BLANK PAGE

Printed in the United States of America. Available from: National Technical Information Service U.S. Department of Cominerce 5225 Port Roval Road, Springfield, Virg:nia 22151 Price: Printed Copy \$4.00; Microfiche \$0.95

This report was prepared as an account of work sponsored by the United S:ates Government. Neither the United States nor the United States Atomic Energy Commission. nor any of their employees, nor any of their rontractors. subcontractors, or their employees. makes any warranty. express or implied, or assumes any legal liability or responsibility for the accuracy. completeness or usefulness of any information. apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Contract No. W-7405-eng-26

Neutron Physics Division

${ }^{54}$ Fe NEUTRON ELASTIC AND INELASTIC SCATTERING

CROSS SECTIONS FROM 5.50 TO 8.50 MeV

W. E. Kinney and F. G. Perey

FEBRUARY 1974

OAK RIDGE NATIONAL LABORATORY

Oak Ridge. Tennessee 37830
operated by
UNION CARBIDE CORPORATION
for the
U.S. ATOMIC ENERGY COMMISSION

「:

CONTENTS

Abstract 1
Introduction I
Data Acquisition 1
Data Reduction 2
Resuits 4
Elastic Scattering Differential Cross Sections. 4
Inelastic Scattering Differential Cross Sections 7
Excitation Functions 7
Inelastic Scattering to the Continuum 7
Conclusions 16
Acknowledgments 16
References 17
Appendix 19

${ }^{54} \mathrm{Fe}$ NEUTRON ELASTIC AND INELASTIC SCATTERING

CROSS SECTIONS FROM 5.50 TO 8.50 MeV

W. E. Kinney and F. G. Perey

Abstract

Measured ${ }^{4} \mathrm{Fe}$ neutron elastic scattering cross sections and cross sections fer inelastic scattering to 7 discrete levels or groups of k evels in ${ }^{5} F$: in the incident neutron energy range from 5.50 to 8.50 MeV are presented. The elastic data are in good agreement with our previously reported natural iron results. Inclastic scattering to the 1.409 MeV level shows evidence of sirect reaction contributions at the higher incident neutron energies. ENDF/Q III MAT 1180 natural iron crosections for inelastic scattering to the 1.409 MeV lew:l in ${ }^{\text {s/ }} \mathrm{Fe}$ are higher by a factor of 2 than our data. Cross sections for inelastic scattering to levels in the residual nucleus of excitation energy greater than 4.29 MeV are presented as continuum cross sections. It is found that an evaporation model of continuum inelastic scattering is adequate above 6.2 MeV excitation energy but is questionable in describing inelastic scattering to lower-lying levels.

INTRODUCTION

The data reported here are the results of one of a series of experiments to measure neutron elastic and inelastic scattering cross sections at the ORNL Van de Graaffs. Reports in the series are listed in Reference I. This report presents measured neutron elastic and inelastic scattering cross sections for ${ }^{54} \mathrm{Fe}$ from 5.50 to 8.50 MeV . To assist in the evaluation of the data, the data acquisition and reduction techriques are first bricीy discussed. For the purposes of discussion the data are presented in graphical form and compared with our previous resulis for natural iron ${ }^{\text { }}$ and with ENDF/B 111 (Evaluatcd Neutron Data File B. Version III) MAT 1180. Tables of numerical values of the elastic scattering cross sections and cross sections for inelastic scattering te discrete levels in the residual nucleus are given in an appendix.

DATA ACQUISITION

The data were obrained with conventional time-of-flight techniques. Pulscd (2 MH/). bunched (approximately 1.5 nsec full width at half maximum, FWHM) deuterons accelerated by the OENNL Van de Graaffs inieracted with deuterium in a gas cel! to produce neutrons by the $D(d, n)^{3} H e$ reaction. The gas cells, of lengith and $\mathbf{2 c m}$, were operated at pressures of approximately 1.5 atm and gave neutron energy resolutions of the order of $\pm \mathbf{6}$) keV.

The neutrons were scattered from a solid right circular cylindrical sampie of ${ }^{4} \mathrm{Fc}$
 10 cm from the gas cells \because 'her :he detector angles were greater than 25 degrees. For smaller detector angles tine cell-to-sample distance had to be increased to $\mathbf{3 3} \mathrm{cm}$ in urder to shield the detectors from neutrons coming directly from the gas cells.

The scattereri neutrons were detected by 12.5 cm diameter NE-213 liquid scintillators optically coupled to XP- 1040 photomultipliers. $\mathrm{T}^{\mathbf{r}}$ scintillators were 2.5 cm thick. Data were taken with three detectors simultaneously. Flight paths were approximateiy 5 m with the detector angles ranging from 15 to 140 degrees. The gas cell neutron production was monitored by a time-of-llight system which used a 5 cm diameter by 2.5 cm thick NE-213 scintillator viewed by a $56-$ AVP photomultiplier placed about 4 m from the cell at an angle of $5 S$ degrees with the incident deuteron beam.

For each event a PDP-7 computer was given the flight time of a detected recoil proton event with reference to a beam pulse signal, the pulse height of the recoil proton event, and identification of the detector. The electronic equipment for supplying this information to the computer consisted, for the most part, of standard commercial components. The electronic bias was set at approximately 700 keV neutron energy to ensure good pulse shape discrimination against gamma-rays at aii energies.

The detector efficiencies were measured by (n, p) scattering from a $\mathbf{6 m m}$ diameter polyethylene sample and by detecting source $\mathrm{D}(\mathrm{d}, \mathrm{n})^{\mathbf{\prime}} \mathrm{He}$ neutrons at 0 degrees ${ }^{2}$. Both interactions gave results which agreed with each other and which yielded efficiency versus energy curves that compared well with calculations'.

DATA REDUCTION

Central to the data reduction process :was the use of a light pen with the PIP-7 computer oscilloscope display programs to extract peak areas from spectra. Whe lignt pen made a comparatively easy job of estimating errors in the cross section caused by extreme but possible peak shapes.

The reduction process started by normalizing a sample-out to a sample-in time-of-fliph:t spectrum by the ratio of their monitor neutron peak areas, subtracting the sample-out spectrum, and transforming the difference spectrum into a spectrum of center-of-mass cross section versus excitation energy. This transformation allowed ready comparison of spectra taken at different angles and incident neutron energies by remoting kinematic effects. It also made all single peaks have approximate!y the same shape and width regardless of excitation energy (in a time-sf: light spectrum. single peak: broaden with increasing flight tıme). A spectrum of the variance based on the counting statistics of the initial data was also computed. Figure I shows a typrical time-of-tlight spectrum and its transformed energy spectrum.

The transformed spectra were read into the PDP- 7 :omputer and the peak stripping was done with the aid of the light pen. A peak was siripped by drawing a background beneath it. subtracting the background. and calculating the area, centroid. and FWHM of the difference. The variance spectrum was used to compute a counting stati:tics variance corresponding to the stripped peak. Peak stripping errors due to uncertainties in the residual background under the peaks or to the tails of imperfectly resolved nearby paahs

Fig. 1. A typical time-of-flight spectrum for ${ }^{44} \mathrm{Fe}$ with its transformed energy spectrum. The data were taken at 6.0 MeV incident neutron energy at 90 degrees with a 4 m fligitt path. The sainple-out spectrum has not been subtracted from the time-of-night spectrum. Note that the energy spectrum has been offset to allow negative excursions due to statistics in the subtraction of the sample-out. The energy spectrum terminates at appreximately I MeV scattered neutron energy - very nearly channel 350 in the time-of-light spectrum. The large peaks to the left are the elastic peaks.
could be included with the other errors by stripping the peaks several times corresponding to nigh, low, and best estimates of this background. Although somewhat subjective, the low and high estimates of the cross sections were identified with 95% confidence limits; these. together with the best estimate, defined upper and lower errors due to stripping. Wheri a spectrum was completely stripped, the cutput information was written on magnetic tape for additional processing by a large computer.

Finite sample corrections were performed according to semianalytic recipes whose constants were obtained from fits to Monte Carlo results ${ }^{4}$. The corrections were typically $\mathbf{5 \%}$ at forward angles, $\mathbf{3 0 \%}$ in the first minimum and $10-\mathbf{2 0} \%$ on the second maximum.

The final errer analysis included uncertainties in the geometrical parameters (scatterer size, gas cell-to-scatterer distance, flight paths, etc.) and uncertainties in the finite sample corrections.

The measured differential elastic scattering cross sections were fitted by least squares to a Legendre series:

$$
\sigma(\mu=\cos \theta)=\Sigma[(2 k+1) / 2)] a_{k} P_{k}(\mu)
$$

the points being weighted by the inverse of their variances which were computed by squaring the average of the upper and lower uncertainties. The common 7% uncertainty in absolute normalization was not included in the variances for the fitting. In order to prevent the fit from giving totally uirealistic values outside the angular range of our measurements, we resorted to the inelegant but workable process of adding three points equally spaced in angle between the largest angle of measurement and 175 degrees. The differential cross sections at the added points were chosen to approximate the diffraction pattern at large angles, but were assigned 50% errors.

RESULTS

Elastic Scattering Differential Cross Sections:

Our differential elastic scattering cross sections for ${ }^{54} \mathrm{Fe}$ are shown in Figure 2 with Legendre least squares fits to ihe data. Wick.'s Limit is shown and was used in the fitting.

Our ${ }^{\text {'J }} \mathrm{Fe}$ differential elastic scattering cross sections are compared with our previously reported natural iron data' in Figure 3. The " ${ }^{4} \mathrm{Fe} 5.50 \mathrm{MeV}$ data are compared with natural iron results which were measured at $5.44 \pm 0.17 \mathrm{MeV}$ and at $5.56 \pm 0.04 \mathrm{MeV}$.

These data generally agree within experimental uncertainties at angles less than 50 deg. The 5.44 MeV natural iron data seems to indicate the first minimum falling at a somewhat smaller angle than do the ${ }^{54} \mathrm{Fe}$ and natural iror 5.56 MeV data. if ihe low point in the latter data set is ignored. There is some structure in the total cross section at this energy" so that perhaps the different resolutions could account for the difference. More likely, however. the two low natural iron points around $\mathbf{6 0}$ deg. should be ignored and more weight given to the ${ }^{4}$ Fe results since they are considerably more recent. these natural iron data being the very first :esulting from our neutron elastic and inelastic scattering cross section meavaretaent
 data at 8.50 MeV agrees within experimental uncertainties with the natural iron data which was measured at $8.56 \pm 0.05 \mathrm{MeV}$.

Fig. 2. Our ${ }^{4}{ }^{4} \mathrm{Fe}$ neutron differential elastic center-of-mass cross sections with Legendre fits to the data. WICK indicates Wick's Limit which was used in the fittirg. The 7% uncertainty in absolute normalization common to all points is not included in the error bars.

Fig. 3. A comparison of our ${ }^{54} \mathrm{Fe}$ neutron differential elastic center-of-mass cross sections with our previously reported natural iron results. WICK indicates Wick's Limit. The 7r uncertainty in absolute normalization common to all points is not included in the error bars.

Inelastic Scattering Ditferential Cross Scctions

Our differential cross sections for inelastic scattering to resolvable discrete levels or groups of levels in ${ }^{51} \mathrm{Fe}$ are shown in Figures 4 through 7. The angular distribution of neutrons inelastically scattered to the $2^{+} 1.409 \mathrm{MeV}$ level shown in Figure 4 might be expected io, and indeed does, show some asymmetry zbout 90 deg. due to the effect of direct interactions. ENDF/B III MAT $1: 80$ assumes an isotropic angular distributic n ior inelastic scattering to this level.

The angular distributions of neutrons inelastically scattered to the other levels or groups of levels are isctropic within the experimental uncertainties.

Excitation Functions

Our angle-integrated differential cross sections for ${ }^{51} \mathrm{Fe}$ as a function of incident neutron energy are shown in Figures 8 and 9 . in Figure 8 we compare the ${ }^{51} \mathrm{Fe}$ angle-integrated differential elastic scattering cross sections with previously reported values for natural ison' and with the ENDF/B III MAT 1180 curve for inelastic scattering to the 1.409 MeV level but with its values divided by the natural abundance of ${ }^{54} \mathrm{Fe}$ for the comparison.

The elast: ${ }^{54} \mathrm{Fe}$ and natural iron results are in good agreement withe the ENDF/B III MAT 1180 curve is roughly a factor of 2 higher than our data.

The inelastic scattering cross sections to the higher-lying levels decrease with increasirg energy as competition from additional exit channels increases.

As with ${ }^{56} \mathrm{Fe}$, neutron elastic and inelastic scattering on ${ }^{54} \mathrm{Fe}$ should be quite amenable to optical model, Hauser-Feshbach, and distorted-wave-Born-approximation analysis.

Inelastic Scattering to the Continuum

Abstract

Above an excitation energy of 4.29 MeV , the level density in ${ }^{* 4} \mathrm{Fe}$ becomes large enough so that with our resolution the extraction of cross sections for inelastic scattering to groups of levels or to bands of excitation energy did not seem fruitful. Instead we treated inelastic scattering to levels of excitation energy greater than 4.29 MeV as inelastic scettering to a structured continuum of levels. Our "continua" are shown in Figure 10 where our angle-averaged double-differentialcioss sections for scattering from incident laboratory energy E to outgoing energy dE^{\prime} about $\mathrm{E}^{\prime} \operatorname{SIG}\left(E \rightarrow E^{\prime}\right)$ are plotted versus excitation energy. Clearly levels or groups of levels are preferentially excited at excitation energies of 4.8. $5.4,5.6,6.0$, and 6.5 MeV .

The applicability of an evaporation model in describing inelastic scattering to our continua may be judged from Figure 11 where $\operatorname{SIG}\left(E \rightarrow E^{\prime}\right)$ is plotted versus E^{\prime}. The straight lines are least squares fits to the data but over a limited range of $E^{\prime}: E^{\prime} \leqslant 1 . \epsilon \mathrm{McV}$ for $E=8.01 \mathrm{MeV}$ and $E^{\prime} \leqslant 2 \mathrm{MeV}$ for $E=8.50 \mathrm{MeV}$. An evaporation model would seem to offer a fair description of inelastic scattering to levels in the residual nucleus oi excitation energy above 6.2 MeV but to be questionable in describing inelastic scattering to levels of lower excitation energy.

Fig. 4. Our differential center-of-mass cross sections for inelastic scattering to the 1.409 MeV level with Legendre least squares fits to the data.

Fig. 5. Our differential center-of-mass cross sections for inelasic scattering to the 2.530 McV level.

Fig. 6. Our differential center-of-mass cress sections for combined inelastic scattering to the $2.960,3.160,3.290$, and 3.340 MeV levels.

Fig. 7. Our differential center-of-mass cross section for combined inelastic scattering to the 2.960, 3.160. 3.290, and 3.340 MeV levels.

Fig. 8. Our ${ }^{54} \mathrm{Fe}$ neutron angle-integrated differential sross sections as a function of incident neutron energy. Our previously reported natural iron elastic data are shown. The ENDF; B III MAT 1180 curve for inelastic scatering to the 1.409 MeV level in ${ }^{54} \mathrm{Fe}$ divided by the ${ }^{4} \mathrm{Fe}$ natural abundance is given. The $\pm 7 \%$ uncertainty in absolute normalization is included in the error bars.

Fig. 9. Our ${ }^{54} \mathrm{Fe}$ neutron angle-integrated differential cross sections for inelastic scattering as a function of incident neutron energy. These data are sub-groups of the data given in Figure 8 and do not span the entire range of energy measurements. The $\pm 7 \%$ uncertainty in absolute normalization is included in the error bars.

Fig. 10. ${ }^{54} \mathrm{Fe}$ angle-averaged cross sections for inelastic scattering to the "continuum" as a function of excitation energy for incident neutron energies. E. from 7.00 to 8.50 McV .

Fig. II. ${ }^{4}$ Fe angle-averaged cross sections for inc'astic scattering to the continuum divided by the outgoing neutron energy as a function of outgoing neutron energy. Lcast squares fits are shown with the resulting temperatures. T. The uncertainties on T are fitting uncertainties only.

CONCLUSIONS

Our '`Fe differential elastic scattering cross sections are in good agreement with our previous results for natural iron. The differential cross sections for inelastic scattering to the 1.409 MeV level shows evidence of a direct reaction contribution at the higher incident neutron energies. ENDF / B III MAT II80 cross sections for inelastic scattering to this level are higher than our data by a factor of 2 . An evaporation model for inelastic scattering appears to be adequate for scattering to levels in the residual nucleus of excitation energy greater than 6.2 MeV but is of questionable validity in describing inelastic scattering to levels of lower excitation energy.

ACKNOWLEDGMENTS

Many have contributed to this experimental program at one time or another and we would like to thank them for their contributions. In particular, we would like to acknowledge the help of J. K. Dickens. J. W. McConnell. J. A. Biggerstaff. A. M. Marusak, P. H. Stelson, C. O. LeRigoleui, and E. Hungerford.

We are seeply indebted to F. C. Maienschein, director of the Neutron Physics Division. for his support of the experiment with the use of computers in report preparation and type setting which produced this report and the other six of our last seven reports.

REFERENCES

I. F. G. Perey and W. E. Kinney, "Carbon Neatron Elastic- and Inelastic-Scatteriag Cross Sections from 4.5 to d. MeV", ORNL-4441 (December $\mathbf{i g i o l}^{\circ}$).
F. G Perey, C. O. LeRigoleur and W. E. Kinney, "Nickel-60 Neutron Elastic- and Inelastic-Scattering Cross Sections from 6.5 to 8.5 MeV". ORNL-4523 (April 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic-Scattering Cross Sections from ${ }^{56} \mathrm{Fe}$ in the Energy Range 4.19 to $8.56 \mathrm{MeV}^{\prime \prime}$, ORNL-4515 (June i970).
F. G. Perey and W. E. Kinney, "Caicium Neutron Elastic- and Inelastic-Scattering Cross Sections from 4.0 to $8.5 \mathrm{MeV}^{*}$. ORNL-4519 (Aprii 197C).
F. G. Perey and W. E. Kinney, "Sulfur Neutron Elastic- and Inelastic-Scattering Cioss Sections from 4 to $8.5 \mathrm{MeV}^{\text {" }}$, ORNL-4539 (June 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic- Scattering Cross Sections for Co in the Energy Range 4.19 to $8.56 \mathrm{MeV}^{n}$. OR NL-4549 (June 1970).
W. E. Kinney and F. G. Perey, -Neutron Elastic- and Inelastic- Scattering Cross Sections for Mg in the Energy Range 4.19 to $8.56 \mathrm{MeV}^{\mathbf{n}}$, ORNL-4550 (June 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic- Scattering Cross Sections for Si in the Energy Range 4.19 to $8.56 \mathrm{MeV}^{\text {² }}$, ORNL-45I7 (July 1970).
F. G. Perey and W. E. Kinney, "Neutron Elastic and Inelastic- Scattering Cross Sections for Na in the Energy Range of 5.4 to $8.5 \mathrm{MeV}^{\text {² }}$, ORNL-45I8 (August 1970).
W. E. Kinney and F. G. Perey, "Al Neutron Elastic- and Inelastic- Scattering Cross Sections from 4.19 to $8.56 \mathrm{MeV}^{ }$, ORNL-45I6 (October i970).
F. G. Perey and W. E. Kinney, "V Neutron Elastic- and Inelastic- Scattering Cross Sections from 4.19 to $8.56 \mathrm{MeV}^{"}$, ORNL-4551 (October 1970).
F. G. Perey and W. E. Kinney, "Neutron Elastic- and Inelastic- Scat'ering Cross Sections for Yttrium in the Energy Range 4.19 to $8.56 \mathrm{MeV}^{\text {² }}$, ORNL-4552 (Decen!ber 1970).
W. E. Kinney and F. G. Perey, "Neutron Elastic- and Inelastic- Scattering Cross Sections for Oxygen in the Energy Range 4.34 to $8.56 \mathrm{MeV}^{\prime \prime}$, ORNL-4780 (April 1972).
W. E. Kinney and F. G. Perey. "W Neutron Elastic- arid Inelastic- Scattering Cross Sections from 4.34 to $8.56 \mathrm{MeV}^{"}$, ORNL-4803 (May 1973).
W. E. Kinney and F. G. Perey, ${ }^{\text {w3/4 }}$ U Neutron Elastic-Scattering Cross Seciions from 6.44 to $8.56 \mathrm{MeV}^{\prime \prime}$, ORNL-4804 (June 1973).
W. E. Kinney and F. G. Perey, "Natural Titanium Neutron Elastic and Inelastic Scattering Cross Sections from 4.07 to $8.56 \mathrm{MeV}^{\prime}$. ORNL-4810 (October 1973).
W. E. Kinney and F. G. Perey, "Naturai Nickel and ${ }^{60}$ Ni Neutron Elastic and Inelastic Scatteriıg Cross Sections from 4.07 to $8.56 \mathrm{Mc}^{\mathrm{V}}{ }^{\prime \prime}$, OR NL-4807 (November 1973).
W. E. Kinney and F. G. Perey, "Natural Chromium and ${ }^{52} \mathrm{Cr}$ Neutron Elastic and Inelastic Scattering Cross Sections from 4.07 to $8.56 \mathrm{MeV}^{\prime \prime}$, ORNL-4806 (November 1973).
F. G. Perey and W. E. Kinney, "Nitrogen Neutron Elastic and Irslastic Scattering Cross Sections trom 4.34 to $8.56 \mathrm{MeV}^{\boldsymbol{n}}$, ORNL-480S (January 1974).
W. E. Kinney and F. G. Perey ${ }^{[63} \mathrm{Cu}$ and ${ }^{65} \mathrm{Cu}$ Neutron Elastic and Inelastic Scattering Cross Sections from 5.50 to $8.50 \mathrm{MeV}^{\prime \prime}$, ORNL-4908 (January 1974).
W. E. Kinney and F. G Perey, ${ }^{{ }^{206}} \mathbf{P b},{ }^{207} \mathrm{~Pb}$, and ${ }^{208} \mathrm{~Pb}$ Neutron Elastic and Inelastic Scattering Cross Sections from 5.50 to $8.50 \mathrm{MeV}^{\prime \prime}$, OR NL-4909 (To be published).
2. W. E. Kinney, "Neutron Elastic and Inelastic Scattering from ${ }^{56}$ Fe from 4.60 to 7.55 $\mathrm{MeV}^{\mathbf{n}}$, OR NL-TM-2052, January 1968.
3. R. E. Textor and V. V. Verbinski, "05S: A Monte Carlo Code for Calculating Pulse Height Distributions Due to Monocnergetic Neutrons Incident on Organic Scintillators", ORNL-4160 (February 1968).
4. W. E. Kinney, Nucl. Instr. and Methods 83, 15 (1970).
5. S. Cierjacks, P. Forti, D. Kopsch, L. Kropp, J. Nebe, and H. Unseld, "High Resolution Total Neutron Cross Sections Between 0.5-30 MeV", EANDC(E) - 111 "U" (June, 1968)

APPENDIX

Tabulaied Values of ${ }^{54} \mathrm{Fe}$
Neutron Elastic Scattering Cross Sections
and
Cross Sections for Inelastic Scattering
to Discrete Levels

Our measured vaiues for ${ }^{54} \mathrm{Fe}$ neutron elastic scattering cress sections and cross sections for inelastic scattering to discrete devels are tabulated below. The uncertainties in differential cross sections, indicated by Δ in the tables, are relative and do not inciude a $\pm 7 r_{\text {c }}$ uncertainty in detector efficiency which is common to all points. The $\pm 7 \%$ uncertainty is included in the integrated and average values. The total cross sections, gsbT, are thc se we used in the computation of Wick's Limit and were not measured by us.

We nave not included the cross sections for inelastic scattering to the continuum. They are available from the National Neutron Cross Section Center, Brookhayen diational Laboratory, or from us.

Average and integrated values for cross sections for inelastic scattering to the 1.409 MeV level measured at only three angles are not given because of the anisotropic angular distributions of neutrons so scattered.
$E_{a}=5.50 \pm 0.09 \mathrm{McV}$ Elastic Scattering

$\theta_{\text {cm }}$	do/dou	Δ (\%)	
deg.	mb/atr	+	-
13.10	2141.25	5.1	4.5
20.70	1655.05	5.3	4.9
28.4)	1065.67	5.7	5.1
28.30	1096.10	4.8	6.0
35.62	662.67	4.9	5.1
43.22	326.84	5.6	6.2
48.29	195.01	6.4	7.0
55.88	70.65	9.1	10.2
63.45	22.27	15.8	24.4
71.00	10.59	26.4	32.6
78.54	15.70	25.9	20.1
83.56	21.42	9.9	16.4
86.07	24.52	12.5	16.3
91.07	29.69	10.0	11.6
93.57	30.81	9.0	11.1
98.56	33.94	11.6	8.7
101.05	36.00	7.4	9.7
108.52	33.33	11.5	9.1
119.44	30.66	10.9	13.4
126.86	24.75	12.8	12.1
134.28	17.66	18.7	12.2

$$
\begin{aligned}
j(\mathrm{~d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega & =2304.48 \mathrm{mb} \pm 7.2 \% \\
\text { Wick's Limit } & =2218.23 \mathrm{mb} \pm 9.2 \% \\
\sigma_{\mathrm{T}} & =3.70 \mathrm{~b} \pm 3.0 \%
\end{aligned}
$$

Legendre Fit, Order = 8

k	$\boldsymbol{o}_{\boldsymbol{k}}$	$\Delta(\%)$
0	366.76953	1.9
1	286.29249	2.2
2	218.97568	2.4
3	155.34956	2.3
4	87.67975	3.9
5	39.48889	7.0
6	15.81805	12.7
7	4.60642	28.3
8	1.22247	$67 . i$

$\mathrm{E}_{\mathrm{n}}=5.50 \pm 0.09 \mathrm{MeV}$
(n, n) to: 1.40 SMEV Level

$\theta_{\text {cm }}$	$\mathrm{d} / \mathrm{/d} \omega$	Δ (\%)	
deg.	mb/str	+	-
28.08	21.54	30.7	24.5
35.72	21.16	35.1	9.5
43.34	13.46	25.6	10.8
48.42	14.16	23.2	8.7
55.02	14.19	17.9	13.5
63.60	12.95	16.0	8.9
71.17	13.42	18.0	9.9
78.71	13.90	9.9	12.7
83.73	13.20	7.3	10.0
86.24	13.25	15.3	13.1
91.24	1280	10.8	7.5
93.74	11.57	13.0	7.9
98.73	12.25	16.3	8.5
101.22	12.26	21.9	10.7
108.69	13.46	16.2	13.6
119.59	14.50	14.2	9.2
127.01	15.29	13.7	9.3
134.40	14.17	16.3	6.7

$\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{d} \omega=178.30 \mathrm{mb} \pm 8.0 \%$

Legendre Fit, Orde: $=2$		
k	\boldsymbol{a}	$\Delta(\%)$
0	28.37712	4.0
1	0.17325	406.0
2	1.20662	46.3

$E_{\square}=5.50 \pm 0.09 \mathrm{MeV}$
($\mathrm{n}, \mathrm{n}^{\prime}$) to: 2.530 MeV Level

$\theta_{\text {cm }}$	do/das	Δ (\%)	
deg.	mb/str	+	-
28.18	9.12	17.2	13.3
35.85	6.46	38.8	14.1
43.49	6.95	37.0	15.1
48.58	9.15	22.9	13.8
56.20	7.66	24.7	18.6
63.80	7.16	15.2	18.2
71.38	8.2.	13.9	16.8
78.93	8.40	14.9	15.9
83.96	8.21	12.5	10.7
86.45	8.36	11.8	13.8
91.47	8.54	9.5	10.8
93.96	8.67	21.5	11.8
98.96	8.36	13.6	13.7
101.45	7.66	14.5	15.9
108.95	8.42	18.9	13.8
119.79	8.97	16.7	12.1
127.19	8.11	14.7	10.7
134.57	8.10	11.2	11.4

Avg. $\mathrm{d} \mathrm{\sigma} / \mathrm{dat}=8.30 \mathrm{mb} / \mathrm{str} \pm 9.2 \%$
$\int(d \sigma / d \omega) d \omega=104.34 \mathrm{mb} \pm 9.2 \%$
$E_{n}=5.50 \pm 0.09 \mathrm{MeV}$
(n, n) to: 2.960 MeV Level

ecm	doidm	Δ (\%)	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.07	7.62	13.7	22.6
91.59	7.59	11.3	17.8
99.07	7.40	20.9	12.1

Avg. dojdat $=7.54 \mathrm{mb} / \mathrm{str} \pm 14.2 \%$
$\int\left(\mathrm{d} \sigma / \mathrm{d}_{\mathrm{N}}\right) \mathrm{d}=0=94.74 \mathrm{mb} \pm 14.2 \%$
$E_{a}=5.50 \pm 0.09 \mathrm{MeV}$
(n, n) to. $\mathbf{2 . 9 6 0 \mathrm { MeV } \text { Level }}$
+3.160 MeV Level

+ 3.290 MeV Level
+3.340 MeV Level

$\boldsymbol{\theta}_{\text {cm }}$	$d \sigma / d m$	Δ (\%)	
deg.	mb/str	$+$	
28.2?	28.35	14.2	10.6
35.95	29.71	16.8	9.8
43.62	25.11	20.1	9.6
48.73	28.89	14.0	14.7
56.37	29.67	7.7	13.1
65.97	28.17	9.6	15.3
71.56	30.63	9.2	12.4
79.13	27.90	8.0	17.8
84.17	13.62	20.7	6.6
86.65	29.26	10.3	14.4
91.67	28.02	9.0	10.9
94.16	28.80	8.9	12.4
99.15	26.78	8.7	11.0
101.64	25.13	9.3	13.3
109.08	29.09	8.8	12.3
119.96	27.08	9.7	8.9
127.34	28.60	10.3	9.5
134.70	26.17	17.2	8.7

Avg. $\mathrm{do} / \mathrm{dev}=27.90 \mathrm{mb} / \mathrm{str} \pm 9.5 \%$ $\int(d \sigma / d \omega) d \omega=350.63 \mathrm{mb} \pm 9.5 \%$

Data at the Following Angles
Excluded from tive Aversge:
84.17

$$
E_{n}=5.50 \pm 0.09 \mathrm{MeV}
$$

(n, n) to: 3.160 MeV Level

Ocm	do/dat	$\wedge(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
91.66	2.56	14.9	25.6
99.14	7.13	7.3	22.7

Ave. do/du $=716 \mathrm{Fab} / \mathrm{sic} \pm 10.1 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=89.99 \mathrm{mb} \pm 10.1 \%$

$\begin{aligned} & \mathrm{E}_{\mathrm{n}}= 5.50 \pm 0.09 \mathrm{MeV} \\ &(\mathrm{n}, \mathrm{n}) \text { to: } 4.260 \mathrm{MeV} \text { Level } \\ &+4.290 \mathrm{MeV} \text { Level } \end{aligned}$			
$\boldsymbol{\theta}_{\text {cm }}$	do/dow	Δ (\%)	
deg.	mb/str	$+$	
84.81	4.55	21.8	27.2
92.33	6.02	13.7	27.6
99.80	5.48	13.6	21.1

Avg. do/d $=5.12 \mathrm{mb} / \mathrm{str} \pm 16.9 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} a) \mathrm{d} / \mathrm{a}=64.37 \mathrm{mb} \pm 16.9 \%$

$$
E_{\Omega}=6.00 \pm 0.04 \mathrm{MeV}
$$

(n, n ') to: 1.409 MeV Level

$\boldsymbol{\theta} \mathrm{cm}$	$\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.71	7.69	8.8	8.4
91.22	9.08	10.8	8.8
98.71	9.88	17.8	11.5

$$
E_{n}=6.00 \pm 0.04 \mathrm{MeV}
$$

$$
(\mathrm{n}, \mathrm{n} \text { ') to: } 2.530 \mathrm{MeV} \text { Level }
$$

$\theta_{\text {cm }}$	d $/$ / ${ }^{\text {a }}$	C(\%)	
deg.	mb/str	+	
83.90	5.53	18.8	13.8
91.41	6.50	9.4	13.1
98.90	6.13	16.2	9.7

Avg. do $/ \mathrm{d} \omega=\quad 6.13 \mathrm{mb} / \mathrm{str} \pm 10.6 \%$
$\int(d \sigma / d \omega) d \omega=77.01 \mathrm{mb} \pm 10.6 \%$

$$
\begin{gathered}
E_{n}=6.00 \pm 0.04 \mathrm{MeV} \\
\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \text { to: } 2.960 \mathrm{MeV} \text { Level }
\end{gathered}
$$

$\theta_{c m}$	$\mathrm{~d} \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.99	6.67	12.2	15.2
91.51	7.21	9.4	18.3
98.99	7.26	13.3	13.2

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=6.96 \mathrm{mb} / \mathrm{str} \pm 11.4 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=87.52 \mathrm{mb} \pm 11.4 \%$
$E_{2}=6.00 \pm 0.04 \mathrm{MeV}$
$\left(n, n^{\prime}\right)$ to: 2.960 MeV Level
+3.160 MeV Level +3.290 MeV Level
+3.340 MeV Level

$\theta_{c \mathrm{~m}}$	do / d	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.05	22.37	10.8	9.1
91.57	23.22	10.4	9.6
99.05	22.44	6.7	10.5

Avg. do/des $=22.57 \mathrm{mb} / \mathrm{str} \pm 9.4 \%$ $\int(d \sigma /$ der $) d e=283.67 \mathrm{mb} \pm 9.4 \%$

$\begin{aligned} \mathrm{E}_{\mathrm{a}}= & 6.00 \pm 0.04 \mathrm{MeV} \\ (\mathrm{n}, \mathrm{n}) \text { to: } & 3.160 \mathrm{MeV} \text { Level } \\ & +3.290 \mathrm{MeV} \text { Level } \\ & +3.340 \mathrm{MeV} \text { Level } \end{aligned}$		
do/de		
mb/str	+	-
14.72	7.8	15.9
15.14	9.7	18.8
14.06	10.5	13.3

Avg. $\mathrm{do} / \mathrm{des}=14.36 \mathrm{mb} / \mathrm{str} \pm 11.2 \%$ $\int(\mathrm{d} / \mathrm{d}=\mathrm{d}) \mathrm{dev}=180.45 \mathrm{mb} \pm 11.2 \%$

$$
\begin{gathered}
E_{m}=6.00 \pm 0.04 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 3.840 \mathrm{MeV} \text { Level }
\end{gathered}
$$

$\theta_{c m}$	$\mathrm{~d} \mathrm{\sigma} / \mathrm{d} \omega$	$\Delta(\%)$	
$d e g$.	$\mathrm{mb} / \mathrm{str}$	+	-
84.28	3.54	14.2	13.8
91.80	3.60	14.4	16.7
99.28	3.76	20.1	14.4

Avg.d $/ \mathrm{d} \omega=3.63 \mathrm{mb} / \mathrm{str} \pm 12.0 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=45.58 \mathrm{mb} \pm 12.0 \%$

Avg. $\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega=\quad 9.38 \mathrm{mb} / \mathrm{str} \pm 13.9 \%$ $\int(\mathrm{do} / \mathrm{dou}) \mathrm{dao}=117.87 \mathrm{mb} \pm 13.9 \%$

$\begin{aligned} & E_{\mathrm{n}}= 5.50 \pm 0.09 \mathrm{MeV} \\ &(\mathrm{n}, \mathrm{n}) \text { to: } 3.290 \mathrm{MeV} \text { Level } \\ &+3.340 \mathrm{MeV} \text { Level } \end{aligned}$			
0 cm	$d \sigma / d a$		
deg.	$m b / s t r$	+	
91.73	11.69	7.1	19.8
99.21	11.08	10.3	22.7

Avg. do/dat $=11.17 \mathrm{mb} / \mathrm{str} \pm 12.0 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{C}_{\mathrm{m}}=140.36 \mathrm{mb} \pm 12.0 \%$
$\mathrm{E}_{\infty}-5.50 \pm 0.09 \mathrm{MeV}$
$\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$ to: 3.840 MeV Level

$\theta_{c \boldsymbol{c}}$	$d \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.47	4.43	17.5	21.5
91.99	5.37	12.7	21.0
99.46	4.65	23.6	11.8

Avg. do/d $\omega=4.71 \mathrm{mb} / \mathrm{str} \pm 14.7 \%$
$\int(\mathrm{dv} / \mathrm{d} \omega) \mathrm{d} \omega=59.13 \mathrm{mb} \pm 14.7 \%$
$E_{4}=5.50 \pm 0.09 \mathrm{MeV}$
(n, n) to: 3.840 MeV Level
+4.630 MeV Level
+4.050 MeV Level
+4.070 MeV Level
+4.260 MeV Level
+4.290 MeV Level

$\theta_{c m}$	$d c, d \omega$	$\Delta(\%)$	
deg.	$m i v / s t r$	t	-
36.25	19.58	16.9	19.7
43.95	10.36	17.0	18.4
49.10	17.28	21.6	13.1
56.78	21.88	13.0	23.8
64.40	21.14	12.3	19.5
72.01	21.56	14.0	21.0
79.62	22.23	8.8	22.2
84.63	19.67	14.1	10.5
87.13	22.31	11.0	18.8
92.15	20.89	10.5	15.0
94.63	19.33	12.1	13.4
99.62	19.91	10.5	12.4
102.12	18.95	18.1	13.5
109.54	18.21	14.0	18.2
120.39	18.60	17.8	15.9
127.75	20.68	18.9	13.5

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=19.54 \mathrm{mb} / \mathrm{str} \pm 11.1 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=245.49 \mathrm{mb} \pm 11.1 \%$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{n}}= & 5.50 \pm 0.09 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \mathrm{to}: & 4.030 \mathrm{MeV} \text { Level } \\
& \text { + } 4.050 \mathrm{MeV} \text { Level } \\
& +4.070 \mathrm{MeV} \text { Level }
\end{aligned}
$$

$\theta_{c \mathrm{~cm}}$	$\mathrm{~d} \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
8463	10.07	12.1	17.9
92.15	9.93	15.2	17.3
99.62	9.75	10.1	14.5

Avg. do/dw $=\quad 9.81 \mathrm{mb} / \mathrm{str} \pm 11.8 \%$ $\int(d \sigma / d \omega) d \omega=123.30 \mathrm{mb} \pm 11.8 \%$
$\mathrm{E}_{\mathrm{a}}=6.00 \pm 0.04 \mathrm{MeV}$
(n, n) to: $\mathbf{3 . 8 4 0} \mathrm{MeV}$ Level
+4.030 MeV Level
+4.050 MeV Level
+4.070 MeV Level
+4.260 MeV Level
+4.290 MeV Level

OL	do/dou	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.40	16.33	11.3	12.2
91.92	18.81	10.0	10.6
99.39	17.58	10.4	9.5

Avg. $\mathrm{d} \sigma / \mathrm{da}=17.54 \mathrm{mb} / \mathrm{str} \pm 10.6 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} a=220.37 \mathrm{mb} \pm 10.6 \%$

$\begin{aligned} \mathrm{E}_{\mathbf{1}}= & 6.00 \pm 0.04 \mathrm{MeV} \\ (\mathrm{n}, \mathrm{n}) \text { to: } & 4.030 \mathrm{MeV} \text { Level } \\ & +4.050 \mathrm{MeV} \text { Level } \\ & +4.070 \mathrm{MeV} \text { Level } \end{aligned}$			
	do/da		
	mb/sir	+	-
39	8.23	9.8	15.1
1	9.13	11.1	16.5
38	8.46	15.9	12.8

Avg. $\mathrm{d} \mathrm{\sigma} / \mathrm{da}=8.40 \mathrm{mb} / \mathrm{str} \pm 11.1 \%$ $\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{d} \alpha=105.51 \mathrm{mb} \pm 11.1 \%$

$$
E_{n}=6.00 \pm 0.04 \mathrm{MeV}
$$

(n, n) to: 4.260 MeV Level + 4.290 MeV Level

$\theta_{\text {cem }}$	do/da	Δ (\%)	
deg.	mbistr	+	
84.51	4.83	9.6	24.7
92.03	5.54	21.6	23.7
99.50	5.19	13.2	22.3

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=4.91 \mathrm{mb} / \mathrm{str} \pm 11.5 \%$
$\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{d} \omega=61.68 \mathrm{mb} \pm 11.5 \%$
$\mathrm{E}_{\mathrm{n}}=6.95 \pm 0.04 \mathrm{MeV}$ (n, n) to: 1.409 MeV Level

$\theta_{\text {cam }}$	$\mathrm{d} \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.69	7.50	10.1	9.5
91.21	8.12	13.2	13.4
98.70	7.30	15.8	9.7

$\mathrm{E}_{\mathrm{a}}=6.49 \pm 0.04 \mathrm{MeV}$ (n, n) to: $\mathbf{2 . 5 3 0} \mathbf{~ M e V}$ Level

$\theta_{\text {cm }}$	dojdal	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.86	4.74	12.3	11.3
91.37	4.90	7.3	11.3
98.85	4.25	12.7	9.5

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=4.63 \mathrm{mb} / \mathrm{str} \pm 10.4 \%$ $\int(\mathrm{da} / \mathrm{d} \omega) \mathrm{d} \omega=58.18 \mathrm{mb} \pm 10.4 \%$

$$
\begin{gathered}
\mathrm{E}_{\mathrm{n}}=6.49 \pm 0.04 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 2.960 \mathrm{MeV} \text { Level }
\end{gathered}
$$

$\theta_{\text {cm }}$	do/das	Δ (\%)	
deg.	mb/str	+	-
83.93	5.28	8.7	13.2
91.45	5.27	9.6	16.3
88.94	5.12	12.3	20.0

Avg. $\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega=5.21 \mathrm{mb} / \mathrm{str} \pm 11.1 \%$ $\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{d} \omega=65.45 \mathrm{mb} \pm 11.1 \%$

Avg do $/ \mathrm{d} \omega=15.96 \mathrm{mb} / \mathrm{str} \pm 9.3 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \sigma) \mathrm{d} \omega=200.59 \mathrm{mb} \pm 9.3$ \%

$$
E_{\mathrm{a}}=6.49 \pm 0.04 \mathrm{MeV}
$$

(n, n^{\prime}) to: 3.160 MeV Level
+3.290 MeV Leved
+3.340 MeV Leve:

$\theta_{c=}$	$d \sigma / d \omega$	$\Delta(\%)$	
$c k g$.	$\mathrm{mb} / \mathrm{str}$	+	-
84.31	10.66	7.1	17.8
91.52	10.82	9.5	15.0
99.00	10.88	9.3	12.

Avg do/dm $=10.71 \mathrm{mb} / \mathrm{str} \pm 9.5 \%$ $\int(d \sigma / \mathrm{dm}) \mathrm{d} \omega=134.58 \mathrm{mb} \pm 9.5 \%$
$E_{n}=6.49 \pm 0.04 \mathrm{MeV}$ (n, n) to: 3.840 MeV Level

θ_{c}	$\mathrm{do} / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.17	3.03	19.7	13.7
91.68	2.96	17.8	12.2
99.16	2.83	15.2	16.2

Avg.do/dow $=2.95 \mathrm{mb} / \mathrm{str} \pm 11.2 \%$
$\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=37.03 \mathrm{mb} \pm 11.2 \%$
$E_{\mathrm{a}}=6.49 \pm 0.04 \mathrm{MeV}$
(n, n) to: 3.840 MeV Level +4.030 MeV Level +4.050 MeV Level +4.070 MeV Level +4.260 MeV Level +4.290 MeV Level

aca	$\mathrm{do} / \mathrm{d} \mathrm{m}$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.25	14.74	7.4	9.5
91.76	14.22	9.5	9.6
99.24	14.32	8.1	8.4

Avg do/dev $=14.40 \mathrm{mb} / \mathrm{str} \pm 9.7 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} 0) \mathrm{d} \omega=180.90 \mathrm{mb} \pm 9.7 \%$
$E_{\mathrm{a}}=6.49 \pm 0.04 \mathrm{MeV}$ (n, n) to: 4.030 MeV Level +4.050 MeV Level + 4.070 MeV Level

acm	do/dvy	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.24	6.93	14.3	10.2
91.76	7.13	10.6	11.1
99.24	7.47	8.6	9.9

Avg do/doo $=7.23 \mathrm{mb} / \mathrm{str} \pm 10.4 \%$ $\int(d \sigma / \mathrm{d} \sigma) \mathrm{d} 0 \mathrm{~m}=90.88 \mathrm{mb} \pm 10.4 \%$

Avg. do/d $=4.13 \mathrm{mb} / \mathrm{str} \pm 12.5 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{da}=51.90 \mathrm{mb} \pm 12.5 \%$
$\mathrm{E}_{\mathbf{E}}=7.00 \pm 0.06 \mathrm{MeV}$
Elastic Scattering

$\theta_{\text {ces }}$	do/do	Δ (\%)	
deg.	mb/str	$+$	-
13.10	2322.48	4.2	5.2
20.70	1698.86	4.8	4.5
27.99	1023.24	5.2	4.6
28.30	1040.05	6.8	5.0
35.61	562.45	5.0	5.1
43.22	248.85	5.7	6.4
48.29	131.32	6.7	6.6
55.87	35.68	11.4	12.1
71.00	6.80	31.5	35.1
78.54	11.31	19.7	17.4
83.50	15.69	10.2	13.6
86.06	16.22	11.5	11.9
91.07	18.88	10.2	9.6
93.57	19.00	12.8	10.5
98.56	19.15	9.7	10.3
101.05	20.41	10.4	10.5
108.52	17.83	12.6	11.4
119.44	11.97	13.3	15.9
126.86	9.70	16.0	16.9
134.27	5.39	33.2	28.0

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=2107.41 \mathrm{mb} \pm 7.3 \%$ Wick's Limit $=2555.19 \mathrm{mb} \pm 9.2 \%$ $\sigma_{T}=3.52 \mathrm{~b} \pm 3.0 \%$

Legendr: Fit, Order $=8$		
k	a	$\Delta(\%)$
0	335.40552	2.0
1	281.74829	2.1
\therefore	222.69064	2.3
3	162.53687	2.6
4	101.53685	3.2
5	52.37892	4.8
6	23.33212	7.7
7	8.15927	13.4
8	2.04963	28.6

$$
\begin{gathered}
\mathrm{E}_{a}=7.00 \pm 0.06 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 1409 \mathrm{MeV} \text { Level }
\end{gathered}
$$

$\theta_{\text {cma }}$	da,da	Δ (\%)	
deg.	mb/str	+	-
17.87	30.73	30.9	18.4
25.51	19.55	50.1	31.2
35.69	6.16	21.1	12.5
43.31	7.90	19.7	17.0
48.38	7.51	16.0	8.2
55.98	7.43	15.2	9.6
71.12	6.87	8.8	120
78.67	5.77	15.9	11.8
83.68	6.31	17.8	11.3
86.19	5.75	17.5	16.9
91.19	6.54	14.2	10.2
93.70	5.97	17.0	13.7
98.68	6.25	11.7	9.2
101.18	6.18	21.7	12.1
108.64	6.03	26.6	10.7
119.55	7.98	16.1	10.3
126.97	7.40	15.5	9.3
134.37	6.99	16.8	12.9

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=91.00 \mathrm{mb} \pm 8.2 \%$

Legendre Fit, Order $=3$		
\boldsymbol{k}	$\boldsymbol{a}_{\boldsymbol{k}}$	$\Delta(\%)$
0	14.48305	4.2
1	0.67472	78.6
2	0.86717	36.3
3	0.39655	80.3

$\begin{gathered} \mathrm{E}_{2}=7.00 \pm 0.06 \mathrm{MeV} \\ (\mathrm{n}, \mathrm{n}) \text { to: } 2.530 \mathrm{MeV} \text { Level } \end{gathered}$				$\begin{aligned} \mathrm{E}_{\mathrm{s}}= & 7.00 \pm 0.06 \mathrm{MeV} \\ (\mathrm{n}, \mathrm{n}) & \mathrm{to} \\ & 2.960 \mathrm{MeV} \text { Level } \\ & +3.160 \mathrm{MeV} \text { Level } \\ & +3.290 \mathrm{MeV} \text { Level } \\ & +3.340 \mathrm{MeV} \text { Level } \end{aligned}$			
$\theta_{\text {cm }}$	$\mathrm{d} / \mathrm{d} / \mathrm{s}$	Δ (\%)					
deg.	mb/sir	$+$	-				
28.12	5.32	12.9	22.9				
35.77	5.27	44.4	20.7	$\theta_{\text {cos }}$	do/da	Δ (\%)	
43.41	4.17	43.3	14.9	deg.	mb/str	$+$	-
48.49	2.95	33.6	15.3	28.17	12.57	14.6	18.0
56.10	3.0 ?	29.0	21.0	35.83	14.26	16.7	12.4
71.26	3.90	12.6	10.3	43.48	14.22	16.7	13.8
78.81	3.89	13.6	10.8	48.57	15.14	11.8	9.3
83.83	4.33	22.7	13.3	56.19	11.55	8.5	13.0
86.34	3.07	16.5	15.8	71.36	11.11	22.7	12.9
91.34	3.79	15.6	17.7	78.92	11.84	9.3	8.8
93.85	4.21	17.5	16.7	83.93	12.27	8.1	8.7
98.82	3.12	21.6	13.4	86.44	11.39	10.0	11.1
101.33	4.10	10.1	14.4	91.45	12.05	7.7	12.7
108.78	3.57	13.5	19.4	93.96	11.82	8.7	7.1
119.69	3.96	12.2	11.5	98.93	11.59	16.1	8.9
127.09	3.20	14.5	9.5	101.43	11.25	8.3	13.8
134.48	3.05	17.1	9.7	108.89	12.81	7.4	13.5
				119.78	13.00	10.7	5.0
$\begin{aligned} & \text { Avg. } \mathrm{d} \sigma / \mathrm{d} \omega= \\ & \int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega= \end{aligned}$		$\begin{aligned} & 3.73 \mathrm{mb} / \mathrm{str} \pm 9.0 \% \\ & 46.84 \mathrm{mb} \pm 9.0 \% \end{aligned}$		127.18	13.33	7.2	11.5
		134.56	12.72	10.2	11.2		

Avg. $\mathrm{do} / \mathrm{dou}=12.53 \mathrm{mbjstr} \pm 8.5 \%$ $\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{d} \omega=157.49 \mathrm{mb} \pm 8.5 \%$

$$
E_{n}=7.00 \pm 0.06 \mathrm{MeV}
$$

(n, n) to: $\mathbf{2 . 9 6 0 \mathrm { MeV } \text { Level }}$

$\theta_{c m}$	$\mathrm{~d} \sigma / \mathrm{dam}$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
91.40	3.68	10.9	22.6
98.89	3.24	18.9	18.9

Avg. d $/$ d $\omega=3.40 \mathrm{mb} / \mathrm{str} \pm 16.4 \%$ $\int(\mathrm{do} / \mathrm{d} \omega) \mathrm{d} \omega=42.69 \mathrm{mb} \pm 16.4 \%$

$\theta_{c \mathrm{~cm}}$	$\mathrm{~d} \mathrm{\sigma} / \mathrm{dam}$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
91.47	8.13	11.4	13.2
98.95	8.47	11.3	8.9

Avg. do/dou $=8.34 \mathrm{mb} / \mathrm{sir} \pm 19.2 \%$ $\int(d \sigma / d a) d a=: 04.84 \mathrm{mb} \pm 10.4 \%$
$E_{s}=7.00 \pm 0.06 \mathrm{MeV}$
(n, n) to: 3.840 MeV Level

Oce	do/dal	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{st?}$	+	-
84.08	3.37	11.7	15.7
91.59	2.97	12.5	10.4
99.08	3.03	19.3	14.1

Avs. do/dos $=3.08 \mathrm{mb} / \mathrm{str} \pm 11.8 \%$
$\int($ do/dan $) \mathrm{dm}=38.75 \mathrm{mb} \pm 11.8$ 易

$$
E_{\Delta}=7.00 \pm 0.06 \mathrm{MeV}
$$

$$
\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \text { to: } 3.840 \mathrm{MeV} \text { Level }
$$

+ 4.030 MeV Level
+ 4.050 MeV Level
+ 4.070 MeV Level
+ 4.260 MeV Level
+ 4.290 MeV Level

$\theta_{\text {cam }}$	do/da	Δ (\%)	
deg.	$m b / s t r$	$+$	-
28.27	9.61	33.4	12.1
35.96	10.05	25.6	6.9
43.62	10.06	19.1	9.3
48.73	11.54	20.3	6.2
56.37	13.30	16.1	7.8
71.57	12.51	11.4	13.4
79.13	11.64	8.4	10.8
84.15	12.73	9.2	8.9
86.66	12.20	8.1	10.9
91.66	13.29	5.9	5.9
94.18	11.93	7.9	8.1
99.14	11.96	9.4	7.5
101.65	12.03	8.1	9.2
109.10	11.08	7.8	12.0
119.98	11.31	9.7	6.5
127.37	11.29	7.9	8.5
134.73	10.46	8.4	10.1

Avg. da/da $=11.68 \mathrm{mt} / \mathrm{str} \pm 8.8 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=146.78 \mathrm{mb} \pm 8.8 \%$

Data at the Following Angles Encluded from the Average: 91.66
$E_{m}=7.00 \pm 0.06 \mathrm{MeV}$
(\mathbf{n}, n) to: 4.030 MeV Level

+ 4.050 MeV Level
+ 4.070 MeV Level

Oca	do/d	$\Delta(\%)$	
deq.	$\mathrm{mb} / \mathrm{str}$	+	-
84.14	5.38	13.3	13.1
91.65	6.00	10.9	10.3
99.14	5.36	15.7	9.6

Avg. do/dou $=5.67 \mathrm{mb} / \mathrm{str} \pm 10.8 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \alpha=71.25 \mathrm{mb} \pm 10.8 \%$

$$
E_{a}=7.00 \pm 0.06 \mathrm{MeV}
$$

(n, n) to: 4.260 MeV Level
+4.290 MeV Level

$\theta_{\text {cm }}$	$d \sigma / d a$	$\Delta(\%)$	
deg.	$m b / s t r$	+	-
84.22	3.82	18.7	16.9
91.72	3.99	17.9	19.9
99.20	3.33	21.1	18.1

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=3.70 \mathrm{mb} / \mathrm{str} \pm 13.7 \%$
$\int(\mathrm{d} \sigma$ / $\mathrm{d} \omega) \mathrm{d} \omega=46.49 \mathrm{mb} \pm 13.7 \%$
$\mathrm{E}_{\mathrm{a}}=7.50 \pm 0.03 \mathrm{MeV}$ (n, n) to: 1.409 MeV Level

θ_{cm}	$\mathrm{d} \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.68	5.74	21.6	15.1
91.18	4.41	18.1	8.8
98.67	307	45.5	11.4

$\mathrm{E}_{\mathrm{n}}=7.50 \pm 0.03 \mathrm{MeV}$
(n, n) to: $\mathbf{2 . 5 3 0} \mathbf{~ M e V}$ Level

$\theta_{\text {cas }}$	$\mathrm{d} \sigma / \mathrm{d} a$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.81	3.06	18.0	15.5
91.32	2.71	22.9	10.8
98.80	2.20	29.7	25.3

Avg. $\mathrm{d} \sigma / \mathrm{das}=2.76 \mathrm{mb} / \mathrm{str} \pm 14.2 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \alpha=34.69 \mathrm{mb} \pm 14.2 \%$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{n}}= & 7.50 \pm 0.03 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } & 2.960 \mathrm{MeV} \text { Level } \\
& +3.160 \mathrm{MeV} \text { Level } \\
& +3.290 \mathrm{MeV} \text { Level } \\
& +3.340 \mathrm{MeV} \text { Level }
\end{aligned}
$$

$\theta_{\text {ac }}$	$\mathrm{d} \sigma / \mathrm{dav}$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.90	10.18	8.2	14.9
91.41	9.96	11.8	11.5
$\mathbf{3 8 . 9 0}$	9.00	8.5	11.5

Avg. do/ $\mathrm{i} \omega=9.38 \mathrm{mb} / \mathrm{str} \pm 100 \%$
$\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=117.82 \mathrm{mb} \pm 10.0 \%$

$$
\begin{gathered}
\mathrm{E}_{n}=7.50 \pm 0.03 \mathrm{MeV} \\
\text { (in.n) to: } 3.840 \mathrm{MeV} \text { Level }
\end{gathered}
$$

$\theta_{\text {cm }}$	$d \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$m b / s t r$	+	-
84.03	2.45	23.3	14.9
91.54	2.20	17.7	20.1
99.02	2.29	22.8	24.3

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=2.32 \mathrm{mb} / \mathrm{str} \pm 12.9 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=29.20 \mathrm{mb} \pm 12.9 \%$
$\mathrm{E}_{\mathrm{s}}=7.50 \pm 0.03 \mathrm{MeV}$
($\mathrm{n}, \mathrm{n}^{\prime}$) to: $\mathbf{3 . 8 4 0 \mathrm { MeV } \text { Level }}$ +4.030 McV Level +4.050 MeV Level
+4.070 MeV Level
+4.260 MeV Level
+4.290 MeV Level

$\theta_{\text {cn }}$	$\mathrm{d} \sigma / \mathrm{dav}$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.08	9.48	10.8	12.6
$9 i .59$	9.91	7.5	14.0
99.08	8.75	11.7	14.8

Avg. $\mathrm{d} \sigma / \mathrm{da}=9.25 \mathrm{mb} / \mathrm{str} \pm 10.8 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=116.29 \mathrm{mb} \pm 10.8 \%$

$$
\begin{aligned}
\mathrm{E}_{\mathbf{2}}= & 7.50 \pm 0.03 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \mathrm{to}: & 4.030 \mathrm{MeV} \text { Level } \\
& +4.050 \mathrm{MeV} \text { Level } \\
& +4.070 \mathrm{MeV} \text { Level }
\end{aligned}
$$

$\theta_{\text {ce }}$	$\mathrm{d} \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
84.08	4.30	14.5	14.0
91.59	4.47	19.4	13.3
99.07	3.65	18.3	12.9

Avg. $\mathrm{do} / \mathrm{d} \mathrm{d}=4.19 \mathrm{mb} / \mathrm{str} \pm 11.6 \%$ $\int(\mathrm{d} / \mathrm{d} \omega) \mathrm{d} \omega=52.59 \mathrm{mij} \pm 11.6 \%$

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{a}}=7.50 \pm 0.03 \mathrm{MeV} \\
& (\mathrm{n}, \mathrm{n}) \text { to: 4.260 MeV Level } \\
& +4.290 \mathrm{MeV} \text { Level }
\end{aligned}
$$

Avg. do $/ \mathrm{d} \omega=2.75 \mathrm{mb} / \mathrm{str} \pm 16.0 \%$
$j(\mathrm{~d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=34.51 \mathrm{mb} \pm 16.0 \%$

$$
\begin{gathered}
E_{\mathrm{a}}=8.01 \pm 0.03 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } 1.409 \mathrm{MeV} \text { Level }
\end{gathered}
$$

Oce	$\mathrm{d} \mathrm{\sigma} / \mathrm{d} \mathrm{\omega}$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.67	4.54	12.6	11.5
91.18	4.77	15.2	14.8
98.67	4.23	19.3	12.5

$$
\mathrm{E}_{\mathrm{a}}=8.01 \pm 0.03 \mathrm{McV}
$$

$\left(\mathrm{n}, \mathrm{n}^{\prime}\right)$ to: 2.530 MeV Level

θ_{cm}	$\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{sir}$	+	-
83.79	2.15	25.0	17.4
91.29	2.23	15.9	13.1
98.79	2.84	29.5	19.5

Avg. do/da $=2.35 \mathrm{mb} / \mathrm{str} \pm 13.6 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=29.53 \mathrm{mb} \pm 13.6 \%$

$$
E_{\mathrm{a}}=8.01 \pm 0.03 \mathrm{MeV}
$$

$(\mathrm{n}, \mathrm{n}$) to: $\mathbf{2 . 9 6 0 \mathrm { MeV } \text { Level }}$

+ 3.160 MeV Level
+ 3.290 MeV Level
+ 3.340 MeV Level

$\theta_{\text {cm }}$	$\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{ser}$	+	-
83.87	7.77	14.6	10.0
91.38	8.27	11.7	8.6
98.87	7.69	15.2	21.0

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=8.06 \mathrm{mb} / \mathrm{str} \pm 10.2 \%$ $\int(\dot{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=101.34 \mathrm{mb} \pm 10.2 \%$
$\mathrm{E}_{\mathrm{q}}=8.01 \pm 0.03 \mathrm{MeV}$
(n, n) to: $\mathbf{3 . 8 4 0} \mathbf{~ M e V}$ Level

$\boldsymbol{\theta} \mathrm{cm}$	$\mathrm{d} \sigma / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
83.98	2.03	20.3	11.9
91.49	2.25	16.5	19.0
98.98	2.53	15.4	19.9

Avg. do/div $=2.24 \mathrm{mb} / \mathrm{str} \pm 13.9 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=28.12 \mathrm{mb} \pm 13.9 \%$

$$
E_{n}=8.01 \pm 0.03 \mathrm{MeV}
$$

$$
(\mathrm{n}, \mathrm{n}) \text { to: } 3.840 \mathrm{MeV} \text { Lzvel }
$$

+ 4.030 MeV Level
+ 4.050 MeV Level
+ 4.070 MeV Level
+ 4.260 MeV Level
+ 4.290 MeV Level

$\theta_{\text {cm }}$	d $/ d \omega$	$\Delta(\%)$	
drg.	$m b / s t r$	+	-
84.03	7.52	10.9	12.6
91.54	7.53	12.2	10.7
99.02	7.38	19.7	18.0

Avg. do/d $\omega=7.51 \mathrm{mb} / \mathrm{str} \pm 10.8 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=94.35 \mathrm{mb} \pm 10.8 \%$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{f}}= & 8.01 \pm 0.03 \mathrm{MeV} \\
\left(\mathrm{n}, \mathrm{n}^{\prime}\right) \text { to: } & 4.030 \mathrm{MeV} \text { Level } \\
& \text { + } 4.050 \mathrm{MeV} \text { Level } \\
& +4.070 \mathrm{MeV} \text { Level }
\end{aligned}
$$

$\theta_{\text {cm }}$	do/dw	Δ (\%)	
deg.	mb/str	$+$	-
84.02	3.31	16.8	16.8
91.53	3.06	12.5	13.6
99.02	2.95	20.5	20.9

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=3.10 \mathrm{mb} / \mathrm{str} \pm 11.9 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=38.94 \mathrm{mb} \pm 11.9 \%$

$E_{5}=$	$8.01 \pm 0.63 \mathrm{MeV}$	
(n, n)	to:	4.260 MeV Level
	+4.290 MeV Level	

$E_{n}=8.50 \pm 0.05 \mathrm{MeV}$ Elastic Scattering			
$\theta_{\text {cm }}$	do/da		
deg.	mbistr	$+$	
13.10	2199.60	4.5	4.3
20.70	1611.44	4.7	4.4
27.99	851.12	4.8	4.7
28.30	969.11	5.9	5.9
35.61	441.18	4.7	5.0
43.22	158.95	6.0	6.1
48.29	65.02	7.5	7.6
55.87	12.27	20.8	18.0
63.45	1.72	97.2	91.6
71.01	6.98	23.5	23.2
78.54	13.00	12.9	14.5
83.56	14.51	12.5	12.9
86.06	14.11	13.7	12.5
91.06	i7.27	15.6	13.3
93.56	15.53	11.0	10.7
98.56	15.49	19.3	11.9
10:.05	16.38	9.9	11.5
108.52	12.36	16.3	14.8
119.44	7.42	16.3	16.1
126.86	3.79	32.7	29.4
134.28	3.15	44.8	42.5

$\int(\mathrm{dc} / \mathrm{d} \omega) \mathrm{d} \omega=1831.70 \mathrm{mb} \pm 7.3 \%$ Wick's Limit $=2760.17 \mathrm{mb} \pm 9.2 \%$ $\sigma_{\mathrm{T}}=3.32 \mathrm{~b} \div \mathbf{~} \mathbf{3 . 0} \%$

Legendre Fit, Order $=9$		
k	a_{k}	$\Delta(\%)$
0	291.52466	2.0
1	251.84975	2.1
2	205.21701	2.3
3	157.05379	2.5
4	106.25903	3.0
5	61.10460	4.0
6	30.70152	5.9
7	13.14060	9.3
8	4.32615	17.5
9	0.90726	43.2

$E_{n}=8.50 \pm 0.05 \mathrm{MeV}$
$\left(n, n^{\prime}\right)$ to: 1.409 MeV Level

$\theta_{c \text { a }}$	dc/d	$\Delta(\%)$	
deg.	$m b / s t r$	+	-
35.67	8.84	47.9	16.7
43.29	6.71	18.7	17.4
48.36	4.96	49.0	17.4
55.96	4.35	20.4	9.5
63.54	4.38	11.0	11.0
71.10	4.88	17.5	12.3
78.65	5.10	21.5	12.2
83.66	5.60	14.3	13.8
86.16	4.62	13.3	11.2
91.17	4.41	19.2	18.4
98.66	3.48	23.3	27.6
101.16	4.05	21.0	15.4
108.61	4.04	23.7	18.9
119.53	4.73	15.6	15.4
126.95	4.60	17.2	13.2
134.35	3.92	29.2	11.1

$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=59.13 \mathrm{mb} \pm 9.0 \%$
Legendre Fit, Order = 3

k	a_{k}	$\Delta(\%)$
0	$9.41!19$	5.7
1	0.68270	65.4
2	0.22804	130.0
3	0.19290	126.4

$\mathrm{E}_{\mathbf{9}}=8.50 \pm 0.05 \mathrm{MeV}$
(n, n) to: 2.530 MeV Level

9.m	do/d ω	$\Delta(\%)$	
deg.	$m \dot{m} / s t r$	+	-
43.45	2.56	18.5	21.0
56.05	1.67	27.2	21.4
71.21	1.99	26.7	24.1
93.77	2.64	18.2	20.3
86.27	1.93	18.4	26.3
91.28	2.02	17.5	19.7
93.78	1.67	19.2	24.9
98.77	2.20	18.5	27.7
$10: .26$	2.02	22.5	29.3
108.73	1.05	31.6	35.5
119.63	1.63	19.3	20.2
127.04	1.17	50.2	32.6
134.43	2.04	20.5	26.8

Avg.d $\sigma / \mathrm{d} \omega=1.79 \mathrm{mb} / \mathrm{str} \pm 10.7 \%$
$\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=22.50 \mathrm{mb} \pm 10.7 \%$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{n}}= & 8.50 \pm 0.05 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \text { to: } & 2.960 \mathrm{M}=\mathrm{V} \text { Level } \\
& +3.160 \mathrm{MeV} \text { Leval } \\
& +3.290 \mathrm{MeV} \text { Level } \\
& +3.340 \mathrm{MeV} \text { Levc! }
\end{aligned}
$$

$\boldsymbol{\theta}_{\text {cm }}$	$\mathrm{d} \boldsymbol{i} / \mathrm{d} \omega$	Δ (\%)	
deg.	mb/str	+	-
48.50	6.95	14.6	21.9
56.11	6.23	12.9	19.2
63.71	6.03	9.6	18.0
71.28	5.20	10.5	19.2
83.84	7.40	9.2	i7.3
36.35	6.67	9.9	26.1
91.34	6.48	10.7	17.4
93.85	6.79	10.8	14.4
98.84	6.79	12.2	17.9
iCi. 34	5.55	13.0	19.2
108.79	6.39	11.7	23.0
119.69	5.46	13.7	16.5
127.10	5.65	17.2	8.4
134.48	5.85	11.2	12.2

Avg. d $\sigma / \mathrm{d} \omega=5.88 \mathrm{mb} / \mathrm{str} \pm 9.2 \%$
$\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=73.85 \mathrm{mo} \pm 9.2 \%$

$$
\begin{aligned}
\mathrm{E}_{\mathrm{a}}= & 9.5 \mathrm{C} \pm 0.05 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \mathrm{t}) & 3.840 \mathrm{MeV} \text { Level } \\
& +4.030 \mathrm{MeV} \text { Level } \\
& 14.050 \mathrm{MeV} \text { level } \\
& +4.070 \mathrm{MeV} \text { Level } \\
& +4.260 \mathrm{MeV} \text { Level } \\
& +4.290 \mathrm{MeV} \text { Level }
\end{aligned}
$$

$\theta_{c m}$	$d \sigma / d \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{sir}$	+	-
48.60	9.59	9.4	13.6
56.23	6.71	14.8	14.8
63.83	5.87	11.9	26.3
71.40	5.37	9.3	22.0
78.90	5.54	10.4	23.4
83.98	7.23	8.3	18.1
86.49	6.58	8.0	18.3
91.49	5.92	10.4	17.8
93.99	6.10	10.2	18.8
98.98	8.08	11.1	21.0
101.47	6.14	9.3	15.2
108.93	5.99	15.6	22.3
119.31	5.32	14.4	14.4
127.21	4.55	26.7	15.2
134.53	4.90	14.7	26.9

Avg. do/da $=5.66 \mathrm{mb} / \mathrm{ctr} \div 9.2 \%$ $\int(\mathrm{d} \mathrm{\sigma} / \mathrm{d} \omega) \mathrm{d} \omega=71.08 \mathrm{mb} \pm 9.2 \%$

Data at the Following Aryles Encliujed fiom the Average: 48.60

$$
\begin{aligned}
\mathrm{E}_{2}= & 8.50 \pm 0.05 \mathrm{MeV} \\
(\mathrm{n}, \mathrm{n}) \mathrm{to}: & 3.840 \mathrm{MeV} \text { Level } \\
& +4.030 \mathrm{MeV} \text { Level } \\
& +4.050 \mathrm{MeV} \text { Level } \\
& +4.070 \mathrm{MeV} \text { Level } \\
& +4.260 \mathrm{MeV} \text { Level } \\
& +4.290 \mathrm{MeV} \text { Level } \\
& +4.580 \mathrm{MeV} \text { Level }
\end{aligned}
$$

$\theta_{c \mathrm{~cm}}$	$\mathrm{~d} \mathrm{\sigma} / \mathrm{d} \omega$	$\Delta(\%)$	
deg.	$\mathrm{mb} / \mathrm{str}$	+	-
56.23	6.69	6.2	6.2

Avg. $\mathrm{d} \sigma / \mathrm{d} \omega=6.69 \mathrm{mb} / \mathrm{str} \pm 9.4 \%$ $\int(\mathrm{d} \sigma / \mathrm{d} \omega) \mathrm{d} \omega=84.03 \mathrm{mb} \pm 9.4 \%$

