

BNL 19344

NUCLEAR DATA FOR CTR RELATED PROJECTS

by
M.R. Bhat, b.A. Magurno,
S. Pearlstein and f.M. Scheffel

October 1974

INFORMAL REPORT

National neutron cross section center BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK 11973

NUCLEAR DATA FOR CTR RELATED PROJECTS

by

m.r. Bhat, B.A. Magurno, S. Pearlitein and f.M. Scheffel

October 1974

NATIONAL NEUTRON CROSS SECTION CENTER BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC.

UNDER CONTRACT NO. AT(30-1)-16 WITH THE UNITED STATES ATOMIC ENERGY COMMISSION

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ABSTRACT

This report describes the different types of nuclear cross-section information that has been supplied to CTR related projects and is available at the National Neutron Cross Section Center. This has inciuded data from the ENDF/B and ENDF/A libraries as well as the results of calculations based on nuclear systematics.
page

1. Introduction 1
2. Nuclear Cross-Sections for the CTR Program 2
3. List of CTR Requests 10
Appendix A: Contents of the ENDF/B-IV Library 11
Appendix B: Partial Contents of the ENDF/A Library. 16
Figure 1: ${ }^{58} \mathrm{Ni}(\mathrm{n}, 2 \mathrm{n})$ Cross-Section. 46
Appendix C: Requests for CTR Related Projects . . . 47
References 55

Introduction

Abstract

The National Neutron Cross Section Center (NNCSC) has provided cross-section data for a large number of nuclei of interest to the Controlled Thermonuclear Research (CTR) Program in the past year. The data were supplied to a small number of laboratories actively engaged in the CTR program and had a limited distribution. This report summarizes this voluminous body of material by giving (a) sources of partial or complete evaluations of the data (b) calculational methods used where no evaluations or experimental data exist (c) list of nuclei for which the cross-sections were given and (d) other archival material available at the National Neutron Cross Section Center. It is hoped that this information would be of interest to a larger class of users and indicate the type of data available from the NNCSC.

2. Nuclear Cross-Sections for the CTR Program

There is at present a large amount of research activity connected with the CTR program as can be seen from the proceedings of a recent conference. Some of the areas of interest in this program are (1) tritium breeding (2) energy deposition (3) material activation (4) helium and hydrogen production (5) atomic displacement and materials damage
(6) dosimetry and transmutation analysis (7) fission-fusion systems and (8) fission product burner systems. These studies need nuclear data of different types, degree of detail and accuracy. In some cases a rather reliable knowledge of nuclear cross-sections arrived at by a detailed evaluation of all the experimental data are needed. This could be supplied by the various evaluations in the ENDF/B Library, whose contents and emphasis have been mainly determined by the needs of the thermal and fast reactor research programs. In some other cases larger uncertainties in the cross-sections could be tolerated because all that one needs are order-ofmagnitude estimates. In the latter case, one could use partial evaluations of the various nuclei where the data files are made up of a few reactions of immediate interest and the data files have not been tested against integral measurements. In addition, there are a few nuclei whose cross-sections have not been measured either because they are unstable or because of other special experimental difficulties. In such cases, the cross-sections have to be estimated from calculations based on nuclear models and or nuclear systematics. In satisfying requests for nuclear data for the CTR program, material obtained from these different sources or procedures has been used and these methods are described below.

2.1 ENDF/B Library

The origin and the general philosphy of this neutron cross-section data library have been describe(2) It is meant to be a reference data library based on the best available microscopic experimental data and covers a neutron energy range from $1.0 \mathrm{E}-05 \mathrm{eV}$ to 20.0 MeV . Though the earlier versions of this library contained only neutron crossmection data, Versions III and IV (the current version released Feb. -Sept.'74) also contain gamma production cross-sections for a few nuclei used as shielding materials. As mentioned earlier, since this data library was formed with the needs of thermal and fast reactor applications in mind, the energy region below a few MeV has perhaps received more emphasis than the higher energy at around 14 MeV which is of interest to CTR applications. This has been partly due to the fact that there are more reliable and larger number of measurements at lower energies than at higher energies except for the region in the immediate vicinity of 14 MeV . In addition, many of the evaluations are for an element rather than its individual isotopes; thus creating special problems in energy deposition and charged particle production calculations. However, attempts are being made to improve the data files in the high energy region guided by relevant integral measurements and to give isotopic information in the data files. ${ }^{*}$. In addition, the ENDF/B data files are well documented ${ }^{(3)}$ and have benefited from the results of benchmark experiments. Therefore, till evaluations specifically meant for CTR applications become available the data files in the ENDF/B system are the best available. As a result of this, in satisfying requests for the CTR programs the current ENDF/B Library list is scanned first and if the elements or isotopes whose cross-sections are requested are in *In Jan. 1974, NNCSC received the ENDL evaluations which emphasize the high energy region of CTR interest and which in some cases have been compared against pulsed sphere experiments 24 .
the library, the corresponding data files are sent. The list of evaluations in the ENDF/B-IV Library are given in Appendix A.

2.2 ENDF/A Library

This data library consists of (i) earlier evaluations no longer in current use (ii) partial evaluations which deal with only a few reactions or (iii) complete or partial evaluations from other data libraries. As far as possible attempts are made to convert these data files to conform to the ENDF/B format, though in some cases they do not. In the latter case, they will have to be modified for use with the usual ENDF/B processing codes. In addition, the provenance of the evaluations in the ENDF/A library may not be known. However, some of these evaluations could be of use for preliminary calculations and feasibility studies. Therefore, if the evaluation for a particular nucleus is not found in the ENDF/B library, the contents of the ENDF/A library are searched. In addition to the earlier evaluations, the ENDF/A library contains the following:
(1) UKNDL (Version 3) (United Kingdom) Received July 2, 1973

General cross-section data sets. There is no documentation on the data files; there is only an index listing the various reactions in the data files. It is titled "CCDN Index to the Aldermaston Nuclear Data Library Version: March 1973". ENDF format
(2) UKNDL (Version 2) (United Kingdom) Received May 5, 1971

General cross-section data sets. Ref 4. ENDF format
(3) ENDL (U.S.A.) Received Jan. 25, 1974

The Lawrence Livermore Laboratory Evaluated Nuclear Data Library
(ENDL) translated into ENDF/B format. It includes photon production cross-sections. Ref 5. ENDF format
(4) STANDARDS (U.S.A.) Received Jan. 25, 1973

ENDF/B-III cross-section measurement standards, Ref 6. ENDF format
(5) CEN (France) Received August 7, 1973

Compilation of properties of fission product nuclei. Ref 7. ENDF format
(6) SPENG (Sweden) Received Jan. 5, 1973

General cross-section data sets. This library which is in part
based on UKNDL, ENDF and KEDAK libraries contains data for a number
of materials not in ENDF/B-III. Ref 8
(7) KEDAK (W. Germany) Received October 26, 1970

General cross-section data sets. Ref 9
(8) SAND-II (U.S.A.) Received August 5, 1971

Dosimetry cross-sections. Ref 10
(9) AAEC (Australia) Received Sept. 15, 1971

Also referred to as "Cook Library" cross-sections for fission
product nuclides. Ref 11. ENDF format
(10) OBNINSK (Nikolaev) (U.S.S.R.) Received May 30, 1974

Elastic Scattering and Legendre Coefficient fits to some 42
nuclides. No reference. ENDF format.
(11) KONSHIN \& NIKOLAEV (U.S.S.R.) Received Jan. 17, 1973

Fission cross-section for ${ }^{235}$ U. Ref 23. ENDF format
(12) BOYAD (U.S.S.R.) Received Sept. 11, 1972
${ }^{238} \mathrm{~J}$ evaluation. No reference.
(13) BENZI (Italy) Received Dec. 4, 1970

Fast neutron radiative capture cross-sections of nuclei. Ref 12.
(14) LIVOLSI 1500 (U.S.A.) Received Nov. 1, 1971

These are based on the Cook library, with some improvements and
modifications in the thermal and resonance regions. Ref 13. ENDF format
Further information on some of these data libraries may be found
in Ref 14.

A partial listing of the nuclides and their material numbers for
identification may be found in Appendix B.

2.3 Calculations Based on Nuclear Systematics

These calculations are performed by using the code THRESH ${ }^{(15)}$ which has been described in detail. This code calculates some nineteen (n,particle) cross-sections induced by neutrons below 20.0 MeV in medium mass nuclei. The cross-sections for charged particle reactions as well as fission spectrum averages of the cross-sections can be calculated.

This code describes a particular cross-section and its variation with energy by a form given by the statistical model. Further, the various parameters such as peak height, its width, steepness with which it rises or falls are described by a set of parameters which are determined by existing experimental data and their variation for nuclei with different Z and N. Thus the only inputs needed for the code are the Z, N of the target nucleus and the Q-values for some nineteen nuclear reactions which ${ }^{(16)}$ or could be calculated from the recent mass tables of Wapstra and Gove or from an approximate mass formula built into the program. The reactions for which the cross-sections are calculated are (n, n^{\prime}), ($n, 2 n$), ($n, 3 n$), $(n, p),(n, d),(n, t),\left(n,{ }^{3} H e\right),(n, \alpha),(n, n p),(n, n d),(n, n t),\left(n, n^{3} H e\right)$, $(\mathrm{n}, \mathrm{n} \alpha),(\mathrm{n}, 2 \mathrm{p}),(\mathrm{n}, \mathrm{p} \alpha),(\mathrm{n}, \mathrm{dn}),(\mathrm{n}, \alpha \mathrm{n})$, and ($\mathrm{n}, \alpha \mathrm{p})$. The code THRESH is being constantly updated to include the latest information on experimental data in the form of some 13 parameters in terms of which the cross-sections are calculated. Recently, it has also been extended to heavier nuc1ei to include the mass region up to $A=83$. In addition, similar procedures have been adopted in a code CHAPIN to calculate charged particle crosssections. The calculated cross-sections are given both in the form of a line-printer output as well as in the standard ENDF/B format from which they can be plotted or can be processed further.

It is interesting to compare the results of this code with available experimental data. This is shown in Fig. 1 where the experimental data on the ${ }^{58} \mathrm{Ni}(\mathrm{n}, 2 \mathrm{n})$ cross-section are shown from the threshold of the reaction
at 12.415 MeV to 20.0 MeV . Some of the available data sets have been left out as they were thought to be highly discrepant or fear of cluttering up the figure with too many points. The continuous curve drawn through the experimental points is thought to be the best representation of the available experimental data. The dashed curve shows the result of THRESH calculations. The average ratio of the values on the continuous curve to the corresponding ones on the dashed curve is 0.74 with the minimum and the maximum ratios in the whole energy range differing by only 10%.

The problems associated with the ($n, 2 n$) cross-section of ${ }^{93} \mathrm{Nb}$ is another case where THRESH type calculations based on nuclear systematics have proved to be helpful. The activation measurements of the ${ }^{93} \mathrm{Nb}(\mathrm{n}, 2 \mathrm{n})$ cross-section gave a value of about 450 mb at 14 MeV whereas nuclear systematics predicted (18) a cross-section of 1281 mb at 14.1 MeV . This problem was solved ${ }^{(19)}$ with the realization that the ground state of ${ }^{92}$ Nb populated in the ($n, 2 n$) reaction has a very long half-life and that the measured activity corresponds to transitions to the first excited state with a relatively short half-1ife. Subsequently, experiments designed to measure the outgoing neutrons and the ($n, 2 n$) cross-sections thus measured have given results in substantial agreement with the THRESH type calculations. Thus Mather et ar measured $1312 \pm 83 \mathrm{mb}$ at 14.3 MeV and Huring et $\mathrm{al}^{21)}$ obtained $1350 \pm 250 \mathrm{mb}$ at 14 MeV and Paulsen and Widera' got $1380 \pm 179 \mathrm{mb}$ at 16.8 MeV . However, these examples should not be construed to mean that the results of THRESH calculations for all the (n, particle) reactions for all the medium mass nuclei agree so well with experimental data - the differences between them are usually much larger. Therefore, in those cases where there are no experimental data, this code can supply cross-section values which are sometimes moderately reliable or at least can be trusted to give order-of-magnitude estimates.
3. List of CTR Requests

There have been mainly three sets of requests for nuclear data for CTR related programs. They are by (1) C. W. Maynard of Wisconsin University for energy desposition, charged particle production and radioactivity calculations (2) J. R. Powell of Brookhaven in connection with his studies of the minimum activity biankets and (3) W. C. Wolkenhower for his calculations of the fission-product burner systems. The detailed lists of these requests and the different data sets sent in June - August 1973 are given in Appendix C. In each case, either the available evaluations and or the results of the THRESH calculations were sent to the requestor along with the plots of all the cross-sections. As such the data packages sent were voluminous and therefore are not given as part of this report. These data sets were also sent to some eight laboratories in the U.S. actively working in the GTR related programs. Similar requests for cross-sections can be satisfied in the future.

APPENDIX A
Contents of the ENDF/B-IV Library

1-NOVNDF/B VERSION-IV GENERAL PURPOSE FILE

APPENDIX B
Partial Contents of the ENDF/A Library

ENDF/A-701

AAEC Fission Product Data Library Received 9/15/71
Cook Library

ENDF／A－701（cont＇d）

Isotope＊	AAEC非	$\begin{aligned} & \text { ENDF } \\ & \text { FORMAT } \\ & \text { MAT } \\ & \text { 非 } \end{aligned}$	非 OF RECORDS ENDF FORMAT
Sr－89	28	7028	483
Sr－90	29	7029	＂
Sr－91	30	7030	＂
Y－89	31	7031	＂
Y－90	32	7032	＂
Y－91	33	7033	＂
Y－93	34	7034	＂
2r－90	35	7035	＇
Zr－91	36	7036	489
Zr－92	37	7037	501
Zr－93	38	7038	483
Zr－94	39	7039	501
			18，891

[^0]－ 17 －

ENDF/A-702			
AAEC Fission Product Data Library Receive Cook Library			
Isotope*	$\underset{*}{\operatorname{AAEC}}$	$\begin{aligned} & \text { ENDF } \\ & \text { FORMAT } \\ & \text { MAT } \\ & \text { 非 } \end{aligned}$	\# OF RECORDS ENDF FORMAT
Zr-95	40	7040	483
96	41	7041	489
97	42	7042	483
Nb-95	43	7043	"
Mo-95	44	7044	"
96	45	7045	"
97	46	7046	"
98	47	7047	"
99	48	7048	"
100	49	7049	"
Tc-99	50	7050	"
Ru-100	51	7051	"
101	52	7052	"
102	53	7053	"
103	54	7054	"
104	55	7055	"
105	56	7056	"
106	57	7057	"
Rh-103	58	7058	11
105	59	7059	"
Pd-104	60	7060	"
105	61	7061	"
106	62	7062	"
107	63	7063	"
108	64	7064	"
109	65	7065	"
110	66	7066	"
112	67	7067	"
Ag-109	68	7068	"
111	69	7069	"
(cont'd)			

ENDF/A-702 (cont'd)

Isotope*	AAEC非	$\begin{aligned} & \text { ENDF } \\ & \text { FORMAT } \\ & \text { MAT } \\ & \text { \& } \end{aligned}$	\# OF RECORDS ENDF FORMAT
Cd-110	70	7070	483
111	71	7071	"
112	72	7072	11
113	73	7073	"
114	74	7074	\%
115	75	7075	"
116	76	7076	"
In-115	77	7077	"
$\mathrm{Sn}-115$	78	7078	"
			18,843

[^1]ENDF/A-703

Isotope**		Cook Library	
		FORMAT	RECORDS
	AAEC	MAT	ENDF
	\#	\#	FORMAT
Sn-116	79	7079	483
117	80	7080	"
118	81	7081	"
119	82	7082	"
120	83	7083	"
121	84	7084	"
122	85	7085	"
123	86	7086	"
124	87	7087	"
125	88	7088	"
126	89	7089	"
Sb-121	90	7090	"
122	91	7091	"
123	92	7092	11
124	93	7093	"
125	94	7094	"
126	95	7095	"
127	96	7096	"
128	97	7097	"
Te-122	98	7098	1
123	99	7099	"
124	100	7100	"
125	101	7101	"
126	102	7102	"
127	103	7103	"
128	104	7104	"

ENDF／A－703（cont＇d）

Isotope＊	$\underset{\text { 非 }}{\mathrm{AAEC}}$	$\begin{aligned} & \text { ENDF } \\ & \text { FORMAT } \\ & \text { MAT } \\ & \text { 非 } \end{aligned}$	非 OF RECORDS ENDF FORMAT
Te－129	105	7105	483
130	106	7106	1
131	107	7107	＂
132	108	7108	＂
I－127	109	7109	＂
129	110	7110	＂
130	111	7111	＂
131	112	7112	＂
133	113	7113	11
135	114	7114	＂
Xe－128	115	7115	＂
130	116	7116	＂
131	117	7117	＂
			18，837

[^2]ENDF/A-704

AAEC Fission Product Data Library Received 9/15/71
Cook Library

Isotope*	$\underset{k}{A A E C}$	$\begin{aligned} & \text { ENDF } \\ & \text { FORMAT } \\ & \text { MAT } \\ & \text { 非 } \end{aligned}$	\# OF RECORDS ENDF FORMAT
Xe-132	118	7118	483
133	119	7119	"
134	120	7120	"
135	121	7121	"
136	122	7122	11
Cs -133	123	7123	"
134	124	7124	"
135	125	7125	"
136	126	7126	"
13%	127	7127	"
Ba-134	128	7128	"
136	129	7129	"
137	130	7130	"
138	131	7131	"
140	132	7132	"
La-139	133	7133	"
140	134	7134	"
Ce-140	135	7135	"
141	136	7136	"
142	137	7137	"
143	138	7138	"
144	139	7139	"
Pr-141.	140	7140	489
142	141	71.41	483
143	142	7142	"
145	143	7143	"

ENDF/A-704 (cont'd)

Isotope*	$\underset{\substack{\text { AAEC }}}{\text { An }}$	$\begin{aligned} & \text { ENDF } \\ & \text { FORMAT } \\ & \text { MAT } \\ & \text { \# } \end{aligned}$	非 OF RECORDS ENDF FORMAT
Nd-142	144	7144	483
143	145	7145	1
144	146	7146	"
145	147	7147	"
146	148	7148	"
147	149	7149	"
148	150	7150	"
150	151	7151	"
Pm-147	152	7152	"
148	153	7153	"
149	154	7154	"
151	155	7155	"
Sm-147	156	7156	11
			18,843

Total

[^3]

ENDF/A-705 (cont'd)

Isotope*	AAEC非	$\begin{aligned} & \text { ENDF } \\ & \text { FORMAT } \\ & \text { MAT } \\ & \text { \# } \end{aligned}$	非 OF^{2} RECORDS ENDF FORMAT
Dy-162	181	7181	483
163	182	7182	"
164	183	7183	"
Ho-165	184	7184	"
Tc-799	185	7185	"
Cd-815	186	7186	"
Te-823	187	7187	"
825	188	7188	"
827	189	7189	"
829	190	7190	"
831	191	7191	\because
Pm-848	192	7192	"
			17,388

[^4]
ENDF/A-707*

KEDAK Data Library Received 10/26/70

Isotope	Reaction Type**										
		G		- G		G	K	G	K	G	
A1-27	1	458		1459	2	152	2	153	2	154	130027
	3	001	3	3002	3	003	3	004	3	005	
	3	016		3027	3	102	3	103	3	107	
	3	201		3251	4	002†					
C-12	1	458		1459	2	152	3	001	3	002	60012
	3	003	3	3004	3	005	3	(16	3	027	
	3	$\begin{aligned} & 102 \\ & 002+ \end{aligned}$	3	3103	3	1.07	3	201	3	251	
Cd	1	458	2	2152	3	001	3	002	3	003	480000
	3	004	3	3005	3	016	3	027	3	102	
	3	103	3	3107	3	201	3	251			
Cr	1	458		1459	1	460	2	152	3	001	240000
	3	002	3	3003	3	004	3	005	3	016	
	3	019	3	3027	3	102	3	103	3	107	
	3	201	3	206	3	207	3	251	3	452	
	3	461		$002{ }^{+}$							
Cr-50	1	458	1	459	2	152	2	153	2	154	240050
Cr-52	1	458	1	459	2	152	2	153	2	154	240052
Cr-53	1	458	1	459	2	152	2	153	2	154	240053
Cr-54	1	458	1	459	2	152	2	153	2	154	240054
Fe	1	458	1	459	1	460	2	152	3	001	260000
	3	002	3	003	3	004	3	005	3	016	
	3	019	3	027	3	102	3	103	3	107	
	3	201	3	206	3	207	3	251	3	452	
	3	461	4	002^{+}							
Fe-54	1	458	1	459	2	152	2	153	2	154	260054
$\mathrm{Fe}-56$	1	458	1	459	2	152	2	153	2	154	260056
Fe-57	1	458	1	459	2	152	2	153	2	154	260057
$\mathrm{Fe}-58$	1	458		459		154					260058

(continued)

*ENDF/A Tape No. assigned but data not converted to ENDF format. **See KFK-880 for reaction type values.
+Center-of-Mass System.

ENDF/A-708*

KEDAK Data Library Received 10/26/70

Reaction Type**											
Isotope	K	G	K	G	K	G	K	G	K	G	$\begin{gathered} \text { KEDAK } \\ \text { 非 } \end{gathered}$
Ni	1	458	1	459	1	460	2	152	3	001	280000
	3	002	3	003	3	004	3	005	3	016	
	3	019	3	027	3	102	3	103	3	107	
	3	201	3	206	3	207	3	251	3	452	
	3	461	4	002*							
Ni-58	1458		1	459	2	152	2	153	2	154	280058
Ni-60	1	458	1	459	2	152	2	153	2	154	280060
Ni-61	1	458	1	459	2	154				280061	
Ni-62	1	458	1	459	2	152	2	154		280062	
Ni-64	1	458	1	459	2	154					280064
0-16	1	458	1459		2	152	3	001	3	002	80016
	3	003	3	005	3	251	3	027	3	103	
	3	107	3	201	3			002+			
	3	004	3	102							
U-235	1	456	1	457	1	458	1	459	2	152	920235
	2	153	2	154	21	155	3	001	3	002	
		003	3	004	3	005	3	016	3		
	3	027	3	102	3	103	3		3	201	
	3	206	3	207	3	251	3	452		461	
		$002+$									

*ENDF/A Tape No. assigned but data not converted to ENDF format. \star Nee KFK-880 for reaction type values.
tCenter-of-Mass System.

ENDF/A-709*

KEDAK Data Library Received 10/26/70

Reaction Type**											
Isotope	K	G	K	G	\underline{K}	G	K	G	K	G	$\begin{gathered} \text { KEDAK } \\ \# \end{gathered}$
Na-23	1	458	1	459	2	152	2	153	2	154	110023
	3	001	3	002	3	003	3	004	3	005	
	3	016	3	027	3	102	3	103	3	107	
	3	201	3	251	4	$002+$					
Pu-239	1	456	1	457	1	458	1	459	2	152	940239
	2	153	2	154	2	155	3	001	3	002	
	3	003	3	004	3	005	3	016	3	019	
	3	027	3	102	3	103	3	107	3	201	
	3	206	3	207	3	251	3	452	3	461	
	4	$002+$									
Pu-240	1	456	.	457	1	458	1	459	2	152	940240
	2	153	2	154	2	155	3	001	3	002	
	3	003	3	004	3	005	3	016	3	019	
	3	027	3	102	3	201	3	206	3	207	
	3	251	3	452	4	002+					
Pu-241	1	456	1	457	1	458	1	459	2	152	940241
	2	153	2	154	2	155	3	001	3	002	
	3	003	3	004	3	005	3	016	3	019	
	3	027	3	102	3	201	3	206	3	027	
	3	251	3	452	4	$002+$					
Pu-242	1	456	1	457	1	458	1	459	2	152	940242
	2	153	2	154	3	001	3	002	3	003	
	3	004	3	005	3	016	3	019	3	027	
	3	102	3	201	3	206	3	207	3	251	
	3	452	4	$002+$							
U-238	1	456	1	457	1	458	1	459	2	152	920238
	2	153	2	154	3	001	3	002	3	003	
	3	004	3	005	3	016	3	019	3	027	
	3	102	3	103	3	107	3	201	3	251	
	3	452	3	461	4	002†					

*ENDF/A Tape No. assigend but data not converted to ENDF format. **See KFK-880 for reaction type values
${ }^{+}$Center-of-Mass System.

ENDF／A－801

Isotope		UKNDL Data Library Received 5／5／71 Version 2											
		MT	MF	MT	MF	MT	MF	MT	MF	MT	$\begin{gathered} \text { UKNDL } \\ \substack{\forall / ⿰ ⿰ 三 丨 ⿰ 丨 三} \end{gathered}$	$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \text { 非 } \\ & \hline \end{aligned}$	非 of RECORDS
H	2	151	3	1	3	2	3	102	4	2	901	8001	331
D in $\mathrm{D}_{2} \mathrm{O}$	2	$\begin{aligned} & 151 \\ & 102 \end{aligned}$	3 4	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	3	$\begin{array}{r} 2 \\ 16 \end{array}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{array}{r} 3 \\ 16 \end{array}$	3	16	256	8002	1115
Be－9	2	151	3	1	3	2	3	3	3	24	50	8003	857
		$\begin{array}{r} 102 \\ 24 \end{array}$	3	105	3	107	4	2	4	24			
C－12	2	151	3	1	3	2	3	3	3	23	68	8004	1908
	3	51	3	102	3	107	4	2	4	23			
	4		5	23									
0－16	2	151	3	1	3	2	3	3	3	4	33	8005	1371
	3	51	3	52	3	54	3	55	3	57			
	3	58	3	59	3	60	3	91	3	102			
	3	103	3	104			3	107	4	2			
	4	51	4	52	4	53	4	54	4	55			
	4	56	4	57	4	58	4	59	4	60			
	4	91	5	91	3	53	3	56					
U－235	2	151	3	1	3	2	3	3	3	16	66	8006	4083
	3	17	3	18	3	51	3	52	3	53			
	3	54	3	55	3	56	3	91	3	102			
	4	2	4	16	4	17	4	18	4	51			
	4	52	4	53	4	54	4	55	4	56			
	4	91	5	16	5	17	5	18	5	91			
	1	452											
Pu－239	2	151	3	1	3	2	3	3	3	16	65	8007	3335
	3	17	3	18	3	51	3	52	3	53			
	3	54	3	55	3	56	3	57	3	91			
	3	102	4	2	4	16	4	17	4	18			
	4	51	4	52	4	53	4	54	4	55			
	4	56	4	57	4	91	5	16	5	17			
	5	18	5	91									
	1	452											
U－233	2	151	3	1	3	2	3	16	3	17	87	8008	1876
	3	18	3	91	3	102	4	2	4	16			
	4	17	4	18	4	91	5	16	5	17			
	5	18	5	91									
	1	452											
$\mathrm{U}-238$	2	151	3	1	3	2	3	3	3	16	401	8009	5819
	3	17	3	18	3	51	3	52	3	53			
	3	54	3	55	3	56	3	57	3	58			
	3	59	3	60	3	91	3	102	4	2			
	4	16	4	17	4	18	4	51	4	52			
	4	53	4	54	4	55	4	56	4	57			
	4	58	4	59	4	60	4	91	5	16			
		$4 \frac{17}{52}$	5	18	5	91							

ENDF／A－801（continued）													
Isotope	MF MT		Reaction Type＊						MF MT		$\begin{gathered} \text { UKNDL } \\ \substack{\text { 非 } \\ \hline} \end{gathered}$	$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \text { 韭 } \end{aligned}$	$\begin{gathered} \text { fof } \\ \text { RECORDS } \\ \hline \end{gathered}$
			ME	MT	䜝	MT		MT					
Pu－241	2	151	3	1	3	2	3	3	3	16	60	8010	1982
	3	17	3	18	3	91	3	102	4	2			
	4		4		4		4		5	16			
	5	17	5		5								
Na－23	3	102									224	8011	78
Mg－24	3	103									225	8012	57
A1－27	3	102	3	107							226	8013	81
A1－27	3	107									95	8014	30
A1－27		107									96	8015	39
Si－28	3	103									227	8016	39
P－31		103									228	8017	118
S－32	3	103									229	8018	55
S－32		103									97	8019	41
S－34		107									230	8020	65
C1－35		1.07									231	8021	29
Sc－45	3	16	3	26							207	8022	30
Mn－55		102									232	8023	102
Fe－54		103									63	8024	53
Fe－54		103									233	8025	37
Fe－56		103									62	8026	47
$\mathrm{Fe}-56$		103									234	8027	34
Fe－56		103									98	8028	30
Co－59		102									235	8029	86
Ni－58	3	16	3	103							236	8030	57
Cu－63	3	16	3	102							237	8031	89
Cu－63	3	16									99	8032	25
$\mathrm{Cu}-65$	3	16									100	8033	26
Y－89	3	16									208	8034	22
Zr－90	3	16									238	8035	27
Rh－103		16									204	8036	27

（continued）

ENDF／A－801（continued）

Isotope	ME．MT	Reaction Type＊ MF MT	$\xrightarrow{\substack { \text { UKNDL } \\ \begin{subarray}{c}{\ddagger ⿰ ⿰ 三 丨 ⿰ 丨 三{ \text { UKNDL } \\ \begin{subarray} { c } { \ddagger ⿰ ⿰ 三 丨 ⿰ 丨 三 } } \\ {\hline}\end{subarray}}$	$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \# \\ & \hline \end{aligned}$	非 of RECORDS
Rh－103	351	451	94	8037	59
In－115	351		239	8038	42
I－127	316		240	8039	28
Gd	31	3102	223	8040	40
Tm－169	316		209	8041	23
Lu－175	316		210	8042	23
Th－232	318	3102	242	8043	186
					$\underline{24402}$

＊See ENDF－102 Vol 1 for reaction type values．

ENDF/A-802

UKNDL Data Library Received 5/5/71 Version 2

Isotope	MF MT		Reaction Type*						MF MT			$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \text { \# } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 作 of } \\ & \text { RECORDS } \end{aligned}$
			MF	MT	ME	ML		MT			非		
Pu-240	2	151	3	1	3	2	3	3	3	16	77	8044	1180
	3	17	3	18	3	51	3	52	3	53			
	3	91	3	102	4	2	4	16	4	17			
	4	18	4	51	4	52	4	53	4	91			
	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{array}{r} 16 \\ 452 \end{array}$	5	17	5	18	5	91					
Th-232	2	151	3	1	3	2	3	3	3	16	22	8045	1045
	3	17	3	18	3	91	3	102	4	2			
	4	16	4	17	4	18	4	91	5	16			
	5	17	5	18	5	91							
		452											
U-234	2	151	3	1	3	2	3	3	3	16	74	8046	1170
	3	17	3	18	3	51	3	52	3	53			
	3	54	3	55	3	56	3	91	3	102			
	4	2	4	16	4	17	4	18	4	51			
	4	52	4	53	4	54	4	55	4	56			
	$\begin{aligned} & 4 \\ & 1 \end{aligned}$	$\begin{array}{r} 91 \\ 452 \end{array}$	5	16	5	17	5	18	5	91			
U-236	2	151	3	1	3	2	3	3	3	16	75	8047	1025
	3	17	3	18	3	51	3	52	3	53			
	3	54	3	55	3	56	3	91	3	102			
	4	2	4	16	4	17	4	18	4	51			
	4	52	4	53	4	54	4	55	4	56			
	4	91	5	16	5	17	5	18	5	91			
		452											
U-238	2	151	3	1	3	2	3	3	3	16	76	8048	1069
	3	17	3	18	3	51	3	52	3	53			
	3	54	3	55	3	56	3	57	3	58			
	3	59	3	60	3	91	3	102	4	2			
	4	16	4	17	4	18	4	51	4	52			
	4	53	4	54	4	55	4	56	4	57			
	4	58	4	59	4	60	4	91	5	16			
	$\begin{aligned} & 5 \\ & 1 \end{aligned}$	$\begin{array}{r} 17 \\ 452 \end{array}$	5	18	5	91							
Pu-238	2	151	3	1	3	2	3	3	3	16	216	8049	620
	3	17	3	18	3	91	3	102	4	2			
	4	16	4	17	4	18	4	91	5	16			
	5	17	5	18	5	91							
		452											
Pa-233	2	151	3	1	3	2	3	3	3	16	86	8050	981
	3	18	3	91	3	102	4	2	4	16			
	4	18	4	91	5	16	5	18	5	91			
		452											
Np-237	3	18									61	8051	86

(continued)

```
ENDF/A-802 (continued)
```

Isotope	ME MT		Reaction Type*						MF MT		$\xrightarrow[\substack{\text { UKNDL } \\ \sharp \\ \hline}]{ }$	$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \text { 非 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 非 of } \\ \text { RECORDS } \end{gathered}$
				\ldots		MT.		MT					
W	2	151	3	1	3	2	3	3	3	16	213	8059	378
	3	91	3	102	4	2	4	16	4				
	5	16	5	91									
Cr	2	151	3	1	3	2	3	3	3	16	45	8060	1085
	3	51	3	52	3	53	3	54	3	55			
	3	56	3	57	3	58	3	91	3	102			
	3	103	4	2	4	16	4	51	4	52			
	4	53	4	54	4	55	4	56	4	57			
	4	58	4	91.	5	16	5	91					
Ni	2	15	3	1	3	2	3	3	3	16	46	8061	1460
	3	51	3	52	3	53	3	54	3	55			
	3	56	3	57	3	58	3	91	3	102			
	3	103	3	107	4	2	4	16	4	51			
	4	52	4	53	4	54	4	55	4	56			
	4	57	4	58	4	91	5	16	5	91			

25535 Total
*See ENDF-102 vol 1 for reaction type values.

ENDF/A-803													
UKNDL Data Library Received 5/5/71 Version 2													
Isotope	MF	$\underline{M T}$	MF	MT	MF	$\xrightarrow{\text { MT }}$	MF	$\xrightarrow{\text { MT }}$	MF	MT	$\underset{\sim}{\text { UKNDL }}$	$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \# \\ & \hline \end{aligned}$	$\begin{gathered} \text { \# of } \\ \text { RECORDS } \end{gathered}$
Nb	2	151	3	1	3	2	3	3	3	4	79	8062	5669
	3	16	3	51	3	52	3	53	3	54			
	3	55	3	56	3	57	3	58	3	59			
	3	60	3	91	3	102	3	103	3	107			
	4	2	4	16	4	51	4	52	4	53			
	4	54	4	55	4	56	4	57	4	58			
	4	59	4	60	4	91	5	16	5	91			
Si	2	151	3	1	3	2	3	3	3	91	25	8063	399
	3	102	3	103	3	107	4	2	4	91			
	5	91											
Pb	2	151	3	1	3	2	3	3	3	16	26	8064	533
	3	91	3	102	4	2	4	16	4	91			
	5	16	5	91									
B-10	2	151	3	1	3	2	3	3	3	4	90	8065	608
	3	51	3	52	3	53	3	54	3	55			
	3	56	3	91	3	101	3	103	3	104			
	3	105	3	107	4	2	4	51	4	52			
	4	53	4	54	4	55	4	56	4	91			
	5	91											
B-11	2	151	3	1	3	2	3	51	3	52	49	8066	821
	3	53	3	91	3	102	3	103	3	105			
	3	107	4	2	4	51	4	52	4	53			
	4	91	5	91									
Cd	2	151	3	1	3	2	3	3	3	16	70	8067	2323
	3	51	3	52	3	53	3	54	3	91			
	3	101	3	102	3	103	3	107	4	2			
	4	16	4	51	4	52	4	53	4	54			
	4	91	5	16	5	91							
Cd-113	2	151	3	1	3	2	3	3	3	16	71	8068	1199
	3	51	3	52	3	53	3	91	3	101			
	3	102	3	103	3	107	4	2	4	16			
	4	51	4	52	4	53	4	91	5	16			
	5	91											
Xe-135	2	151	3	1	3	2	3	102	4	2	4	8069	103
(Continued)													

ENDF / A-803		(continued)											
Isotope	MF	MT	MF	React	MF	ype* MT	$\underline{\text { MF }}$	MT	MF	MT	$\begin{gathered} \text { UKNDL } \\ \text { 非 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \text { 非 } \\ & \hline \end{aligned}$	\#\# of RECORDS
H-3(T)	2	151	3	1	3	2	3	3	3	16	252	8070	676
	4	2	4	16	5	16							
He-3	2	151	3	1	3	2	3	3	3	103	220	8071	243
	3	104	4	2									
He-4	2	151	3	1	3	2	4	2			221	8072	290
Li-6	2	151	3	1	3	2	3	3	3	22	214	8073	962
	3	24	3	51	3	102	3	103	3	107			
	4	2	4	22	4	24	4	51.	5	22			
	5	24											
Li-7	2	151	3	1	3	2	3	3	3	16	215	8074	902
	3	22	3	24	3	51	3	102	3	104			
	4	2	4	16	4	22	4	24	4	51			
	5	16	5	22	5	24							
B	2	151	3	1	3	2	3	3	3	91	57	8075	367
	3	101	4	2	4	91	5	91					
N	2	151	3	1	3	2	3	3	3	16	259	8076	3664
	3	51	3	52	3	91	3	102	3	103			
	3	104	3	105	3	107	3	108	4	2			
	4	16	4	51	4	52	4	91	5	16			
	5	91											
F	2	151	3	1	3	2	3	3	3	16	23	8077	398
	3	91	3	101	4	2	4	16	4	91			
	5	16	5	91									
C1	2	151	3	1	3	2	3	3	3	16	141	8078	563
	3	91	3	102	3	103	3	107	4	2			
	4	16	4	91	5	16	5	19					
Ca	2	151	3	1	3	2	3	3	3	91	138	8079	362
	3	102	3	103	3	107	4	2	4	91			
	5	91											
Ti	2	151	3	1	3	2	3	3	3	16	190	8080	1150
	3	51	3	52	3	53	3	54	3	91			
	3	102	3	103	3	107	4	2	4	16			
	4	51	4	52	4	53	4	54	4	91			
	5	16	5	91									

(continued)

ENDF/A-803 (continued)

Reaction Type*											UKNDL	$\begin{aligned} & \text { ENDF } \\ & \text { MAT } \\ & \text { \# } \end{aligned}$	非 of RECORDS
Isotope	MF	MT	\#										
Cu-63	2	151	3	16	3	102	3	103	3	107	250	8081	84
Cu-65	2	151	3	16	3	102	3	103	3	107	251	8082	88
Ga	2	151	3	1	3	2	3	3	3	16	105	8083	366
	3	91	3	101	4	2	4	16	4	91			
	5	16	5	91									
Ta-181	2	151	3	1	3	2	3	4	3	16	328	8084	2204
	3	51	3	52	3	53	3	54	3	55			
	3	56	3	57	3	58	3	91	3	101			
	4	2	4	16	4	51	4	52	4	53			
	4	54	4	55	4	56	4	57	4	58			
	4	91	5	16	5	91							

*See ENDF-102 vol 1 for reaction type values.

*See ENDF-102 vol I for reaction type values.

U.K. LIBRARY RECEIVED JULY 2, 1973 Version 3			
Nucleus	UK Library No.	No. of Cards	Tape No.
H	923(A)	299	805
	905(A)	789	"
(Deuterium in $\mathrm{D}_{2} 0$)			
T	252(A)	436	"
He-3	220(E)	195	"
He-4	221(D)	230	"
Li.6	914(A)	1080	"
Li-7	215(E)	496	"
Be-9	967 (A)	351	"
B-10	90 (B)	475	"
B-11	49 (B)	725	"
C	902(B)	1317	"
N	259(A)	3534	"
0	933 (A)	1037	"
F-19	23 (E)	288	"
$\mathrm{Na}-23$	182(E)	1582	"
A1-27	35(F)	905	"
Si	25 (E)	296	"
C1	141 (E)	408	11
K	84(B)	2569	"
Ca	138(E)	253	"
Ti	190(B)	881	"
V	952 (A)	804	"
Cr	45 (E)	839	"
Fe	906(B)	7003	806
Fe	908 (A)	7447	"
Ni	907 (B)	3328	"
Cu	73(A)	3076	11
Cu-63	250(B)	54	"
$\mathrm{Cu}-65$	251(B)	58	"
Ga	105(B)	292	"
Zr	82 (B)	1742	"

U.K. Łibrary (continued)

Nucleus	UK Library No,	No. of Cards	Tape No,
$\mathrm{Nb}-93$	79 (C)	5579	807
Mo	81 (B)	1309	"
Ag-107	973 (A)	1107	"
Ag-109	974 (A)	1205	"
cd	70 (A)	2203	"
Cd-113	71 (B)	1088	"
Xe-135	4(F)	66	"
Eu-151	921 (A)	3458	11
Eu-153	922 (A)	4055	"
Ta	328 (B)	2069	"
W	213 (B)	238	"
Au-197	222 (E)	690	808
Pb	26 (C)	545	11
Th-232	930	774	"
$\mathrm{Pa-233}$	86 (A)	900	"
U-233	87 (B)	1835	"
U-234	953 (A)	823	"
U-235	159 (B)	4354	"
U-236	954 (A)	749	11
U-238	160 (A)	5886	"
U-239	276(A)	1119	"
U-240	277 (A)	1060	'
Pu-238	274(A)	438	11
Pu-239	161 (A)	3334	809
Pu-239	404(B)	4382	"
Pu-240	402(B)	2669	"
Pu-240	77 (B)	1052	"
Pu-241	403(B)	1661	11
Pu-241	60(A)	2155	"
Pu-242	975 (A)	1069	"
Am-241	956(A)	1213	"
Am-243	957 (A)	574	"
Cm-244	976 (A)	1649	"

The contents of the Speng Library are as follows:

$\mathrm{Pu}-239$	$\mathrm{Na}-23$	$\mathrm{Pu}-240$
$\mathrm{~B}-10$	$\mathrm{D}-2$	Al
$\mathrm{B}-11$	F	Mn
Si	Zr	Ni
He	Mo	Cr
$\mathrm{Li}-6$	(Fiss. P. 239)	$\mathrm{U}-235$
$\mathrm{Li}-7$	$\mathrm{~W}-186$	Cu
Ta	$\mathrm{Au}-197$	$\mathrm{H}-1$
Er	Fe	$\mathrm{Pu}-241$
$\mathrm{U}-238$	B	

LLL ENDL Data in ENDF/B Format
Received Jan. 25, 1974

Material	MAT Number	N, xY Included
Neutron	7000	---
Hydrogen	7001	Yes
Deuteron	7002*	Yes
Triton	7003	---
He^{3}	7004	Yes
He ${ }^{4}$	7005	---
Li ${ }^{6}$	7006	Yes
Li ${ }^{7}$	7007	Yes
$B e^{9}$	7008	Yes
B^{10}	7009	Yes
B^{11}	7010	Yes
C^{12}	7011	Yes
N^{14}	7012	Yes
0^{16}	7013	Yes
F^{19}	7014	Yes
$\mathrm{Na}{ }^{23}$	7015	Yes
$\mathrm{Mg}{ }^{\text {Nat }}$	7016	Yes
A1 ${ }^{27}$	7017	Yes
$\mathrm{Si}^{\text {Nat }}$	7018	Yes
P^{31}	7019	Yes
s^{32}	7020	Yes
$\mathrm{CI}^{\text {Nat }}$	7021	Yes
$\mathrm{Ar}^{\mathrm{Nat}}$	7022	Yes

$x^{\text {The }}$ energy-angle distribution of secondary neutrons from the $\mathrm{n}, 2 \mathrm{n}$ reaction for D is represented by an energy-angle Legendre expansion in the ENDL system. No equivalent representation exists in the ENDF/B system. Consequently, the representation in the translated form is deficient.

LLL ENDL Data in ENDF/B Format

Material	MAT Number	$\mathrm{N}_{1} \mathrm{XY}$ Included
$K^{\text {Nat }}$	7023	Yes
$\mathrm{Ca}^{\text {Nat }}$	7024	Yes
Ti ${ }^{\text {Nat }}$	7025	Yes
v^{51}	7026	No (Planned)
$C r^{\text {Nat }}$	7027	No (Planned)
Mn^{55}	7028	Yes
$\mathrm{Fe}^{\mathrm{Nat}}$	7029	Yes
Ni ${ }^{58}$	7030	Yes
$\mathrm{Cu}{ }^{\text {Nat }}$	7031	Yes
Ga ${ }^{\text {Nat }}$	7032	Yes
$\mathrm{Zr}^{\text {Nat }}$	7033	No (Planned)
Nb^{93}	7034	Yes
Mo ${ }^{\text {Nat }}$	7035	Yes
Ag^{107}	7036	No (Planned)
Ag^{109}	7037	No (Planned)
$\mathrm{Cd}^{\mathrm{Nat}}$	7038	Yes
$\mathrm{Sn}^{\text {Nat }}$	7039	Yes
$B a^{\text {Nat }}$	7040	Yes
$E u^{\text {Nat }}$	7041	Yes
Gd ${ }^{\text {Nat }}$	7042	Yes
Ho ${ }^{165}$	7043	Yes
Ta^{181}	7044	Yes
$W^{\text {Nat }}$	7045	Yes
$\mathrm{Pt}{ }^{\text {Nat }}$	7046	Yes
$A^{4}{ }^{197}$	7047	Yes
Pb Nat	7048	Yes
Th ${ }^{232}$	7049	Yes
U^{233}	7050	Yes

LLL ENDL Data in ENDF/B Format

Material	MAT Number	N,xy Inciuded
u^{234}	7051	Yes
U^{235}	7052	Yes
U^{236}	7053	Yes
U^{237}	7054	Yes
U^{238}	7055	Yes
u^{239}	7056	Yes
u^{240}	7057	Yes
Np^{237}	7058	Yes
Pu^{238}	7059	Yes
Pu^{239}	7060	Yes
Pu^{240}	7061	Yes
Pu^{241}	7062	Yes
Am^{242}	7063	Yes
Sc^{45} (Partial)	7064	No
Fe^{54} (Partial)	7065	No
Fe^{56} (Partial)	7066	No
Fe^{58} (Partial)	7067	No
Re^{185} (Partial)	7068	No
Re^{187} (Partial)	7069	No
Ir ${ }^{191}$ (Partial)	7070	No
Ir ${ }^{193}$ (Partia1)	7071	No
Fission Product	7072	No

Fig. 1. ${ }^{58} \mathrm{Ni}(\mathrm{n}, 2 \mathrm{n})$ Cross-Section

APPENDIX G
Requests for CTR Related Projects

Nucleus	$\begin{aligned} & \text { Cook } \\ & \text { Library } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Livolsi } \\ & \text { "1500" } \\ & \text { Series } \\ & \hline \end{aligned}$	UKNDL	Speng	$\begin{aligned} & \text { ENDF/B } \\ & \text { III } \\ & \text { MAT NO } \\ & \hline \end{aligned}$	Any Other	THRESH Calculation
H					1148		
He					1088		
${ }^{3} \mathrm{He}$			8071		1146		
${ }^{6}{ }^{7} \mathrm{Li}$					$\begin{aligned} & 1115 \\ & 1116 \end{aligned}$		
${ }^{9} \mathrm{Be}$					1154		
${ }^{10}{ }_{B}$			8065		1155		
${ }^{11}{ }_{B}$					1160		
${ }^{12} \mathrm{C}$					1165		
N					1133		
0					1.134		
F			8077				
${ }^{23} \mathrm{Na}$					1156		
Mg					1014		
AI					1135		
${ }^{28} \mathrm{Si}$			8016				
${ }^{29} \mathrm{Si}$							
${ }^{30} \mathrm{Si}$							
P			8017				
${ }^{38} \mathrm{~K}$					1150		
${ }^{41} \mathrm{~K}$							
${ }^{45} \mathrm{Sc}$							X
${ }^{46} \mathrm{Ti}$							X
${ }^{47} \mathrm{Ti}$							X
${ }^{48} \mathrm{Ti}$							X
${ }^{49} \mathrm{Ti}$							X
${ }^{50} \mathrm{Ti}$							X

Nucleus	Cook Library	$\begin{aligned} & \text { Livolsi } \\ & " 1500 " \\ & \text { Series } \\ & \hline \end{aligned}$	UKNDL	Speng	$\begin{aligned} & \text { ENDF/B } \\ & \text { III } \\ & \text { MAT NO } \end{aligned}$	Any Other	THRESH Calculation
${ }^{49} \mathrm{~V}$							X
${ }^{60} \mathrm{~V}$							X
${ }^{51} \mathrm{~V}$							X
${ }^{50} \mathrm{Cr}$							x
${ }^{51} \mathrm{Cr}$							X
${ }^{52} \mathrm{Cr}$							X
${ }^{53} \mathrm{Cr}$							X
${ }^{54} \mathrm{Cr}$							X
${ }^{53} \mathrm{Mn}$							X
$5^{54} \mathrm{Mn}$							X
${ }^{55} \mathrm{Mn}$					1019		
${ }^{54} \mathrm{Fe}$			$\begin{aligned} & 8024 \\ & 8025 \end{aligned}$				X
${ }_{5}^{5} \mathrm{Fe}$							X
${ }^{56} \mathrm{Fe}$			$\begin{aligned} & 8026 \\ & 8027 \\ & 8028 \end{aligned}$				X
${ }^{57} \mathrm{Fe}$							X
${ }^{58} \mathrm{Fe}$							X
${ }^{57} 0$							X
${ }^{59} \mathrm{Co}$					1118		
$\mathrm{SO}^{\mathrm{m}} \mathrm{Co}$							X
${ }^{58} \mathrm{Ni}$			8030				X
${ }^{59} \mathrm{Ni}$							X
${ }^{60} \mathrm{Ni}$							X
${ }^{61} \mathrm{Ni}$							X
${ }^{62} \mathrm{Ni}$							X

Nucleus	Cook Library	Livolsi "1500" Series	UKNDL	Speng	$\begin{aligned} & \text { ENDF/B } \\ & \text { III } \\ & \text { MAT NO } \\ & \hline \end{aligned}$	Any Ocher	THRESH Calculation
${ }^{63} \mathrm{Ni}$							X
${ }^{64} \mathrm{Ni}$							X
${ }^{63} \mathrm{Cu}$					1085		
${ }^{55} \mathrm{Cu}$					1086		
${ }^{64} \mathrm{Zn}$							
${ }^{66} \mathrm{Zn}$							
${ }^{84} \mathrm{Kr}$	7020	1521					X
${ }^{35} \mathrm{Kr}$	7021	1522					X
${ }^{s 8} \mathrm{Sr}$	7027						X
${ }^{89} \mathrm{Sr}$	7028	1530					X
${ }^{90} \mathrm{Sr}$	7029	1531					X
${ }^{88} \mathrm{Y}$							X
${ }^{89} \mathrm{Y}$	7031		8034				X
$\mathrm{gom}_{\mathrm{Y}}$	7032						X
${ }^{91 \mathrm{~m}} \mathrm{Y}$	7033						X
${ }^{90} \mathrm{Zr}$	7035		8035				X
${ }^{91} \mathrm{Zr}$	7036						X
${ }^{92} \mathrm{Zr}$	7037						X
${ }^{93} \mathrm{ZE}$	7038						X
${ }^{94} 2 \mathrm{r}$	7039						X
${ }^{95} \mathrm{Zr}$	7040				1202		X
${ }^{96} \mathrm{Zr}$	7041						X
${ }^{92} \mathrm{Nb}$							X
93 m							X

Nucleus	Cook Iibrary	```Livolsi "1500" Series```	UKNDL	Speng	$\begin{gathered} \text { ENDF/B } \\ \text { III } \\ \text { MAT NO } \end{gathered}$	Any Other	THRESH Calculation
${ }^{94} \mathrm{Nb}$							X
${ }^{92} \mathrm{Mo}$						573 Benzi	X
93 mo							X
${ }^{94} \mathrm{Mo}$						574 Benzi	X
${ }^{95} \mathrm{Mo}$	7044				1204		X
${ }^{95} \mathrm{Mo}$	7045						X
${ }^{97} \mathrm{Mo}$	7046				1205		X
${ }^{98} \mathrm{Mo}$	7047				1206		X
9^{9} Mo	7048				1207		X
${ }^{100} \mathrm{Mo}$	7049				1208		X
${ }^{97} \mathrm{Tc}$							X
${ }^{98} \mathrm{Tc}$							X
${ }^{9} \mathrm{~m}_{\mathrm{Tc}}$	7050				1137		X
${ }^{112} \mathrm{Sn}$						630 Benzi	X
${ }^{114} \mathrm{Sn}$						$\begin{gathered} 631 \\ \text { Benzi } \end{gathered}$	X
${ }^{115} \mathrm{Sn}$	7078						X
${ }^{116} \mathrm{Sn}$	7079						X
${ }^{117} \mathrm{Sn}$	7080						X
${ }^{128} \mathrm{Sn}$	7081						X
${ }^{119} \mathrm{Sn}$	7082						X
${ }^{120} \mathrm{Sn}$	7083						X
${ }^{12}{ }^{2} \mathrm{Sn}$	7085						X
${ }^{124} \mathrm{Sn}$	7087						X
${ }^{121} \mathrm{Sb}$	7090						X
${ }^{123} \mathrm{Sb}$	7092						X

Nucleus	Cook Library	$\begin{aligned} & \text { Livolsi } \\ & \text { "1500" } \\ & \text { Series } \\ & \hline \end{aligned}$	UKNDL	Speng	$\begin{aligned} & \text { ENDF/B } \\ & \text { IrI } \\ & \text { MAT NO } \\ & \hline \end{aligned}$	Any Other	THRESH Calculation
${ }^{229} \mathrm{I}$	7100	1614					X
${ }^{134} \mathrm{Cs}$	7124	1628					X
${ }^{135} \mathrm{Cs}$	7125	1629					X
${ }^{136} \mathrm{Cs}$	7126	1630					X
${ }^{23} 7 \mathrm{Cs}$	7127	1631					X
${ }^{134} \mathrm{Ba}$	7128	1633					X
${ }^{135} \mathrm{Ba}$		1634					X
${ }^{135} \mathrm{Ba}$	7129	1635					X
${ }^{137} \mathrm{Ba}$	7130	1636					X
${ }^{133} \mathrm{Ba}$	7131	1637					X
${ }^{181} \mathrm{Ta}$					1126		X
${ }^{182} \mathrm{~W}$					1060		X
${ }^{183} \mathrm{~W}$					1061		X
${ }^{184} \mathrm{~W}$					1062		X
${ }^{186} \mathrm{~W}$					1063		X
${ }^{204} \mathrm{~Pb}$							X
${ }^{206} \mathrm{~Pb}$							X
${ }^{207} \mathrm{~Pb}$							X
${ }^{208} \mathrm{~Pb}$							X
${ }^{41}$ Am					1056		
${ }^{242} \mathrm{Am}$							
${ }^{243} \mathrm{Am}$					1057		
$2{ }^{44} \mathrm{Am}$							

Nucleus	Gook Library	Livolsi "1500" Series	$\underline{\mathrm{UKNDL}}$	Speng	$\begin{aligned} & \text { ENDF/B } \\ & \text { III } \\ & \text { MAT NO } \\ & \hline \end{aligned}$	Any Other	THRESH Calculation
242							
Cm							
243							
Cm							
244							
Cm					1162		
245							
Cm							
246							
Cm							
237							
Np					1145		
238							
Pu					1050		
239							
Pu					1159		
240							
Pu					1105		
241							
Pu					1106		
242							
Pu					1161		

References

1. G. R. Hopkins (Ed). Proceedings of the First Topical Meeting on the Technology of Controlled Nuclear Fusion, San Diego, April 1974, CONF-740402-P 2
2. H. C. Honeck, ENDF/B-Specifications for an Evaluated Nuclear Data for Reactor Applications BNL-50066 (ENDF-102) May 1966; Revised July 1967 and July 1968 by S. Pearlstein.
3. O. Ozer and D. Garber (Ed).ENDF/B Summary Documentation. BNL-17541 (ENDF-201) May 1973 and its up-dates. See also more detailed reports on individual evaluations.
4. K. Parker, The Aldermaston Nuclear Data Library as at May 1963. AWRE 0-70/63, 1963
5. R. J. Howerton, UCID-16376, Oct. 1973
6. M. K. Drake, BNL-17188 (ENDF-179) July 1972
7. C. Dev 1lers, J. Blachot, M. Lott, B. Nimal, N'Guyen Van Dat, J. P. Noel, R deTourreil, IAEA-SM-170/63, March 1973
8. Report AE-RD-45 (1972)
9. D. Wo11, KFK-880 Dec. 1968
10. R. L. Simons and W. N. McE1roy, BNWL-1312, May 1970
11. J. L. Cook, AAEC/TM-549, See also
E. K. Rose, AAEC/TM-587, March 1971
12. V. Benzi and G. Reffo. CCDN-NW/10 Dec. 1969
13. A. Z. Livolsi, BAW-409, Nov. 1971
14. CCDN Newsletter; CCDN-NW/14, May 1972
15. S. Pearlstein, Jour. Nuc1. Energy 27, 81, 1973
16. A. H. Wapstra \& N. B. Gove, Nuclear Data Tables 9, 267 (1971)
17. S. Pearlstein, "Starter Evaluated Charged Particle Data Library" May 1974. Available on request.
18. S. Pearlstein, Nuclear Data, 3A, 327, 1967, See also Nuc1. Sci. and Eng. 23, 238, 1965
19. S. Blow, Jour. Nucl. Energy 26, 9, 1972
20. D. S. Mather, P. F. Bampton, R. E. Coles, G. James and P. J. Nind, AWRE 0 72/72, 1972
21. M. HYring, H. Vonach and E. J. Feicht, Z. Physik, 244, 352 (1971)
22. A. Paulsen and R. Widera, Z. Physik, 238, 23 (1970)
23. V. A. Konshin and M. N. Nikolaev, $\operatorname{INDC}(C C P)-26 / U, 1972$
24. E. F. Plechaty and R. J. Howerton, UCID-16372 (1973)
\therefore

[^0]: ${ }^{*} \sigma_{T}, \sigma_{n n}, \sigma_{n e}, n y, \sigma_{T r}$ are the reaction type given for each isotope．

[^1]: ${ }^{{ }^{\star}} \sigma_{T}, \sigma_{n n}, \sigma_{n e}, n \gamma, \sigma_{T r}$ are the reaction type given for each isotope.

[^2]: ${ }^{*} \sigma_{\mathrm{T}}, \sigma_{\mathrm{nn}}, \sigma_{\mathrm{ne}}, \mathrm{n} Y, \sigma_{\mathrm{Tr}}$ are the reaction type given for each isotope．

[^3]: ${ }^{*} \sigma_{T}, \sigma_{n n}, \sigma_{n e}, n \gamma, \sigma_{T r}$ are the reaction type given for each isotope.

[^4]: ${ }^{*} \sigma_{\mathrm{T}}, \sigma_{\mathrm{nn}}, \sigma_{\mathrm{ne}}, \mathrm{ny}, \sigma_{\mathrm{Tr}}$ are the reaction type given for each isotope.

