04	4.0000E-02	1.02786-04
124	3,844ØE+Ø3	1.9000E+00	P. 0000E+00	1,3414E-Ø4	4.00002-02	8.12958-06
125	3.91005+03	1.0000E+00	0.0000-+00	1.3445E-04	4.00005-02	1.05315.074
106	4 02705+03	1 00005+00	0 0000-00	1 341 25 04	4.00001-03	2.27385-06
120	4,02/02-00	1.00000-000	0,0000F+00	1,07101-04	A BOODE - NE	2 . E / 2 2 E - 0 5
127	4.0/002+03	7.00005+00	R* 8000E+88	1,34251-64	4,0000F-05	0.44376-05
128	4,3310E+03	1.0000E+00	0,0000E+00	1.34Ø9E-04	4,0000E=02	4.06625-05
129	4,3860E+03	1,000000+00	0.00005.00	1,3418E-04	4,0000E-02	7.90538-05
1 70	4 49705+01	1. NAAAF+aA	0.00005+00	1.33055-84	4.00005-02	2.10045-05
174	4 47745.87	1 00000-00	0 0000E700	4 3404C-04	A 00000-00	2 12445-44
131	4.0.201+03	T	R. REBRE + 60	1,04041304	4,00002-02	2.4200L-04
132	4,794ØE+Ø3	1,00001+00	N,0000E+00	1,33422-04	4.00005-02	2.71976-05
133	4,9540E+03	1,0000E+00	0.00006+00	1.33675-04	4.0000E+02	1,02116-04
134	4. 0000E+04	1,0000E+00	0.00000.000	1.3425E-04	4,0000E-02	2,79161-04

	DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
	~~~~~~~~			
J-VALUE	COMPETITIVE	NEUTRON	RADIATION	FISSION

		4.0000E+00	0.0000-00	1.00005+00	4.0000E+00	1 00325402
			DIDDD%E.DD	TICODOCION	RIDOBOL . BD	1100/00-00
			AVER	AGE RESONANCE	WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	EISSION
1	1.34902+02	1.00002+00	0.0000-+00	1.34285-24	4.0000F-02	5.43915-04
ž	1,9800E+02	1,0000E+00	0.0000+00	1.3540E-04	4.00000-02	3.07185-04
3	2.0800E+02	1,0000E+00	0.0000++00	1.34416-04	4.0000E=12	2.80315-04
4	2.3100E+02	1.00000 +00	0.0000++00	1.34746-04	4.000000-02	9.19235-05
5	2,40002+02	1.0000E+00	0.0000E+00	1.3449E-04	4.0000E-02	1.36435-05
6	2,4900E+02	1,000000+00	0.00000+00	1.34886-04	4.0000E-#2	1.2935E-04
7	2.5900E+02	1.0000E+00	0,00002+00	1,3448E-24	4.0000E-02	3,15,225-06
8	2,7800E+02	1.0006E+00	0.0000E+00	1,3485E-04	4.0000E-02	1,1138E-04
9	2,88992+92	1,000gE+00	0.00002+00	1,3450E-04	4,0000E-02	3.3486E-06
10	3,3000E+02	1.0000E+00	0.0000E+00	1,3486E-04	4.0000E-02	9,9835E-05
11	3,4000E+02	1.0000E+00	0,00000;+00	1,3454E-04	4.0000E-02	3.6693E=06
12	3.679ØE+Ø2	1.000ØE+00	0,00005+00	1,35292-04	4,0000E-02	2,20745-04
13	3,7700E+02	1.0000E+00	0.0000E+00	1,3456E-04	4.0000E-02	3.8853E-06
1.4	4,19006+02	1.0000E+00	0,00005+00	1.35216-04	4.0000E-02	1,9021E-04
15	4.2°00E+02	1,0009E+00	0,0000E+00	1,34596-04	4.0000E-02	4,1746E-06
16	4,6800E+02	1.0000E+00	Ø,0000E+00	1,35006-04	4.0000E-02	1.2090E-04
17	4 7400E+02	1,0000E+00	0.0000E+00	1,3461E-04	4.0000E-02	4,4344E=Ø6
16	5,4100E+02	1,000ØE+00	0,00002+00	1,34776-04	4.00000-02	4,9284E-05
19	5,5100E+02	1.0000E+00	0.0000:+00	1,3463E-04	4.0000E-02	4.8023E-06
20	5,7100E+02	1.0000E+00	0,00000-00	1,3492E-04	4.00002-02	8,99905-05
21	5,8100E•02	1,0000E+00	P.0000E+00	1,3464E-04	4.0000E-02	4,9479E-06
22	6,530ØE+02	1.0000E+00	0.0000E+00	1,3546E-04	4.0000E-02	2,5470E=04
23	6,630ØE+02	1.0000E+00	0,0000E+00	1,3464E-04	4.0000E-02	5,3310E-06
24	7,0200E+02	1.0000E+00	0,0000[+00	1,351Ø£⇒04	4.0000E-02	1,4373E-04
25	7,1282E+02	1.0000E+00	0,00002+00	1,3464E-04	4,00000-02	5,5511E-06
26	7.8/00E+02	1.0000E+00	0,0000E+00	1,3532E-04	4.00000-02	2,1128E-04
27	7,9700E+02	1.0000E+00	0.00005+00	1,3463E-04	4.0000E-02	5,9191E-Ø6
28	8,5400E+02	1.0000L+00	0.0000E+00	1,3565E-04	4.0000E+02	3,1373E-04
29	8.07002-02	1.00001+00	0,0000E+00	1,34625-04	4.00001-02	6,2191E=06
30	9 4100E+02	1.00002+00	0.0000E+00	1,3463E-04	4.0000E-02	1,07426-05
31	9,71001-02	1,00001+00	0.0000E+00	1,3400E-04	4.00001-02	5,249NE-06
32	1,00000-+03	1.000000400	0.0000E€000	1,00421-04	4.00001-02	2,26092-04
20	1 02005-03	1,000000-00	0.0000E+00	1 94026-64	4.00000-902	1,/0041-05
	1 0.1905-03	4 000000-000	0,00005.000	1 34505-04	4 000000-02	4 44745-04
76	08505-03	1 0000E-00	C.00001-00	1 34085-84	4,000002-02	0,00301-00
37	1.09205+03	1.0000F+00	0,00005-00	1.34665+04	4.00000-02	3 54075-04
38	1.1210F+03	1.000000.00	0.000000	1.35746-04	4.00000-02	3.54105-04
39	1.1310E+03	1.000000+00	0.00000-00	1.345AF-04	4.00005-02	7.23415+04
42	1.1990E+03	1.0000E+00	0.0000-00	1.34785-04	4.00005-02	8.1452E+08
41	1,20985+03	1.0000E+00	0.0000-+00	1.34525-04	4.00000-02	7.52115-04
42	1,2300E+03	1,0000E+00	0.0000+00	1.3550E-04	4.0000E-02	3.01275-04
43	1.2400E+03	1.0000E+00	0.0000	1.34515-04	4.0000E-02	7.63235-04
44	1,2730E+Ø3	1.0000E+00	0.0000.000	1.3564E=04	4.0000E-02	3.50735-04
45	1,2830E+03	1.0000E+00	0,00006+00	1.3449E-04	4.0000E-02	7,7846E-Ø6
46	1,3130E+03	1.0000E+00	0,00002+00	1,3462E-04	4,00006-02	5.05866-05
47	1,3230E+03	1,0000E+00	0.0000E+00	1,3449E-04	4,00006-02	7,9241E-06
48	1,37685+83	1.90005+90	0,0000E+00	1,3517E-04	4.20202-22	2.20335-04
49	1,3860E+Ø3	1.0000E+00	0,00005+00	1,3445E-04	4.00006-02	8,14198-06
50	1,4290E+03	1.0000E+00	0,0000£*00	1,3310E-04	4.000000-02	7,63456-05
51	1,4390E+Ø3	1,0000E+00	P,0000E+00	1,3443E-04	4.00002-02	8,4214E-06
52	1,4000E+03	1.0000E+00	0.0000E+00	1,3455E-04	4.00000-02	4,8745E-Ø5
53	1,4/DEE+03	1.0000E+00	0.0000E+00	1.3441E-04	4.0000E-02	8.4257E-Ø6
54	1,4798E+03	1.0000E+00	0,0000E+00	1,3449E-04	4.0000E-02	3,3268E-05
52	1.30901+03	1.00005+00	N 9000E + 90	1,34412-04	4.0000E-02	8,5545E-06
50	1 24/06+03	1.00001+00	0.00005.00	1,3457E-04	4.0000E-02	6,3502E-05
2/	1,37/06+03	1,000000+00	N.0000E+00	1,34372+04	4.0000E-02	8.71298-86
20	1 54865403	1.00001+00	N,0000E+00	1,3467E-04	4.0000E-02	9.09286-05
57	1 62205-03	1.000000+00	0.00002+00	1.34368-04	4.0000E=02	8.0137E-06
41	1 43205-02		0,00000[+00	1,34376-64	4.0000L-02	1./854E-05
42	1.67405+03	1.00005-00	0.00005+00	1,34335-04	4 NNNNF 05	8.9537E-Ø6
43	1 68405+03	1.00005-00	E BEESE	1 34031-04	4.0000F-05	1.04485.004
	710BC+N0	7.00005-06		7104055-00	4.0000f-05	9.1212E-06

64	1,704ØE+Ø3	1.0000E+00	0.00006+00	1.34916-04	4.00000-02	1,9614E+04
65	1.71495+93	1.00005+00	0 0000-000	1 34365-94	07005-00	8 31875-01
				1 OHODE BH	4100000-02	7.413/1-00
<u>69</u>	1,/3402-03	1.00005+00	0.00005+00	1,34992=04	4.00001-02	9,77696-05
67	1,7440E+03	1,000000+00	0,00000;*00	1.342BE-04	4.0000E=02	9.31015-04
68	1 87005+03	1 . 0000F+00	0 0000-+00	1 36646-04	A 0000E-02	7 54745-74
	1 08005-07	1 30005.00		1.00042-04	4.00002 02	/
07	1.80000-703	1.00005.00	N.9000E+00	1,34216=04	4.00005-02	9,/2905-06
710	1,8960E+03	1,0000E+00	0.00005+00	1.3450E-04	4 Ø0ØØE-02	9.00105005
71	1.9060F+03	1.00000E+00	0.00005+00	1.34205-04	4 00005-02	0 BA775-R4
10	1 03405 03	000000.00	PIDEDELEDO	LIGHZELLE		9,00//E-08
14	1.92405403	1.00005.00	R°8888€*88	2,34446-04	4.00000-02	8,47185-05
73	1,9340E+03	1.0000E+00	0.00000+00	1.3418E-04	4.0000E-02	9.89265-06
74	1.9978E+03	1.0000000+000	A. Addac + Ad	1.34345-04	4.00005-02	7 47745-05
75	0 00705+03	4 99995 + 99	2 22222 222	74445-84		101012-05
11	2.02.02.00	T + O D D D C + 00	N, 00005-00	1,04140-04	4.00000-02	1,01101-05
70	2,0390E+03	1.00000+00	0.00005+00	1,3422E-04	4,0000E-02	3,83085-05
77	2.10105+03	1.0000E+00	0.0000-+00	1.340AE-04	4.0000002	6.75225-04
78	2 12805+03	1 0000E+00	a addab da	74005-04		1 33087-00
		TIODDDC-DD	5.0000E*00	1,07000-04	4.00000-02	1.77952-05
79	2,12001 00	1.00001+00	0,00006+00	1,3402E-04	4.0000E-02	3,09005-06
80	2.175øE+03	1.0000E+00	0.0000-+00	1.3403E-04	4.0000E-02	1.04005-05
81	2.18545+03	1.0000F+00	0 0000-+00	1 3491E-04	4 00005-00	4 78585-04
		1.000000.00	0.000000000	1 0 0 0 1 0 0 0	4.00001002	4110202-00
64	2.21405403	1.00005+00	0.000E+00	1.3409E-04	4,00000-02	3,5384E-05
83	2,22406+03	1,0000E+00	Ø,0000F*00	1.3405E-04	4.0000E=02	2.364ØE-05
84	2,25485+03	1.0000F+00	0 0000-00	1 34375-04	4 00005-02	0 87805-05
6 F	2 26405-07	1 00005-00	0 0000L-00	1 370-0 01		40071-05
	2.20702703	1.0000-00	0.0000E+00	1.00941-04	4.0000F=05	1.09006-06
80	2,30>0E+03	1.0000€+00	N.0000E+00	1,3398E-04	4,0000E=02	1,92030-05
87	2.3150E+03	1.000000+00	D.0000F+00	1.33946-04	4.0000E-02	5.49726-04
88	3 33645+43	1.00005-00	8 9499-199	1 33045-04	A ROADE - 47	1 10000
04	2,000000-000	TICDDDE=00	D. BORDE BO	1.00486-04	4.00005-02	7.70255-00
89	2,3=806+83	1.00000+00	0.8000E+00	1,33898-04	4.0000E-02	3,3342E-Ø6
90	2,37906+03	1.000000+00	0.0000-+00	1.33945-04	4.000025-02	2.4041F=05
01	2 40105+03	1.0090F+00	0 0000-000	1 33875-04	4.00005-07	3 24445-04
	0 40705+07	1 20000-00	0,00002-00	74.75 84		2124042-00
92	2 42302-03	1.00000-000	0.00005+00	1.3412E-04	4.00005-02	8,/8731-995
ۍ و	2,4460£+03	1.00000+00	0.0000E+00	1.3387E-Ø4	4.0000E-02	1,3066E-05
94	2.48006+03	1.0000E+00	0.0000r+00	1.3383E-04	4,000000-02	6.298ØE=Ø6
<b>45</b>	2.5160E+03	1.0000E+00	D. 33305 + 33	1.34075-04	4.00005-02	8.34425-95
DA	2 53905+03	1 00005+00	0 0000-+00	1 33045-04	4 00005-02	4 85685-05
			DIBEBBE	1,00011-04	4, DODDE ODE	1103005-19
97	5,24485+82	7.00005+00	C,26886E≠68	1,34195-04	4,90005-02	1,3196E-04
98	2.6130E+03	1.00001.000	0,0000E+00	1,3373E-04	4.0000E-02	7,6775E-06
97	2.6640E+03	1.00005+00	0.90005+00	1,33758-04	4,0000E-02	1.01326-05
4 6 6	2 7300F+03	1.0000F+00	0 0000-+00	34145-0A	A	1 50715-0A
100			P. DDDDE-DD	TIGATOL		1127715-04
101	2,75702-03	1.00005.000	0*0000E+00	1,33721-04	4.00001-02	3,43301-05
102	2,7710E+03	1.0000E+00	0,0000E+00	1.3376E-04	4,00000-02	5,02196-05
103	2.8120E+03	1.0000E+00	0.0000-+00	1.34516-04	4.000000-02	7.97595-06
104	2 84805403	5.00005+00	8 0000 - + 00	1.3464C-04	4. 00005-02	4.75735-05
	0 00000.07	100000-00		74845 84		
105	2,00701-03	1.00000-000	0.00005-00	1,04925-04	4.00002-02	1,01496-05
100	5.8A40F+03	1,00001+00	0.0000E+00	1,3476E-04	4,0000E-02	8,09476-05
107	2.9580E+03	1.0000E+00	0,0000++00	1.3448E-04	4.00000-02	1.2010E-05
108	3 01005+03	1 0000F+00	0 0000-+00	35265-04	4 00005-02	2.50435-04
100		1,000002.00				4 20455-04
144	3,80002-03	1,00000-000	0.0000F-00	1.04441-04	4.00000-02	1,52025-02
110	3.1310E+03	1.0000E+00	0,0000E+00	1.34916-04	4.0000E=02	1,2903E-04
111	3.164nE+n3	1.0000000+00	0.00005.000	1.3448F-04	4.0000E+02	3.42212-05
	1 19845+03	1 0000F+00	0 0000c+00	1.34945-04	4.00005-02	4.43435-04
	3' 0'00L-00			1 74407-14	-"aaaar_aa	1 21100
110	2.20586+83	2,08006+08	n 80000£≉00	11044AF-84	4.0000E-02	+, -0001-03
114	3,249øE+Ø3	1.0009E+00	0,000000+00	1,3471E-04	4,0000E-02	1.1060E-04
\$ 15	3.30208+03	1.0000E+00	0.0000 <i>=</i> +00	1.34375-84	4.0000F-02	1.48348=05
11A	3 3560F-01	1.00000+00	0.0000-+00	1.34815-94	4.00005-02	1.53965-04
11	3.3-000-00	1,000000.000	0.000000-000	1 747 1 04	1 0 0 0 0 C DC	2,00,000-dr
117	3.3730E+03	1.00001+30	0.0000E+00	1.34372-04	4.0000-02	2. 70/21-05
118	3,4>00E+03	1.0000E+00	0.000E+00	1,34692-04	4.0000E-02	1,27132-04
119	3,4880E+03	1.0000£+00	0.00005+00	1.3436E-04	A.0000E-02	3.27468-05
100	7 54745-43	1 00005+00	0 0000r+00	34265-04	4 90995-02	1.68765-08
1 4 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7,0000-400	0100001-00			
121	3.59/DE+D3	1.0009E+90	0,00005+00	1,34485-04	4.00005-02	5,24926=05
122	3,6900E+03	1.0000E+00	0,0000E+00	1.3426E-04	4,00005-02	Z, JØ34E-Ø5
193	3.7540E+03	1.0000E+00	0.00000.000	1.34675-04	4.00001-02	1.52788-04
104	7 96405-01	1 00005+00	0 0000-00	34145-04	4.00001-002	8.10055-04
15.	3,00462403	1.00000-400	5.0000F-00			A GREAT AL
125	3,91006+03	1,0000L+00	0.0000E+00	1,34451-04	4.0000L-02	1,20316-04
126	4,0270E+03	1.0000E+00	0.0000E+00	1,3413E-04	4.0000E-02	2,2725E-05
127	4 2762E+03	1.000000+00	8.8888F+88	1,34255-04	4.00000-02	6,49975-05
108	A 3310F-03	1 000000+00	0 0000-00	1.34005-04	4.00000-000	4.06625-05
120	1 70405 47	4 00000-400		4 34405-04	1 00000-00	9 94535-44
124	4,30002+03	1,00000+00	0.00005+00	1,04181-04	+ . 00001 - 02	7 1 7 D D D L P D D
130	4,4970E+03	1,0000E+00	0.0000E+00	1,3395E-04	4.00005-02	2,10041-05
131	4,6720E+03	1.0000E+00	0,000000=00	1,3404E-04	4.0000E-02	2,12665-04
1 7 2	4.7940E+03	1.000085+00	0.00005+00	1.3342E-04	4.0000E-02	2,5195E=Ø5
477	4 0448F-01	1 00005-00	0 40405+44	1.33676-04	4.00005-02	1.02115-04
1.50	4,73406403	1.00000.000	0,00001-00	1 740-0-04		2 70-41-4
134	4,0000L+0A	1,0000-+00	0.0000E+00	1109201-04	HIDDDDF-02	C113705+04

NEPTUNI UM-237

FISSION NEUTRON CROSS SECTION

ENDF/8 MATERIAL ND. 6263

۲ ک	
2,00005+08	
VALUE	
œ	1
ION	
REACT	

LAW BETWEEN ENERGIES Déscription Ln y Linear in Ln X INTERPOLATION L Range 1 to 154 L

RANGE DESCRIPTION 154 TO 316 Y LINEAR IN

R Free Part 1, 100 State 1, OSS SECTION Barns CROSS ENERGY SECTION 4.40065
4.40065
4.40065
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.720005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
5.72005
<li CROSS × ENERGY SECTION 1,559705 1,559705 1,559705 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,55875 1,5 CROSS 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 1.2000 ENERGY 004-1010 SECTIONS GY CROSS : CROSS SEI NEUTRON INDEX. 

. 2200E+00	3300E+00	3550E+00	.3350E+00	3000E+00	30505+00	.3300E+00	4520E+00	, 6000E+00	68895+30	.6800E+00	,7000E+00	7300E+00	
7.6000E+06 2 8.2000E+06 2	9.2000E+06 2	1.0200E+07 2	1,1200E+07 2	1.2200E+07 2	1.2800E+07 2	1.3800E+07 2	1,4800E+07 2	1,58006+07 2	1,6800E+07 2	1,78825+07 2	1,8800E+07 2	1,9800E+07 2.	
2.2500E+00 2.2500E+00	2.3200E+00	2.3500E+00	2.3400E+00	2.32025+00	2.3000E+00	2.320DE+DD	2.4200E+00	2.58205+08	2.6800E+00	2,6800E+00	2,7000E+00	2.7250E+00	
7.4000E+06 8.0000E+06	9.0000E+06	1,0000E+07	1.10025+07	1,2000E+07	1.2600E+07	1.36005+07	1.4500E*07	1.5600E+07	1.6600E+07	1.7600E+07	1.8600E+07	1.9600E+07	
2,19196+00 2,24006+00	2,31005+00	2,34505+00	2,34505+00	2,3100E+00	2,2998E+00	2,31506*80	2.4000E+00	2.54505+00	2.6700E+00	2.6800E+00	2,6950F+80	2,7202E+00	
7.9200E+06	8,80005+06	9,8000E+06	1,08006+07	1,1800E+07	1,2570E+07	1.3400E+07	1,4400E+07	1,540AE+07	1,64095+07	1.74895407	1,8400E+07	1,9400E*07	
2.1800E+00 2.2300E+00	2 30005+00	2.3400E+00	2.35006+00	2,3200E+00	2.3000E+B0	2.31005-00	2.37PBE+BB	2,52005+00	2.65095+00	2.68985+00	2.66585+00	2.7100E+00	
7.2000E+06 7.8000E+06	8.6000E+06	9.6000E+06	1.06805+07	1.1600E+07	1.24006+07	1.3200E+07	1.4200E+07	1,52005+07	1.6200E+07	1.7286E+07	1.82005+07	1,9200E+07	
2.1682E+00 2.2250E+00	2.2800E+00	2,3350E+00	2.3550E+80	2,3300E+00	2.30000-00	2.30505+00	2,33705+00	2.4800E+00	2.6200E+00	2,68025+02	2.68005+00	2.7990E+00	2.7350E+00
7 14605+06 7 70005+05	8 46 0 0 E + 2 6	9,4000E+06	1.24846+87	1,1400E+07	1,2340E+07	1.3000E+07	1.4000E+07	1.5000E+07	1.6200E+07	1,70005+07	1.8000E+07	1,9000E+07	2 00004E+07
246 251	250	261	266	271	276	281	286	291	96Z	301	305	311	310



- 293 -

## REFERENCES FOR EXPERIMENTAL DATA

## 237_{Np(n,f)}

<u>Yr.</u>	<u>Lab</u>	<u>Author</u>	References
73	SAC	Plattard, et al.	Priv. Comm. (1973)
72	LAS	Jiacoletti, et al.	Nuc. Sci.&Eng. <u>48</u> , 412 (1972)
70	LAS	Brown, et al.	Nuc. Phys./A <u>156</u> , 609 (1970)
67	ALD	White, et al.	J. Nuc. En. <u>21</u> , 67 (1967)
65	ALD	Perkin, et al.	J. Nuc. En. <u>19</u> , 423 (1965)
65	ALD	White, et al.	Phys. & Chem. of Fisson Conf. Salzburg, Vol <u>I</u> ,219 (1965)
63	CCP	Pankrato  v	At. En. <u>14</u> , 177 (1963)
60	CCP	Pankratov, et al.	At. En. <u>9</u> , 399 (1960)
59	HAN	Leonard, et al.	Bull. Am. Phys. Soc. <u>4</u> , 31 (1959)
59	ORL	Schmitt, et al.	Phys. Rev. <u>116</u> , 1575 (1959)
59	CCP	Gokhberg	Dok. <u>128</u> , 1157 (1959)
58	CCP	Kalanin	Second Peaceful Uses of At. En. Conf. Geneva Vol <u>16</u> , 136 (1958)
5 <b>7</b>	LAS	Henkel	LA-2122 (1957)
47	LAS	Kłema	Phys. Rev. <u>72</u> , 88 (1947)

94-PU-239 GE-BRO,LAS EVAL-MAR74 B.A.HUTCHINS, R.HUNTER, L.STEWART DIST-1974 REV-DCT74 P.C. TO NORMALIZATION AND STANDARDS SUBCOMMITTEE MARCH 1974 PERTINENT HOLLORITH FROM GENERAL FILE FOLLOWS (MAT 1264) ALL REFERENCES CARRIED OVER FROM GENERAL FILE

PRINCIPAL EVALUATORS = B.A. HUTCHINS (GE-BRO), R.HUNTER(LASL), L.STEWART(LASL), R.LABAUVE(LASL).

CONTRIBUTING EVALUATORS

NU-BAR-98,R.LEONARD,JR.(BNW LAB), THERMAL DATA TASK FORCE F.P.YIELDS--R. SCHENTER (HEDL), FIS AND DECAY PROD TASK FORCE DELAYED NEUTRONS--H. HUMMEL (ANL), COX (ANL) RADIOACTIVE DECAY=-C.W.REICH (ANC) RESOLVED RES.--J.R. SMITH (ANC), R. GWIN (QRNL), R. KINSEY (BNL

SMOOTH DATA

THERMAL RANGE--B, R, LEONARD(BNW LAB), THERMAL DATA TASK FORCE 1 EV = 1 MEV --F, SCHMITTROTH(HEDL), T.A.PITTERLE(WARD) G, DESAUSSURE (ORNL), W, POENITZ (ANL) 1 MEV= 20 MEV--L, STEWART (LASL), R, HUNTER(LASL) INELASTIC SCAT--L,STEWART, R, HUNTER (LASL) SEC NEUT DISTRIBUTIONS-- L, STEWART, R.HUNTER (LASL) GAMMA=PROD-- R, HUNTER AND L, STEWART (LASL)

EVALUATIONS ARE DESCRIBED AND REFERENCED IN LNDF-199 (REF. 1)

MF = 2

RESOLVED RES. PRIMARY DATA SOURCES ARE GWIN(7) FOR FISSION AND CAPTURE AND DERRIEN(8) FOR TOTAL, PARAMETERS (SLBW) GENERATED BY SMITH, KINSEY AND GARBER, ENERGY RANGE 1 EV TO 301 EV.

UNRESOLVED RES.

PRIMARY DATA SOURCES ARE GWIN(9) AND WESTON (10), ENERGY-DEPENDENT SLOW PARAMETERS PROVIDE SECONDARY STRUCTURE IN FISSION, CAPTURE AND TOTAL CROSS SECTIONS, ENERGY RANGE 301 EV TO 25 KEV, INTERPOLATION SHOULD BE ON CROSS SECTIONS.

MF = 3

SMOOTH DATA

THERMAL DATA--ENERGY DEPENDENCE SAME AS VERSION III, RENORMALIZATION OF FISSION AND CAPTURE TO 2200 M/SEC VALUES OF 741.7 AND 270.2 FROM 1973 LSQ ANALYSIS OF THERMAL DATA TASK FORCE(6).

1 EV TO 25 KEV=-SMOOTH CONTRIBUTIONS IN THE RESOLVED RANGE CHOSEN TO MAKE COMBINED RESONANCE AND SMOOTH FISSION AND CAPTURE CROSS SECTIONS CONSISTENT WITH GWIN(7) MEASUREMENTS, AND TOTAL WITH DERRIEN VALUES(8), SMOOTH DATA IN UNRESOLVED ONLY FOR INELASTIC SCATTERING AND MINOR ADJUSTMENTS AT RANGE BOUNDARIES. 25 KEV TO 1 MEV-STOTAL BASED ON MEASUREMENTS OF SMITH(11) AND HEATON(12), FISSION PRIMARILY BASED ON GWIN DATA(9) AND THAT OF PFLETSCHINGER(13), CAPTURE OBTAINED FROM ALPHA MEASUREMENTS OF GWIN(9), WESTON(10) AND HOPKINS(14), INELASTIC LEVELS ADJUSTED FOR LOW LYING LEVELS TO PARTIALLY COMPENSATE FOR INCLUSION IN THE ELASTIC CHANNEL, ELASTIC DETERMINED FROM BALANCE OF TOTAL. 1 MEV TO 20 MEV-=DATA BASED ON EVALUATION OF HUNTER(2), WITH FOLLOWING ADJUSTMENTS -1)FISSION TO CONFORM TO ENDF/B-IV U=235 FISSION AND INTEGRAL MEASUREMENTS 2) TOTAL TO AGREE BETTER WITH HEATON (12) 3)ELASTIC FOR BALANCE AND AGREE WITH UNITARITY, FIRST, SECOND, THIRD AND FOURTH CHANCE FISSION INCLUDED, WITH MT=18 BEING THE SUM. REFERENCES 1) PU-239 DATA EVALUATIONS FOR ENDF/B-IV, ENDF-199(TO BE ISSUED), 2) HUNTER, STEWART, HIRONS, LA-5172 (JUNE, 1973). 3) SOLEILAC, FREHAUT, GAURIAU, J. NUCL. ENG. 23 (1969).
 4) FISSION PRODUCT DATA FOR ENDF/B-IV, R.E. SCHENTER (TO BE PUBLISHED) 5) DELAYED NEUTRON DATA FOR ENDF/B-IV, S, COX (TO BE PUBLISHED), 6) THERMAL NEUTRON DATA FOR ENDF/B-IV, J, STEHN (TO BE PUBLISHED), 7) GWIN, PRIVATE COMMUNICATION (1973). 8) DERRIEN, CN26/61, HELSINKI (1978), 9) GWIN, SILVER, INGLE, TRANS, AM, NUC, SOC, 15, 481 (1972), 10)WESTON, TODD, TRANS, AM, NUC, SOC., 480 (1972). 11)SMITH, GUENTHER, WHALEN (1972). 12) HEATON, SCHWARTZ (1972). 13)PFLETSCHINGER, KAPPELER, NUC. SCI, AND ENG. 40 (1970). 14)HOPKINS, DIVEN, NUC. SCI, AND ENG, 12, 169 (1962). 15)COPPOLA, KNITTER, Z.PHYS, 232, 286 (1970) - 228,286 (1969). 16)KAMMERDIEMER, UCRL=51232 (1972). 17) BARNARD, FERGUSON, MCMURRAY, VAN HEERDEN, NUCL. PHYS. 71 (1965) 18) ZAMYATNIN, SAFINA, GUTNIKOVA, IVANNOVA, AIOMNAYA ENER. 4 (1958) 19)HUNTER, STEWART, LA-4901 (1972). 20)DRAKE, HOPKINS, YOUNG, CONDE, NUC, SCI, ENG, 40, (1970). 21)NELLIS, MORGAN, ORC-2791-17 (1966),

PLUTON	UM=239		G	TABLE OF CONT ENERAL INFORM	LNTS		
		DATA TYPE			REACTION	+ C	ARI
	G	ENERAL INFORM	ATION		COMMENTS TABLE OF CONT	ENTS	16
	R NE	ESÓNANCE PARA Utron cross s	METERS		RESONANCE D FISSION	DATA	6; 14
					ENDF/B_MATERI	AL NO, 6264	
P ISOTOPI FRACTII	LUTONIUM-239 E	 E	ITONIUM+239 ØØØØE+0Ø	RESONA RESONANCE	NCE DATA Parameters		
ENERGY	RANGE NUMBER	NUC3	2 1 Re	SOLVED SINGLE	-LEVEL BREIT-	WIGNER PARAME	TEF
LOHER UPPER NUCLEA SPIN S NUMBER	ENERGY LIMIT ENERGY LIMIT R SPIN CATTERING LEN OF L STATES-	(EV) 1. (EV) 3. GTH (A+) 9.	0007E+00 0100E+02 0007E-01 0094E-01 1				
L VALU	En		8				
SPIN S	CATTERING LEN	IGTH (A-) Ø.	128 000PE+00				
INDEX	ENERGY (EV)	J VALUE	F TOTAL	REBONANCE WID' NEUTRON	'HS (EV) RADIATION	FISSION	
1	-2,20885-01	0,0007E+00	5,4005€≁01	4.7888E-85	4.8080E-02	5,00005-01	
2	2,9600E-01	0,0000E+00	9.92428-02	2,4200E-04	3.9000E-02	A,0000E-02	
4	1,0941E+01	1.000000+00	1,9917E-01	1.866ØE-Ø3	4 4225E-02	1,5308E-01	
5	1,1890E+01 1,4310F+01	1.0000E+00 1.0000E+00	6.6014E-02 1.0140F-01	1,0140E-03 5,9900F-04	4.0632E=02 3.5919E=02	2,4368E-02 A.5081E-02	
7	1,46876+01	1.000000+00	6.87905-02	1.79000-03	3.6840E+02	3.0100E-02	
ð	1.54706+01	0,0000E+00	7.2443E-01	2.1200E-03	3.9000Ec02	8.8331E-01 3.3521E+02	
10	2,22605+01	1.000000+00	1.18622-81	2.6160E-03	4.6582E-02	6,94205-02	
11	2,39056+01	0,0000E+00	7.02725-02	2.7200E-04	3.7367E=02	3,26336-02	
13	2.7260E+01	0.0000E+00	4.3666E-02	4.18000.04	3,9000E>02	4,248ØE-Ø3	
14	3.2328E+Ø1	0,0000E+00	1.6682E-01	8.1600E+04	4,8185E=02	1:17816-01	
15	4.1430E+01	1.0000E+00	4./241E-02 4.9747E-02	2.4100E=04 3.7470E=03	4.2440E=02 4.2028E=02	4,5520E-03 3,9720E-03	
17	4 1685E+81	1,0200E+00	1.05452-01	1.45202-83	5.9392E-02	4 4608E-02	
18	4,4500E+01	1,0000E+00 0,0000F+00	4.8848E-02	5,9480E-03 4 8560E-03	3.8763E=02 5.0415E=02	4.137ØE-03 2.08595-01	
20	4 9700E+01	8,0000E+00	8.1161E-01	3.8070E-03	6.1800E=02	7,4600E-01	
21	5,01136+01	1,0000E+00	5.7427E-02	2.9270E-03	4,14795=02	1,30215-02	
24	5.5660E+Ø1	1.000000000	0.2038L-02 5.6850F-02	4.3500E-03	3.7342E-02	1.8158E-02	
24	5.75542+01	8,8888E+88	6,3556E-01	1,8562E-82	4,5000E=02	5,8000E-01	
25	5.9254F+01	0.0000E+00 1.0000E+00	9,9816E-01	9.1580E-03	3.9000E=02 3.9103F=02	9.50006-01	
27	6.Ø970E+81	Ø.0000E+00	6.8132E+ØØ	2.4268E-02	5.2999E-02	6.736ØE+ØØ	
28	6.3110E+01	1.0000E+00	1.5270E-01	6.9800E-04	5.52018-02	9,67995-02	
30	6,5790E+01	1.0000E+00	1.26396-01	1.11928-02	6.0313E-02	5,4887E-02	
31	7,4087E+01	1,0000E+00	7.32911-02	3.2910E-03	3.8296E=02	3.1704E-02	
33	6,160VE+01	A . 6660E+00	9.37466-81	2.01201-02 3.7600E-03	3.9000E=02	8,94695-01	
34	8,2650E+01	0.0000E+00	1,24286+00	3.796ØE-Ø3	3.9000E-02	1,20006+00	
35	0.2719E+Ø1 8.5270E+Ø1	0,0000E+00 0,0000E+00	3.9929E+02 2.35425+00	9,2900E-04 9,0182F-02	3.9000E-02 3.9000F-02	0,0000E+00 2,2650F+00	
37	8,553>£+01	1.00005+00	5,95236-02	7.5230E-03	3,9863E-02	1.21376-02	
38	9 0770E+01	1,0000E+00	5,7998E-02	1.12986-02	3 8110E 02	8,5900E-03	
40	9.54342+01	1.000000+00	3.04/8E+02 5.04855-03	7,70001-04	4,9/04L902 3,3916Fe07	7,7900E+03 1.4584F-09	
	9,6491E+01	0.000000+00	1.7009E+00	1.3936E-02	4 2000E-02	1,6420E+00	
41	1.00226.+02	л, 0000E+00	6,0025E+00	1,3491[=02	4,2000E-02	5,94706+00	
41 42 43	1.03055+00	1.000005-000	4 76745-00	4 43400 07	T ERFECTOR	4 . <u>81.405</u> - 07	
41 42 43 44	1,0305E+02 1,0535E+02	1,0000E+00 1,0000E+00	4.7634E-02 4.5803E-02	1.6340E-03 4.8030E-03	3,5868E-02 3,6299E-02	1,0132E-02 4,7010E-03	
41 42 43 44 45	1,0305E+02 1,0535E+02 1,0674E+02	1,0000E+00 1,0000E+00 1,0000E+00	4.7634E-02 4.5803E-02 6.7854E-02	1,6340E-03 4,8030E-03 9,3540E-03	3.5868E-P2 3.6299E-02 3.6414E=02	1,0132E-02 4,7010E-03 2,2036E-02	

}

ł

4.0	1 15055.00					
40	1,172-1.402	0,0000E+00	6,9644E-02	6.4400E-04	3,9000E-02	3.0000E-02
49	1,10105+02	0.0000E+00	2.5342E-01	1,14216-02	5.0972E-02	1,91035-01
50	1,188°£+Ø2	1,000000+00	8.5354E-02	1.73546-02	3.48436=02	3.31575-02
51	1.21Ø3E+Ø2	0.0000E+00	8.75845-02	7.58405-03	3 49125-02	4.10885-02
52	1.23495+02	0 00005+00	6 4300E-00	4 78005 03	0,0710,00	
53	1 24275+02	0 00000.00	0,-0676-02	1.38701-03	2.40000 02	3190001-02
	1.202	0,0000E+00	5.21701-02	5.3700E-03	3.53296-02	1,14/5E-02
21	1.27001+02	0.00005+00	5,3921E-02	1.9210E-03	3,2422E=02	1,9578E-02
55	1,3192E+02	0,00005+00	3.8143E+ØØ	3,559BE-Ø2	3.8698E≠Ø2	3,7400E+00
56	1.338°E*Ø2	1.0000E+00	5.4569F-02	6.5690F-03	4 X630F=02	4.37005-03
57	1.368VE+02	0.0000E+00	1.33095-01	1.20875-02	4 46695=02	7.03310-02
58	1 30355-03	9 99995-99	1 00045-00		7 00000-00	7170010-02
50	1 47045+00	4 00000-00	0.9290E-02	5.90005-64	3.990001=02	N 1 N N N N N H H N N
27	1,43000,002	1,000000+00	1.43531-01	3.5310E-03	2.99475-05	8,30516-02
60	1,43546+02	1.00006+00	6,9547E-02	3,54706-03	3,4800E-02	3.12006-02
61	1,4631E+02	1,000026+00	6.6838E-02	8.23805-03	4.89826-02	9.6180E-Ø3
62	1.4730E+Ø2	0,0000E+00	1.0469E+00	2.86105-03	4.4000E=02	1,00005+00
63	1.4827E+Ø2	0.000000+00	1.50915-01	1.91105-03	5 04375=02	8.99635-02
64	1.4949E+Ø2	7.0000E+00	1.1179F-01	5.79205-03	5 45285-42	4.74705-82
65	1.56955+02	0.00005+00	4 30055-00	4 08500 03	3 63335-30	
6.6	1 57085403	0 0000E+00	4,00002-02		0.90000-02	
47	1 11570-002	4 000001-00	0,100/1-01	2,63/41-02	4.80000-92	5140005-01
	1.04746-02	1.000000+00	7,45601-82	5.800NE=05	3,8764E-02	7.1360E-03
65	1.67141.402	1.0000E+00	9.8548E-02	6,548ØE=03	3.8172E=02	5,38282-02
69	1 70005-02	0,0000E+00	4.9726E-02	7.2600E-04	3.5382E-02	1.36186-02
70	1,70456+02	0,0000E+00	1.8141E-01	2.4070F-03	6.0000E-02	1,19005-01
71	1.7130E+02	0.0000F+80	1.00165+00	1.59505-03	4 4000F=02	0.56005-01
72	1.74565+92	2.0000F+00	0 41405-04	4 49685 .04	A''+ 500C+02	
23	1 76985-02	4 30405+20	2,71010.01	1,1,000 07	4.1.000-02	2100002-01
- 4	1 77075.00	1 000000-00	1,21276-02	2.12905-03	4,0/432-02	519227E-02
12	1,//222402	1.00002+00	4,9816E-02	3.81005-03	3,91291-02	618710E-03
/2	1.18405+05	1.00006+00	5.8371E-02	1.371ØE-03	4.2238E#Ø2	1.4762E-02
76	1.8360E+02	1,000ØE+0Ø	5,58Ø1E-Ø2	1.8Ø1ØE-Ø3	3,3653E-02	2,03478-02
77	1.8501E+02	0,0000E+00	1.8361E+00	1.5937E-02	3.9000E=02	1.78125+00
78	1.8575E±02	0.0000E+00	3.97565-02	7.56005-04	3 00000 = 07	a. 00005+00
79	1.88255+02	0.0000F+00	5 08055-00	99505-03	3 43665-033	1 36345-03
p (I	1 00446+03	6 0000C+00	4 47075-00	1 30705 07	0.00000-02	1120442-02
	1 05755.00		0.0/031-02	A. 7030E=03	4,75900-02	1,44106-02
61	1.95326402	0.0000F+00	5.1129E-01	5,9526E-02	5.0430E=02	4.0134E-01
82	1,9607E+02	1,0000E+00	1.1197E-Ø1	<b>4,9680E-03</b>	6,0531E-02	4,6469E-02
83	1,9940E+02	1,00006+00	1.3608E-01	1.01816-02	4.8606E=02	7.72946-02
84	2.0330£±02	1.00006+00	7.09535-02	1.95305-03	3 9000E-02	3.00000-02
85	2.0362E+02	1.00006+00	8,29255-02	2.92505-03	2 83925-02	8.16085-02
86	2,03955+02	0. 0000F+00	0 08725-04	8 37235-02	2 45775-00	0.1840C-01
Å7	2.04235+02	0.00005+00	1 01705-01	1 39205-03	1 00005 02	4.40000-01
• 8	2 49345+40	4 00000.400			5,00000-02	1 00000 -01
	2 44105402	1,0000000000	5.00412-02	0.07102-03	4.27416-02	1 0 3 10 - 03
	2,11101.002	0,00000.+00	1,16081+00	4.0730E-03	3,90016-02	1.13/7E+00
90	2,12026+02	0,00000+00	1,50036+00	2.3220E-03	4,2000L-02	1,400E+00
91	2,13201+02	0.00000.+00	1.6795E-Ø1	1.6520E-03	3.8395E-02	1.27902-01
92	2,16526+02	1,0000£+00	6,3663E-02	6.60302-03	4,7597E=02	9,40306-03
93	2,1949E*Ø2	1.0000E+00	6,8Ø68E-Ø2	3,4680E-03	4``0489E+02	2,4115E-02
94	2,2023E+02	1,0000E+00	5.0608E-02	7,9080E-03	3,1694E-02	1,1006E+02
95	2,2315E+Ø2	1.0000E+00	5.9402E-02	3,9020E-03	4,9491E002	6,00905-03
96	2,248YE+Ø2	1.0000E+00	8.5501E-02	1.8010E-03	7.02825-02	1.3418E-02
97	2.27775+02	0.00000+00	8,0941F+00	2.86045-02	4 1500E-02	8.0240F+00
68	2 27895+02	1 00005+00	6 54465-00	4 01605-03	4 0335-02	9.24675-02
60	2 74405+02	1 6000E+00	E 774 EC-40	4 47455.02	T"#####E-#2	E 0000c-03
4 4 4	2 704 15 .00	1,00000,00	5.57691-02	1.17052402	7. 00000-002	4 500000-00
100	2,32000.002	0,00001,00	1.00431-01	1.43405+03	3,90000002	010000E-02
101	2.3439E+02	1,0000E+00	6,0560E-02	9,6000E-03	3,9179E=02	1,1/218-02
192	2,390 <u>0</u> E.*02	1,000000+00	7,09191-02	6.0190E-03	4,844>E=Ø2	1,64252-02
103	2,4060E+02	0,00002+00	2,4160E-Ø1	9.9000E-05	4, <u>1</u> 500E⇒02	2,0000E-01
194	2,42875+02	1,0000E+00	9,4225E-02	7,1250E-03	3,4792E-02	5,2308E-02
105	2,47502+02	0.0000E+00	9.1685E-Ø2	2,68505-03	2,6009E=02	6,29915-02
100	2.4887E+02	1.0000E+00	5.5344E+02	1.62445-02	3.3894E=02	5,2060E-03
107	2 51245-02	4 0000F+00	8 16435-02	4 08435-02	3 3055F-02	7.74500-03
	2 646/6402	. 0000E-00	5 93005-00	3 42205-03	3 11745=02	3.37268+92
TNO	L 343/L,402	1,000001700	2,00221-02	0,75200-00 5 6550- 07	0114/"L+DC	A 57405-00
109	2,560/1+02	1.00005+00	8,85552-02	7.0550E-03	5.5/512-02	212/142
110	2,5900E+02	0,0000E+00	4,0148E+00	1.1396E-02	3.90005-02	3,9044E+00
111	2,590>E+02	0,00002+00	3.9451E-02	4.5100E-04	3.9000E=02	0.0000E+C0
112	2.6030E+02	0,000000+00	3,9921E-02	9,2100E-04	3,9000E-02	A,0000E+00
113	2.62745+02	8.0000E+00	4.6895E+00	7.0502E-02	3.9000E-02	4,50006+00
114	2.62705+02	1.0000E+00	4.92055-02	3.2950F-03	3.6814E-22	9,1800E-03
15	2 64205+02	9.0000F+00	4.58201-02	1.8200r-03	2.7805E-02	1.61956-02
	2 40105-00	0.00005+00	1 34005-04	4.1900r -03	5.5000F-02	7.50000-02
11.0	2 40495-02	4 0000F_00	A ASCOC-07	4 A900C-01	3 21085-02	2.98925-02
11/	5 07475404	1,000000,000	0,0070L-02	A 53310 03	3 25925-02	1.04185-02
110	C./ CO4L + 02	1,00000-000	0.76206-02	C, JECOL - 0C	5 44005-00	5.5888+-44
117	<.748×1.+02	1.000000+000	/ 19891-01	0.09106-03	2.00000-02	0120005-01
120	2,75572+02	7.0000E+00	1,5118E-01	2,51/8E-02	9,67346-02	144500E-05
121	2.772JE+Ø2	0,000000+00	5,29986+00	1.7846E-Ø2	4,2000E=02	5,2400E+00
122	2,79555+02	0,0000E+00	1,2783E-01	2,7332E-02	4,9316E-02	5.1184E-02
123	2.8292E+02	1.000000+00	7.9690E-02	1.9690E-02	4,7342E-02	1,26585=02
124	2.85736+02	0.000000+00	3.4095E-01	9.4500E-04	4.000PE-02	3,00000-01
125	2.88005+02	0.00005+00	7.01076+00	3.07545-02	3.9000E=02	6.9500E+70
176	2 02335-92	0.0000F.00	1 16495-01	1.34885-02	4. 8489E-02	5.45116-02
127	2 04465+02	00005-00	9 17475-03	3.74700-03	5 2749F #42	2.52515-02
121	6 YD TUL TUZ	1,000000000	0 1/4/E-UC	4 46474 45	7 74645 0	3.06345-03
120	C, YDDVC #02	1,00000.400	0,000/1-02	7.02015-05	0,/10.0.02	210000E-DE

					ENDF/8 MATE	RIAL ND. 0264
Pi	UTONIUM-239			RESONANI RESONANCE I	CE DATA Parameters	
ISOTOPE FRACTIC NUMBER	NAL ABUNDANCE OF ENERGY RAN	GES	NIUM=239 88E+88 2			
ENERGY LQWER E NUCLEAF EFFEGT: NUMBER	RANGE NUMBER- IMERGY LIMIT ( INERGY LIMIT ( R SPIN IVE SCATTERING OF L STATES	EV) 3.01 EV) 2.50 EV) 5.00 RADIUS 9.05	2 UNRE ØØE+Ø2 ØØE+Ø4 ØØE-Ø1 35E-Ø1 2	SOLVED SINGL	E-LEVEL BREIT.	WIGNER PARAMETERS
L VALUE NUMBER	OF J STATES-		0 2			
			DEGREES OF	FREEDOM USED	IN THE WIDTH	UISTRIBUTION
		J=VALUE 0.0000E+00	COMPETITIVE 8.0000E+00	NEUTRON 1,0000E+00	RADIATION Ø.0000E+00	FISSION 2,0000E+00
			AVER	AGE RESONANC	E WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	3,01006+02	8.7800E+00	0.02002+00	1,273ØE-03	4.1600E-02	2,30306+00
2	3,2000E+02	8.7800E+00	0.00005+00	4,8174E~Ø4	4.1600E-02	2,80305+00
3	3,40001+02	8.7800E+00 8.7800F+00	0.000000+00	3,95446-04	4,10000-02	2,0000E+00 9,8020E+00
5	3,800000+02	8.7800E+00	0,0000E+00	5.1612E-04	4,1600E-02	2,80006+00
6	4,0400E+02	8.7800E+00	0.00000:+00	6,6419E-04	4.1600E-02	2.80392+00
7	4 300000+02	8.7800E+00 8.7800E+00	0,00005+00	2,8519E-04	4.1600E-02	2.80002+00
9	4.9200E+02	8.7800E+00	0.0000r+00	6.6726E-04	4.1600E-02	2,80305+00
10	4,9500E+02	8.7800E+00	0.00005+00	3,8876E-04	4,1600E-02	2.80005+00
11	4,9800E+02	8.7800E+00 8.7800E+00	0.00000-00	5,0314E-04	4.1600E-02	2,60000000
13	5.0400E+02	8.78ØØE⇒ØØ	0.00000-00	1.75926-03	4.1600F-02	2.80305+00
14	5,4000E+02	8,78ØØE+ØØ	0.00005+00	2,0613E-03	4,16005-02	2.8030E+00
15	5,5500E+02	8.78ØØE+ØØ	0.0000E+00	1,7891E-23	4.1500E-02	2.80002+00
10	5,9900E+02	8.7800±+00 8.7800±+00	0.0000E+00	1,9010E=03 9,4918F=04	4.10000-02	2,8030E+08 2.8000E+08
18	6,4000E+02	8.7800E+00	0.00005+00	7,40475=04	4.1600E=02	2,80302+00
19	7.2200E+02	8.7800E+00	0.02002+00	5.7978E-04	4.16005-02	2.8030E+00
20	7,7200L+02 8.0000F+02	8.7800L+00 8.7800E+00	0,0000E+00	9,3243E-04	4.10000-02	2,80005+00
22	8.2200E+02	8.7800E+00	0.0000++00	6.5279E-04	4.1600E+02	2.30002+00
23	8,5000E+02	8.7800E+00	0.00005+00	2,8615E-04	4.1600E-02	2,80005+00
24	8,6000E+02	8.7800E+00	0,00005+00	2,88145-04	4.10000-02	2,80302+00
26	8.7900E+02	8.7800E+00	0.00000.00	6.66528-04	4.1600E~02	2,00001+00 2.8010F+00
27	9,2500E+02	8.7800E+00	0.0000.00	8.7394E-04	4.1600E-02	2,80005+00
28	9,700E+02	8,7800E+00	0.0000E+00	1,584ØE-03	4.1600E-02	2.80305+00
30	1.1000E+03	0,7800L+00 8.7800E+00	0.0000E+00	912072E904 0.3660F=04	4.1000E-02	2.0000E+00 2.8054F+00
31	1,2000E+03	8,7800E+00	8.0000E+00	8.25248-04	4.1600E-02	2.80305+00
32	1.2000E+03	8,7800E+00	P.0000E+00	3.6441E+04	4.1600E-02	2.00306+00
33	1,2700E+03	8.7800E+00	0,00005+00	3,6465E-04	4.10000-02	2,8030E+00

34	1,28006+03	8.780ØE+øø	0.0000 € ± 00	3.6474E=04	4.1600F-02	2.80005+00
15	1 29005+03	8 78005+00	0 0000-100	7 44405-04	4 4005 400	2 80000400
	1 2 00 00 00	0,70002-000	0,0000E+00	3.04082-04	4,10000-02	2,00001-00
30	1,30002-00	8,/800E+00	6.0000E+00	3,0449E-04	4.1000E-02	2,80002+00
37	1.31002+03	8.78802 + 00	P.0000F+00	3.64175-04	4.16885-92	2.88885+88
78	1 32905+03	8 78005+00	0 00000+00	7 47775-04	4 46005 -00	0 90000000
		0,10200-00	0,00005-00	3103/3E-24	4 10000-02	5,00005-00
39	1,330000-003	8,/800E+00	0,0000E+00	3,6317E-04	4.1000E-02	2,800065+00
40	1.3400E+03	8.7800E+00	ଟ.ଗେଡିଡିଡିଟେ⇔ସିର	3.62492-04	4.16005-02	2.80005+00
41	1 35005+03	8 78905+60	0 0000-00	B 44455-04	4 4 4 9 5 - 4 7	0 80305+00
73	77005.07		. DDDDE DD	0,77092-04	4.10002-02	5,00005400
42	1.3/002-03	6,/600t+60	0,00005+00	3,99672-84	4.1000E-02	2,8000E+00
43	1.3900E+03	8.7800E+ø0	0.0000F+00	3.4931E-04	4.1600E-02	2.80005+00
44	1 41005+03	8 7800F+60	0 0000F-000	1 43565-94	4 16005-03	3 80305+00
	1 43005+03	8 78005.00				21000000-000
40	1,40006-00	8./8000-+00	0,0000E+00	3,3549E~04	4,1000E-02	2,40306+00
46	1,4700E+03	8.7800E+00	ଷ,ଷ୍ଟ୍ଷଷ୍ଟ୍୍କଷ୍ଷ	3.27975-04	4,1600E-02	2.80305+00
47	1.4700F+03	8.7800E+00	0.00005+00	3.20045-04	4.16005-02	3 80005+00
	1 19005-03	0 78885.08	0 0000E+00			2,00002-00
*0	1.47002-00	9.10005400	5.0000E+00	3111071-04	4 10001-02	5'0000E+00
49	1,5100E+03	8.7800E+00	0.0000E+00	3.0260E=04	4.1600E-02	2.80005+00
50	1.5300E+03	8.78000+00	0.00005+00	2.93045-04	4.16005-02	2.80005+00
	56005-03	B 78805.00				
24	1,34000403	0./00DL 00	0.0000E+00	2,00051-04	4.10005-02	2,000E+00
52	1,500E+Ø3	8,7800E+00	0,0000E+00	6,374ØE=04	4.16ØØE-02	2.8000E+00
53	1,70005+03	8.78000	0.0000-+00	9.46545-04	4.16005-02	2 80005+00
	1 80005-03	8 78005+00	0 00000-00	0 74705-04	4 4 4 4 4 4 5 - 4 3	
27	T DOUBL-DO	8,70001-000	O DODREADO	AT 10/8E-04	4.10000-02	5,00005-00
55	1,8=N0E+03	8,7800L+00	Ø,Ø000E≠00	1,0695E-03	4,16000-02	2,8000E•00
56	1.9000E+03	8.7800£+00	0.0000F+00	3.96865-04	4.1600F-02	2.80005+00
87	1 02005-03	8 7800F+00	0 0000-00	7 45745-04	4 44005-03	0 90000-00
			DIDDDEEDD	0,00000	N. TOPPE-DE	E, ODDDL -DD
58	1,97006+03	8./800L+00	0,0000E+00	3,32826-04	4.1000E-02	2,80005+00
59	1,9200E+03	8.7800E+00	0.0000г+00	7.0435E-04	A.1600E-02	2.80005+00
6.0	2 10005+03	8 7800F+00	0 0000-+00	9 45145-04	4 160PE-02	3 80000+00
			D. DDDDC DD	0147745-04	ALTODOE-DE	5,00005-00
61	5.50005-00	8./800E+00	0,0000E+00	9,0028E-04	4,10002-02	2.80006+00
62	2.40006+03	8.7800E+00	0.0000r+00	1.0488E-03	A.1600E-02	2.80305+00
43	2 AD00F+03	8.78905+00	0 0000c+00	1 18445-01	4 16005-03	5 BBBBBE+88
	40000.01			11100000-000		21000000000
0 7	5.00005+00	8.78002+00	6.0000E-00	A 95ABE-04	4,1000E-02	5.00006.00
65	5.0<00E+03	8.7800£+00	ପ୍ରେମ୍ମ୍ରେମ୍ମ କ୍ରମ୍	4,405ØE-04	4,1600E-02	2.80006+00
66	2.6400E+03	8.7800E+00	0.000000	4.32615-04	4.16005-02	2.80005+00
	5 45885483	B 7600E.00	0 0000-00	24005-24	44096-00	5 80000-00
67	2. BOUNT AND	0,/0001-00	D. DDDDE + DD	9,49D21-09	# . JORAF #85	5.00005-00
68	2,04901+03	8./8001+00	0,00006+00	4,1699E-KA	4.1500E-02	2,8000E+00
69	2,7000E+03	8.7800E+00	0.000000	4.0901E-04	4,15008-02	2,8000E+00
24	2 72005+03	B 7800F+40	a addar+aa	4 814 85-84	4 16005-02	3 80005+00
<i>.</i>	2.7 2002 00	0.70000.000	0.00000.000	4101105-04	I TOPPE-DE	2.000000-000
71	2,/9001.900	8./806.+00	0,0000E=00	3,93391-04	4,10002-02	2,00002+00
72	2.75006+03	8.780ØE+00	8.0000F+00	8.79176-04	4.1500E-02	2.8000E+00
73	2 7750F+03	8.7800F+40	0 0000-00	4.37765-04	4.16005-02	2.8000F+00
11		10000.000	2.20002-00			
74	5.00005.00	8./8001.000	0.90005+00	1,10176-03	4.1000E-02	5.00305.00
75	2,900000+03	8,7800€⇒00	0,00006+00	4,89988-04	4.1600E-02	2,800000+00
76	3 07505+03	8.7800E+00	0.0000-00	5.0271F-04	4.16001-02	2.8000F+00
	- 050at - 07	0.70005.00		00000-04	44001 400	0 80405+00
	3,2-000 +03	0./000L+00	0,0000E+00	1,0002-04	4.10000 -02	2.00000.000
78	3,7900E+03	8.7800E+00	0,0000€+00	9,0457E-04	4.15005-02	5'a000E+00
79	4.2000E+03	A.7800E+00	0.0000+00	8.53075-04	4.16005-02	2.30305+00
	4 7500E+03	B 78005.00	4 4444	0 03745-04	4 14005-02	2 30001+00
	4,77902-00	0.70000400	0.00005+00	9,03/4E-04	.10006-02	2,00002000
81	5,2500E+03	8,7800E+ØØ	0.00006+00	9,4592E-04	4,16006-02	2,80306+00
A2	5.7500E+03	8.7800E+00	0.00005+00	9.0362E-04	4.1600E-02	2.80305+00
	4 35665.43	9 79565-89	0 0000-00	6 D7785-04	4 14005-07	3 80405400
83	0,2-002-00	0.70001.00	5.0000F=00	6173/92-04	4.10005-02	
84	6 / 7 PUL+03	9./800L+00	N 0000E+00	840529E-04	4.1000F-05	5100005+00
85	7.2500E+03	8.7800E+00	0.00005+00	7,9653E-04	4,1600E-02	2,8030E+00
	8 2500F+03	8.78005+00	0.0000-+00	8.84105-84	4.16005-00	2. 60305 -00
			**************	0104775.04		
87	8,/700L+Ø3	6,/8001+00	n,600nE+00	7,0004L=04	4.10005002	5 - DODE + DO
88	9.2500E+03	8,7800E+00	0.00005+00	8.4041E-04	4.1600E-02	2,8000E+00
	0 50005+03	8.7870F+40	0.0000-+00	3.58145-04	4.16005-07	2.60705+00
				- 7.14F-04	44000-00	
910	A 13005+03	0,/000L+00	A BAAAE + 88	1134402-104	4.7000F-05	C. 00001.00
91	1.00005-04	8.7800£+00	0,0000E*00	7,7887E-04	4.1600E-02	2,40306+90
02	1 5000F+04	8.7800F+00	0.0000-00	7.84405-04	4.1600F-02	2.80305+00
	2 0 0 0 0 0 0 0	4 7000C+00	A 40000 - 00	E 08445-04	4 16005-00	0.80305-00
93	2,0000E+04	0./0001.+00	0.0000E+00	2,0004L-04	4.1000F-05	C100002 00
94	2,5000E+04	8,7800E+00	0.0000E+00	2,829ØE-04	4.10002-02	2,4030E+00

	DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
UE	COMPETITIVE	NEUTRON	RADIATION	FISSION

_____

NEUTRON

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00

8.0000E+00 9.0000E+00 0.0000E+00 0.0000E+00

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

0,00002+000 0,00002+000 0,00002+000 0,00002+000 0,00002+000 0,00002+000 0,00002+000 0,00002+000 0,00002+000 0,00002+000 0,00002+000

0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

4,5170E-04 4,8174E-04

J-VAL

ENERGY (EV) LEVEL SPACING COMPETITIVE 3,0100E+02 3.1154E+00 0.0000E+00 3,2000E+02 3.1154E+00 0.0000E+00 3,4000E+02 3.1154E+00 0.0000E+00 3,6000E+02 3.1154E+00 0.0000E+00 4,0400E+02 3.1154E+00 0.0000E+00 4,0400E+02 3.1154E+00 0.0000E+00 4,0400E+02 3.1154E+00 0.0000E+00

3.1134E+00 3.1134E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00

3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00

 $\begin{array}{c} 3,11344480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134480\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134880\\ 3,1134800\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,1134800\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480\\ 3,113480$ 

3,1154E+00 3,1154E+00 3,1154E+00 3,1154E+00 3,1154E+00

3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00

3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00 3.1154E+00

INDEX

12

3

57

9

11111111122222222

28 29 39

31

38

43 44 45

4.3000E+02 4.6000E+02 4.9200E+02

6 0000E+02 6 4000E+02 7 2>00E+02 7 7300E+02

8,0000E+02 8,2000E+02 8,5000E+02

6,5000E+02 6,6000E+02 8,7000E+02 8,7500E+02 9,2500E+02 9,7500E+02 9,7500E+02

9.7500E+03 1.0400E+03 1.2200E+03 1.2200E+03 1.2200E+03 1.2200E+03 1.2200E+03 1.2200E+03 1.3200E+03 1.3200E+03 1.3200E+03 1.3200E+03

1,3240£+03 1,3340£+03 1,3540£+03 1,3540£+03 1,3700E+03 1,3700£+03 1,4100£+03 1,4300£+03

RADIATION

4.1600E-02 4.1600E-02

FISSION

1.19306-02

4.2973E-02 5.4730E-02 4.4729E-02 9.9986E-02

2.0400E-01 2.8735E=01 3.0788E-01

3,0788E-01 2,9788E-01 2,9542-01 1,8749E-01 1,8749E-01 1,8749E-02 2,15540E-02 2,0514E-02 2,0514E-02 2,1544E-02 2,1544E-02 2,1544E-02 2,1544E-02 2,1544E-02 2,1544E-02

4.1203E-02 9.9130E-02 8.8579E-02 6.0307E-02 4.5715E-02 1.7496E-02 4.5130E-02 4.025-02

4,5150E-02 6,0212E+02 5,5425E+02 4,3526E-02 5,6751E-02 7,1160E-02 8,9922E+02 1,3884E+01 1,7426E-01 2,2005E-01 2,2005E+01

2.8016E-01 3.6171E-01 3.4440E-01

3.6414E-01 2.7964E-01 2.1477E-01 1.6390E-01

Titlue	NEIMEDA	GADIATION	FISSION

	-		
ETITIVE	NEUTRON	RADIATION	FISSIO

1.0000E+00 0.0000E+00 1.0000E+00 0.0000E+00 1.0000E+00 AVERAGE RESONANCE WIDTHS (EV)

> 3,63/3E-04 3,6317E-04 2,9971E-04 3,5567E-04 3,4931E-04 3,4259E-04 3,3549E-04 4.1600E-02 4.1600E-02 4.1600E-02 4.1600E-02 4.1600E-02 4.1600E-02 4.1600E-02 4.1600E-02 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

46	1,47002+03	3.1154E+00	0.0000F+00	3.27975-04	4.1600E-02	1,23855-01	
47	1.47886+93	3.1154E+90	0.00005.00	3.20015-04	4.16995-92	9.21315-03	
48	1.4988E+03	3.1154E+00	A. AAAAE+AA	3.11675-04	4 16005 02	A. 710AE-02	
49	1.5100E+03	3.11546+00	A. A000C+00	3.02605-04	4.16005-02	4.72946-02	
50	1.53006+03	3.11546+00	0.0000000	2 01045-04	4 16005-00	1 16805-00	
51	1.54005+03	3 11546+00	0,0000E+00	2 98085-04	1 16000 -02	3 50475-03	
62	1 55006+03	3 11545+00	0.0000 <u>-</u> +00	2 34475-84	4.10000-02	2 77745-02	
	1 70005-03	3 11545+00	0,0000E+00	7 75985-04	4.10000-02	4 10075-00	
54	1 80005-03	3 11545.400	0 00005 000	3,00001-04	4,10000-01	1,422/2-02	
55	4 86005+03	3 11545+00	0.0000000000	3,40391-04	4.10002-02	2,71046-02	
50	1,000000-003	3.11546+00	0,000000-000	3,79471-04	4,1000L+V/	5,02321=02	
50	1 00000-000	3.11346-00	0,00005+00	3,90861-04	4.10000-92	5,1000E-02	
77	1.92000-003	3.11.746.400	0.00005.000	3,02301-04	4.10001 02	3,91091-02	
20	1.94002403	3.11341-00	0.00005+00	3.3202E 04	4.10002-02	2,15700=02	
	1,90001+00	3,11941+00	0,0000E+00	2,4993E-04	4.10002-02	1,2848E-03	
610	2.10001+00	3,11246+00	0.00005+00	2,99885-04	4.1000E-02	4,/850E-03	
61	2 2000E+03	3,1154L+ØØ	0,0000E+00	3,1944E-04	4.1000E-02	6,8320E=03	
62	2,4000E+03	3,1154E+00	0.0000E+00	3,7214E-84	4.1600E-02	1,72926-02	
63	2,4500E+03	3,1154E≠øø	0,00002+00	4,2112E-04	4,1600E-02	3,01685-02	
64	2,6000E+03	3.1154E+00	0,0000E+00	3,4876E-04	4.1600E-02	5,37928-03	
65	2,6200E+03	3,1154E⇒øØ	0,0000[+00	4,4050E-04	4,16005-02	3,18755-02	
66	2,6400E+Ø3	3,1154E+00	0,0000E+00	4,3261E-04	4,1600E-02	4.20205=02	
67	2,6600E+03	3,1154E+00	0.0000E+00	4,2482E-04	4.1600E-02	5,47452-02	
68	2,6800E+03	3.1154E+0Ø	0.0000E+00	4,1699E-04	4,1600E-02	7,0973E-02	
69	2,7000E+03	3.11548+00	0,0000E+00	4,0901E-04	4,1600E-02	9,19986-02	
718	2,7200E+03	3,1154E+00	0,0000E+00	4,Ø118E-04	4,1600E-02	1,19932001	
71	2,7400E+03	3,1154E+00	0.0000E+00	3,9339E-04	4,1600E-02	1,56552-01	
72	2,75006+03	3.1154E+00	0,0000€+00	3,1854E-04	4.1600E-02	1,18852-01	
73	2 7750E+03	3.1154E+00	P,ØØØØE+ØØ	4,3775E-04	4.1600E-02	1,08215-01	
74	2.8000E+03	3.1154E+00	P.0000E+00	3,9091E-04	4.1600E-02	3,5497E-02	
75	2 <b>.</b> 90A0E+03	3.1154E+øø	6,00005+00	7,25846-04	4.1600E-02	3,71895-02	
76	3,0750E+03	3.1154E+ØØ	0,0000E+00	5,0271E-04	4.1600E-02	5,0502E-02	
77	3,29P0E+Ø3	3,1154E+00	0.00002.000	2.80305-04	4.1600E-02	5,86285-02	
78	3,7509E+Ø3	3.1154E+ØØ	Ø,ØØØ0E+ØØ	3,42276-04	4.1600E-02	2,0377E-02	
79	4,2900E+03	3,1154E+00	0.0000E+00	3.02705-04	4.16005-02	1,23795-02	
80	4,79P0E+03	3,1154E+00	0.0000E+00	3,20676-04	4.1600E-02	2,4301E-02	
81	5,20006+03	3,1154E+ØØ	0.0000E+00	3,355ØE-04	4.1600E-02	1,45522-02	
82	5,7500E+03	3,1154E+00	7,0000E+00	3,20626-04	4.1600E-02	2,17325-02	
83	6.23P0E+03	3,1154E+00	0.0000E+00	3.1713E-04	4.1600E-02	2,0652E-02	
84	6,700E+03	3.1154E+00	0.0000E+00	2.8575E-04	4.1600E-W2	1,26125-02	
85	7.2000E+03	3.1154E+00	0.0000F+00	2.82636-04	4.1600E-#2	2,5165E-02	
86	8.2598E+83	3.1154E+80	0.00000+000	3.13746-04	4.16002-02	3.68515=02	
87	8,7500E+03	3.1154E+00	0.00000+00	2.6791E-Ø4	4.16002-02	5,4350E=02	
88	9,200E+03	3,1154E+00	0.00000+00	2.9821E-04	4,160DE-02	1,23425-02	
89	9 50P0E+03	3.1154E+00	0.00000+00	3.58146-24	4.1600E-02	5,9970E=02	
90	9.7900E+03	3.1154E+00	0.00005+00	2.60595-04	4,16005-02	5.0000E-02	
91	1.0000E+04	3.1154E+00	0.00005+00	2.7637E-84	4.1600E-02	2.81285-92	
02	1.50000 +04	3.11546.00	0.0000F+00	2.7833E=04	4.1600E-02	2.8395E-02	
63	2.00005+04	3.11546+00	0.0000-100	3.12915-04	4.16000 -02	4,9416E-02	
04	2.5000F+04	3.1154E+#Ø	0.00001+00	3.12375+84	4.1500E-02	8.08205-02	
	The second show	- 1 - A - 1 - 1 D D	* IDDDDC DDD	01450/5-04	-14-5-5 PE		

L VALUE 1 3

DEGREES	0ŗ	FREEDOM	USED	ΪN	THE	NIDTH	DISTRIBUTION
 				:			

			DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION
		J=VALUE	COMPETITIVE	NEUTRON	RADIATION	FISSION
		0.00005+00	6.00005+00	1,00000.+00	5 • 6000F • 00	5.0000E+00
			AVE	RAGE RESONANC	E WIDTHS (EV)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	3,0100E+02	8,7800E+00	0.00000.00	1,756ØE-03	4.1600E-02	1.0000E-10
2	3,20005+02	8,780ØE+00	8.9898E+88	1,7560E-03	4.1600E-02	1.00305-18
3	3,4000E+02	8.7800.+00	0.0000E+00	1,756ØE-03	4.1600E-02	1,0000E-10
, in the second se	2 BN00C+02	0,/000L+00 8 7800E+00	0.000005+00	1,75601,903	4.10000-02	1,000000-10
Å	4'0400F+02	8.7800E+00	0.0000F=00	1.75405-03	4.16000-02	1,00000-10
7	4.34005+02	8.7800E+00	8.0000-00	1.75606-03	4.16005-02	1.000000+10
8	4.6000E+02	8,780ØE+0Ø	0.0000-00	1.756ØE-03	4.1600E-02	1.0000E-10
9	4,9200E+02	8,7800E+00	0.00001+00	1,7560E-83	4.1600E-02	1,00005-10
10	4,9500E+02	8.780ØE+00	0,00005+00	1,7560E-03	4.1600E-02	1,0000E-10
11	4,9880E+02	8,780Ø£+ØØ	0,0000E+00	1,756ØE-R3	4.1600E-02	1,00305-10
12	5,0100E+02	8.780ØE+00	0,00006+00	1.756ØE-03	4.1600E-02	1,00001-10
13	5.04001402	8.78001+00	0.0000E+00	1,756ØE-03	4.1600E-02	1,00005-10
14	5,4000L+02	8,7800C+00 8 7800C+00	0,0000E+00	1,/2001-03	4.10001+02	1.000000-10
1.4	5 05005+02	8,7800E+00	0 0000F+00	1,75406+03	A.1600E-02	1,00000-10
17	6.0000E+02	8.7800E+00	0,00005+00	1.7560E-03	4.1600F-02	1.000000+10
18	6.4000E+02	8.7800E+00	0.0000-000	1.75606-83	4.1600E-02	1,00005-10
19	7 22006+02	8,78005+00	6.00005+00	1,7560E-03	4.1600E-02	1,00005-10
28	7,7908E+02	8,780ØE+00	0,00000+00	1,756ØE-03	4.1600E-02	1,0000E-10
21	8,Ø000E+Ø2	8.780ØE+00	0,00005+00	1,756ØE-Ø3	4.1600E-02	1,00005-10
22	8.2>ØØE+Ø2	8.780ØE+00	0,0000E+00	1,756ØE-03	4.1600E-02	1,0000E-10
23	8.3000E+02	8./800L+00	0.00005+00	1,7560E-03	4.1000E-02	1,000000-10
27	8 7000E+02	8 78005±00	0 0000E+00	1,75601-03	4.10000-02	1,00001-10
26	8.7500F+02	8.7800E+00	0.00000-00	1.75405-03	4.16005-02	1.00005-10
27	9.25885+82	8.7800E+00	8.0000++00	1.756000-03	4.1600E-02	1.00005-10
28	9,7500E+02	8,7800E+00	0,00000+00	1,756ØE-03	4.1600E-02	1,0000E-10
29	1,0 <u>4</u> 00E+03	8,7800E+00	0,0000E+00	1,756@E-03	4.1600E-02	1,0000E-10
30	1.1000E+03	8,780ØE+0Ø	0,00005+00	1,756ØE-03	4.1600E-02	1,0000E=10
31	1,2788E+83	8,7800E+00	0,0000E+00	1,756ØE-03	4.1600E-02	1.0030E-10
32	1,20001+03	8,/8001+80	0.000000+00	1,7560E-03	4.10002-02	1,0000E=10
30	1,28005+03	5.7800E+00	8 99995-99	1,7001-03	A,10001-02	1,000000-10
35	1.29005+03	8.7800E+00	0.00000-000	1.75605-03	4.16005-02	1,000000-10
34	1,300000+03	8.7800E+00	0.0000-+00	1,7560E-03	4.1600E-02	1.0000F-10
37	1,3100E+03	8,78002+00	0,2000E+00	1,756ØE-03	4.1600E-02	1,0000E-10
38	1,3200E+03	8.7800E+00	9,00002+00	1,756ØE-03	4.1600E=02	1,00005-10
39	1.3300E+03	8.78002+00	0,0000E+00	1.7560E-03	4.1600E-02	1,0000E-10
410	1.3-000-003	5./5001+90 5.75005+00	9,9999E+00	1,7560E-03	4,1002E-02	1.00000-10
42	1.37005+03	0.7000E=00 8.7800E=00	0.0000E+00	1,75681-83	4.10001-02	1.00005-10
43	1.39005+03	8.7800E+00	0.00002+00	1.75405-03	4.10000-02	1,00001-10
70	*14.505.\$4			71,3005.00		7,00006-10

44	1,41006+03	8./800L+00	P.0000E+00	1,75605-03	4.1600E-02	1.000005-10
45	1,4300E+03	8,7600£*00	Ø.8888F+88	1.75605-83	4.16BBE-02	1.20005-10
46	1,450eE+03	8.7800E+00	2.00005+00	1.75605-03	4.1600F-02	1.00705-10
47	1 47005+03	8 7800E+00	1 110000 100	1 75405-07	146000 - 00	
		0.78001.400	0,00005-00	1,73605-03	4.10005-02	1,00000-10
48	1,49006-03	8./8905+00	6.0000E+00	1,756ØE-03	4.1000E-02	1,00006-10
49	1,5100E+03	8,7800E+00	0.00005+00	1.75606-03	4.1600E-02	1,00306-10
50	1.5300E+03	8.780Ø£+0Ø	0.00000+00	1.7560F-03	4.1600E-02	1.00000-10
51	1.54005+03	8.7800F+00	0.00005-00	1 75605-03	1.16085-02	1 00405-14
	1 55555545	5 75355+65		11/2002 000	41100000000	1100000-10
	1,00000-00	0,70000400	D. DDDDF - DD	1,79002-03	4.10002-02	1.00000-10
53	1.7000E+03	8./800L+00	0,0000E+00	1,756ØE-03	4.10005-02	1.0000E=10
54	1,8000E+03	8.780ØE+ØØ	Ø,Ø9992E+68	1,75602-03	4.1600E-02	1,0070E-10
55	1,8>00E+03	8,780ØE+0Ø	0.00005+00	1.7560E-03	4.16002-02	1.00005-10
56	1.90000 +03	8.7800F+00	0.0000-+00	1.75606-03	4-1600F-02	1.0000Eato
57	1 92995+03	8.7800F+00	8 88885+88	1 75405-03	4 4 6 9 5 - 4 3	1 000000-10
			K . BODOF - BO	177602-00	4 10005-02	1.00006-10
20	1.94002403	8,78002+00	0.0000E+00	1.7580E-#3	4.10001-02	1.0000E-10
59	1,9906+03	8,7800E+00	0.00005+00	1,7560E-03	4.1000E-02	1.0000E-10
6Ø	2.1000E+03	8.780ØE+ØØ	0,00005+00	1.756ØE-ØJ	4.1600E-02	1.00305-10
61	2,5460E+03	8,782ØE+Ø2	0.0000-+00	1.75606-63	4.1600E-02	1.00305-10
62	2,4000E+03	8.7800E+00	0.0000-+00	1.75605-03	4.16005-02	1.00005-10
4.7	3 45085483	8 78645+66	0 00000-00	1 75405-03	1 4005-00	4 34405-14
	2,42002-00		0.00001+00	1,75602-03	4.10020-02	1.00000-10
	2,000000-000	8.78802.400	0.0000E+00	1,/20BE-K3	4.10001-02	1,0000E-10
62	5,02005+00	8./800L+00	0,0000E+00	1,756ØE=03	4.1000E-02	1,00005-10
66	2,6400E+03	8.7800E+00	Ø,0000E±00	1,7560E-03	4.1600E-02	1,0000E-10
67	2,6600E+03	8,7800E+00	0.0000++00	1.7560E-03	4.16ØPE=02	1,000001-10
68	2.688825+83	8.7880€+88	0,0000-+00	1.75695-03	A.1688E-82	1.00000-10
49	2.70005+03	A.7A00F+00	0.00005+00	1.75605-03	4.1600E-02	1.000000000
	0 72445 +41	8 78005+00	a adaar.aa	1 75405-07	44005-00	1 00408-10
/ .	2,72002-00		0,00005.000	1,75602-03	TODDE DE	1,000000-10
71	2./ TPBE - 00	0./0001+00	0.00005+00	1,/2001-03	4.10002-02	1,00001-10
72	2,7200E+03	8.7800E+00	0.0000E+00	1,756ØE+03	4.10005-02	1,0000E-10
73	2,775ØE+Ø3	8,78ØØE*ØØ	0,0000[+00	1,756gE-03	4.16Ø0E-Ø2	1,00002-10
74	2 8000E+03	8,780Ø£+00	0,0000E+00	1,756ØE=Ø3	4.1600E-02	1,0000E-10
75	2,9000E+03	8.78006+00	0.0000-00	1.75685-83	4.16005-02	1.200005-10
24	3 07605+03	8.78005+00	0 00005+00	1 75405-03	4.16005-02	1.00005-10
	7 35005+03	8 78795+77	d 00000-00	1 75405-07	4 44995-03	1 00005-10
	3.2.4.05.403	C. CONC. ON	N. DODDERCO	11,3005-03	4.10002-02	1,00001-10
78	3./200E-03	8./800E-00	0.00005+00	1,756ØE-03	4.10001-02	1,0000E-10
79	4,2900E+03	8,7800E+00	0.0000E+00	1,756ØE-03	4.1000E-02	1,0000E-10
80	4 7590E+03	8.7800E+00	0,0000E+00	1,756Ø£-03	4.1600E-02	1,0000E-10
81	5,25986+83	8,7800E±00	0,000000.000	1.756ØE-Ø3	4.1600E-02	1.0000E-10
82	5.7300E+03	8.7800E+00	0.00005+00	1.7560E-03	0,160DE-02	1.20002-10
83	A 2300F+03	8.78005+00	A. ANANE + NA	1.75605-03	4.1600F-02	1.00000-10
	4 75005+03	8 78005+00	0 00000 <u>0</u> +00	1 75405-03	4 16005-02	1 300000-10
	0,7-102-00	0.76002400	D. DDDDE - DD	1,73082-00	4,1000C-DC	1100000-10
82	1.52MRE+03	0./0002+00	0.0000E.00	1,72001-03	4.10001-02	1,00000-10
86	8,2>00E+03	8.7800E+00	Ø,ØØØØ€+ØØ	1,756ØE-03	4.1600E-02	1.000005-10
87	8,7500E+03	8.780Ø£+0Ø	0,00005+00	1,756ØE+Ø3	4.16ØØE-02	1,00000-10
88	9.2500E+03	8.780ØE+ØØ	0.0000E+00	1,756@E-03	4.1600E-02	1,0000E-10
89	9.5000E+03	8.7800E+00	0.000000	1.7560E-03	4.1600E-02	1.00000-10
00	0 75001 +03	8.7800F+40	0 0000-100	1.75605-03	4.16005-02	1.00005-10
70	1 0 0 0 0 C - 0 4	9 7800E+00	d adade. 22	1 75445+91	4 16005-72	1.000000-00
91	1,00002+04	0.70001000	N. 0000E.00	1,7002-03	4.10001-02	7 00005-70
92	1.5000E+04	8,/800E+00	N 90005 + 00	1,/2001-03	4.10001-02	1.00006-10
93	2,0000E+04	a,7800£•00	0,00005+00	1,756gE-03	4.1600E-02	1,000005-10
94	2,500000+04	8,7800E*00	0,00000+00	1,756øE-03	4.16ØØE-02	1,000000+10
				• •		

DEGREES OF FREEDOM USED IN THE WIDTH DISTRIBUTION

J+VALUE	COMPETITIVE	NEUTRON	RADIATION	FISSION
1.0000€+00	0.0000£+00	2,0000E+00	Ø.Ø000E+00	2.0000E+00
		ANT BEARNANCE	UTRTUE LEVA	

AVERAGE RESONANCE WIDTHS (EV)

INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	3.0100E+02	3.1154E+00	0.00005+00	6.2308E-04	4.1600E-02	1.000000+00
ž	3,20005+02	3,1154E+00	8,00002+00	6.2308E-04	4,1600E-02	1,000000+00
3	3.40000 +02	3.1154E+00	0.0000+00	6.230AE-04	4.16002-02	1,000000+00
Ă	3.6000E+02	3.1154E+00	0.0000-+00	6.2308E=04	4,1600E-02	1.00305+00
5	3.80000 +02	3.1154E+ØØ	0.0000-+00	6.2308E-04	4.1600E.02	1.00305+00
6	4.0400E+02	3.1154E+00	0.000000	6.2308E-84	4.1600E-02	1.00305+00
7	4.3000E+02	3.1154E+00	0.0000.000	6.2308E-04	4 1600E-02	1.0070F+00
B	4.6000E+02	3.1154E+00	0.0000+00	6.2308E-04	4.1600E-02	1.0000F+00
9	4.92005+02	3.1154E+00	0.0000-+00	6.2308E-04	4.16005-02	1.00005+00
10	4.9500E+02	3.1154E+00	0.0000-00	6.230BE-04	A.1600E-02	1.0000F+00
11	4.98000+02	3.1154E+00	0.00005+00	A.2308E-04	4.1600E-02	1.00705+00
12	5.0100F+02	3.1154E+00	0.0000-+00	6.2308F-04	4.16005-02	1.00005+00
13	5.04006+02	3.1154E+00	0.0000-00	6.230AF-04	4.16005-02	1.00305+00
14	5.4000F+02	3.1154E+00	0.0000 +00	6.230AF-04	4.16005-02	1.00705+00
15	5.5>000+02	3.1154E+00	0.0000+00	6.230RE-04	4.1600E-02	1.00305+00
16	5.99001+02	3.11542+00	0.0000.400	6.230RE-04	4.1600E-02	1.0030F+00
17	6.00000E+02	3.1154E+00	0.0000.00	6.23ØAE-Ø4	4.1600E-02	1.00205+00
18	6.40005+02	3.1154E+00	8.98985+88	6.230BE-04	4.1600E-02	1.00705+02
19	7.23005+02	3.1154E+00	0.0000-00	6.230BE-04	4.16005-02	1.00305+00
20	7.7500E+02	3.1154E+00	0.0000++00	6.230RE-04	4.16005-02	1.0030F+00
21	8.0000E+02	3,1154E+00	0.00001.00	6.230BE-04	4.1600E-02	1,000005+00
22	8.27025+82	3.1154E+00	0.0000++00	6.2308E-04	4,1600E-02	1.000000+00
23	8.5000E+02	3,1154E+00	0.0000+00	6.2308E-04	4.1600E-02	1.00305+00
24	8.60P0E+02	3,1154E+ØØ	0.00001+00	6,23CBE-04	4,1600E=02	1,00002+00
25	8,7000E+02	3,1154E+00	2.0000r+00	6,23282-24	4.1600E-02	1.92395+88
26	8,7500E+02	3.1154E+ØØ	0,00005+00	6,2308E-04	4,1602E-02	1,000000+00
27	9,27085+02	3,1154E+0Ø	0,00005+00	6,2308E-04	4.1600E-02	1,00306+00
28	9,7500E+02	3,1154E+00	0,0000E+00	6,2308E-24	4.16Ø0E-02	1,00005+00
29	1,0400£+03	3.1154E+00	0,00005+00	6,2308E-04	4.1607E=02	1.0000E+00
30	1,1000E+03	3.1154E+0Ø	0,00002+00	6,2308E-04	4.1600E-02	1.0030E+00
31	1,2>00E+03	3.1154E+00	0,00000=00	6,2308E-04	4.1600E-02	1,00305+00
32	1,2000E+03	3.1154E+00	0,0000E+00	6,2308E-04	4.1600E-02	1.0000E+00
33	1,2700E+03	3.1154E+00	0.0000E+00	6.23C8E-04	4.1600E~02	1,00005+00
34	1,2800E+03	3.1154E+80	₽,9099E+99	6,2308E-04	4,1600E-02	1,40005+00
35	1,2900E+03	3.1154E+00	0,0000E+00	6,2308E-04	4.1600E-02	1.00005+00
36	1,3000E+03	3.1154E+00	0.00006+00	6,2308E-04	4.1600E-02	1,000000+00
37	1.3100E+03	3.1154E+00	0,0000 <u>5</u> •00	6,2308E-04	4.1600E-02	1.0070E+00
38	1,3200E+03	3,1154E+00	0,0000E+00	6.2308E-04	4.1600E-02	1,00302+00
39	1.3000E+03	3.1154E+00	0,0000E+00	6,2308E-04	4,1600E=02	1,00306+00
40	1.3400E+03	3.1154E+00	0.0000E+00	6,2308E-04	4,1600E+02	1,0000E+00
41	1,3700E+03	3.1154E+02	0.0000E+00	6,2308E=84	4.1600E-02	1.00305+00
42	1.3/00E+03	3.1154E+00	N,0000E+00	6,2308E-04	4.1600E-02	1,00305+00
43	1,3700E+03	3.1194E+00	0,0000E+00	6,2308E-04	4.1600E-02	1,00306+00

44	1.4100E+03	3,11546+00	0.000°E+00	6,23C8E+04	4,1600E-02	1,00906+00
45	1.43086+83	3.11545+08	8.9888F + 88	6.235BE+04	4.16000-02	1.00905+09
46	1.45005+03	3 1154F+00	0 00005+00	4 330BE-04	4 16005-02	1 40705400
17	1 47845-03	3 11645+00	d NG63- 00	4 03005-04	4 44005.02	1 00000-00
	1,47,000,400	3,11341400	0.00005 00	0120002-04	4.10002-02	1.0000 -00
40	1.44695+03	3,11941+00	0.0000E+00	6,2308E-04	4 1000E-02	1,00305+00
49	1,5100E+03	3,1194E+00	0,0000E+00	6 23085-04	4.16000-02	1,000000+00
50	1.5300E+03	3.1154E+00	0.0000-00	6.2328F-04	4.1600F-02	1.00205+00
81	1.54005+03	3.11546+00	0 00000-00	4.2308E-04	4.16005-02	1 00000-+00
15	4 ENGAL 403	3 14845-00	1 000000-00	4 03000-04		
- 7	1,00000,007	3 11942400	0.000000000	0,20202-04	ALLONGE-ME	T'ADARFADD
50	1.70006-00	3,11946+00	0.0000E+00	0.2308E-04	4.1000E-02	1.00006+00
54	1,80006+03	3.11546+00	₽,0000E±00	6,2308E-04	4.1600E-02	1,00306*00
55	1,8>006+03	3,1154E+00	₽.0000E+00	6.23Ø8E=04	4.1600E=02	1.000000+00
56	1,900000+03	3.1154E+00	0.0000F+00	6.2308E-04	4.16001-02	1.000000+00
57	1.92005+03	3 1154F+00	0.0000-+00	A 23085-04	4.16005-02	1 20205+00
= 8	1 04005+03	7 11 845444	8 48885+88	4 31000-04	4 46000-02	1 000000-000
20	1,7 000 00	3.11346-00	0.0000E-00	0,23082-04	4.TOPPE-DE	1.00005.00
<u>59</u>	1.92001-03	3.11746+00	0,0000E+00	8,23Ø8E-04	4.1000E-02	1,00205+08
60	2,10006+03	3.1154E+00	0.0000E+00	6,2308E-04	4.1600E-02	1,000000+00
61	2,20006+03	3,1154E+ØØ	0,0000E+00	6,23088-04	4,16002-02	1,000005+00
62	2.4000E+03	3.1154E+00	0.0000-00	6.2308F=04	4.1600F+02	1.00005+00
43	2 45885 403	3.1184F+00	0 00005+00	A 01085-04	A	4 20305-00
	2,4000C+00	7 14545+60	0.000000000	0.60000-04	4.10000-002	1,000000000
07	2,000000-000	3.11942400	0.00005.000	0.20081-04	4.10002-02	1.00000.000
62	2.02001+03	3,11946+00	0.0000E+00	6,2308E-04	4.1000E-02	1.0000E+00
66	2.6400E+03	3,1154E+00	0,00002+00	6,2308E-84	4.16005-02	1,0000E+00
67	2.6000E+03	3.1154E+00	0.00005+00	6.2308E-04	4.1600E-02	1.0000E+00
AB.	2.6800E+03	3.1154E+00	0.00005+00	A.2308F=04	4.1600F-02	1.00005+00
40	2 70005-03	1 14545400	3 44400.44	4 23045-24	+ + 600F - 02	00000-00
57		3,11,740,00		0,23061-04	4.10000-02	1,000000-000
710	2.74006-00	3,11942400	0.0000E+00	0123082704	4.10000-02	1.00005+00
71	2 7400E+03	3.1154E+00	0,00005+00	6,2308E-04	4.1000E-02	1,00006+00
72	2 7 PBE+03	3.1154E+00	0,0000E+00	6,23Ø8E-Ø4	4.1600E-02	1,0030E+00
73	2,7750E+03	3.1154E+00	0.0000F+00	6.2308E-24	4,16882-82	1.00305+03
74	2 80005+03	3.1154F+00	3 0000E+00	A.2308E-04	4.1600F-02	1.00305+00
58	2 00005-03	3 1154F+00	0 ada0r+00	4 23045-04	A 1600E-07	1 00305+00
75	7 775-6-03	2 112242400	0,00001+00	0 1 2 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4	44005 40	1.000002.00
20	3.0/DUE-03	3.11942-00	0.00001.00	0,23081-00	4,1000-02	1.000000-000
77	3,22405+03	3.11946+00	8.00005-00	6.2308E-04	4.10002-02	1.00006+00
78	3,75000+03	3.1154E+00	0,0000E+00	6,2308E-04	4.1600E-02	1,000000+00
79	4.25002+03	3.1154E+00	0.00005+00	6.230BE-04	4.16005-02	1.000006+00
	4 7500F+93	3.1154F+##	0 000000	4 33085-94	4 16005-02	4.00005+00
e1	5 25000+03	3.11546444	0 00000000000	4 23000-04	4 4005-00	* 00000C+00
25	3,2300,403	3.11346-00	0.0000E+00	0,20085-04	4.10000-02	1.00001.00
84	2,72005+00	3.11241+00	0,0000E+00	6,2398t-44	4.10001-92	1,00005+00
83	6,2700E+Ø3	3.1154E+ØØ	0,000000-00	6,23Ø8E-Ø4	4.1000E-02	1,0000E+00
84	6,7500E+03	3.1154E≠ØØ	0,00002+00	6.2308E-04	4.1600E-02	1,0000E+00
85	7.2500E+03	3.1154E+00	0.7000++00	6.2308E-04	4.1600E-02	1.00005+00
8.6	A 2500F+03	3.1154F+00	0 0000-+00	6.230AF-04	4.16005-02	1.00205+00
	9 75006+43	3 11545+44	0 000000	4 2300E-04	4 14005-03	4 90905+00
5/	0,70002-03	0.11045400	0.0000F-00	0,20002-004	OF	1,0000000000
85	A' 5200F+03	3.11341+00	N. 0000E+00	0,2308E-04	4.10001-02	1 20000 - 00
69	9,5000E+03	3.1154E+ØØ	8,00001-00	6,2308E-84	4.10005-02	1.0030E+00
90	9,7500E+03	3,1154E+ØØ	0,00000+00	6,2306E-04	4,1600E-02	1,0000E+00
91	1.000000+04	3.1154E+00	0.00001+00	6.230AE-04	4.1600E-02	1.00005+00
62	1 5000F+04	3.1154F+40	0 00000-+00	4.230eF-04	4.16005-07	1.00005+00
76	2 00005-04	7 115454-00		6 2700C-24	A 14000-00	1 00305+00
99	2. 00002+04	3.11245400	n 10000E-00	0,20002-04	4. IODDE - 02	1 00000-000
94	5'2000E+0+	3,11946+00	0.0000[+00	6,2308E-04	4.10006-02	1,00006,00
	DEGREES OF	FREEDOM USED	IN THE WIDTH	DISTRIBUTION		
-----------------------	-------------	--------------	--------------	--------------		
J=VALUE 2.0000F+00	COMPETITIVE	NEUTRON	RADIATION	FISSION		

		2,0000E+00	0,0000E+00	1,0000E+20	9,0000E+00	3,00000+00
			AVER	AGE RESONANCE	MIDIMS (EA)	
INDEX	ENERGY (EV)	LEVEL SPACING	COMPETITIVE	NEUTRON	RADIATION	FISSION
1	3.0100E+02	2.1181E+00	0.00000+00	4.2363E-04	4.1600E-02	1.00305+00
ž	3,2000E+02	2,11812+00	0.00000-000	4,23635-04	4.1600E-02	1,0030E+00
3	3,4000E+02	2.1181E+00	0.0000E+00	4,2363E-04	4.1600E-02	1,00000+00
4	3,6000E+02	2.1181E+00	0,00000=00	4,2363E=04	4,1600E-02	1,0030E+00
5	3,8000£+02	2,1181E+ØØ	0,00005+00	4,2363E-84	4,1600E-02	1,30305+00
6	4.0400E+02	2.1181E+00	P.0000E+00	4,2363E-04	4.16002-02	1,0000E+00
7	4.3000E+02	2.1181E+ØØ	Ø,ØØØØE+ØØ	4,2363E-04	4.1600E-02	1,00006+00
8	4 6000E+02	2,11812+00	0.0000E+00	4,2363E-04	4.1600E-02	1.00305+00
9	4,9200E+02	2.1181E+00	0,00000=00	4,2363E-04	4.1688E-82	1,00002+00
10	4.9990E+02	2.1181E*00	0,00005+00	4,2363E-24	4.1000E-02	1.00302+00
11	4.9800E+02	2.1181E+00	Ø,8888E+88	4,2363E-04	4.1600E-02	1,0070E+00
12	5.0100E+02	2.1181L+00	0,0000E+00	4,2363E-04	4.1000E-02	1.00002+00
13	5.0400L+02	2,11816+00	N, 0000E+00	4,2363E-04	4.1000E-02	1,00005+00
14	5.4000E+02	2.11016+00	0,0000E+00	4,2363E-04	4.1000E-02	1.0030E+00
15	5.5700E+02	2.11011+00	0,00005+00	4,23031-04	4.10000-02	1,00202-00
10	2,9700L+02	2.11510+00	0.0000E+00	4,23031-04	4.10000-02	1.000000-00
17	6.0000E+02	2.1101E+00	0,00005+00	4,23631-04	4.10001-02	1.000000+00
10	0,4000L+02	2,11012+00	0.0000E+00	4 22632-04	A.1000E-02	1.00005-00
17	7 75005-02	2,11016#00	0,0000E+00	4 23435-04	4.10006-02	1,000000-00
20	P GUGGE+05	2.11815+00	0,0000E+00	4,20036-04	4.14000-02	4 40305+00
21	B 23005 +02	2,11010400	0 0000E+00	4 23475-04	4,10000-02	1,00000-000
03	8 50005+02	2 11815-00	\$ 40000E=00	4,23475-04	4.16005-02	1.00000-00
24	8 AUGOF+02	2.11815+00	0.000000000	4.23636-04	4.1600E-02	1.00306+00
05	8.70005+02	2.11815+00	0.00005-00	4.23435-04	4.15005-02	1,000000+00
26	8.72005+02	2.1181E+00	0.0000F+00	4.2363E-04	4.1600E-02	1.0000F+00
27	9 2280E+02	2.1181E+00	0.00005.00	4.23636-24	4.16005-02	1.00005+00
28	9,700E+02	2.1181E+00	0.0000E+00	4.2363E-04	4,1600E-02	1,000000+00
29	1,0400E+03	2.1181E+ØØ	0,00005+00	4,2363E-04	4.1600E-02	1,0030E+00
30	1,1000E+03	2.1181E+00	P.0000E+00	4,2363E-04	4.1600E-02	1,0000E+00
31	1,2000E+03	2.1181E+øØ	0.0000E+00	4,2363E-04	4.1600E-02	1,00005+00
32	1.2000E+03	2,1181€+00	0.0000E+00	4.2363E-04	4.1600E-02	1,0000E+00
33	1.2700E+03	2.11815+00	0.0000E+00	4,2363E-04	4.1600E-02	1,20306+00
34	1,2800E+03	2,11818+00	0,0000E+00	4,2363E-84	4.1600E-02	1,400000+00
35	1.2900E+03	2.1181E+00	2.0000E+00	4,2363E-04	4.1600E-02	1.0030E+00
36	1,30000+03	2,11816+00	0.000E+00	4.23636-04	4.1600E-02	1.00300+00
37	1.3100E+03	2.1181E+ØØ	0.0000E+00	4,2363E-24	4.1600E-02	1.0030E+00
30	1.32005+03	2.11010+00	0.000000000	4,2363E-04	4.10005-02	1.0030E+00
37	1 74005+03	2,11010+00	0,0000E+00	4,23036-64	4.10001-02	1,00006*00
40	1 35005+00	2.11016+00	0,0000E+00	4,23032-04	4.10001~02	1.00006400
41	1 37000-403	2 11815-00	0 0000F+00	4 97675-04	4.10000-02	1.000000-700
43	1.39006+03	2,11816400	8 88880 F+88	4 2367E-04	4.16005-02	1 00305-00
40	710.406.400	C'TTATC. NN	0,00005400	4100000-04	de TONNE-NS	1.00005-00

44	1,4100E+03	2.11816+00	0.0000 - 00	4.2363E-04	4.10000-02	1.0030F+00
45	1.4300E+03	2.1181E+00	0.00005-00	4.23635-04	4.1600F=02	1.00005+00
46	1 45005+03	2 11815400	8 8888c 88	4 23435-04	4 46005-00	1 34490+44
17	4 47005-03	2 11010-000	0.0000000000000000000000000000000000000	4,20836-64	4.10005-02	1.00000-000
4/	1.47000-00	2.11010+00	N 9000E+00	4,2363E-04	4.10001-02	1,00006+00
48	1,4900E+03	2.11816+00	0.0000E+00	4,2363E-04	4.1600E-02	1,00306+00
49	1.5100E+03	2.11812+00	0.0000F+00	4.2363E-04	4.16002-02	1.0070F+00
50	1.5390F+03	2.1181F+00	0.0000-+00	4.23635-04	4.16005-02	1 00306+00
51	1.54005+03	2 1181F+00	0 0000-00	4 23476-04	4 16005-07	1 00000-00
100	1 60000-03	2,11912-00	0,000000000	4120031-04	4.1000E-02	7.00005.00
25	1 92002403	2.1101E+00	0.00005+00	4 2303E-64	4.10001-02	1.0030E+00
2.3	1,70006+03	2,11016+00	N.0000E+00	4,2363E-04	4.1600E-02	1,00306+00
54	1 8000E+03	2.1181E+00	0.0000E+00	4,2363E-Ø4	4.1600E-02	1.00006+00
55	1,8000E+Ø3	2,1181E+00	0,0000E+00	4.2363E-04	4,1600E-02	1.40305+00
56	1.9000E+03	2.1181E+00	0.0000++00	4.23635-04	4.16005-02	1.0030-+00
57	1.92005+03	2 1181F+00	0.0000-+00	4 23676-04	4.16005-02	1 60105+00
	1 04005+03	0 11815400	0,00000-00	4 97475-84	4.10000	1.000000-00
	1 00000-00	5.11010400	n • n n n n n i + n n	4,20001-04	4. TOROF-NE	1.000005-00
2.4	1,92006+03	2,11016+00	6.000NE+00	4,2363E-04	4.1000E-02	1.00305+00
60	2.1000E+03	2.11016+00	0,0000[+00	4,2363E-04	4.1600E-02	1,0000E+00
61	2,2000E+Ø3	2.1181E+ØØ	0,000000+00	4 2363E-04	4.16Ø0E~02	1,0000E+00
62	2.4000E+03	2.11B1E+00	0.0000++00	4.2363F-84	4.1600F-02	1.00705+00
63	2.42005+03	2.1181F+##	0.00000+00	4.23635-04	4.16005-02	1.00205+00
64	2.64005+03	2.11815+00	0.00005+00	A 23615-04	4.16005-02	4.0030-+00
45	0 42005-03	2 14845484		4,20032 84		1,0000000000
	C (4005.03	2.11010-000	0,0000,000	4,23031-04	4.10001-02	1.00005-00
	2.07001703	2.1101-00	8,88885 × 88	4,23031-04	4.10001-02	1,00306+00
67	2.00005+03	2.11016+00	0.00005+00	4,2363E-04	4.1000E-02	1,00305+00
68	2,68006+03	2.1181E+00	0,0000€+00	4,2363E-Ø4	4.1600E-02	1,000000+00
69	2,74005+03	2,1181E+øØ	Ø,0000E+00	4,2363E-04	4.1600E-02	1,00306+00
70	2.7200E+03	2.1181E+00	0.0000++00	4.2363E-04	4.1600E-02	1.00705+00
71	2.74005+03	2.1181E+#Ø	0.0000 +00	4.23635-04	4.1600F-02	1.00705+00
	3 75885 43	3 11815400	6 66665-65	4 23475-04	4 16005-03	• 0030r+00
77	0 77545-03	0 11845400	0 000002,00	4 23475-04	1 14005-02	1,000000-00
/3	Z. // DECED	2.11010-00	0.90005.000	4123032-04	4,10000-022	1.0000000000
74	2.00000.+00	2,11016+00	N' NNNNE+NN	4,2303L-04	4.1000L-02	1.00006+00
75	2,90006+03	2,11816+00	0,0000E+00	4,2363E-04	4.1600E-02	1,0000E+00
76	3,Ø75ØE+Ø3	2,1181E⇒øØ	0,0000E+00	4,2363E-04	4.1600E-02	1.00005+00
77	3.2500E+03	2,11815+00	0.0000-+00	4.2363E-04	4,16000-02	1.00305+00
78	3.7900E+03	2.1181E+#Ø	0.0000-+00	4.2363E-04	4.1600E-02	1.20005+00
79	4,25005+03	2.1181F+00	0.0000-00	4.23635-04	4.1608F-02	1.00705+00
60	4 75005+03	0 1181EA00	0 0000-+00	4 23475-04	4 16005-02	1 30005+00
	5 0000000			4,20032-04	4.10006-02	1,000000-00
81	2,22406-03	2,11010+00	N. 8000E+00	4,23031-64	4.10001-02	1,00000,000
82	5,7300E+03	2.11011+00	N . 000NE + 00	4,2363E-04	4.1000E-02	1.00305+00
83	6,200E+Ø3	2.1181E+00	0.0000E+00	4,2363E-04	4.1600E-Ø2	1,0000E+00
84	6,7500E+03	2,1181E+øØ	0.0000E+00	4,2363E-04	4.1600E-02	1,0000E+00
85	7.2500E+03	2.1181E+00	0.00000+00	4.2363E-04	4,1600E-02	1,000000+00
86	8.2000F+03	2.1181E+##	0.0000-+00	4.2363F-04	4.1600E-02	1.00305+00
87	8 75005+03	2.1181F+00	0 0000-+00	4 2347E-04	4.16005-02	4.00005+00
67	0 000000000	2111010-00	0 00005400	A 23435-04	4 46885-43	1.000000000
60	3.2-102-03	5.77075-88	1. BRODF - DD	1,00052-04	# TONOL-85	7100005-00
89	A 2000F+03	2,11011+00	0.000NE+00	4,2363L-04	4.10002-02	1.000000.000
90	9,7500E+Ø3	2,1181E+00	0.0000E+00	4,2363E-04	4.1600E-02	1,00305+00
91	1,0000E+04	2.1181E+øØ	0,0000E+00	4,2363E-Ø4	4.1600E-02	1,00006+00
92	1.500000404	2.1181E+00	0.0000 +00	4.2363E-04	4,1600E-02	1,00000:+00
63	2 00005+04	2.11815+00	0.0000-+00	4.23635-04	4.1600E-02	1.00006+00
, J	3 50005-04	0 1181F+40	0 adddr+90	A 23675-04	4.16005-02	1.00305+00
94	5.20005-04	<:Tote=00	n•NnonE+nn	-12003L-104	4 TOBOL - BS	T * N N Y N F * N N

PLUTONIUM=239

FISSION Neutron Cross Section

ENDF/B MATERIAL ND. 6264

E+238 EV	
1,9862	10 L T A L O
S VALUE	
REACTION (	the second

	ENERGY CROSS SECTION EVERGY CROSS SECTION 1.0000E-03 3.6600E+03 5.00000E-03 1.4970E+03	1.10005402 1.10095403 1.60005402 9.22945402 2.10005402 9.09725402 2.95005402 9.09725402	4,00005502 6,048055402 5,25005502 5,424855402 5,350005502 5,424855402 5,350005502 5,05715402 7,750055402 4,83235€402	, 000%5-02 4,71995-02 1.05005-01 4,70975-02 1.155005-01 4,914075-02 1.55005-01 9,52705-02 1.85005-01 9,52705-02 1.80005-01 9,04495-02 1.80005-01 9,04495-02	2,00005112,270255403 3,100055112,942255403 4,100055112,942055403 4,10005510115,473955403 4,1000051112,881955403	5,10005-01 1,03095-02 5,0005-01 1,32015-02 5,10005-01 1,32015-02 5,10005-01 8,12195-02 7,10005-01 8,12195-01 7,10005-01 9,03555-01 7,10005-01 9,03555-01 7,0005-01 9,03555-01	3 5 5000 - 21 - 22 - 22 - 24 - 24 - 24 - 24 - 24	8,80000000 1,77220 00 9,8000000 1,77220 00 1,772500 00 1,59020 00 1,87900 00 1,59020 00 1,87900 00 1,59020 00 1,87900 00 1,59020 00 1,97900 00 2,50250 00 1,91950 00000000000000000000000000000000
	ENERGY CROSS SECTION ENERGY CROSS SECTION 30000E-04 5.1744E+03 1 30000E-03 1.6391E+03 2	00006-02 1.16236+03 1 50006-02 9.52435+02 80006-02 9.28755+02 80006-02 9.28755+02 80006-02 9.28755+02	750055-025	75086+01 4,74036+02 5 20086+01 4,70975+02 1 20086+01 4,70975+02 1 50086+01 5,37375+02 1 750865+01 6,373495+02 1 750865+01 6,35495+02 1	580855-01 1.991255-03 580855-01 1.991255-03 580865-01 3.149375-93 380885-01 4.34445+93 580865-01 4.34445+93 580855-01 4.324445+93	00006-01 2.05356-02 50006-01 1.05956-02 50006-01 1.05956-02 50006-01 1.05966-02 50006-01 1.05966-01 00006-01 0.09915-01 50006-01 6.09915-01 50006-01 0.09915-01	5050555151 4 31197401 1 505055551 4 31197401 1 50505551 4 31195401 1 50505551 3 94155401 1 505055401 3 94155401 1 515055401 3 94155401 1 515055401 3 1,5475401 1 515055401 3 1,547540 1 525055401 3 1,665540 1 52505401 3 1,65540 1 52505401 3 1,55540 1 52505401 3 1 5	45081-01 1.1.0252-01 45081-01 1.1.0252-01 20031-01 1.02505-01 20031-01 2.30085-00 20201-021 3.30085-00 20201-021 3.4951-01 20205-022 3.19455-02 41975-022-1.9451-02 21975-022 4.92377-00 21955-02 4.92377-00 235585-02 4.92377-00 2455555-00 2455555555555555555555555555555555555
	1.2.4.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	886483 1.22436483 1.6 885186483 1.22436482 1.6 885186482 8,49366482 1.6 886482 8,49366482 2.6		0061-022 4,75065-022 8, 0061-022 4,70965-022 1,5 0061-02 4,709727-022 1,5 0061-01 5,220715-022 1,1 0061-01 6,222715-022 1,1 0061-01 6,222715-022 1,1	00000000000000000000000000000000000000	0065-01 2.22715482 5. 0085-01 1.51202482 5. 0065-01 1.151202482 5. 0065-01 1.135462482 6. 0065-01 1.354465481 7. 0065-01 6.26256541 7.	2011 1,124 1,024 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1,014 1	8026.401 8026.401 8026.401 8026.401 8026.401 8026.401 8026.401 8026.401 8026.401 8026.401 8026.401 8026.402 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41 8027.41
	CROSS SECTION EN Barns 1,63656-04 1,000 83 2,11446-03 4,000	83 1.2978E+83 9.08 82 1.0215E+83 1.48 82 8.7173E+83 1.98 82 8.7173E+82 1.98	002 5. 499955 402 4. 590 002 5. 458955 402 4. 590 002 5. 291155 402 4. 590 002 5. 291455 402 4. 290 002 4. 994955 402 4. 290	02 4.7%105.402 8.59 02 4.70975.402 9.75 01 4.73915.402 1.50 01 5.99515.402 1.450 01 5.99515.402 1.450 01 5.99515.402 1.450 01 5.99515.402 1.450	8112-333 812-333 812-333 812-333 812-336 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-83 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-4-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 81-84 810	01 2.4214(192 4.90) 01 1.6039(192 4.90) 01 1.6039(192 5.40) 01 1.1954(192 5.40) 01 1.954(191 6.40) 01 1.5498(191 6.40) 01 1.5498(191 7.40) 01 1.400		11,7,29672,20 11,7,29672,20 11,7,29675,20 11,5,29652,20 11,5,2965,20 11,1,2,1,1,2 11,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
THEEN ENERGIES (Ption (Ar in X	INS ISS SEC71DN ENERGY BARNS 65886+04 5,00006- 56886+03 3,00006-	3666555483 8.038055 96255483 1.30005 96155482 1.80005	448415+82 4.5888551 9653515+82 4.5888651 98555+82 4.5888651 33295+82 5.7588651 933295+82 7.988651	79146+02 8,25986 71996+02 9,56886 98556+02 1,15886 1,15886 751356+02 1,65886 1,65886 751356+02 1,65886 751356+02 1,65886 751356+05 1,65886 751356+05 1,55886 751356+05 1,55886 75156+05 1,55886 75156+05 1,55886 75156+05 1,55886 75156+05 1,55886 75156+05560 75156+05560 75156+055600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 7515600 75156000 7515600 75156000 75156000 75156000 75156000 75156000 75156000 7515600000000000000000000000000000000000	64440 642866 6414356 6414356 6414356 641435 641435 6416 643 3,0000 660 660 660 600 600 600 600 600 60	72555 72555 72555 55555 55555 55555 55555 55555 55555 5555	12862-421 1,48082-7 12862-421 1,480802-7 64845-471 8,480802- 12845-401 9,300802- 81245-401 9,300802- 128402-41 3,480802- 55555-400 1,3,25562- 52562-400 1,3,25562- 62265-400 1,3,25562-	164825659 164825659 15156-01 15156-01 10586-01 10586-01 10586-01 10586-01 10586-01 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 105860 1058600 1058600 1058600 1058600 1058600 1058600 1058600 1058600 1058600000000000000000000000000000000000
INTERPOLATION LAW BE RANGE DESCRI 1 TO 470 Y LINE	NEUTRON GROSS SECTI( INDEX, ENERGY CRC 1 1,008995-85 5, 2,00805-83 2,2	11 7,00005-03 1, 16 1,20005-02 1, 21 1,70005-02 8, 21 1,70005-02 8,	200 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	51 8. 2006 8. 1 4. 1 4. 1 4. 1 4. 1 4. 1 4. 1 4. 1	4 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1366 4,788867 181 9, 1111 5,788867 181 9, 1216 5,788867 181 1, 1216 5,788867 181 4, 1336 5,788867 181 4, 1336 5,788867 181 4, 1331 7,288867 181 7,288 181 7,288867 181 7,288867 181 7,288 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,288867 181 7,28887 181 7,28887 181 7,28887 181 7,28887 181 7,28887 181 7,28887 181 7,28887 181 7,28887 181 7,28887 181 7,2887 181 7,28887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,2887 181 7,28	110 7.2000 141 9.2000 144 9.7000 151 9.7000 155 9.7000 155 9.7000 156 1.112 165 1.112 165 1.112 165 1.112 165 1.112 177 2.000 1.122 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.2200 1.220	101 3,909/5/2014 101 3,919/5/2014 101 0,199/9/5/2014 201 0,199/9/5/2014 201 1,999/5/202 0, 201 1,289/5/202 0, 201 1,289/5/202 0, 201 1,519/5/202 0, 201 1,519/

40.0000000000000 400000 ----N 



- 281 -

### REFERENCES FOR EXPERIMENTAL DATA

# ²³⁹Pu(n,f)

<u>Yr.</u>	Lab	Author	References
73	SAC	Blons	Nuc. Sci. &Eng. <u>51</u> , 130 (1973)
72	GEL	Deruytter, et al.	J. Nuc. En. <u>26</u> , 293 (1972)
71	ORL	Gwin, et al.	Nuc. Sci. &Eng. <u>45</u> , 25 (1971)
71	CAD	Szabo, et al.	Third Conf. Neutron Cross Sec- tions & Tech., Knoxville, Tenn. Vol <u>II</u> , 573 (1971)
70	CAD	Szabo	Neutron Standards & Flux Normal- ization Conf. p.257, ANL (1970)
68	SAC	Blons, et al.	Comp. Rend. <u>267</u> , 901 (1968)
68	HAR	Patrick, et al.	EANDC-(UK) 96 (1968)
67	DUB	Ryabov, et al.	Yad. Fiz <u>5</u> , 925 (1967)
66	IBJ	Czyzewski	INR 688 (1966)
66	LAS	Shunk, et al.	Conf. Neutron Cross Sect. & Tech. Washington D.C. <u>2</u> , 979 (1966)
64	CCP	Dubrovena, et al.	Dok. <u>157</u> , 561 (1964)
62	CCP	Smirenkin, et al.	At. En. <u>13</u> , 366, (1962)
61	ALD	Adams, et al.	J. Nuc. En. <u>14</u> , 85 (1961)
58	ANL	Bollinger, et al.	Second Peaceful Uses of At. En. Conf. Geneva Vol <u>15</u> , 127 (1958)
58	CRC	Bigham	Sacond Peaceful Uses of At. En. Conf. Geneva Vol <u>16</u> , 125 (1958)
58	CCP	Kalanin, et al.	Second Peaceful Uses of At. En. Conf. Geneva Vol <u>16</u> , 136 (1958)
58	HAN	Seppi, et al.	HW 55879, 3 (1958)
57	LAS	Smith, et al.	Bull. Am. Phys. Soc. <u>2</u> , 196 (1957)
57	LAS	Henkel	LA-2114 (1957)
57	HAN	Leonard, et al.	HW-48893, 98 (1957)

### REFERENCES FOR EXPERIMENTAL DATA

## ²³⁹Pu(n,f) cont'd

Lab	Author	References
HAR	Allen, et al.	Proc. Phys. Soc./A 70, 573 (1957)
ANL	Coté, et al.	Bull. Am. Phys. Soc.1, 187 (1956)
HAN	Leonard	Priv. Comm. (1956)
HAR	Richmond, et al.	J. Nuc.En. <u>2</u> , 177 (1956)
SAC	N <b>e</b> tter, et al.	J. Phys. Rad. <u>17</u> , 565 (1956)
HAR	Uttley	AERE NP/R-1996 (1956)
SAC	Auclair	Int. Peaceful Uses of At. En. Conf. Geneva Vol <u>IV</u> , 235 (1955)
CCP	Adamchuk	Int. Peaceful Uses of At. En. Conf. Geneva Vol <u>IV</u> , 216 (1955)
CRC	Tunnicliffe	CRGP-458 (1951)
LAS	Nyer	LAMS-938 (1950)
	Lab HAR ANL HAN HAR SAC HAR SAC CCP CRC LAS	LabAuthorHARAllen, et al.ANLCoté, et al.HANLeonardHARRichmond, et al.SACNetter, et al.HARUttleySACAuclairCCPAdamchukCRCTunnicliffeLASNyer

### APPENDIX I

### Derived Parameters Compared With Integral Measurements

	Resonance Inte	egral (barns)	U ²³⁵ Fission Spectrum Average		
Isotope/Reaction	Dosimetry File	BNL-325*	Dosimetry File (T=1,32) (mb)	FABRY** (mb)	
⁶ Li(n,total He)	425.87		486.0		
¹⁰ B(n,total He)	1722.17	1722 ± 5	512.3		
²³ Na(n, y)	0.346	0.311 ± 0.010	0.291		
²⁷ A1(n,p)			4,222	4.0 ± 0.4	
²⁷ Al(n,α)			0.801	0.73 ± 0.02	
³² S(n,p)			63.87	69 ± 2	
$45$ Sc(n, $\gamma$ )	11.29	11.3 ± 1.0	5.879		
⁴⁶ Ti(n,p)			10.24	12 ± 0.3	
47 _{Ti(n,p)}			21.40	20.0 ± 2.0	
⁴⁸ Ti(n,p)			0.194	0.32 ± 0.02	
⁵⁵ Mn(n,2n)			0.367	0.25 ± 0.01	
⁵⁴ Fe(n,p)			77.67	82.5 ± 2.0	
⁵⁶ Fe(n,p)			1.145	1.07 ± 0.06	
$58_{Fe(n,\gamma)}$	1.58	1.19 ± 0.07	1.695		
$59_{Co(n,2n)}$			0.262		
⁵⁹ Co(n, y)	76.67	75.5 ± 1.5	6.433		
59 Co(n, $\alpha$ )			0.168	0.156 ± 0.006	

*S.F. Mughabghab and D.I. Garber, Neutron Cross Sections, Vol. 1. Resonance Parameters, BNL-325, Brookhaven National Laboratory (1973).

**A. Fabry, "Evaluation of Microscopic Integral Cross Sections Averaged in a 235U Thermal Fission Neutron Spectrum (for 29 Nuclear Reaction Relevant to Neutron Dosimetry and Fast Reactor Technology)," BLG-465, Centre d'Etude de l'Energie Nucleaire (1972).

†All cross sections in this column have been normalized to  $U^{235}$  (n,f) = 1250 (chosen by A. Fabry. See reference above.)

#### APPENDIX I (continued)

----

	Resonance Inte	egral (barns)	U ²³⁵ Fission Sp	pectrum Average
Isotope/Reaction	Dosimetry File	BNL-325*	Dosimetry File (T=1.32) (mb)	FABRY** (mb)
⁵⁸ Ni(n,2n)			$4.9 \times 10^{-3}$	
58 _{N1(n,p)}			101.5	113 ± 3
60 _{N1(n,p)}			2.658	
63 Cu(n, $\gamma$ )	5.55	4.9 ± 0.4	11.01	10.1 ± 1.5
⁶³ Cu(n,a)			0.396	0.50 ± 0.05
⁶⁵ Cu(n,2n)			0.464	
¹¹⁵ In(n,n')			166.8	188 ± 4
¹¹⁵ In(n, y)	3242.74	3300 ± 100	136.6	146 ± 5
$127_{1(n-2n)}$			1.368	$109 \pm 0.05$
$197_{Au(n,\gamma)}$	1564.70	1560 ± 40	84.92	88 ± 5
232 _{Th(n,f)}			69.01	83.0 ± 3.5
232 _{mb} (2. v)	95 59	95 + 3	103 8	
235 ₁₁ (n, f)	00.285	275 + 5	1243 2	1250+
238 ₁₁ (- 5)	262.00	213 1 3	1243.2	12JU1
238		67F . F	293.4	328 ± 10
U(n,γ) 237	277.53	275 ± 5	75.60	
'Np(n,f)			1322.8	1370 ± 75
²³⁹ Pu(n,f)	303.90	301 ± 10	1782.4	1859 ± 60

Derived Parameters Compared With	integral	Measurements
----------------------------------	----------	--------------

*S.F. Mughabghab and D.I. Garber, Neutron Cross Sections, Vol. 1. Resonance Parameters, BNL-325, Brookhaven National Laboratory (1973).

**A. Fabry, "Evaluation of Microscopic Integral Cross Sections Averaged in a 235U Thermal Fission Neutron Spectrum (for 29 Nuclear Reaction Relevant to Neutron Dosimetry and Fast Reactor Technology)," BLG-465, Centre d'Etude de l'Energie Nucleaire (1972).

⁺All cross sections in this column have been normalized to  $U^{235}$  (n,f) = 1250 (chosen by A. Fabry. See reference above.)

,

×

. .

·