ENDF-201
ENDF/B SUMMARY DOCUMENTATION

Assembled by 0.0 Ozer \& D. Garber

May 1973

NATIONAL NEUTRON CROSS SECTIONCENTER

BROOKHAVEN NATIONAL LABORATORY ASSOCIATED UNIVERSITIES, INC. under contract no. at(30-1)-16 with the
 UNITED STATES ATOMIC ENERGY COMMISSION

NOTICE

This report was prepared as an account of work aponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that ita use would not infringe privately owned rights.

Printed in the United States of America

INTRODUCTION

The purpose of this publication is to provide a localized source of descripicions for the evaluations contained in the ENDF/B Library.

The summary documentation presented in this volume is intended to be a more detailed description than the (File 1) comments contained in the computer readable data files, but not as detailed as the formal reports describing each ENDF/B evaluation. (A list of the published formal reports is given in the table of contents.)

The summary documentations were written by the CSEWG (Cross Section Evaluation Working Group) evaluators and compiled by NNCSC (National Neutron Cross Section Center). Shen assembling the information for this volume, a minimum amount of editing was unavoidable. This editing primarily consisted of removing computer file listings and irreproducible graphs, since these can be easily obtained from the ENDF files with the use of standard editing or plotting programs. In a few instances, sections of the formal document were reproduced. Materials for which no summary documentation has been received to date, are represented by the (File 1) comments contained in the data file only.

The loose leaf-independent section format was selected for ease of updating when more documentation and/or evaluations become available. It is hoped that in the future a more standardized documentation will make the updating simplified.

The publication is presented in sections, each section describing one (or more) ENDF evaluations. These sections are identified and ordered by element number (Z) and atomic weight (A). Sections describing more than one ENDF material are identified by the $Z-A$ numbers of the lowest material described. The section number corresponding to a particular data set should be determined using the table of contents.

> (e.g., ${ }^{6}$ Li (MAT=1115) is described in Section 3-6, whereas 133 $\mathrm{Cs}^{(M A T=1141)}$ is described in Section $47-107$, which also includes ${ }^{107} \mathrm{Ag}$ and ${ }^{108 \mathrm{Ag} .)}$

The ENDF/B-III Library contains 230 materials. (A material may consist of an isotope, element, molecule, or standerd mixture of elements.) Ten of these materials contain thermal scattering law data only. Eightyseven materials consist of photon interaction cross gections for elements. The summary documentations presented in this volume describe the principal part of the library consisting of the remaining 133 materials with neutron cross sections specified for all relevant reactions.

The documentation for a number of "lumped" fission product materiala is given following the section of the corresponding fisaionable material.

For additional information concerning the evaluated files as well as the corresponding experimental data, contact:

> National Neutron Cross Section Center Brookhaven National Laboratory Upton, New York 11973

2－EL－A	MAT	LABORATORY	REFERENCE	DATE	AUTHORS（NOTES：
1－H－1	1148	LASL	LA－4574（1971）	OCT70	L．STEWART．ET．AL STANDARD H－1 N，P）
1－H－2	1120	ENW，BNL	BNW（PRI COMM．1957）	Junts 7	LEONARD．STEWART MOD．BY ENL）
2－HE	i088	ANL	ANL－7462（ OCT． 1968 ）	JuN68	E．M．PENNINGTON（NATURAL ELEMENT）
2－HE－3	1146	LASL	LASL（ PRI ．COMM．1971）	1968	L．STELART（STANDARD HE－3 N，P）
3－LI－6	1115	LASL	ALRE 0－60／64（ IN PART）	ALG671	battat．LABALVE STANDARD LI－G N．A）
3－LI－7	1116	LASL	ALRE $0-61 / 64($ IN PART）	Mar7i	battat．Labalver MJd．DFNm215a）
4－8E－9	1154	LLL	UCRL－74533（ DEC 72）	DEC71	R．J．HOWERTON．S．T．PERKINS
5－8－10	1155	LASL．ORN	ORNL－TM－1872（ OCT 67）	JAN72	D．IRVING．R．LABAUVE（STANDARD E－10）
5－B－11	1160	GE，BNL	OFN＝49A	SEP71	C．COWAN（ALRE DATA MOD 1971）
6－C－12	1165	KAPL	KAPL－3099（ JUN 66）	JAN72	C．LLEITZ ET．AL．（STANDARD TOTAL）
7－N－14	1133	LASL	LA－4725（ SEP 72）	JAN71	P．G．YOUNG．D．G．FOSTER．JR
E－0－16	1134	LASL	LA－4780（ ALG 72）	ALG71	P．G．YOUNG，0．G．FOSTER，JR
11－NA－23	1156	WARD．ORNL	WARD－41日1－2（FEB 71	1971	PAIK．PITTERLE（LARD）PEREY（ ORNL）
12－MG	1014	AN	ANL－7397（ MAR 68）	SEP66	E．M．PENNIMGTON，J．C．GAJNIAK
13－AL－27	1135	LASL	LA－4726（DEC 72）	APR71	U．G．FOSTER，JR．．P．G．YOLNG
14－SI	1151	ENL．GGA	GA－8628（ May 68）	ALG71	M．K．DRAKE（MOD．EY R，KINSEY AUG71）
17－CL	1149	GGA	GA－7829 VOL 4 （67）	FEB67	M．S．ALLEN．M．K．DRAKE
19－K	1150	GGA	GA－7929 VOL 5 （67）	FEB67	M．K．DRAKE
20－CA	1152	ORNL．GGA	GA－7829 VOL 6（67）	OCT71	F．PEREY（ ORNL）M．K．DRAKE（ GGA）
22－TI	1144	ANL	TO Ee plual	MAR71	A．B．SMITH
23－V	1017	ANL	ANL－7397（MAR．68）	SEP66	E．M．PENNINGTON，I．C．GAJNIAK
24－CR	112 ？	WNES．EML	WCAP－7281（ 1969）	JLL70	AZZIZ．CORNYNX LNES）DRAKE（ ENL）
25－PN－55	1019	BhL	ENL－50060（JLN．67）	JUN67	STEPHENSON．PRINCE．PEARLSTEIN
26－FE	1180	ORNL	ORNL－ 4617 （1970）	JAN72	PENNY，KINNEY．ET．AL．（DATA MOD．72）
27－C0－59	1118	BNL	TO BE PLIEL	1971	T．E．STEPHENSON，A．PRINCE
28－NI	1123	LNES．ENL	WCAP－7397（1969）	JLN71	AZZIZ．COPNYAK WHES）DRAKE（ENL）
29－CU	1887	AI	AI－AEC－12741（ DEC．68）	SEP6日	J．M．OTTER ET．AL．（＋UKNOL EVAL）
29－CU－63	1805	AI	AI－AEC－12741（ DEC．6日）	SEP68	J．M．OTTER ET．AL．（ UKNOL EVAL）
29．CU－65	1096	AI	AI－AEC－12741（ DEC．69）	SEP68	J．M．OTTER ET．AL．（ IUXNDL EVAL）
36－KR－83	1201	B．H． HADCO	HEDL－TME 71－10G 1971）	JUL71	SCHENTER．SCHMI TTROTH，LI VOLSI
40－2R－95	1202	Beh，MADCO	HEDL－TME 71－： P （S：1971）	Ju71	SCHENTER，SCHMITTROTH，LIVOLSI
41－NB－93	1164	GGA	GA－8133＋ADO（ 67 ）	JANG7	ALLEN．DRAKE．MATHELS（MOD SEP 71）
41－NE－95	1203	B．W．WADCO	HEDL－TME 71－106（1971）	JU71	SCHENTER．SCHMITTROTH．LIVOLSI
42－10	1111	ANL	ANL－7397（1969）	OCT66	E．PENNINGTON（MOD．OCT 69）
42－M0－95	1204	B－W，LIADCO	HECL－THE 71－106（ 1971）	JUL71	SCHENTER，SCHMITTFOTH，LIVOLSI
42－M0－97	1205	B－W，MADCO	HEDL－TME 71－106（1971）	Ju71	SCHENTER．SCHMITTROTH．LIVOLSI
42－M0－99	1296	B．W，LuDCO	HEDL－TME 71－106（1971）	JU71	SCHENTER，SCHMITTROTH，L．IVOLSI
42－190－99	1297	B＋H．WADCO	HEDL－TME 71－106（ 1971）	JUC71	SCHENTER，SCHMITTROTH．LIVOLSI
42－M0－180	1200	B＋W，MADCO	HEDL－TME 71－106（ 1971）	JLL71	SCHENTER，SCHMITTROTH，L．IVOLS1
43－TC－99	1137	B＋W	GALH－1367	OCT71	2．LIVOLSI
44－RU－101	1210	B－W，MADCO	HEDL－TME 71－106（ 1971）	Ju． 71	SCHENTER，SCHMITTROTH．LIVOLS1
44－RL1－102	1211	B＋W．MADCC	HERL－TME 71－106（ 1971）	Jul 71	SCHENTER．SCHMI TTROTH．LIVOLSI
44－RU－103	1212	B－W，hadco	HEOL－TME 71－106（ 1971）	Ju71	SCHENTER，SCHMITTROTH，LIVOLSI
44－RU－104	1213	B＋W，LMOCO	HEOL－TME 71－106（ 1971）	Ju． 71	SCHENTER，SCHMITTROTH，LIVCLSI
44－RU－105	1214	B．W．WADCO	HEDL－TME 71－106 1971）	IU71	SCHENTER，SCHHITTROTH．LJVCLSI
44－RL－ 106	1215	B＋W．LHOCO	HEDL－TME 71－106（ 1971）	31.71	SCHENTER，SCHMITTROTH．LIVOLSI
45－RH－103	1125	Bow	BAll 1367	OCT71	2．LIVOLSI
45－RH－105	1217	B．W．HADCO	HEDL－TME 71－106 1971）	3LLT1	SCIENTER．SCHMITTROTH．LIVOLSI
46－FO－105	1218	B＋W，HADCO	HECL－TME 71－196：1971）	JUL71	SCHENTER，SCHMITROTH．LIVOLSI
46－PD－106	1219	B．W．WHOCO	HEDL－THE 71－106K 1971）	JU71	SCHENTER，SCHMITTROTH，LIVOLSI
46－PD－107	1228	B．W．HADCO	HEDL－TME 71－106\％19713	Ju71	SCHENTER，SCHMJTTROTH，LIVGLSI
46－PD－199	1221	B．W．HADCO	HEDL－TME 71．106（ 1971）	JUL71	SCHENTER．SCHMITTROTH．LIVOL．SI
47－AG－167	1138	ENL	TO EE PuEl．	OCT71	M．R．EHAT AND A．PRINCE
47－AG－109	1139	EN	TO EE PIEL．	0 OCT71	M．R．EHAT AND A．PRINCE
48－CD－113	1223	B＋w．HADCO	HEDL－TME 71－196（1971）	Ju．71	SCHENTER，SCHMITTROTH．LIVOLSI
53－I－131	1224	B＋W，WADCO	HEDL－TIE 71－106（ 1971）	Jul 71	SCHENTER，SCHIITTROTH．LIVOLSI
53－1－135	1225	B＋W．HADCO	HEDL－TIE 71－106（ 1971）	Juh71	SCHENTER．SCHMITTROTH．LIVOSI
54－XE－131	1226	B．W．MADCO	HEDL－TME 71－196（1971）	Ju71	SCHENTER，SCHMITROTH．LIVOLSI
54－XE－133	1227	8\％W，Whaco	HEDL－TME 71－10＇s 1971）	JU． 71	SCHENTER．SCHHITTROTH．LIVOLSI
54－XE－135	1926	ENN	PRI．COMM． 1967	JUN67	B．R．LEONARD，K．E．STELART
55－CS－133	1141	ENL	TO EE PUEL．	0C171	M．R．EHAT AND A．PRINCE
55－CS－135	1229	B＋W．WaDCO	HEDL－THE 71－106 1971）	Jul 71	SCHENTER．SCHHITTROTH．LJVOLSI
55－CS－137	1230	Q．W．HMDCO	HEDL－TME 71－106（1971）	3071	SCHERTER．SCHMITTROTH．LIVOLSI
57－LA－139	1231	B． H	BAW－409（NOV 75）	Jde 71	LIVOLSI
50－CE－141	1232	$\mathrm{B}+\mathrm{W}$	BALH－409（NOV 71）	JLl 71	LIVOLSI
59－FR－141	1233	$\mathrm{B}+\mathrm{N}$	BNL－499（NOV 71）	Jul 71	L．IVOLSI
59－PR－143	1234	$\mathrm{B}+\mathrm{W}$	Babl 409 （NOV 71）	JU． 71	LIVOLSJ

LIST OF AUTHORS AND REFERENCES

Z－EL－A	MAT	LABORATORY	REFERENCE	DATE	AUYHORS	（NOTES）
60－ND－143	1235	B＋W	BAW－409（NOV 71）	JuL71	LIVOLSI	
60－ND－145	1236	$\mathrm{B}+\mathrm{W}$	BAL－ 409 （ NCV 71 ）	Jul7	LIVOLSI	
S0－ND－147	1237	$\mathrm{B}+\mathrm{W}$	EAW－409（NOV 71）	Jul7	LIVOLSI	
61－PM－147	1238	$\mathrm{B}+\mathrm{W}$	BAW－409（NOV 71）	Jul7	LIVOLSI	
61－PM1－148G	1239	$\mathrm{B}+\mathrm{W}$	BAW－409（NOV 71）	Jul 71	LIVOLSI（ GROUNO	STATE）
61－PM－14EM	1254	$\mathrm{B}+\mathrm{W}$	Baw－ 409 （NOV 71）	JULT	LIVOLSI（META－ST	taEle states
61－PM－149	1240	$\mathrm{B}+\mathrm{W}$	BAN－407（NOV 71）	Ju＿71	LIVOLSI	
61－PM－151	1241	B＋W	BAW－409（NDV 71）	JLL71	LIVOLSI	
62－SM－147	1242	B＋W	EAN－409（NOV 71）	Jul7	LIVOLSI	
62－SM－148	1243	$\mathrm{B}+1 \mathrm{~J}$	BAW－ 409 （ NOV 71）	Jul7	LIVOLSI	
62－SM－149	1027	ENW	PRI．COMTM． 1967	Jung 7	G．R．LEONARO．JR．	AND K．B．STEWART
S2－SM－150	1244	B＋W	BAN． 409 （NOV 71）	JUL71	LIVOLSI	
62－5M－151	1245	B＋W	Ball 409 （ NOV 71 ）	JUL71	LIVOSS＇	
62－SM－152	1246	$B+W$	EAW－409（NOV 71）	Ju． 71	LIVOLSI	
62－5M－153	1247	B＋W	BAll－409（NOV 71）	JU． 71	LIVOLSI	
63－EU－151	1028	ENW	Tri．COMM． 1970	JLN70	G．R．LEONARD．JR．	AND K．B．STELART
63－EU－153	1029	BNW	PRI．COMM． 1967	JuN67	G．R．LECHARD．JR．	AND K．B．STEWART
63－EU－154	1248	B＋W	BAl－409（NOV 71）	Jul7	LIVOLSI	
63－EU－155	1249	B＋ん	BALL 409 （NOV 71）	Jul7	LIVOLSI	
S3－EU－156	1250	$B+W$	BAL－409（NOV 71）	JUL71	LIVOLSI	
63－EU－157	1251	B＋W	BAW－ 409 （NOV 71；	JLl 71	LIVOLSI	
64－CD	1030	ANL	ANL－7397（MAR 68）	OCT66	E．M．PENNINGTON．J	J．C．GAJNIAX
64－6D－155	1252	B＋W	Bah－ 409 （NOV 71）	JU71	LIVCLSI	
64－6D－157	1253	B＋ H	BNW－409（NOV 71）	Jul71	LIVOLSI	
66－DT－164	1031	BNW	PRI．COMM． 1967	JuN67	B．R．LEONAKD．3R．A	AND K．G．STEWART
71－LU－175	1032	BNW	PRI ．COMM． 1967	JUNG7	G．R．LEONARD．JR．A	AND K．B．STEWART
71－LU－176	1033	ENW	PRI．COMM 1967	JuN67	B．R．LEONARD，JR．	AND K．B．STELART
73－TA－181	1126	A］	AI－AEC－12990 1971 ）	APR71	OTTER，DUNFORD．OTT	TEWITTE
73－TA－： 82	1127	A］	AI－AEC－12990 1971 ）	APR71	OTTER．DUNFORD．OTT	TEWITTE
74－W－182	1060	GE－NMPO	GEMP－448（NOV 66）	NOV66	A．PRINCE．H．B．HEND	DERSON ET．AT－
74．W－183	1661	CE－NMPO	GEMP－448（NOV 66）	NOV66	A．PRINCE．W．B．HEND	DERSON ET．AL．
74－W－189	1052	CE－MPO	GEMP－448（NOV 66）	NOV66	A，PRINCE．W．B．HEND	DERSON ET．AL．
74－W－136	1063	GE－NMPO	GEMF－448（NOV（6）	NOV66	A．PRINCE．H．B．HEND	DERSON ET．AL．
75－RE－185	1083	GE－NPO	GEMP－587	3ANSO	W．B．HENDERSON．J．	．W．ZWICK
7\％－RE－197	1084	GE－NPO	GEMF－S87	JANGO	W．B，HENDERSON．J．	．W．ZWICK
79－All－197	1166	ENW，ENL	PRI．COPMK 67．72）	JAN72	LECMARD．STELARTI	STANDARD N．GAMMA）
Q2－PB	1136	ORNL	ORNL－4765（MAR 72）	JU． 71	C．Y．FU AND F．PERE	
99－TH－232	1117	B＋W	BAW－317（1970）	NOV66	WITTKOPF．ROY．LIVQ	OLSI（REV．APR70）
91－PA－233	1119	BAPL	PRI ．COMN．（1970）	JAN70	P．C．YOUNG．D．R．HAE	RRIS
92－U－233	1110	BAPL	WAPD－TM－691（ 1969）	MAR71	N．M．STEET（ DATA M	MOD，MARCH 71）
FISS．PROD．	1042	Bow	Baht 320 （DEC．66）	DEC66	W．A．WITTKOPFL FOR	THERM．REACTOPS）
FISS．PROD．	1066	B＋W	EALH－320（ DEC．66）	DECES	H．A．HITTKOFFL FOR	THERM．REACTOPS）
FISS．PROD．	1067	Bow	BAWH20（ 320 （EC．66）	DEC66	W．A．LITTKOPFIFOR	THERM．REACTOPS）
FISS．FRAG	1255	B＋W	TO EE F＇rel．	A JG71	Z．LIVOLSI	
92－1－234	1043	GGA	（AA－8135 1967）	JAN67	M．K．DRAKE．P．NICHO	
92－U－235	1157	AI．ENW，ANC	ENHL－i596，ANCR－1944	ALJG71	ALTER，OUNFORD．LEO	ONARD．PITTEPLE
FISS．PRCD．	1045	B．W	Ball 320 （DEC．66）	DECE6	W．A．WITTKOPFS FOR	THERM．REACTORS）
FISS．PROD．	1068	B＋W	EALH 320 （DEC．66）	DEC66	W．A．WITTKOPFIFOR	THERM．REACTORS）
FISS．PRDD．	1069	Bow	Bath 320 （DEC．66）	DEC66	W．A．WITTKOFFP FOR	THERM．REACTORS）
FISS．FTEAG	1256	$\mathrm{B}+\mathrm{W}$	TO EE PLEL．	Alug7	Z．LIVOLSI	
92－U－236	1163	SRL	TO EE PLEL．	0 OT71	F．J．ITC CROSSON	
92－U． 238	1158	UMRD	HARD－4181－1（AUG 71）	ALG71	T．A．PITTERLE AND	C．DURSTON
93－NP－237	1145	ENNS	TO EE PLEE．	MAYG9	G．R．LEOMAPD	
94－Pし－238	1050	AI	MAA－SR－12271t 1967）	MAYG7	H．ALTER AND C．DLN	NFORD
94－Pu－239	1159	ENL．ENN，ANC	ENL－50308，ANCR－1945	ALS71	FRINCE．LEOMARD．SM	MITH，PITTEFLE
FISS．PROD．	1052	$\mathrm{B}+\mathrm{W}$	BALH 320 （DEC：66）	DEC66	W．A．WITTKOPFL FOR	THERM．REACTORS）
FISS．PROD．	1670	B＋W	BAH－320（DEC．66）	DEC66	W．A．WITTKOPFC FOR	THERH．REACTORS）
FISS．PROD．	1071	B．W	EAH 320 （DEC，66）	DEC66	W．A．WITTKOPFC FOR	THERM．REACTORS）
FISS．FRAG	1257	B＋W	TO EE PIEL．	Alu971	2．LIVOSI	
94－Pし－240	1105	GOA，Bies	PRI．COTH1．CSEWG 1969	SEP69	MATHELS．PITTERLE．	．LEONATD．PRINCE
94－Pu－241	116	EML，AI	PRI．COTM1， 1969	Nove9	E．OTTEWITTE ADD A	A．PRINCE
FISS．FRAG	1258	B＋W	TO EE PLEL．	A 1.1071	Z．LIVCLSI	
94－PU－242	1161	AI．ANC	NMA－SR－12271（ PAYG7）	Al071	ALTER AI）MOD．EY	YOUNG－GRIFESEY
95－A14－241	1056	ANC	PRI．COPMT．（ NOV．66）	NOV66	J．R．STIITH AND R．A	A．GRIMESEY
95－ANS243	1957	ANC	PRI ．COTM1，（ NOV .66 ）	NOVE6	J．R．SHITH NDD R．A	A．GRIMESEY
\％6．Cl－244	1162	AI，ANC	Ma－SR－12271（ MAYG7）	Alugi	ALTEREAI）MOU．EY	EERVETH（ANC）

TABLE OF CONTENTS (Z/A SORTED)

SYMBOL	MAT. No.	$\begin{aligned} & \text { SECTION } \\ & \text { NO. } \end{aligned}$	SYMBOL	MAT. NO.	$\begin{aligned} & \text { SECTION } \\ & \text { NO. } \end{aligned}$	SYMEOL	MAT. NO.	$\begin{aligned} & \text { SECTION } \\ & \text { NO. } \end{aligned}$
1-H-1	1148	1-1	46-PD-107	1220	36-83	75-RE-195	1083	75-185
1-H-2	1120	1-2	46-PD-109	1221	36-83	75-RE-187	1094	75-185
2-HE	1088		47-AG-107	1138	47-107	79-AU-197	1166	79-197
2-HE-3	1146		47-AG-109	1139	47-107	82-P日	1136	82- 0
3-L1-6	1115	3-6	4B-CD-113	1223	36-83	90-TH-232	1117	90-232
3-LI-7	1116	3-7	53-1-131	1224	36-83	91-PA-233	1119	91-233
4-EE-9	1154	4- 9	53-1-135	1225	36-83	92-U-233	1110	92-233
5-8-10	1155	5-10	54-XE-131	1226	36-83	RSFP	1042	92-233
5-B-11	1160	5-11	54-XE-133	1227	36-83	SSFP	1066	92-233
6-C-12	1165	6-12	54-XE-135	1026	54-135	NSFP	1067	92-233
$7-\mathrm{N}-14$	1133	7-14	55-CS-133	1141	47-107	RES.LUMP	1255	92-233
8-0-16	1134	B- 16	55-CS-135	1229	36-83	92-U-234	1843	92-234
11-NA-23	1156	11-23	55-CS-137	1230	36-83	92-U-235	1157	92-235
12-MG	1014	12-0	57-LA-139	1231	36-83	RSFP	1045	92-235
13-AL-27	1135	13-27	58-CE-141	1232	36-93	SSFP	1068	92-235
14-SI	1151	14-0	59-PR-141	1233	36-83	NSFP	1069	92-235
17-CL	1149	17- 0	59-PR-143	1234	36-83	RES.LUMP	1256	92-235
19-K	1150	19-0	60-ND-143	1235	36-83	92-U-236	1163	92-236
20-CA	1152	20- 0	60-ND-145	1236	36-83	92-U-239	1158	92-238
22-TI	1144	22- 0	60-ND-147	12 '37	36-83	93-NP-237	1145	93-237
23-V	1017	23-0	61-9M1-147	1238	36-83	94-PU-238	1050	94-238
24-CR	1121	24- 0	61-PM-14EG	1239	36-83	94-PU-239	1159	94-239
25-MN-55	1019	25. 55	61-PM-148M	1254	36-83	RSFP	1052	94-239
26-FE	1180	26-0	61-PM-149	1240	36-83	SSFP	1070	94-239
27-C0-59	1118	27-59	61-PM-151	1241	36-83	NSFP	1071	94-239
28-NI	1123	28- 0	62-5M-147	1242	36-83	RES.LUMP	1257	94-239
29-Cu	1087	29-0	62-5M-148	1243	36-83	94-PU-240	1105	94-240
29-CU-63	1095	29. 63	62-5M-149	1027	62-149	94-P!S-241	1106	94-241
29-CU-65	1096	29-65	62-5M-150	1244	36-83	RES.LUMP	1258	94-241
36-KR-83	1201	36-83	62-SM-151	1245	36-83	94-PU-242	1161	94-242
40-2R-95	1202	36-83	62-SM 152	1246	36-83	95-AM-241	1056	95-241
41-NB-93	1164	41-93	62-SM-153	1247	36-83	95-AM-243	1057	95-243
41-NB-95	1203	36-83	63-EU-151	1028	63-151	96-CM-244	1162	96-244
42-M0	1111	42-0	63-EU-153	1029	63-153			
42-M0-95	1204	36-83	63-EU-154	1248	36-83			
42-10-97	1205	36-83	63-Eリ-155	1249	36-83			
42-10-98	1206	36. 83	63-EU-156	1250	36-83			
42-M0-99	1207	36-93	63-EU-157	1251	36-83			
42-M0-100	1208	36-83	64-GD	1030	64- 0			
43-TC-99	1:37	43-99	64-60-155	1252	36-83			
44-RU-10?	1210	36- 83	64-6D-157	1253	36-83			
44-RU-102	1211	36-93	66-0Y-164	1031	66-164			
44-RU-103	1212	36-83	71-LU-175	1032	71-175			
44-RU-104	1213	36-83	71-LU-176	1033	71-176			
44-RU-105	1214	36-93	73-TA-181	1126	73-181			
44-RU-106	1215	36-83	73-TA-182	1127	73-181			
45-RH-105	1217	30- 83	74-L-182	1060	74-182			
45-RH-103	1125	45-103	74-L-183	1061	74-183			
46-PD-105	1218	36-83	74-W-184	1062	74-184			
46-PD-106	1219	36-83	74-W-186	1263	74-186			

Evallated nucleak eata fon hyonecen in tue emoffi-il fonuat

by

L. Stewart, R. J. Lebouve, and P. G. Young

ABStract
The folloging nuclear data are given for hydrogan in the energy range from $1.0 \times 10^{-5} \mathrm{eV}$ to 20.0 MeV .
file 1. The general information file includes a brisf description of the data to follow.
File 2. Values for maclear spin and effectiva scattaring radius are glven in the resonance file.
File 3. Smooth cross-atection date are givan for the cotal cross section, the free-atom alastic scatterime cross section, and the rediative capture cross saction; data for $\bar{\mu}, 5$, and Y are ilso included.
file 4. The anular distributions for elascic scatering are given as protailitity vs cosing of the scactering angla.
File 7. This free-atern-scatterling cross saction is the only information provided at thermal.
file 12. Secundery gemmaray production multiplicities for cepture, which are equal to ene, are given in thls file.
File th. Gammeray engular distributions are provided for the single radiatifo capture gamer ray.

IMTROOUCTION

This evaluazion for hydrogen (Hat - lih月) dif* fers from the previous EndF/O valuation (MAT (COI) in thet the elastic scattering data mere taken from recent mork by mopkins and Iralf' and the data for rediatije capture were taken from recent work by Horsley. ${ }^{2}$ Also. gummeray production data, not giwht th the Mat = 1001 evaluation, are included. A complete Itsting for mat -1141 is given in the Appendix.
FILE 1: GENEALL IMPOMNTIOH
A briaf summery of the data to follion is given in file 1 . The atomic mass for hydrogen was taken to be 1.007925 from the May 1369 "Chart of the nuelides. ${ }^{3}$

FILE 2: AESOMAKE IMFORMTIOW

Muclear spin and effective scatterime radius are givan in this file. An effactive seatering
redius of $1.2756 \times 10^{-12} \mathrm{~cm}$ Is consistent with a potential scattering eross section of 20.449 b , as determined from 4ne ${ }^{2}$. Singlet and triplet scattering redit are not included.
FILE 3: smooth caoss sections
Total cross sections (HT = 1) were obiained by adding the alastic ecattering and radiative capture cross sectlons ac all enargles $\left(1.0 \times 10^{-5}\right.$ ay to $\mathbf{2 0 . 0} \mathrm{Mev}$). The hydrogen total cross sections are shown in Fig. 1.

The elastle scettering cross sections ($\mathrm{HT}=2$) mare taiken from on extensive theoratical treatment of fast neutron manurements by Hopkins and ereit. I In thls work, a consistent set of cross sections and angular distributions were, ottained by using a set of phase shifts proviously determinad at Yale University. Tabular values of the elastic scattering cross section are givan in Ref. I for onlya
few energias. the two lowast polnts baing 100 and 200 keV . The phase shift program and the vale phase shifts warte provided by Hopkins' so that many Intermediate points could be calculated. At 0.1 keV, the lowest energy recommended for running this program, the scattering cross section is 20.4488 b. This value is in excelient agreement with the thermal cross section (20.442 ± 0.023 b) derived by Qavis and Barschall ${ }^{5}$ from a revised value of the effective range obtained by determining the best values of the neutron energies from many experiments below 5 Hel performed since 1950. Therefore, for this evaluation, the free-atom-scattering cross section is assumed to be constant below 100 el and equal to the value calculated from the Yale phase shifts at 100 els, giving a thermal cross section of 20.449 b . At higher energies, these theoretical predictions are in excellent agreemant with the recent masurements of Davis ${ }^{6}$ giving an average value of 0.84 for the square of the deviation for energies below 20.0 HeV . The elastic cross section for hydrogan from 1.0×10^{-5} eV to 20.0 MeV is shown infig. 2.

The cross sections for radiative capture (HT 102) were takan from the 1966 publication of Horsiev: ${ }^{2}$ whare a value of 332 nh was adopted for the thermel value. Deuteron photedisintegration eross sections were also employed in deriving radiative capture in Horslay's report. Although the Huclear Data article by Horsley ${ }^{2}$ was referanced for WhT = 1001, the values were taken from an early version descrined In Aine $0-23 / 65$, and these were later revised for the Nuclear Data artisle. The latter report (Ref. 2) has been used for this evaluation, as suggested by Horsiey. The radiative capture cross section for Mat $=1148 \mathrm{fran}!.0 \times$ 10^{-5} el to 20.0 if y is sham in Fig. 3.

The average value of the cosine in the laborae tory system (\bar{u}_{L}) for elastic scattering (H T - 251) was derived from the secondary angular distributions in file (MT m). Valuas for u_{L} from $1.0 \times$ 10^{-5} eV to 20.0 HeV are shown in Fig. h_{L}.

Values for 5 , the average logarithmic energy change per collision (HT = 252), and for Y, the Goertzel-Greuling constant (MT - 253), are taken equal to 1 over the range 1.0×10^{-5} ey to 29.0 KoV , following the MT - 1001 evaluation.

FILE 4: SECONDARY ANCILAR DISTRHEUTIONS
Angular distributions of sacondary neutrons resulting from elastic scattering are tabulated from 1.0×10^{-5} ev to 20.0 Mav . Distributions at $0.1,5$, 10, 20, and 36 Mel ara provided by hef. 1; additional and intermadiste data were calculated by using tha Hopkins-Breit phase shift progran and the Yale phase shifts. As shown in figs. 5 through 16, the angular distributions above 100 kel are neither isotropic below 10 MeV , nor are shay symmetric about 90° at higher energies as assumed in the earlier version (MAT = 1001). Ar 100 keV , the angular distritutlons are assumed to be isotropic because tha $180 / 0^{\circ}$ ratio is very nearly unity (1.0011). At 500 keV, this ratio approaches 1,005 ; therefore, the pointwise normalized probabllities as function of the cosine of the scattering angle are provided at $1.0 \times 10^{-5} \mathrm{eV}$ (isotropic), 100 keV (isotropic), 500 keV, and at l-MeV intervals from 1 to 20 MeV .
file 5: thermal data
Free-atom cross sections spacified from $1.0 \times$ 10^{-5} eV to 5 eV are included in this file.

FILE 12: PHOTON PRODUCTION CROSS SECTIONS
A multiplicity representation is used to describe the single hydrogen radlative capture ganma ray from 1.0×10^{-5} eV to 20.0 MeV . The multiplicity is referred to $\boldsymbol{H T}-102$ in File 3 and is unity at all neutron enargies. To adequately represent the gaman-ray energy for Mey-imeldent neutrons, the neutron energy region from 0.2 to 20 MeV is divided Into 16 different energy bands : efs the gamma-ray energy is tabulated for aach neutron energy band as

$$
\bar{E}_{Y}=2.225 \times 10^{6}+\bar{E}_{n} / 2 \quad \text { (ev) }
$$

where \bar{E}_{n} is the meutron energy ot the midpoint of the band in el. The value $2.225 \times 10^{6} \mathrm{eV}$ corresponds to the deuteron binding energy; that is, the small energy change due to the nuclear recoil that accompanies gamme emission has been ignored.

FILE Jh: CAMLA-Ray AMGULAR DISTRIDUTIONS

The gammeray angular distributions are assumed to be isotroplc at all neutron energies from $1.0 \times$ $10^{-5} \mathrm{eV}$ to 20.0 meV .

Fis. 1. Totul crost action (HT = 2).

Fig. 3. Kadiutive capture crons section (MT = 102).

Fig. 4. Average value of cosiae in laboratory syatem ($\mathrm{NT}^{2}=251$).

Fig. 1. Angular distribution for $2,0 \mathrm{NeV}$.

:Hs. 8. Angular alstibibution for 4.0 Miv.

Fig. 9. Angular distribution for 6.0 MeV .

Fig. 10. Angular distribution for 8.0 MeV .

Fig. 13. Angular distribution for 14.0 HeV .

Fig. 14. Anguiar distribution for $16,0 \mathrm{meV}$.

F1g. 15. Angular distribution for 18.0 MaV .

Fig. 16. Angular distribution for 20.0 HeV .

atrinemets

 Iering Otservalios Rutuirel for Migh Prectsion fass-Weutron mingurgments." sutmitied to Hufletr
 urior to onelisulian (Ytyol.
8. A. Mersiev. "Weutron Gross serinlom of myergen in the Enurgy Roce 0,0/ of - 20 Mely "Muclay 0ata 2. 243 (ists) ind orivete ceminicetien (ivie).
3. "chart of the Mucilides;" Botielle Momorial Institute, My 1835 .

 25. 157 (isct).
 in the ne simlet tiffetive hanes!" thy? Letieps 272,625 (Iges).
6. to c. eayis, eng it 15, h74 (1970) and privatc cemotegton (1970)

1-H-2 1120 ENH.ENL ENH (PRI.COMP1.1967) JLNG? LEONARO.STEWART MOD.GY ENL)

DENTHARIUM (IIYIOMXGNER)
Gencral Identification

$$
\begin{aligned}
M A U & =1003 \\
Z \Lambda & =1002.0 \\
A W I I & =1.39!
\end{aligned}
$$

$$
\begin{aligned}
& \text { [Everline] } \\
& \qquad \frac{\mathrm{Na}}{\mathrm{Na}}=\frac{2.014_{1} 102.12}{1.008665}=1.997
\end{aligned}
$$

Bvaluations Considered

UNC-5038
GA-2156
TID-21629
LASL Library (June 1966)
BNL-32S, 2nd Ed (2964)
ref 2
Ref 3
Ref 4
Ref 5
Ref 6

Radioactive Decey

Tritium: $\lambda=1.79 \mathrm{~s}-09$
[Nuclear Data] ${ }^{(7)}$

Cross Sections

Totial ($\mathrm{HrP}=2$)
There are new totel cross-section data of Foster and Glasgow
in the energy region of $2.5-15-\mathrm{MeV}$. The validity of these date is fairly well substantiacted: 1) The method of aubstitution using a CD_{2} sample and carbon blank was identical to that used by the same experimenters for hydrogen which led to excellent agreement with previous measurements, and 2) the CD_{2} sample used was the same sample used in the measurements at LRL-Livermore. (9) These new measurements have necessitated a reevaluation of the total cross section, particularly for energies $\leq \sim 8 \mathrm{MeV}$. Consideration has been given to 121 known date as of July 1, 1966.(10) The date were fitted to simple functions to assure a smooth bebavior of the cross section. In view of some obvicus systematic discrepancies, a least-squares fitting procedure was judged to be of little value. A good fit to
the data was obtained with the expression:

$$
\begin{equation*}
\sigma_{T}\left(E_{t}=\frac{3.952}{1+.2826 E}-.77 \exp [-1.316 E]\right. \text { barns } \tag{2}
\end{equation*}
$$

where E is in McV.
This fit to high-energy cross sections ($E \geq 100 \mathrm{keV}$) extrapolates to the zero energy value of 3.182 barns. Although this value is significantly lower than others previously proposed [e.g., BNL-325 (6) gives $3.38 \pm .05$ barn] it is difficult to conceive of a smooth extrapolation of the high energy data which would give a significantly higher value. Other reviewers [Stewart and Horsley] ${ }^{11}$ have also arrived at a value of about 3.20 berns.

There are some serious discrepancies with this proposed value. The coherent scattering cross section of deuterium has been established to be 5.76 ± 0.14 barns ${ }^{(2)}$ which gives a free atom value of 2.56 ± 0.6 barns. Thus the incoherent bound atom cross section should be

$$
\frac{3.18-2.56}{\left[\frac{\mathrm{MD} / \mathrm{Mn}}{(\mathrm{MD} / \mathrm{Mn})+1}\right]^{2}}=1.40 \pm .06 \text { barns. }
$$

However, the only precise measurement ${ }^{(13)}$ which does not depend on the value of σ_{I} (free atom) gives $2.25 \pm .04 \mathrm{~b}$. This discrepancy does not seem reconcilable with presently available data. The value of 3.18 for the deuterium free atom cross section is consistent with the measured cross section of $D_{2} O$ in the energy region of about 1 keV .

The total cross section given in ENDF/B is tabulated as 26 point values calculated from Equation (1) over the energy range of $10^{-4} \mathrm{eV}$ to 20 MeV .
n, $2 n(M 1=16)$
The only data available for consideration were those of Catron, ct al. (24) These data appeared to be nearly linear in σ vs $\ell n E$ and were fitted to the expression:

$$
\begin{equation*}
\sigma=323 \mathrm{znE}-189.6 \mathrm{mb} \tag{2}
\end{equation*}
$$

for energies above threshold. The $n, 2 n$ cross section is given as 18 point values calculated from Eq. (2) with $\sigma-\ln E$ interpolation after the lirst two values. Elastic ($M^{\prime}{ }^{\prime}=-2$)

The elastic cross section is derived from the total - $n, 2 n$ discussed previously. The entries in ENDF/B are 26 point values from $10^{-4} \mathrm{eV}$ to 20 MeV with $\ln -\ell \mathrm{n}$ interpolation above $10^{3} \mathrm{eV}$. Capture (MT=102)

BNL-325 (1964) ${ }^{(6)}$ lists four measurements which are badly discrepant. However, the value of 0.37 mb reported by Sargent, et al ${ }^{\text {(15) }}$ has been revised to 0.53 mb according to a private communication ${ }^{(16)}$ and a new measurement from Chalk River reports a preliminary value of $0.506 \pm .005 \mathrm{mb} .^{(17)}$ Thus the values to be considered are:

$$
\begin{align*}
& 0.60 \pm .05 \mathrm{mb} \tag{18}\\
& 0.57 \pm .01 \tag{19}\\
& 0.53 \pm .12 \\
& 0.506 \pm .005 \\
& 0.362 \pm .026
\end{align*}
$$

In view of these results the values given in $\operatorname{ENDF/B}$ were normalized to 0.51 mb .

The capture cross section above 0.25 MeV has been calculated from detailed belance from the cross section for photodiaintegration of the Triton. (21) The results of these calculations agree well with
the measurements of $\ddot{0} \boldsymbol{\circ} \mathrm{sch}$, et al ${ }^{(22)}$ over the energy range of .8 to 1 McV . Although the calculations are preliminary they have been used to gencrate the $\mathrm{NNDF} / \mathrm{B}$ values. The values are listed in LNDF/B as 33 point values from $10^{-4} \mathrm{eV}$ to 20 MeV with en-en interpolation.

Angular Distributions
IThere are a number of tables of Legendre coerficientis derived from experimental anfular distributions. The values derived in UNC-5038 ${ }^{(2)}$ appcared to consider all of the pertinent data. UNC-5038 lists six Legendre cocfficients at closely-spaced energy intervals from 0 to 18 McV . For the ENDF/B file, coefficients are listed at 35 energy values which were judged to give a sufficiently fine mesh to accurately reproduce the distributions.

1. F. Everling, L. A. König, J. E. H. Mattacuh, and A. H. Wapstra, Nuclear Physics 18, 529 (1960).
2. M. H. Kalos, H. Goldstein, and J. Ray, UNC-5038 (1962).
3. G. D. Joanou, A. J. Goodjohn, and N. F. Wikner, GA-2156 (1961).
4. Perkins, TID-21629 (1964).
5. LASL nuclear data file, Private Communication, L. Stewart (July 1966).
6. Stehn, Goldberg, Magurno, and Wiener-Chasman, BNL-325, Second Edition, Suppl. 2, Vol. 1, $\mathrm{Z}=1$ to 20 (May 1964).
7. Nuclear Data A, 1,440 (1966).
8. D. G. Foster and D. W. Glasgow, Pacific Northwest Laboratories, Unpublished Data (1966) Arailable from BNL Sigma Center.
9. J. M. Peterson, A. Bratenahl, and J. P. Stoering, Phys. Rev. 120, 521 (1960).
10. CINDA, EANDC-60U (July 1, 1966).
11. L. Stewart and A. Horsley, Private Commanication (September 1966).
12. W. Bartolini, R. E. Donaldson, and L. Passell, Bull. Am. Phys. Soc. 8, 477 (1963).
13. W. Gissler, Z. Krist. 118, 149 (1963).
14. H. C. Catiron, M. D. Goldberg, R. W. Ilill, J. M. LeBlanc, J. P. Stoering, C. J. I'aylcr, and M. A. Williamson, Phys. Rev. 123, 218 (1961).
15. B. W. Sargent, D. V. Booker, P. E. Cavanagh, H. G. Hereward, and N. J. Niemi, Can. J. Research A25, 134 (1947).
16. Reportedly due to S. Hanna, privale communication.
17. Merritt, Chalk River, Private Communication.
18. E. T. Jurney and H. T. Motz, Bull. Am. Phys. Soc. 2, 176 (1964).
19. L. Kaplan, G. R. Ringo, and K. E. Wilzbach, Phys. Rev. E7, 785 (1952).
20. S. Raboy and C. C. Trail, Bull. Am. Phys. Soc. 2, 176 (1964).
21. Private Communication, Anonymous (1966).
22. Hösch, et al, Helv. Phys. Acta 38, 8, 753 (1965).

NATURAL HELIUM
by
E. M. Pennington
Argonne National Laboratory July 1968

General Identification

MAT $=1088$
$Z A=2000.0$
AWR=3.96822
Abundances: $\mathrm{He}-3 \mathrm{O} 0000013$
He-4 0.9999987

Data Inciuded

Because of the low abundance of $\mathrm{He}-3$, only its (n, p) cross section, which is very large at low energies, need be considered. Elastic scattering is the only possible reaction for neutrons incident on $\mathrm{He}-4$ at energies below 15 MeV . Thus the elastic scattering cross section and values of $\bar{\mu}_{\mathrm{L}}$, ξ, and γ are given in File 3, and elastic scattering Legendre coefficients are given in File 4. Parameters for a free gas thermal scattering law are in File 7.

Data Sources

The elastic scattering cross section and the Legendre expansion coefficients were calculated from $\mathrm{s}^{-}, \mathrm{p}$-, and d-wave phase shifts using a Fortran program written for the purpose. The phase shifts were read from smooth curves based on Table I of Ref. 1. At energies below the

300 keV lower limit of Table I, each of the two p-wave phase shifts was obtained by assuming a functional form based on the low energy limit for a single p-wave resonance, with parameters determined from fitting the low energy phase shifts of Table I. The s-wave phase shift below 300 keV was calculated using hard sphere scattering and a nuclear radius, $a=2.4$ Femi. This yields the thermal scattering cross section $=4 \pi \mathrm{a}^{2}=0.7238$ barns in agreement with the experimental value of 0.73 ± 0.05 barns (Ref. 2). The low energy s-wave phase shifts of Table I are consistent with a nuclear radius of about 2.48 Fermi and so would yield a somewhat high thermal cross section.

Values of $\bar{\mu}_{L}, \xi$, and γ were calculated from the Legendre coefficients using a Fortran program, MUXIGA. This program uses the equations of Ref. 3-5.

An elastic scattering transformation matrix from the center-of-mass system to the laboratory system was computed using CHAD (Ref. 6).

The (n, p) cross section for $\mathrm{He}-3$ is that recomended in the evaluation of $\mathrm{He}-3$ by J. Als-Nielsen given in Ref. 7. Extension from 10 to 15 MeV was made using linear extrapolation on a $\log \sigma-\log \mathrm{E}$ scale.

The total cross section is the sum of the elastic scattering and (n, p) cross sections.

Comments

The phase shifts of Ref. 1 are optical model phase shifts chosen to fit both angular distribution and polarization data at many energies. The total scattering cross section is also fit within the scatter of the experimental points. Another recent set of phase shifts (Ref. 8) is not very different from those used here and could also have been used in the present work. There should be no serious errors in the He-4 data calculated from the phase shifts.

As discussed in Ref. 7, the He-3 (n, p) cross section is rather well known. Probably more error is introduced into the (n, p) cross section for natural helium by the uncertainty in the $\mathrm{He}-3$ isotropic abundance than by the uncertainty in the $\mathrm{He}-3$ (n, p) cross section itself.

Previous evaluations of helium for reactor calculations include those of J. J. Schmidt (Ref. 9) and B. R. S. Buckingham et al. (Ref. 10). Schmidt's evaluation includes the (n, p) cross section for $\mathrm{He}-3$ and $\sigma_{S}, \bar{\mu}_{L}$, and a set of phase shifts for He-4. Buckingham et al. give separate evaluations for $\mathrm{He}-3$ and $\mathrm{He}-4$. For $\mathrm{He}-3$, elastic (n, p), ($n, \mathrm{~d}$), and ($\mathrm{n}, 2 \mathrm{n}$) cross sections are given, as well as elastic angular distributions. The He-4 evaluation gives σ_{S} and angular distributions.

The present evaluation will be described in detail in Ref. 11.

References

1. G. R. Satchler et al., Nuclear Physics, A112, 1-31 (1968).
2. R. Genin et al., Journal de Physique et le Radium, 24, 21-26 (1963).
3. H. Anster, Journal of Applied Physics, 27, 3, 307 (1956).
4. H. Amster, Journal of Applied Physics, 27, 6, 663 (1956).
5. H. Amster, Journal of Applied Physics, 29, 4, 623-627 (1958).
6. R. F. Berland, NAA-SR-11231 (1965).
7. E.N.E.A. Neutron Data Compilation Centre Newsletter No. 6 (1967).
8. B. Hoop, Jr., and H. H. Barscha11, Nuclear Physics, 83, 65-79 (1966).
9. J. J. Schmidt, KFK-120, Parts II, IIJ. (1962), Part I (1966).
10. B. R. S. Buckingham et al., AWRE 0-28/60 (1961).
11. E. M. Pennington, ANL-7462 (to be published).

2-HE-3 1146 LASL
LASTL (PRI.COMM. 1971) 1968 L.STEWART (STANDARD HE-2 N.P) SURYARY DOCUR WHIATION FOR He-3"
L. Stawart and R. J. LaBauve

Las Alamos Scientific Laboratory

ABSIRACT

The following nuclear data are given for ${ }^{3}$ He in the energy range from $1.0 \times 10^{-5} \mathrm{eV}$ to 20 MeV :

File 1. The general detecription of the data which follow
File 2. Values of the nuclear spin and effective acattering radius

File 3. Smooth point-wise data for the total, the free-atom elastic, $(n, p),(n, d)$, and the radiative capture cross sections; data for $\bar{\mu}, \xi$, and γ are also included

File 4. The angular diatribution for elastic scattering as probability vs cosine of the acattering angle in the center-of-mass syatam

File 7: The free-atom-scattering cross section at thermal

I. INFRODUCTION

These data were translated from an unpublished evaluation completed by I. Stewart in 1968. In 1971, the Standards Subcourittee of GSEWG reviewed the file and concluded that the (n, p) cross section was still adequately represented to be recommanded as a atandard crose section.

II. TOTAL CROSS SECTION

The total cross section was obtained by sumaing the partials up to 100 keV . From 100 keV to 20 keV , the LASI measurements ${ }^{1}$ were used exclusively in this evaluation.

III. ELASTIC SCATMERING

Available measurements of Seagrave, Cranberg, and Simmons ${ }^{2}$, of Sayres, Jones, and Wu ${ }^{3}$, and of Antolkovic et al. 4 were used. Also the $p+T$ scattering was used to fill the gaps in energy where no $n+J_{\text {He }}$ elastic scattering meamurements exist, The $p+T$ experiments enployed were those of Brolley et al.5, Rosen and Ieland 6 , and of Vanetaian and Fedchenko?. Wick's Iimit was employed at all energies to insure the nonviolation of unitarity. The angular distributions are given as probabilities versus cosine of the center-of-mass scattering angle.

[^0]
IV. RADLATIVE CAPTURE

Gallmann, Kane, and Pixley ${ }^{8}$ have placed upper limits on the thermal capture cross section of $100 \mu \mathrm{~b}$ and $10 \mu \mathrm{~b}$ for gensa and pair emission, respectively. Since these are upper limits and absolute measurements do not exdst, no eatimate is made here for radiative capture. The gaman-ray production cross sections are also assumed to be negligible and are therefore ignored.

v. (n, p) CROSS SECTION

The (n, p) cross section below 10 eV was derived solely from the measurements of Als-Nielsen and Dietrich 9 giving 5327 ± 10 b at thermal. A 1/v extrapolation was assumed to 1.7 keV , where the slopa was changed to merge with the slope of the crurve given by the data of Gibbons and Mackiln 10 , il. Many experiments ${ }^{3}, 12-17$ have been performed at higher energies although, all too often, the cross sections were not obtained on an absolute basis. The most extensive absolute measurements were those of Perry et al. 13 which have been heavily weighted in this evaluation.

VI. (n, d) CROSS SECTION

Only the Columbia dat ${ }^{3}$ near 7.5 keV were available on this reaciion. Bradbury and Stewart 18, however, employed detailed, balance and the LASL measurements on the inverse reaction, that in, the $D(\alpha, n)^{3} H e$ reaction, to predict the energy dependent cross section to 15 MeV . Above 15 MeV , these data were extrapolated.

VII. THREE- AND FOUR-BODY BREAKUP

The $3_{\mathrm{He}}(\mathrm{n}, \mathrm{np}) \mathrm{D}$ and $3_{\mathrm{He}}(\mathrm{n}, 2 \mathrm{n} 2 \mathrm{p})$ reactions have Q values of -5.494 and -7.718 NaJ , respectively. Only a few measurements exist on thege reactions, and these are usually limited to a search for final-state phenomena. The spectrum is usually observed at one angle very close to zero degrees. Observation of the proton spectrum at 14.4 NeV reveals no clear indication of $\mathrm{n}-\mathrm{d}$, twonucleon, or three-nucleon final-state interaction. A atrong n-p final state is evident from measurements of the deutȩron spectirum at $\theta_{d}=50$. An upper limit of 12 mb has also been set on the $\mathcal{J}_{\mathrm{He}}(\mathrm{n}, 2 \mathrm{n} 2 \mathrm{p})$ reaction. In the absence of measurements of the absolute cross sections, these break-up cross sections have been assumed small and are therefore ignored in the present evaluation.

RGFERMNCES

1. Los Alanos Physics and Cryogenics Grougs, fucl. Phys. 12, 29 (1959).
2. J. D. Seagrave, L. Cranberg, and J. E. Simmons, Phys. Rev. 119, 1981 (1960). (Used hydrogen scattering as atandard; corrected for miltiple acattering.)
3. A. R. Sayres, K. W. Jones, and C. S. Wh, Phys. Rev. 122,1853 (1961). (Recoil proportional counter but nomalized to a "total integral" obtained using an unkown extrapolation to zero degrees.)
4. B. Antolkprić, G. Paić, P. Thomak, and D. Rendić, Phys. Rev. 159, 777 (1967). (Counted ${ }^{3}$ He recoils using counter telescope.)
5. J. E. Brolley, Jr., T. M. Putnam, L. Rosen, and L. Stewart, Phys. Rev, 117 , 1307 (1960).
6. L. Rosen and W. Leland, WASH-1079, p. 109 (1967).
7. R. A. Vanetsian and E. D. Fedchenio, Translation: Soviet Journal of Atomic Energy 2, 141 (1957).
8. A. Gallmann, J. Kane, and R. Plxley, BAPS 5, p. 19 (1960).
9. J. Als-Nielsen and O. Dietrich, Phys. Rev. 133, B925 (1964).
10. J. H. Gibbons and R. L. Mackinn, Phys. Rev. 114 , 571 (1959). Dbtained, by reciprocity, from measuremant of the $T(p, n) \overline{H e}$ reaction. These data are a corrected version of the data of R. L. Mrokiln and J. H. Gibbons, Phys. Hev. 109, 105 (1958); $\sim 27 \%$ change due to 8 feanalysia of target gas. Normalized to a $T(p, n)^{3} \mathrm{He}$ cross mection of $572 \mathrm{mb} \pm 10 \%$ at 2.955 MeV as measured by the authors. [J. H. Gibbons, pirvate comanication (1963)].
11. R. J. Macklin and J. H. Gibbons, Proceedings of the International Conference on the Study of Nuclear Structure with Neutrons, Antwerp, 19-23 July 1965 (North-Holland Publishing Co.) p. 498. Obtained by reciprocity; normalization: based on an earlier absolute value measured by the authors of 1980 mb at 100 keV . Quote from Gibbons, ${ }^{\text {H.... caution the reader that for } E_{n} s}$ 10 keV , we are working into the toe of our resolution (beam plus targetthickness profile), so the data are much less trustworthy." (Private commanication, 1966).
12. R. Batchelor, R. Aves, and T. H. R. Skymme, Rev. Sci. Instr, 26, 2037 (1955). $3_{\text {He-filled }}$ proportional counter; resolution affected by smali tritium contamination; long counter used for flux monitor.
13. J. E. Perry, Jr., E. Haddad, R. L. Henkel, G. A. Jarris, and R. K. Smith, unpublished (1958); experiment reported by J. D. Seagrave in Proceedings of Conference on Nuclear Forces and the Few Nucleon Problem, London, 1959 (Pergamon Press). Data obtained by reciprocity from measurements of the $T(p, n)^{3} \mathrm{He}$ reaction; calculations and integrals by Stewart. Private communiby J. E. Perry, Jr. (1960).
14. M. D. Goldberg, J. D. Anderson, J. P. Stoering, and C. Wong, Phys. Rev. 122, 1510 (1961). Errors not given.
15. G. F. Bogdanov, N. A. Vlasov, C. P. Kalinin, B. V. Rybakov, L. N. Semoilov, and V. A. Sidorov, JETP (USSR) 36, 633 (1959).
16. W. E. Wilson, R. L. Walter, and D. B. Fossan, Nucl. Phys. 27, 421 (1961).
17. B. Antolković, G. Paic, P. Thomak, and D. Rendie, private commonication (1967).
18. J. N. Bradbury and L. Stewart, BAPS 3, 417 (1958), Obtained, by reciprocity, from selected points through the $D(d, n){ }^{3} H e$ data of J. E. Brolley, Jr., T. M. Putnam, and L. Rosen, Phys. Rev. 107, 820 (1957).

SUMAARY of ${ }^{6}$ Li data For midr/b-III ${ }^{*}$
by
M. E. Battat and R. J. LaBauve

Los Alamos Scientific Laboratory

introductions

Abstract

The data, in the energy range of $10^{-5} \mathrm{ev}$ to 20 MeV , for ${ }^{6} \mathrm{LI}$ (MAT 1115) were submitted to the NNCSC in September 1971 for inclusion in EMDF/B-III. These data represent an extensive revision of the earlier file (MAT 1005) which was, for the most part, based on a UKABA evaluation. 1 A mejor change was made in that below about 1.7 MeV the cross sections for MATl 115 reflect very strongly the detailed review of the available data by Uttley, Sowerby, Patrick and Rae.? In choosing the latter data, consideration was also given to the recomendation of the CSENG Normalization and Standards Subcommittee that Uttley's (n, α) data be used in the latter energy range. ${ }^{3}$ The data above 1.7 MeV for MAP 1115 will be discussed in later sections of this document. Forthis first pass reevaluation, the (n, γ) cross sections from the earlier $X X$ evaluation were retained. Following Uttley et al., the data will be considered in the following energy intervals: (1) thermal, (2) thermal to 10 keV , (3) 10 to 500 keV , and (4) 500 keV to 1.7 MeV . Above 1.7 MeV , the data will be considered by reaction type.

THEFRMAL ENERGIES

The cross sections given in the file at 0.0853 eV are as follows:

$$
\begin{aligned}
\text { Total } & =941.015 \mathrm{~b} \\
\text { Elastic } & =0.72 \\
(\mathrm{n}, \alpha) & =940.25 \\
(n . x) & =0.045
\end{aligned}
$$

It is estimated that the (n, α) cross section is known to $\pm 0.5 \%$. The choice of Uttley et al. for the (n, y) cross section is $30 \pm 8 \mathrm{mb}$.

THERMAL ENERGIES TO 10 keV

The (n, α) cross sections up to 100 eV were calculated from the fomula

$$
\sigma(n, \alpha)=(149.56 / \sqrt{E})-0.024 b
$$

Abstract

Above 100 eV , the p-wave absorption contribution from the 247 keV resonance becomes increasingly important, and at 10 keV the negative swave absorption (-0.024 b) is largely cancelled. Uttley et al. assign an uncertainty of $\pm 1 \%$ to the (n, α) cross section from thermal to 10 keV . over this energy range, the data given in the file deviate from a strict $1 / v$ dependence $(149.56 / \sqrt{E})$ by a maximum of $\mathbf{- 0 . 4 \%}$.

[^1]The elastic cross section is held constant at 0.72 b up to 2 keV with a monotonic increase thereafter to 0.7221 b at 10 keV . The elastic angular distribution up to 10 keV is specified as isotropic in the CM system.

10 to 500 keV

The uncertainties estimated for the (n, α) cross section are:

$$
\begin{aligned}
& \pm 2 \% \text { at } 100 \mathrm{keV}, \pm 5 \% \text { from } 100 \text { to } 300 \mathrm{keV} \text {, and } \\
& \pm 10 \% \text { at } 500 \mathrm{keV} \text {. }
\end{aligned}
$$

As can be seen from Fig. 2 of Ref. 2, there is great disagreement among the (n, α) measurements in this energy range. The (n, α) curve used in this evaluation is the one recommended by uttley et al. based on their careful review of the experimental data. In arriving at the recomended curve, the latter authors have considered the following points:

1. Errors in the energy scales of the measurements.
2. The inadequacy of those experiments in which the cross sections were measured relative to the ${ }^{235} \mathrm{U}$ fission cross section.
3. The inadequacy of those measurements in which the neutron flux was measured relative to a long counter.
4. The inconsistency of measurements made using thick lithium detectors with total and scattering cross section measurements.

Uttley et al. do, however, state that much experimental work ${ }^{2}$ remains to be done to confirm their recommendations.

4 In general, the total cross sections are those reported by Uttley and Diment. ${ }^{4}$ The scattering cross sections below and above 100 keV reflect the data of Asami and Moxon ${ }^{5}$ and Lane, Langsdorf, Monahan, and Elwyn ${ }^{6}$, respectively. For the elastic angular distributions, Legendre coefficients (from which the normalized probability distributions are reconstructed) were inferred by fitting the data of Lane et al. ${ }^{6}$

200 keV to 1.7 MeV
The (n, α) data in this energy range were obtained by subtracting the scattering cross section from the total cross section. The total cross section values were essentialiy those reported by Diment and Uttley. 4 For the scattering cross sections the measurements of Lane et al. ${ }^{6}$ and Knitter and Coppola7 were considered. The (n, α) cross section uncertainties are estimated to be:
$\pm 10 \%$ at 500 keV , increasing to $\pm 15 \%$ between 700 and 1000 keV , and decreasing to $\pm 10 \%$ by 1.7 MeV .

TOTAL CROSS SECTICN

From 2 to 15 MeV , the primary reference for the data in the file is the work of Foster and Glasgow. 8 The extrapolation to 20 MeV was based on the measurements of Peterson, Bratenahl, and Stoering. 9

ELASTIC CROSS SECTION

Data given between 4 and 10 MeV are heavily weighted towards the Hopkins, Drake and Condé evaluation. 10 A value of 0.88 b at 14 MeV was used and data smoothly extrapolated to 20 NeV .

Legendre coefficients for the angular distributionsup to 2.5 MeV were determined from the data of Iane et al. 6 Between 4.83 and 9.5 NeV coefficients were inferred from Hopkins et al. data. 10 Based on 14 NeV elastic scattering data given in BaId 400 , optical model calculations (ABACUS code) were performed. to infer Legendre coefficients between 10 and 20 MeV . Data for Mt $251\left(\bar{\mu}_{\mathrm{r}}\right)$, 252 (5), and 253 (γ) were caluclated using the elastic angular distributions given in File 4.

THE ($n, 2 n$) OR CROSS SECTION

The cross sections and angular distributions for this reaction (MI $=24$) are the same as in Ref. 1 up to 15 MeV with a smooth extrapolation to 20 MeV . The secondary energy distributions given in Ref. I have been approximated by EHDF/B Law 9 with $\theta=0.21 \sqrt{E}$ (NeV).

THE $\left(n, n^{\prime}\right) y$ and (n, n^{\prime})od CROSS SECTIONS
The (n, n^{\prime}) y cross pections tabulated under MF $=52$ are those measured by Presser, Bass, and Kriger ${ }^{11}$ up to 7 MeV , with a constant 5 mb asmumed thereafter. Isotropy in the CM system is specified for the angular distribution.

The $\left(n, n^{\prime}\right)$ oud data given under Mil $=91$ are the same as in Ref. 1 up to 3 MeV , with the data of Hopkins et al. 10 taken into account between 4 and 10 MeV . The value of 433 mb assigned at 14 NeV is higher than the 403 mb given in Ref. 1, which is higher than the nominal 330 mb reported experimentaliy. A more detailed evaluation of the $14-\mathrm{MeV}$ cross sections will be required to resolve the latter discrepancy. The extrapolation to 20 NeV of the (n, n^{\prime}) od cross eection was obtained by subtracting the sum of all other partials from the total cross section. For the angular distributions, the tabulated values of Ref. 1 , extrapolated to 20 MeV , were used. The secondary energy distributions of Ref. 1 were approximated using ENDF/B Law 9 with θ values obtained by linear interpolation between the following points:

| $E=1.718 \mathrm{MeV}$, | $\theta=0.05 \mathrm{MeV}$ |
| :--- | :--- | :--- |
| $E=4.1$ | $\theta=0.75$ |
| $E=20.0$, | $\theta=8.40$ |

THE (n, p) AND (n, α) CROSS SECTIONS

The (n, p) cross sectionsup to 7 MeV reflect the data of presser et al ${ }^{11}$ Above 7 MeV the data of Ref. I were used and extrapolated to 20 NeV . For the (n, α) cross sections the data between 2 and 15 NeV are those of Ref. 1 . Fatrapolation to 20 MeV was based on the measurements of Kern and Kreger 12 between 15 and 18 MeV.

We are indebted to Leons Stewart for providing us with the data below 2 MeV and plots of the angular distributions of Lane et al., and to P_{s} G. Young for performing the optical model calculations.

REFFERETKCES

1. E. D. Pendlebury, AWRE Report $0-60 / 64$ (1964).
2. C. A. Uttley, M. G. Sowerby, B. H. Patrick, and E. R. Rae, Proceedings of A Symposition on Neutron Standards and Flux Normalization held at ANL, October 1970. AEC Synposiun Series 23 (August 1971).
3. Sumnary of CSENG Meeting, October 7-8, 1970. Memorandum dsted November 2, 1970, from S. Pearlstein to CSENG participants.
4. K. M. Diment and C. A. Uttley, Nuclear Physics Division Progress Reports ABRE-PR/NP-14 (1968), AERE-PR/NP-15 (1969), and AERE-PR/NP-16 (1969). Also private commication from C. A. Uttley to Leona Stewart.
5. A. Acmi and M. C. Morcon, Iuclear Data for Reactors, Conference Proceedings, Heleiniki, 1970. Vol. I, P. 153, IAEA, Viemm, 1970.
 12, 135 (1961).
6. B. H. Maitter and M. Coppoln, Evantom Report ELi-345he (1967).
7. D. G. Foster, Jr. and D. W. Glager, Phyle Rer. C3, 576 (1971).
8. J. M. Puterson, A. Bratemal, and J. P. Stoering, Phys. Rev. 120, 521 (1960).
9. J. C. Hopkint, D. N. Drake, and H. Condé, Los Alamos Scientific Laboretory Report IA-3765 (1967).
10. G. Presser, R. Bass, and K. Krïger, Fucl. Fhys. A131, 679 (1909).
11. B. D. Kem and W. E. Kreger, Phys. Rev. 112, 926 (1956).

3-LI-7 1116 LASL ALREE 0-61/64(IN PART) MAR71 BATTAT.LABALIVE(MOD. DFN=215A)

$$
\text { SUMMARY OF }{ }^{7} \text { Li DATA FOR MNDF/B-III }{ }^{*}
$$

by
R. J. LaBauve and M. E. Battat

Los Alamos Scientific Laboratory

The data for ${ }^{7}$ Li presently in ENDF/B-III was submitted to the NricSC in early 1971. Although a new MAT number has beenassigned to this isotope, the data are essentially the same as for MAT 1006 submitted earlier. Changes to the latter data were mainly to take account of EMDF/B format changes.

Unless otherwise noted, the ${ }^{7}$ Li data - Data Pile Number (DFN) 215, Mark Label A - in the UKAFA nuclear data library are given in this file. Fnergy range is $10^{-5} \mathrm{eV}$ to 15 MeV . Basic reference for this nuclide is AWRE Report $0-61 / 64$ (July 1964), which gives data for DFN-176. As per AWRE Report 0-55/65 (April 1965), DFW-215 has same data as DFI-176 but with slightly lower elastic cross sections between 0.01 . and 0.2 MeV . The data to $10^{-4} \mathrm{eV}$ were added at AFS, Winfrith, in January 1967 and nuclide identified as 215A (see Absom 80e, Febru= ary 1968).

In the sumary which follows, NF and Ni refer to file and reaction type numbers, respectively.

MF = 1: General information and Comment Cards.

This file contains essentially the same informstion as given in this summary documentation.
$\mathrm{MF}=2: \quad$ Scattering radius only.
MF $=3: \quad$ Smooth Cross Sections.
MI = 1 Total
MI $=2$ Elastic
MN $=4$ Total inelastic $=\left(n, n^{\prime}\right) \gamma+\left(n, n^{2}\right)$ axt
$M P=16(n, 2 n)$
$\mathrm{MIF}=24(n, 2 n) \mathrm{Ca}$
$M N=51\left(n, n^{\prime}\right) \gamma$
$M \boldsymbol{N}=91\left(n, n^{\prime}\right) \alpha_{t}$
$M F=102(n, y)$
$\mathrm{MII}=104(n, d)$

[^2]| | MT $=251$ | $\bar{\mu}_{1 a b}$: average cosine of the scattering angle in the laboratory system for elastic scattering. Data from H . Alter of Atomics International (private cormunication). |
| :---: | :---: | :---: |
| | $\mathrm{MH}=252$ | $\overline{5}$: average lagarithmic energy decrement. Data from H. Alter. |
| | MT $=253$ | $\boldsymbol{\gamma}$: Goertzel-Greuling coefficient. Data from H. Alter |
| MF $=4$: | Secondary
 in $M F=3$ | Angular Distributions. MT numbers as defined above. |
| | $\mathrm{MI}=2$ | Legendre coefficients in center-of-mass system. Transformation matrix for conversion to Laboratory system is given. Data from H. Alter of Atomics International (private commuications). |
| | $\mathrm{MI}=16$ | Tabular form. Laboratory system. Neutron energy range $=8.3$ to 15 MeV . |
| | $\mathrm{MT}=24$ | Tabular form. Laboratory system. Neutron energy range=10 to 15 MeV . |
| | $M T=51$ | Tabular form. Center-of-mass system. Neutron energy range $=0.55$ to 15 MeV . |
| | $\mathrm{MI}=91$ | Tabular form. Laboratory system. Neutron energy range=2.821 to 15 MeV . |
| $M F=5:$ | $\begin{aligned} & \text { Secondary } \\ & M F=3 \text { abo } \end{aligned}$ | Energy Distributions. MT numbers as defined in ve. |
| | $\mathrm{MI}=16$ | ($n, 2 n$). Energy range is 8.3 to 15 MeV . Distribution approximated by ENDF/B Law 9 with |
| | | $\theta=0.21 \sqrt{E} \mathrm{MeV}$ |
| | | This corresponds to an average θ of 0.7 MeV in the 8.3 to 15 MeV energy interval. |
| | $M P=24$ | ($n, 2 n$) ad. Energy range is 10 to 15 MeV . Distribution approximated by ENDF/B Law 9, with |
| | | $\theta=0.1133 \sqrt{\mathrm{E}} \mathrm{MeV}$. |
| | | This corresponds to an average θ of 0.4 MeV in the 10 to 15 MeV energy interval. |

$M P=91 \quad\left(n, n^{\prime}\right)$ at. Distributions approximated using ENDF/B Law 9. Theta values cotained by linear interpolation between the following points:

$$
\begin{aligned}
& \mathbf{E}=2.821 \mathrm{MeV}, \quad \theta=0.10 \mathrm{MeV} \\
& \mathbf{E}=5.8 \quad \mathrm{MeV}, \quad \theta=0.70 \mathrm{MeV} \\
& \mathbf{E}=8.0 \mathrm{MeV}, \quad \theta=2.80 \mathrm{MeV} \\
& \mathbf{E}=15.0 \mathrm{MeV}, \quad \theta=5.35 \mathrm{MeV}
\end{aligned}
$$

EVALUATED NEUTRON INTERACTICN NND GAMMA-RAY PRODUCTION CROSS SECIIOIS OF BE ${ }^{9}$ FOR ENDF/B-III

R. J. Howerton and S. T. Perkins

Abstract

The methods used to produce evaluated neutron interaction and photon production cross sections for Version III of ENDF/B are discussed.

I. GENERAL COMMENTS

The neutran energy ranpe covered extends from 0.0001 eV to 20 PeV . In addition to elastic scattering which is everywhere energetically possible, the following reactions have thresholds ${ }^{1}$ at energies less than $20 \mathrm{MeV}:$

Reaction	Threshold (MeV)
$\mathrm{n}, 2 \mathrm{n}$	1.85
n, p	14.26
n, np	18.76
n, d	16.29
n, nd	18.55
n, t	11.60
n, nt	19.65
n, α	0.67
$\mathrm{n}, \mathrm{n} \alpha$	2.74
n, Y	exoergic

This work was performed under the auspices of the U. S. Atomic Enerpy Commission.

For the ($n, n \mathrm{p}$), ($n, n d$), and ($n, n t$) reactions, there are no measurements and since the thresholds are sufficiently high, these cross sections are considered nepligible. The ($n, n \alpha$) reaction is a decay mode for the ($n, 2 n$) reaction since lle ${ }^{5}$ is unstable, decaying to a neutron and an alpha particle with a half-life of about 2×10^{-21} seconds. The inelastic scattering reaction is also a decay mode for the ($n, 2 n$) reaction since the $B e^{9: *}$ recoil nucleus always decays to a neutron and two alpha particles. The way in which the cross sections are selected for elastic scattering, $(n, 2 n),(n, p),(n, d)$, $(n, t),(n, \alpha),(n, \gamma)$, and ($n, X \gamma)$ reactions is discussed below.

II. ELASTIC SCATTERINE

A. Cross Section

The free atom cross section is used for all energies below the usual upper limit of the molecular binding energy (about 10 eV). This is effectively only the nuclear part of the cross section of a stationary target at zero degrees Kelvin. It is strongly emphasized that the numbers are meaningless in the absence of a proper thermal treatment by either the processing code or the neutronics code which uses these numbers.

The scattering cross section was taken equal to 6 barns from 0.0001 eV to 0.01 MeV . From this energy to the (n, α) threshold of 0.67 MeV , the scattering cross section is equal to the total cross section because the (n, γ) cross section is essentially negligible. The selected total cross section was based on data of Refs. 2 through 6.

Above the (n, α) threshold, the scattering cross section was taken as the difference between the total and the nonelastic, with the nonelastic being equal to the sum of its parts. From . 67 to 2 MeV , the evaluated total cross section was based on Refs. 2 through 9. Above this energy, we relied an the results of Ref. 10 over the 2.7 MeV resanance, and Ref. 11 up to 15 NeV . The extension to 20 MeV was based on data from Refs. 12 through 14. The uncertainty in the cross section is about $\pm 3 \%$ below the (n, α) threshold, varying up to $\pm 10 \%$ at 14 NeV and $\pm 20 \%$ of 20 MeV .
B. Angular Distributions, Normalized Probabilities

For energies less than 7 MeV , experimental differential scattering data are presented in Refs. 15 through 25. These data were used to determine the normalized probabilities. Below the ($n, 2 n$) threshold, total scattering data are made up of only elastic scattering since there is no inelastic scattering. The change in shape of the angular distribution going through the scattering resanances was taken into account. At 14 MeV , the probabilities were based on the results of Refs. 26 through 28. A smooth extrapolation was made to 20 MeV . The results are consistent with Wick's limit at all incident energies. The angular distributions are probably accurate to $\pm 10 \%$ for energies less than or equal to 14 MeV . For energies from about 15 to 20 MeV the uncertainty increases with increasing energy and is estimated to be about 30% at 20 MeV .
III. ($n, 2 n$) PLACTION

A. Cross Section

The ($n, 2 n$) cross section is based on the ($n, 2 n$) cross sections, and nonelastic minus absorption cross sections referenced in Perkins' work, ${ }^{29}$ as well as the new ($n, 2 n$) data up to 6.4 HeV given in Ref. 30 . The nonelastic results of Ref. 31 appear too large and were not used. The 20 MeV point was based on interpolating nonelastic cross sections between the 14 MeV value and the value at 25.5 MeV quoted in Ref. 32. Below 6.4 MeV , the cross section is probably accunate to $\pm 10 \%$. At 14 MeV , however, it is mach worse, the uncertainty being in the range of $\mathbf{+ 2 0 \%}$, and at 20 MeV about 40%.
B. Energy Distributions, Normalized Probabilities

The $\ell=0$ Legendre moment of the transference function has been taken from the work of Perkins. ${ }^{29,33}$ Briefly, this treated the ($n, 2 n$) reaction as a series of time-sequential decays, $\mathrm{Be}^{9}\left(\mathrm{n}, \mathrm{n}_{1}\right) \mathrm{Be}^{9 ;}\left(n_{2}\right) \mathrm{Be}^{8 ;}$. Levels excited were at $2.43,6.76$ and 9.1 MeV in $\mathrm{Be}^{9 \%}$, and $0 ., 2.90$ and 11.4 MeV in $\mathrm{Be}^{8 \%}$. The experimental center of mass angular distribution of the inelastically scattered neutron from $\mathrm{Be}^{9 *}$ (2.43 MeV) was described by a P_{6} Legendre expansion. All other reactions were considered to be isotropic in their respective center of mass systems.

The calculation was performed with the AGN-SIGM ${ }^{34}$ multigroup code with 66 groups. Lethargy widths were 0.2 for energies above 10 MeV , and 0.25 for energies below 10 MeV . This introduces a spread in the emergent spectra due to the finite group widths. The threshold spectrum was taken equal to that at 2 keV , although modified so as not to violate energy conservation. Similarly, the 20 MeV spectrum
was taken equal to that at 14.6 l 'eV. The enerpy distributions are probably accurate to $\pm \mathbf{2 5 \%}$.
C. Anpular Distributions, Normalized Probabilities

The lab system anpular distributions were obtained by appropriately surming the partial distributions of Perkins. ${ }^{33}$ The threshold distribution is essentially in the forward direction.

The distributions at 2, and 2.5 MeV were taken equal to that at 3. MeV ; those at 5.5 and 7. MeV were taken equal to that at 4. MeV ; those at 9. and 11. MeV were taken equal to that at 12. MeV; and that at 20. MeV was taken equal to that at 14.6 MeV . The accuracy of the angular distributions is probably no better than +20 .

The angular distributions, used in conjunction with the ($n, 2 n$) energy distributions, neglect the energy-angle correlation. This is a valid approximation for this reaction for reactor calculations, as has been discussed previously. ${ }^{35}$

IV. OTHER REACTIONS

A. (n, p) Cross Section

This cross section was estimated from the known threshold value and the single measurement at 15.5 MeV given in Ref. 36. The accuracy of this small cross section is probably within a factor of 2 .

B. (n, d) Cross Section

This cross section is based in its entirety on the known threshold value and the data between 16.5 and 18.8 MeV reported in Ref. 37. The accuracy is about $\pm 25 \%$ for this cross section.

C. (n, t) Cross Section

The cross section for the (n, t) reaction is based on the assumption that all transitions proceed through $\mathrm{Li} \mathrm{i}^{7 *}(0.477 \mathrm{KeV})$. This is in agreement with the results of Ref. 38 and 39 but in total disagreement with the data from Ref. 40. The uncertainties in this latter reference, however, are large enough so as to neglect the work.

The cross section was based on the work in Ref. 41, from 13.614.7 MeV . Above this energy, there is a resonance structure seen in the total cross section reported in Ref. 12 and 14. This was assumed to be due to the (n, t) reaction and is not in conflict with the rapid increase in the cross section above 14.5 MeV seen by Ref. 41. The uncertainty in the cooss section is about $\pm 50 \%$ at 14 MeV , increasing several times at higher energies.

D. (n, α) Cross Section

The cross section was based on the measurements reported in Ref. 42,40 and 43 for neutran energies less than 8.6 MeV . It was then artfully interpolated into the three values given at 14 MeV , Refs. 44, 39 and 45, and then smoothly extrapolated to 20. MeV. Note that the measimed cross section is to $\mu e^{6}(0 . \mathrm{MeV})$ which beta decays to Li^{6}; higher states in $\mathrm{He}^{6}+\alpha+2 \mathrm{n}$. Below 8.6 MeV , the uncertainty is about $+25 \%$, from 8.6 to 14 MeV being at least $\pm 50 \%$, and being about $\pm 30 \%$ at 14 MeV . For hieher energies the uncertainty probably reaches a factor of two at 20 MeV . E. (n, y) Cross Section

The cross section was assumed to be $1 / \mathrm{v}$ below 100 eV with a $2200 \mathrm{~m} / \mathrm{sec}$ cross section of 9.5 mb . It was then extrapolated linearly
on a log-log basis to 0.1 mb at 1 keV , and then held constant at this value up to 20 MeV . Except at themal where the cross section is known to $\pm 10 \%$, the uncertainty is at least $\pm 100 \%$. Fortunately, the cross section is small.

V. (n, X_{Y}) CROSS SECTION

Ganma rays in Be^{9} are produced by the (n, γ) and the (n, t) reactions. At thermal energies, Ref. 46 quotes ganma ray energies of $0.8535,2.59,3.368,3.444,5.958$ and 6.81 MeV and the corresponding ($n, X y$) cross sections. We have assumed that these energies and their multiplicities are independent of energy, and have used them in conjunction with our (n, γ) cross section to develop this compenent of the ($n, X Y$) cross section. This violates energy conservation as the incident neutron energy is increased, the intentionally used this approach to call attention to the paucity of information. As the incident energy is increased, there are, no doubt, higher levels of ${ }^{10}$ Be which are excited. Hipher levels have not been identified. We could have sonserved energy by using energy dependent multiplicities. We chose to emphasize the problem by the presentation used. The corponent relevant to the (n, t) cross section is in fact equal to the (n, t) cross section since its multiplicity is unity. At themal energy, the cross section is accurate to about $\pm 10 \%$. At higher energies, the photon energies are not known and the cross section could be off by onders of marnitude. The cross sections is however small.

vi. REFERENCES*

1. UCRL 50400 , Vol. 9 (1970), "Thresholds of Nuclear Reactions Induced by Neutrons, Photans, Protons, Deuterans, Tritans and Alpha Particles," R.J. Howerton.
2. Phys. Rev. 80, 1011 (1950) C.K. Bockelman, (ECSIL Ref. 63).
3. Private Conmmication (1954) P.H. Stelson, (ECSIL Ref. 92).
4. Private Commmication (1962) E.G. Bilpuch, J.A. Farrell, G.C. Kyker, Jr., P.B. Parks, H. Newscn, (ECSIL Ref. 720).
5. Conpt. Rend. 255, 277 (1962) A. Perrin, G. Surget, C. Thibault, F. Verriere, (ECSIL Ref. 772).
6. Private Commmication (1954) C.T. Hibdon, A. Langsdorf, (ECSIL Pef. 1002).
7. Fhys. Rev. 84, 69 (1951) C.K. Bockelman, D.W. Miller, R.K. Adair, H.H. Barschall, (ECSIL Ref. 72).
8. Proc. Phys. Soc. (Landon) 64, 388 (1951) G.H. Stafford, (ECSIL Ref. 336).
9. Bull. Am. Fhys. Soc. 4, 385 (1959) J.L. Fowler, H.O. Cohn, (ECSIL Ref. 1642).
10. Conference on Neutran Cross Section Technology, Washington D.C., P. 851 (1968) C.H. Johnson, F.X. Haas, J.L. Fowler, F.D. Martin, R.L. Kernell, H.O. Cohn, (ECSIL Ref. 3088).
11. Private Commication (1967) D.G. Foster, Jr., D.W. Glaspew; see also, HN-73116 (1962); ENH-77311 (1963); Fhys. Rev. C, 3, 576 (1971); Phys. Rev. C, 3, 604 (1971); (ECSIL Ref. 750).
12. Fhys. Rev. 94, 651 (1954) C.F. Cook, T.W. Bamer, (ECSIL Pef. 107).
13. Phys. Rev. 120, 521 (1960) J.M. Peterson, A. Bratenahl, J. P. Stoering, (ECSIL Ref. 673).
14. Fhys. Rev. 123, 209 (1961) D.B. Fossan, R.L. Walter, W.E. Wilson, H.H. Barschall, (ECSIL Ref. 682).
${ }^{2}$ ECSIL Numbers quoted here refer to data in the LLL Experimental Neutron Cross Section Library (see UCRL-50400, Vols. 2 and 3 [1970] for comments and indexes to the data).
15. Phys. Rev. 98, 669 (1955) J.D. Seagrave, R.L. Henkel, (ECSIL Ref. 121).
16. Phys. Rev. 104, 1319 (1956) J.R. Beyster, M. Walt, E.W. Salmi, (ECSIL Ref. 151).
17. ANLm5567 (1956) A. Langsdorf, Jr., R.O. Lane, J.E. Monahan; see also, ANL-5554 page 22 (1956); Phys. Rev. 107, 1077 (1957); ANL-5567 (Rev.) (1961); (ECSIL Ref. 231).
18. Fhys. Rev. 98, 677 (1955) M. Walt, J.R. Beyster, (ECSIL Ref. 296).
19. Fhys. Rev. 114,1584 (1959) J.B. Marion, J.S. Levin, L. Cranberg, (ECSIL Ref. 500).
20. ANL-6172 (1960) R.O. Lane, A.S. Langsdorf, Jr., J.E. Monahan, A.J. Elwyn; see also, Ann. Phys. (N.Y.) 12, 135 (1961); (ECSIL Ref. 571).
21. ORNL-2610 page 14 (1.958) H.O. Cohn, J.L. Fowler; see also, Bull. Am. Phys. Soc. 3, 305 (1958); (ECSIL Ref. 945).
22. Doklady Akad, Nauk S.S.S.R. 158, 574 (1964) G.V. Gorlov, N.S. Lebedeva, V.M. Morozov; see also, Yad. Fiz. 5, 910 (1967); (ECSIL Ref. 1643).
23. Private Cammication (1960) J.S. Levin, L. Cranberg; see also, WASH-1028 page 26 (1960); WASH-1029 page 44 (1960); (ECSIL Ref. 1645).
24. Private Commmication (1961) D.D. Prillips, (ECSIL Ref. 1646).
25. Phys. Rev. 133, 409 (1964) R.O. Lane, A.J. Elwy, A. Langsdorf, Jr., (ECSIL Pef. 1647).
26. Fhys. Rev. 110, 1439 (1959) M.P. Nakada, J.D. Anderson, C.C. Carcher, C. Wong, (ECSIL Ref, 402).
27. Private Commuication (1966) R. Bouchez; see also, IAEA Conference on Nuclear Data, Paris, Paper CN-23/75 (1966); (ECSIL Ref. 2585).
28. NP-17794 (1968) J. Roturier; see also, Canpt. Rend, 260, 4491 (1965): BNL-400, 3nd Ed. (1970); (ECSIL Ref. 3106).
29. N-1443 (1965), "The Be ${ }^{9}(n, 2 n)$ Reaction and its Influence on the Are and Fast Effect in Beryllium and Beryllium Oxide," S.T. Perkirs.
30. Nuclear Mhys. 129, 305 (1969) M. Holmbere, J. Hansen; see also, IAEA Conference on Nuclear Data, Paris, Paper CJ-23/18 (1966); (LCSIL Pef. 763).
31. Conference on Neutron Cross Section Technology, Washineton D.C., Vol. 1, page 169 (1968) J.R.P. Eaton, J. Walker, (ECSIL Ref. 2595).
32. Phys. Rev. 111, 1155 (1958) M. H. MacGregor, W.P. Ball, R. Booth, (ECSIL Ref. 356).
33. UCRL-50520 (1968), "A Calculation of the Angular and Energy Distributions for Neutrons from the $\mathrm{Be}^{9}(n, 2 n)$ Reaction," S.T. Perkins.
34. AN-1447 (1965), "Users Manual for AGN-SIGNA," S.T. Perkins.
35. Nucl. Sci. Eng. 31, 156 (1968) S.T. Perkins.
36. Phys. Rev. 132, 328 (1963) D.E. Albuger, (ECSIL Ref. 913).
37. Z. Naturforsch. 24, 289 (1969) W. Scobel, (ECSIL Ref. 3101).
38. Phys. Rev. 112,1264 (1958) M.E. Hyman, E.M. Fryer, M.M. Thorpe, (ECSIL Ref. 496).
39. J. Exptl. Theoret. Phys. (USSR) 40, 1244 (1961) S.A. Myachkova, V.P. Perelygin, (ECSIL Pef. 650).
40. Doklady Akad. Nauk S.S.S.R. 119, 914 (1958) S.S. Vasil'ev, V.V. Kumarov, A.M. Popova; see also, J. Exptl. Theoret. Phys. (USSR) 33, 527 (1957); (ECSIL Ref. 494).
41. UCRL-5596 (1959) J. Benveniste, A.C. Mitchell, C.D. Schrader, J.Ii. Zenger; see also, Nucl. Phys. 19, 52 (1960); (ECSIL Ref. 605).
42. Phys. Rev. 106, 1252 (1957) P.H. Stelson, E.C. Campbell; (ECSIL Ref. 160).
43. Nucl. Phys. 23, 122 (1961) R. Bass, T.W. Banner, H.P. Haenni, (ECSIL Ref. 733).
44. Shys. Fev. 89, 80 (1953) M.E. Battat, FsL. Ribe, (ECSIL Ref. 86).
45. Kucl. Fryys. 96, 476 (1967) G. Paic, D. Rendic, P. Toras, (ECSIL Pef. 2367).
46. CA-10248 (DASA-2570) (1970) N.C. Pasmussen, V.J. Orphan, T.L. J!arper, J. Cunningham, S.A. Ali, (ECSII, Fef. 2415).

sumarary doclamentatiot for b-10*

R. J. Labauve

Los Alamos Scientific Laboratory

Abstract

ABSITRACT The following neutron data are given for B-10 in the energy range $1.0 \times 10^{-5} \mathrm{eV}$ to 15 MeV ;

Pile l. General description of data which follow.
File 2. Values of nuclear spin and effective scattering radius only.
File 3. Smooth cross sections for total, free-atom elastic, total inelastic, the inelastic level at 717 keV ($\mathrm{ki}=51$), the inelastic continum, $(n, d),(n, t)$, and (n, α). Also dats for μ, ξ, and γ are included.

File 4. Angular distributions for elastic scattering (expressed as Legendre polynomial coefficients in the centermof-mass system), the firat inelastic level, and the inclastic continum. (The inelastic distributions are given as tabulated functions with the assumption of isotropy in center-of-mass system.)

File 5. Secondary energy distribution for the inelastic continuum (law 9 - evaporation spectrum).

INIRODUCIION

This eveluation for ${ }^{10} \mathrm{~B}$ (NAT 1155) is essentially the same as that given for ExDF/B, Veraion I in MAT 1009 which wes performed in october 1967 by D. C. Irvingl of ORNS. At the CSIWN meeting of Nay 19-20, 1971, the Standards Subcommittee requested LASL to modify the (n, α) cross sections (Mr $=107$) of 10_{B} (MAT 1009) below 100 keV to conform to a recent evaluation of Sowerby et al. 2 In carrying out this request, it was also decided to 1) extend the range of modification to 150 keV , and 2) change the elastic scattering cross sections ($\mathrm{M}=2$) in the modified energy range, and, of course, 3) change the total cross section to be equal to (MIR + MN1OT).

The MAT 1009 evaluation contained 15 datum points from $1.0 \times 10^{-5} \mathrm{eV}$ to 150 keV . As the Sowerby evaluation is based on experimental measurements of the ratio $\sigma_{n, \alpha}\left({ }^{(}{ }_{L i}\right) / \sigma_{n_{2}}{ }^{\left(10_{B}\right), ~ t h e ~ m o d i f i e d ~ c r o s s ~ s e c t i o n s ~ w e r e ~ p u t ~ o n ~ t h e ~ s a m e ~ m e s h ~}$ (30 points) currentiy in use in the LASL C_{LI} (MAT 1115) evaluation. The energy range was also extended to 150 keV as the MAT 1009 data were easier to merge at this point than at 100 keV . Moreover, it was felt that additional points were needed between 100 keV and 150 keV to compare with the $\mathrm{GII}_{\mathrm{LI}}$ data.

The (n, α) modified cross sections, as recommeaded by sowerby et al. 2 are given by the formula:

[^3]$\sigma_{n, \alpha}\left(10_{B}\right)=\frac{13.736}{\sqrt{E}}-0.312-1.014 \times 10^{-2} \sqrt{E}+\frac{2.809 \times 10^{5}}{\sqrt{E}\left[(170.3-E)^{2}+2.243 \times 10^{4}\right]}$
with σ in barns and E in keV.
Incidentally, the $\sigma_{n, \alpha}$ data in the old EADF/B ${ }^{10}{ }_{B}$ evaluation did not differ greatly from this formula. The largest deviation from formula (1) for MAT 1009 was about 4%. The most significant change was the use of a more descriptive mesh.

This investigation did reveal a need to change the elastic scattering crose section, however. The EMDF/B evaluation was based on 1966 data of Mooring; ${ }^{3}$ whereas this modification was based on more recent (1969) data of Asami and Moxon. ${ }^{4}$

FITE 1: GKIERAL DTFORMATIOA

A brief sumary of these data is given in File 1. The atomic mass for ${ }^{10} \begin{gathered}\text { A brief sumary of } \\ \text { was taken as } 10.0130 .\end{gathered}$

FIIE 2: RESONAMCE ITFORMATION

A nuclear spin of 3 and effective scattering radius of $0.399 \times 10^{-12} \mathrm{~cm}$ is given in File 2.

FIIE 3: SMOOTH CROSS SECTIONS

Below $150 \mathrm{keV}:$
$\sigma_{\text {elastic }}-\begin{gathered}\text { from experimental data of Asami and Moxon } \\ \text { constant value of } \\ 2.2 \text { barns below } 100 \mathrm{eV} \text {, with a }\end{gathered}$
$\sigma_{n, \alpha}-$ given by formula (1) (Sowerby et al. ${ }^{2}$).
$\sigma_{\text {total }}-\left(\sigma_{\text {elastic }}+\sigma_{n, \alpha}\right)$
From 150 to 500 keV:

$$
\begin{aligned}
& \sigma_{\text {elastic }} \text { - from the smooth curve of Mooring. }{ }^{3} \text { This agrees } \\
& \text { with the data of Lane et al. } \\
& \sigma_{n, \alpha} \text { - Irom a smooth curve through the (} n, \alpha \text {) data of Mooring }{ }^{3} \\
& \text { and Gibbons, } 5 \text { with little weight placed on the data } \\
& \text { of Cox. } 6 \\
& \sigma_{\text {total }}-\left(\sigma_{\text {elastic }}+\sigma_{n, \alpha}\right) .
\end{aligned}
$$

Above 500 keV :

$$
\sigma_{\text {elastic }}-\left(\sigma_{\text {total }}-\sigma_{\text {inelastic }}-\sigma_{n, \alpha}-\sigma_{n, d}-\sigma_{(n, t) a \alpha}\right) .
$$

$\sigma_{\text {total }}$ - from the data displayed in BNL325. 7,8 Some minor adjustments were made to remove spurious wiggles in the elastic cross section above 4 MeV .
$\sigma_{n, \alpha}$ - from the data of Davis ${ }^{9}$ increased by 110 mb as suggested by a comparison to the data of Gibbons ${ }^{6}$ and Fellis. 10
$\sigma_{(n, t)}=\alpha-$ from a smooth chrve was, dram by eye through the sparse
data of Frye, 11 Wyman, 12 and Perkin. 13
$\sigma_{n, d}-a$ smooth curve was drawn through the $\operatorname{Be}(d, n)$ data of Bardes 14 and Siemsson 15 and detailed balance used to obtain $10_{B}(n,-1)$ values. These were connected by a straight line to a value at 14 NeV obtained by integration of the data of Valkovic ${ }^{16}$ which is slightly higher than that of Ribe. 17
$\sigma_{\text {inelastic }}$ - data from Day ${ }^{18}$ on excitation of the first level which agrees with that of Nellis was used to 4.5 MeV . This was connected by a smooth curve to a value at 14 MeV obtained by subtracting (n, d), (n, α, f, and (n, t) from the nonelastic value of MacGregor. 19

The ($n, n^{\prime} d$) 20 reaction was neglected since it is contained for all practical purposes in the inelastic data.

FILE 4: SECONDARY ANGULAR DISIRIBUTIQIS

The experimental data for elastic scattering angular distribution is sparse, consisting of a few paints between. 5 and 2 MeV (BNL400)20 and one at 14 MeV (reported in Valkovićl6). By all rights an optical model should not be valid for boron. However, the calculations of Agee 21 compare beeutifully with the experimental data and have been used in the evaluation. The angular distribution was taken to be isotropic below .5 MeV in agreement with BNI 400 and the data of Lane et al. (see Mooring).

The secondary angular distribution for inelastic scattering was assumed isotropic in the center-of-mass system.

FIIE 5: SECOUDARY EXERGY DISIRIBUIIONS
Up to 4.5 MeV , inelastic scattering was assuned to proceed via the first level at . 71 MeV . Above 4.5 MeV an evaporation spectrum was used with the temperature as determined by Weinberg and Wigner. 2 ?

REFEREMCES

1. D. C. Irving, ORNL-TM-1872 (Oct. 67).
2. M. G. Sowerby, B. H. Patrick, C. A. Uttley, K. M. Diment, AERE-R6316, 1970.
3. Mooring, Monahan and Huddleston, Mucl. Phys. 82, 16 (1966).
4. A. Asami and M. C. Moxon, AERE-R5980, April 1969.
5. Gibbons, private communication, obtained from $L_{1}(\alpha, n)$ and branching ratio data. Gibbons and Macklin, Fhys. Rev. 140, B324 (1965). Macklin and Gibbons, Phys. Rev. 114, 571 (1969).
6.: Cox, Conf. on Neut. Cross Section Technology, 701 (1966).
6. D. J. Hughes and R. B. Schwart, BKL-325, and edition (1958).
B. J. Stehn et alı, BRL-325, 2nd edition, supplement 2 (1964).
7. Davis, Gabbard, Bonner and Bass, Nucl. Phys. 27, 448(1961).
8. Nellis and Morgan, Wash 1064 , 186.
9. Frye and Ganmel, Phys. Rev. 103, 328 (1956).
10. Wyman, Fryer, and Thorpe, Phys. Rev. 112, 1264 (1958).
11. Perkin, Phys. Rev. 81, 892 (1951).
12. Bardes and Owen, Phys. Rev. 120, 1369 (1960).
13. Siemssen, Cosack, and Felst, Nucl. Phys. 69, 209 (1965).
14. Valković et al., phys. Rev. 139, B331 (1965).
15. Ribe and Seagrave, Phys. Rev. 94, 934 (1954).
16. Day and Walt, Phys. Rev. 117, 1330 (1960).
17. NacGregor, UCRL-5229 (1958).
18. Goldberg, May, and Stehn, BiNL-400, and edition (1962).
19. Agee and Rosen, LA-3538-ms (1966).
20. Weinberg and Wigner, The Physical Theory of Neutron Chain Reactors, p. 104.

SUMMAE: DOCUMENTATION FOR BORON-11

EVALUATION: Boron-11 was valuated in September, 1971, by C.L. Cowan from General Electric Conipany and on temporary assignment at Brookhaven National Laboratory.

PRINCIPAL
REFERENCE:
The boron-11 evaluation was based upon a transition from the UKGEA data file (material number 49) and the data were modified to conform with the ENDF/B-III format. The cross section data, nuclear parameters and angular scattering distributions for boron-11 are consistent with the recommended values in BNL-325.

SPECIAL
CALCULATIONS: Smooth pointwise cross sections for the elastic and capture reactions were calculated by utilizing the Breit-Wigner single level formula and the recommendud resonince parameters from BNL-325. The pointwise elastic crriss section values were further normalized to the total boron scattering cross section curves in BNL-325.

```
ENCF/B MATERIAL
CARBON=12 KAPL EYAL=1965 C,LUGIFZ, E,SLAGGIE,J,T,REYNOLCS KAPL-3n99 (JUNE,1966) DISTEJUL68 REV-JAN72
```

DATA MODIFIED JAN, 1972 TO CONFORM TO ENDF/E-III FORMATS
THE TOTAL CROSS SECTIOA WAS MODIFIED JAN. 1972 TO CONFORM TO
THE STANJARD CROSS SECTION RECOMMENDED BY THE CSEWG NORMALIZATION AND STANDARDS SURCOMMITTEE:'
THE TOTAL X/S IS THAT EECOMMENDED By N:C, FRANCIS, C, R, LUBITZ, J, ${ }^{\text {I }}$ REYNODS, C,J. SL.AVIK, AND R,G, STIEGLITZ, SEE PAPER GIVEN at the cenf. on neutron standards and flux normaldzation (ANL) OCT 21-23, 197\%, PAGE 168.
THE STANOARD CROSS SFACTION IS THE TOTAL CROSS SECTION* FOR NEUTAON FNEREIES UP TO 2.0 MEV
above 2,0 mev the nelitfon cross sections are the same as given FOR MAT= 114:
THE ELASTIC SCATTERING CROSS SECTION WAS MODIFIED TO REFLECT THE NEW TOTAL CRESS SECTION
alSO TOTAL ano Elastic scattering modified June 1970 THIS DATA SET IS BASED ON DATA IN Mat=1010
THE TOTAL AND ELASTIC SCATTERING MODIFIED FOR NEUTRON ENERGIES LESS THAN 5. MEV.
ABOVE 5. Ti MEV THE ELASTIC SCATTERING AND THE TOTAL CROSS SECTICNS WERE BASE LARGELY ON THE EVALUATION REPGRTED IN THE PHYS:' REV. 176.1213.1908.

CARGON=12 EVALUATED CROSS SECTIONS (KAPL-1965)
TOTAL,ELASTIC.INELASTIC,N-ALPHA,AND N-3ALPHA-NPRIME CROSS SECTICNS AND ELASTIC SCATTEFINE LEGENDRE MOMENTS
REFERENCE-SKAPL-3EY9,C-12 FAST NEUTRON CROSS SECTIONS AND LEGENCRE MOMENTS BELOW 13 MEV, GUNE 30.1966, E.L;' SLAGGIE AND J, T, REYNDLDS N-GAMMA CFOSS SECTION PFEPARED JUNE,1967. CROSS SECTION IS $1 / \mathrm{V}$ Witia a thermal Enefgy value of 3.4 MB;';

SUMMARY DOCUMENT:ATION FOR NITROGEN

P. G. Young and D. G. Foster, Jr.

Los Alamos Scientific Laboratory

ABSTRACT

A complete evaluation is given of the neutron and photon-production cross sections of nitrogen (assumed throughout to consist only of ${ }^{1} \mathrm{H}_{\mathrm{N}}$) from $10^{-5} \mathrm{eV}$ to 20 MeV . For a full description, see IA 4725 . The following files are included:

File 3. Sumary of the basis of the evgluation, including all of the principai references used and tables of the Q-values corresponding to each NT-number.

File 2. Effective scattering radius of 8.9014 fm to yield a potential-scattering cross section of 9.957 b.
File 3. smooth totsil cross section, and smooth cross sections for elastic scattering, inelastic scattering, and the $(n, y),(n, p),(n, d),(n, t),(n, x)$, ($n, 2 n$), and ($n, 2 \alpha$) reactions. The $\left(n, n^{\prime} p\right)$ and ($n, n^{\prime} \alpha$) cross sections are included with the (n, n^{\prime}) cross sections, using flags to indicate the mode of decay. Excitation of the high-lying levels is grouped into 20 discrete bands instead of a continuum, to permit approximately correct calculation of the energy-angle relations in the lab system.
File 4. Secondary-neutron angular distributions, given as Legendre coefficients in the C.M. system for one emitted neutron and as normalized pointwise distributions in the lab system for the ($n, 2 n$) reaction.
File 5. Secondary-neutron spectrum for the ($n, 2 n$) reaction in the lab system, obtained from the Jacobian for a three-body reaction assuming isotropy in the C.M. system.
File 12. Photon multiplicities for the (n, γ) reaction.
File 13. Photon-production cross sections for ($n, x \gamma$) reactions, consistent with the excitation cross sections in File 3.

File 14. Angular distributions. of photons from capture and ($n, x \gamma$) transitions. Four of these are anisotropic.

NEUTRON CROSS SECTIONS

MAT \#1. 133 contains an entirely new evaluation of the neutron and photon-production cross sections of nitrogen over the energy range from $10-5 \mathrm{eV}$ to 20 MeV . Since 15 N constitutes only 0.37% of natural nitrogen and has no unusually large cross sections in the ev region, nitrogen was

[^4]treated as pure ${ }^{14} \mathrm{~N}$ throughout the evaluation. To the best of our knowledge, all data available up to the fall of 2970 were considered, although only about 60 of the most important references are listed in this summaxy, which is intended to accompany the data file distributed as Mat *1133 under the ENDF/B system. 'ihe principal processes considered were ($n, r),(n, n),\left(n, n^{\prime}\right)$, $(n, p),(n, d),(n, t),(n, \alpha),(n, 2 n),\left(n, n^{\prime} p\right)$, and $\left(n_{,} n^{\circ} u\right)$. A full report is in preparation and will be distributed as LA-4725.

The evaiuated total cross section was determined entirely from experimental measurements, relying heavily on the post-1967 time-af-flight data (Ca70, He70, Fo71) in the Mev region, which are consiatent with each other to better than 1 percent. These were used to correct the energy scales and absolute values of older measurements (Bi59, Bi62, Hi52, Hu61) in the high keV range, which extend down to 10 keV . Below 10 keV the data of Melkonian (Me49) between 1 and 79 eV were fitted to determine the free-atom cross section, assuming a constant scattering cross section and a reaction cross section varying as $1 / v$ from an evaiuated $2200-\mathrm{m} / \mathrm{sec}$ value (Bal49, Col4, Cu51, Ha61, Ju63) of 1.894 b . This fit was extrapolated to $10-5 \mathrm{eV}$, and joined to the data above 10 keV by a polynomial fit. Data in the sharp peaks were smoothed by single-level Breit-Wigner fits, asauning a linear background. Between peaks a sliding polynomial fit wes used for smoothing. The estimated accuracy of the total crose section ranges from 5% at $10-5 \mathrm{eV}$ to 1% above 0.5 NeV .

Below about 20 NeV the elastic-scattering crose section was determined by sumaing the partial cross sections, which were deternined mainly from measurements, and subtracting the result from the total aross section. Above 9 NeV , however, many new levels in $1 \mathrm{H}_{\mathrm{N}}$ become available for inelastic scattering, most of which decay by proton enission and hence cannot be detected by $(n, x y)$ measurements. Because of the resulting uncertainty in these (n, n^{\prime}) cross sections to particle-unstable at.stes, above 10 HeV the elastic cross section was determined first (Ba63, Ba67, Be67, Bo68, Ch61, Lu67, Ne71, Sm54, St61), and the nonelastic cross section obtained by subtraction from the total. The remaining reaction cross aecitions above 10 MeV were evaluated scparately, and the balance of the nonelastic cross section was assigned to the ($n, n^{\prime} x$) channels. In File 3 the charged-particle decays are flagged by placing the MT number of the overall reaction $\mathrm{Fax}=28$ for $\left(n, n^{\prime} p\right), M T=22$ for ($n, n^{\prime} \alpha$)] in the fourth field of the TABl record and the Q-value of the reaction in the first field.

For several years it has been observed (Di69, St69) that the measured partial cross sections between 6 and 9 NEV adia up to less than the total cross section. When this evaluation was originally prepared the unpublished preliminary small-angle elastic-scattering results fiom Edgewood Arsenal (Bu71) were used to deduce the largest possible elastic cross sections from the Livermore data (Ba63), and the reaction measurements were "stretched" to the upper limit of their error bars. Wherever these measures did not suffice to close the gap the nonelastic results were adopted as correct, a choice which has been supported by data (Ne71, Pe71) which became available after the evaluation had been completed.

The angular distributions for elastic scattering below 8 NeV were determined from a single-level resonance-theory analysis, which incorporated the resonance parameters (Aj68, Aj70) used in smoothing the total cross sections. With the parameters of 35 resonances fixed, the s - and p-wave potential phase shifts were adjusted to fit the available elastic angular distributions (Ba67, Bo57, Ch61, F055, Fo66, Fh61), and the evaluated distributions were regenerated from the complete set of phase shifts. From 8 to 15 NeV the angular distributions were taken from smooth curves through the Legendre coefficients obtained from fits to the measured (Ba63, Ba67, Be67, Ch61, In67, Ne7, St61) distributions, and these were extended to 20 keV using opticalmodel parameters which fitted the $14-\mathrm{MeV}$ measurements.

The angular distributions for inelastic scattering to the 12 loweat discrete levels were taken almost entirely from ($\mathrm{p}, \mathrm{p}^{\prime \prime}$) measurements (Do64, Ha70, Od60, and neutron data of Ba63), relying on an equivalence theorem derived fron charge symmetry by Anderson et al. (An67, Iu66). For higher excitation energies isotropic distributions have been assured in the center-of-mass system. Instead of describing these by continuve angular distributions and secondary spectra in giles 4 and 5 , however; these channels have been grouped into bands of excitation enesgy and treated as discrete levels in File 3, so that the pronounced anisotropy and nonuniform spectral distribution induced by the transformation to the laboratory system can be celculated as if each band corresponded to a single excited state. The Q-values for the centers of these bands are given in File 1 along with the discrete levels.

The crose sections for the $\left(n, p_{0}\right),\left(n, d_{0}\right),\left(n, t_{0}\right)$, and $\left(n, \infty_{0}\right)$ channele (Bu68, Bo51, Ca57, Paff, Ga59, Jo50, Le68, Ii52, Li67, Ma68, Mi68, Re67, Sc66, Za63) and their inverses (Be63, Ch61, G158, No67), and for the ($n, 2 x$) reaction (Li5i, yo67) have been measured directiy for at isast a few energies, and the ($n, 2 n$) cross section has been measured (Bo65, Br61, Cs67, Fe60, Go65, Pr60) by detecting the positron decay of $13 \mathrm{~N}, \mathrm{so}$ the evaluated cross sections for these reactions were taken directiy from experiment. The cross sections to excited states for bath inelastic scattering and the ($n, x y$) reactions were deduced primarily from photon-production meararement: (Bo59, Br69, C169, Co68, Di69, En67, Ha59, Ny69, Or69), using decay schemes (Aj68, Aj70) which in most cases were based largely on measurements made with the appropriate charged particles. In several instances the measurements had to be supplemented with Hauser-Feshbach or nuclear-temperature calculations, especially above 14 NeV . In particular, Hauser-Feshbach calculations were used extensively to interpolate excitation functions between measured points.

Especially for the reactions which produce charged particles, there are a number of direct measurements (An64, Fe67, Ga59, Ha59, Re67, Sc66, Sm54, Za63) of cross sections to excited states. In almost all cases these were found to be in acceptable agreement with the photon-production measurements. Excitation cross sections are given in File 3 for transitions to 12 discrete levels and 20 bands in 14N, 4 levels in 14C, 3 levels in 13 C , one level in ${ }^{12} \mathrm{C}$, and 10 levels in 11_{11}.

There are no measurements available of the angular distribution or spectrum of neutrons from the (n, Zn) reaction. Accordingly, the distributions given in Files 4 and 5 are based on the assumption of isotropic emission in the C. M. system, and are proportional to the Jacobian for the three-body transformation to the laboratory system.

The evaluated radiative-capture cross section at low energies was based on a single measurement by Jurney (Ju63) with thermal neutrons; even at $2200 \mathrm{~m} / \mathrm{sec}$ it is much smaller than the (n, p) cross section. The multiplicities for thermal-neutron capture (Gr68, Jo69, Mo62, Th67) are given in File 12, with isotropic angular distributions in fille 14. Because direct capture offers a mechanism for producing gama-ray energies in excess of 20 MeV with $14-\mathrm{MeV}$ neutrons, we have included an explicit crosis section for the (n, γ_{q}) channel in the MeV region. Since there is as yet no means in the ENDF/B formats of flagging "primary" transitions, the energy variation of the ground-state gamma ray in the MeV region has been approximated by the phasing-in and -out of fictitious gama rays of successively higher energy. The data were taken from ${ }^{14} \mathrm{~N}(\mathrm{p}, \gamma)$ measurements by Kuan et at. (Ku70), in the region of the inverse photonuclear giant resonance, since this reaction is expected to populate isotopic-spin states analogous to those in ${ }^{14_{N}}(n, \gamma)$. The strong anisotropy of ($n, \gamma o$) emission found by Kuan et al. is given in File 14.

In the first section it was pointed out that most of the excitation cross sections for excited states were deduced from photon-production measuremonts. Consequently, although the cross sections in File 13 were regenerated from File 3 by use of the appropriate decay schemes, they are in general at least as accurate as the excitation cross sections, because they were chosen so us to reproduce the gaman-ray measurements.

The angular distributiona of nine intense gamma rays have been measured by Morgan et al. (M063, Mo64) at 14 MeV . Iegendre fits to these data are consiatent with isotropic emission for all except three gama rays; of these, two are from ($n, n^{\prime} y$) transitions and one from ($n, d y$). Thus, the only anisotropic photon angular distributions in File 14 are for MT $=4$, 102, and 104. In the absence of other measurements, the ($n, x y$) anisotropies have been assumed to rise linearly from threshold to the measured value, and to remain constant from there to 20 NEV .

REFERENCES

Aj68 F. Ajzenberg, W. Selove and T. Lauriteen (HAV), Nucl. Phys. All4, 1 (1968).
Aj70 F. Ajzenberg, W. Seiove (PEN), Nucl. Phys. Al52, 1 (1970).
An64 J. D. Anderson and J. W. McClure (LRL) Wash-1348 (1964).
An67 J, D. Anderson, C. Wong, and V. A. Madsen, UCRL-50197 (1967), and private memorandum from H. F. Lutz.
Ba49 R. Batchelor and B. N. Flowers, AERE-N/R-370 (1949).
Ba63 R. W. Bauer et al. (LRL), Nucl. Phys. 47, 241 (1963).
Ba67 R. W. Bauer et al. (LRL), Nucl. Phys. A93, 673 (1967).
Ba68 R. Bachinger and M. Uhl (IRK), Fucl. Phys. All6, 673 (1968).
Be63 R. E. Benenson and R. Yaramis (COL), Phys. Rev. 129, 720 (1963).
Be67 P. L. Beach et al. (융), Bull. Ar. Phys. Soc. 11,471 (1967).
B159 E. G. Bilpuch et al. (DKE), Priv. Cown to EKL (1959).
Bi62 E. G. Bilpuch et ai. (DKE), Priv. Coma, to R. J. Howerton (1962).
Bo5l W. Bollmann and W. Zunti (EIH), Helv. Phys. Acta 24, 517 (1951).
Bo57 N. A. Bostrom et al. (INC), WADC-TR-57-446, (1957).
Bo59 N. A. Bostrom et al. (INC), WADC-TR-59-31, (1959).
Bo65 M. Bormann et al. (HAM), Nucl. Phys. 63, 438 (1965).
Bo68 F. Boreli et aㄹ. (Tyex), Fhys. Hev. 174, 12el (1968).
Br61 O. D. Brill et al. (ENS), Sov. Phys. -DOKL. 6, 24 (1961).
Bu69 P. S. Buchanan (TNC), Priv. Comm. (1969)
Bu71 W. P. Bucher et al. BRL MR 2099 (1971) and Priv. Comm. from C. E. Hollandsworth (1970).

Ca57 R. R. Carlson (LAS), Phys. Rev. 107 , 1094 (1957).
Ca70 A. D. Carlson and R. J. Cerbone (GGA), Nucl. Sci. Fing. 42,28, (1970).
Ch61 L. F. Chase et al. (LOK), AFSWC-TR-61-15, (1961).
C169 G. Clayeux and G. Grenier (FR), CEA-R-3807, (1969).
Co48 J. H. Coon and R. A. Nobles, Phys. Rev. 75, 1358 (1948).
Co68 H. Conde et al. (SWD), Neut. Cross Sect. and Tech. Conf., Wash., D. C., p763 (1968).
Cs67 J. Csikai and G. Peto (DEB), Acta Phys. Acad. Sci. Hung. 23, 87 (1967).
Cu51 P. Cuer, J. P. Lonchamp, and S. Gorodetzky, J. Phys, Radium 12, 6S (1951).
Di69 J. K. Dickens and F. G. Perey (ORL), Nucl. Sci. Eng. 36, 280 (1969).
Do64 D. F. Donovan et al. (BNL), Phys. Rev. 133, Bl13 (1964).
En67 F. C. Engesser and W. E. Thompson (NRD), J. Nucl. Energy 2l, 487 (1967).
Fe60 J. M. Ferguson and W. E. Thompson (NRD), Phys. Rev. 118,228 (1960).
Fe67 P. Fessenden and D. R. Maxson (BRN), Phys. Rev. 158, 948 (1967).

Fo55 J. L. Fowler and C. H. Johnson (ORL), Phys. Rev. 98, 7:28 (1955).
Fo66 J. L. Fowler et al. (ORL), Neut. Cross Sect. and Tech. Conf., Wash., D. C., p653 (1968).

Fo71 D. G. Foster, Jr. and D. W. Glasgow (FNL), Phys. Rev. (To be pub., 1971).
Ga59 F. Gabbard et al. (RIC), Nucl. Phys c 14, 277 (1959).
Gi58 J. H. Gibbons and R. I. Macklin (ORL), OPNL-2610 (1958).
Go65 N. W. Golchert et al. (ANL), Nucl. 73, 349 (1965).
Gr68 R. C. Greenwood (MIR), Phys. Lett. 27B, 274 (1968).
Ha59 H. E. Hall and T. W. Bonner (RIC), Nucl. Phys. 14, 295 (1959).
Ha6l G. C. Hanna, D. B. Primeau, and P. R. Tunnicliffe, Can. J. Phys. 39, 1784 (1961).
Ha70 L. Hansen (IRL). Priv. Comm. (1970).
He'70 H. T. Heaton et al. (NBS), Bull. Am. Phys. Soc. 15, 568 (1970), and Private Comm. From R. B. Schwartz (1970).

Hi5¿ J. J. Hinchey et al. (MIT), Phys. Rev. 86, 483 (1952).
Hu61 C. M. Huddieston and F. P. Mooring (ANL), ANL-6376, p. 13 (1961).
Jo50 C. H. Johnson and H. H. Barschall (WIS), Phys. Rev. 80, 818 (1950).
Jo69 L. Jonsson and R. Harde 11 (SWD), Symposium on Neutron Capture Gamma Rays, Studsvik (1969).
Ju63 E. T. Jurney and H. T. Motz (LAS), ANL-9797, p. 241 (1963).
Ku70 H. M. Kuan et al. (STF), Nucl. Phys. A151, 129 (1970).
Le68 B. Leroux et al. (FR.), Iucl. Phys. Al16, 196 (1968).
Li52 A. B. Lillie (RIC), Phys. Rev. 87, 716 (1952).
Li67 R. H. Lindsay and J. J. Veit (WWS), Phys. Rev. 157, 933 (196'7).
Lu67 B. Lundbert et al. (SWE), Arkiv for Fysik 34,247 (1967).
Iu66 H. F. Lutz and J. D. Anderson, UCRL-14568 (1966).
Ma68 D. R. Maxson et a2. (BRN), Nucl. Phys. Al10, 609 (1968).
Me49 E. Melkonian (COL), Phys. Rev. 76, 1750 (1949).
Mi68 D. Miljanic et al. (YUG), Nucl. Phys. A106, 401 (1968).
Mo62 H. T. Motz et al. (IAS), Pile Neutron Research in Physics, (IAEA, Vienna, 1962), p225.
Mo63 I. L. Morgan et al. (INT), Tex. Fucl. Corp. Report (1963).
Mo64 I. L. Morgan et al. (TNC), TNC Nucl. Phys. Div. Ann. Rpt. (Aug. 1964).
Mo67 J. Mosner et al. (GER), Nucl. Phys. A103, 238 (1967).
Ne71 D. O. Nelis (TNC), Priv. Comm. (1970 and 1971).
Ny69 K. Nyberg (SWD), Priv. Comm. to L. Stewart (1969).
$0 d 60$ Y. Oda et al. (TOK), J. Phys. Soc. Japan 15, 760 (1960).
Or69 V. J. Orphan et ai. (GGA), GA-8006, (1969).
Pe71 F. G. Perey and W. E. Kinney, Priv. Comm. (1971).
Ph61. D. D. Phillips (LAS), Priv. Comm. to R. J. Howerton (1961).
Pr60 J. T. Prudhome et al. (TNC), AFSWC-TR-60-30 (i960).
Re67 D. Rendic (YUG), Nucl. Phys. A91, 604 (1967).
Sc66 W. Scobel et al. (HAM), Z. Physik 197, 124 (1966).
Sm54 J. R. Smith (RIC), Phys. Rev. 95, 730 (1954).
St6l V. I. Strizhak et al. (RUS), Sov. Phys. JETP. 14, 225 (1962).
St69 L. Stewart, Priv. Cowm. (1969).
Th67 G. E. Thomas et al. (ANL), Nucl. Instr. Meth. 56, 325 (1967).
Ho67 C. Wong et al. (LRL), Phys. Rev. 160, 769 (1967).
Za63 M. R. Zatzick and D. R. Maxson (BRN), Phys. Rev. 129, 1728 (1963).

SUMMARY DOCUMEXTATION FOR OXYGEIN *
D. G. Foster, Jr. and P. G. Young
Los Alamos Scientific Laboratory

Abstract

A preliminary evaluation of the neutron and photon-production cross sections of oxygen (treated throughout as if it were $100 \% 160$) is presented covering the range $10^{-5} \mathrm{eV}$ to 20 MeV . Parts of the 1965 KAPL evaluation have been retained unchanged, perts have been revised, and sone of the evaluation is entirely new. The "wiadow" in the total cross section at 2.35 MeV is shallower and broader than in the 1965 evaluation, and comes at a sightly lower energy. The total cross section near 14 HeV is about 15% higher than before, and the integrated elastic-scattering cross section above 10 NeV is about 50% higher. The inelastic cross section is sualler by a factor of two between 7 and 12 MeV , but rises to the old value at 14 MeV . A more complete description is given in LA-4780. The following files are included, in ENDP/B-III format:

File 1. Summary of the basis of the evaluation, including all of the principal references and tables of the Q-values corres. ponding to particular MT-numbers.

File 2. Effective scattering radius of 5.429 fm , to yield a zeroenergy scattering cross section of 3.704 b . No resolvedresonance parameters are given.

File 3. Sarooth total cross section, and smooth cross sections for elastic scattering, inelastic scattering, and the (n, γ), (n, p), (n, d) and (n, α) reactions. The ($n, n^{\prime} p$) and ($n, n^{\prime} \alpha$) cross sections are included in the (n, n^{i}) files, using flags to indicate proton or alpha-particle decay of the excited state. Trenty discrete excited states in 16_{0} and three in ${ }^{13}$ c are treated explicitly. Excited states in ${ }^{16} 0$ above 13 MeV are grouped into 19 discrete bands of excitation energy in order to preserve the energy-angle relationships in the laboratory system.

File 4. Secondary-neutron angular distributions for elastic and inelastic scattering, given as Legendre coefficients in the C.M. system. The inelastic distributions are all taken as isotropic in the C.M. system.

File 12. Photon multiplicities for the (n, γ) reaction.
File 13. Photon-production cross sections for ($n, x y$) reactions, consistent with the excitation cross sections in File 3 .

File 14. Photon angular distributions, all taken as isotropic.

[^5]
INTRODUCTION

MAT 1134 contains a preliminary evaluation of the neutron and photonproduction cross sections of oxygen. The 0.23% of 17,180 has been ignored throughout, but it should be emphasized that the minimun cross section given in the "window" at 2.35 MeV is the cross section of natural oxygen. Parts of this evaluation are either copied from the 1965 evaluation of Slaggie and Reynolds (S165) or are only minor revisions thereof, wheras other parts are completely new. Explicit gammaray production files have been added. The only processes treated areelastic and inelastic scattering and the $(n, \gamma),(n, p),(n, d),(n, \alpha)$, ($n, n^{\prime} p$), and ($n, n^{\prime} \alpha$) reactions and the gamma-ray decay of some of the resulting excited states. A full report on the present evaluation is in preparation and will be distributed as IA-4780. This evaluation has passed Phase I review for ENTFF/B-III, but further work on it is planned for the near future.

NEUTRON CROSS SECTIONS

The evaluated total cross section is entirely new. Above 0.7 MeV it is based entirely on post-1967 references, and below 0.7 MeV entirely on much older work. The 1965 evaluation (Sl65) of the total cross section above 4 MeV was based on the work of Fossan et al. (Fo61). The recent Hanford (Fo7la) and NBS (Sc7l) time-of-flight measurements, which agree with each other within 1%, suggest a substantfally higher total cross section above 9 MeV , with the discrepancy reaching about 15% by 14 MeV . The recent Karlsmuhe time-of flight measurement (Ci_{68}), when recorrected for residual dead-time errors using a correction function previouly deduced for nitrogen and aluminum, likewise agrees with the more recent measurements within about 1%. When suitably corrected for resolution, the three time-of-flight measurements and the most recent oak Ridge measurement (Fo'7lb), which all used different oxygen-bearing compounds as samples, agree on the minimum cross section at 2.35 MeV within $\pm 10 \mathrm{mb}$. This general. agreement was taken as justification for discarding the preliminary results from Columbia (Ka71) (which were 50% lower), as well as the older Wisconsin work (Fo6l). Accordingly, the cross section between 0.7 and 12 MeV was taken from the NBS work, with inserts of normalized Karlsruhe data where necessary to preserve the resolution, and with inserts of resolution-corrected Oak Ridge data (Fo70) for the very narrow resonances below 4 MeV . Above 12 MeV a composite of the Karlsruhe and NBS results was used. This approach suffers the disadvantage of losing the highest available resolution at many energies, but Fossan's work will have to be corrected in both energy and absolute cross section before it can be used to replace the normalized Karlsruhe data.

The total cross section at very low energies was taken from a weighted average of three old measurements (Ad49, Jo48, Me49), using the results of okazaki (0×55) to correct for the tail of the $442-k e V$ resonance. The result is a zero-energy scattering cross section of 3.704 b (including 0.038 b from the tail of the first resonance). The radiative-capture cross section contributes an additional component which varies as $1 / v$ from a $2200-\mathrm{m} / \mathrm{sec}$ value of $232 \mu \mathrm{~b}$ (Ju64). The $442-k e V$ resonance itself was taken from Okazaki ($0 k 55$), using a linear background to join it smoothly to the low-energy data on one side and the time-offlight data on the other side. The composite data were smoothed by approximate single-level Breit-Wigner fits to the sharp resonances and by sliding polynomial fits between resonances. The absolute accuracy is estimated as 4% below the first resonance and 1% at most energies above the resonance (with due allowance for resolution).

The integrated cross section for elastic scattering up to 6 MeV was obtained by subtracting the smail (n, α) cross section from the evaluated total cross section. From 6 to 11 MeV , all the remaining constituents of the nonelastic cross section were evaluated separately, relying heavily on gamma-ray production measurements for the cross sections to the excited states, and the elastic cross section again obtained by subtraction from the total. Between 11 and 14 MeV the emphasis was gradually reversed, so that the elastic cross section near 14 MeV was determined from the actual measurements (Ba63, Be67, Ch6l, Mc66, Ne71), and the nonelastic determined by subtraction. The difference between the total cross section and the sum of the measured partial cross sections was assigned entirely to the (n, n^{\prime}) cross section, which will be discussed below. The net result is an elastic cross section which rises gradually above the 1965 evaluation (S165) until it is approximately 50% greater at 15 MeV , where the older evaluation ended.

In order to extend the elastic cross section to 20 MeV , the parameters of a spherical local optical model were fitted to the anguiar distribution measured near 14 MeV . Then the depth of the real potential in the model was varied $s 0$ as to reproduce the heavily-smoothed total cross section out to 20 MeV . The angular distribution of elastic scattering and the total nonelastic cross sections which resulted from these calculations were adopted in the evaluation, and the integrated elastic cross section was obtained by subtracting the smooth nonelastic cross section from tine fluctuating total cross section.

Measured photon-production cross sections (Bu71, C169, D170, Dr70, En67, Mc66, Ny70, 0×70), together with the level-decay scheme of 1_{0} (A .71), were used to estimate the $\left(n, n^{\prime}\right)$ cross sections to the $6.13,6.92,7.12,8.87$, and 11.08 MeV levels in ${ }^{16} 0$ from threshold to $15-\mathrm{MeV}$, and the evaluated curves were extrapolated to 20 MeV using suitably-normalized compound-nucleus reaction-theory calculations made with the code CONNUC (DuTl). The (n, n^{\prime}) excitation cross sections for 15 additional levels with $\mathrm{F}_{\mathrm{x}}<13 \mathrm{MeV}$, for which no measurements are available, were also estimated from these calculations using the same nomalization as was required for the photon-emitting levels.

Although the ($n, n^{\prime} \alpha$) threshold is 7.61 MeV , selection rules and the unavailability of levels in 12C to circumvent the selection rules prevent sig. nificant alpha-particle decay of the excited states of 16_{0}^{0} until $\mathrm{F}_{x}>9 \mathrm{MeV}$, and the gamma-ray production measurements show that some levels still decay preferentially by photon emission up to $E_{x} \sim 11 \mathrm{MeV}$. Those levels which decay by alpha-particle emission have been flagged in File 3 to indicate the mode of decay, but are retained in the inelastic-scattering records instead of being assigned to MP $=22$. The resulting cross section for aipha-particle production is substantially greater than the direct (n, α) cross section, and is in reasonable agreement with total alpha-production measurements (Bo66, Da68, Li52).

In the 1965 KAPL evaluation, the ($n, n^{\prime} \alpha$) cross section was included in the (n, α) file; consequently, the present (n, α) cross section is substantialiy less than the KAPL (n, α). The inclusion of the ($n, n^{\prime} \alpha$) cross section in our (n, n^{\prime}) files causes a rapid increase in our total inelastic cross section above 13 MeV , with the result that our total inelastic cross section is in good agreement with the KAPL evaluation at 14 MeV . At lower neutron energies, however, our evaluated (n, n^{\prime}) cross sections are based upon ($n, n^{\prime} \gamma$) measurements that are roughly a factor of two lower than the older measurements used in the KAPL work.

For excitation energies greater than 13 MeV in ${ }^{16}{ }^{1}$, we have assumed that all levels decay by charged-particle emission. Since little is known about the level scheme in this range, we have arbitrarily divided the remaining energy range into 19 bands of excitation energy, and distributed among them the inelastic cross section which does not go to the 20 discrete levels. The distribution was made according to an evaporation model with a temperature of 2 MeV . The use of bands of excitation energy in File 3 instead of continua in Files 4 and 5 permits the energy-angle relationships in the laboratory system to be calculated, which is important for a target nucleus as light as ${ }^{16} 0$. two of the highest bands are flagged as proton emitters and the remainder as alpha emitters; the possibility of neutron emission has been ignored, since the ($n, 2 n$) cross section is less than 3 mb at neutron energies below 20 MeV (Br 61). Most of the (n, n^{\prime}) cross section goes to levels with $\mathrm{E}_{\mathrm{x}}<13 \mathrm{MeV}$ at neutron energies below $\sim 17 \mathrm{MeV}$.

The evaluated (n, p) cross section up to 15 MeV was copied from the 1965 evaluation, and extended to 20 MeV with the available data (B066, De62, Ma54, Se62). The (n, d) cross section was calculated from compound-nucleus theory, and normalized to Lillie's measurement (Li 52) at 14 MeV . The (n, α_{0}) cross section was copied from 5165 up to 6.3 MeV and extended to 20 MeV using the available direct measurements (Da63, Da68, Ma68, Mc66a, Si68). The (n, α) cross section to the first three excited states in ${ }^{13} \mathrm{C}$ was taken from direct (Da63) and photon-production (Bu71, C169, Di70, En67, Mc66, Ny70, Or70) measurements below 15 MeV , and extended to 20 MeV using the results of Sick et al. (Si 68).

The angular distributions of elastic scattering in File 4 were copied from the 1965 evaluation up to 5 MeV . From 5 to 14 MeV , smooth curves through the coefficients obtained from Legendre fits to the available data (Ba63, Be67, Ch6l, Mc66, Ne71, Ph6l) were used. Above 14 MeV the coefficients were taken from the optical-model calculations described above, which was also used to determine the total nonelastic cross section. Wherever necessary the data were augmented with synthetic points at 0° in order to force compliance with Wick's limit. The inelastic angular distributions were ali taken as isotropic in the C.M. system, although the ($n, n^{\text {: }}$) distributions to the lowest states are known to be anisotropic (Ba63, Mc66) near 14 MeV .

PHOTON-PRODUCTION CROSS SECTTONS

The cross section for radiative capture was assumed to vary as $1 / v$ from the $2200-\mathrm{m} / \mathrm{sec}$ value of $232 \mu \mathrm{~b}$ (Ju64) over the entire energy range. The $2200-\mathrm{m} / \mathrm{sec}$ photon spectrum is based on measurments by Jurney (Ju71) and is assumed to hold at all energies. The ($n, n^{\prime} y$) cross sections in File 13 are consistent at all neutron energies with the jevel-excitation cross sections in File 3, using the adopted decay scheme for ${ }^{16}$ o. As noted above, the evaluations in File 3 were based primarily on the ($n, n^{\prime} y$) measurements (Bu71, C169, Di70, Dr70, Fin67, Mc66, Ny70, Or70), supplemented by compound-nucleus calculations above 15 MeV . The first excited state in 160 at 6.052 MeV decays only by internalpair creation, which cannot be flagged under the existing ENDF formats. Accordingly, File 13 shows the two $0.51-\mathrm{MeV}$ annihilation gamma rays from the positron but the kinetic energy of the electron and positron is simply lost.

The ($n, \alpha y$) cross sections in File 13, which were reconstituted from the (n, α) level-excitation cross sections, are based mainly on ($n, \alpha \gamma$) measurements, as noted earlier. The ($\mathrm{n}, \mathrm{p} \gamma$) cross sections all have $\mathrm{E}_{\boldsymbol{\gamma}}<0.4 \mathrm{MeV}$ and
were obtained by crudely diyiding the total (n, p) cross section among the four particle-stable levels in $1 G_{\mathrm{N}}$, assuming that the cross section to each is proportional to ($2 J+1$), where J is the total angular momentur of the state. The ($n, n^{2} \alpha \gamma$) cross section for the $4.439-\mathrm{MeV}$ gamma ray from ${ }^{12} \mathrm{C}$ was obtained by crudely dividing the available ($n, n^{\prime} \alpha$) cross sections given under NL $=56089$ in File 3 among the states in ${ }^{12} \mathrm{C}$ that can be formed by alpha emission. The resulting curve was adjusted slightly to produce agreement with ($n, x y$) measurements near 14 MeV .

All secondary gamma rays are assumed in the evaluation to have isotropic angular distributions.

REFEREWNCES

Ad49 R. K. Adair et al., Fhys. Rev. 75, 1124 (1949).
Aj71 F. Ajzenberg-Selove, Nucl. Phys. Al66, 1 (1971).
Ba63 R. W. Bauer et al., Fucl. Phys. 47, 241 (1963).
Be67 P. L. Beach et al., Phys. Rev. 156, 1201 (196\%).
Bo66 M. Bormann et ales Proc. IAEA Conf. Nucl Data, Paris, (1966), p. 225.
Brel Brill et al., Sov. Phys.-Doklady 6, 24 (1961).
Bu71 P. S. Buchanan et al., OR0-2791-32, (1971).
Ch61 L. F. Chase et al., AFSNC-TR-61-15 (1961).
Ci68 S. Cierjacks et al., KFK-1000 (1968).
C169 G. Calyeux, G. Grenier, CEA-R-3807 (1969).
Da63 E. A. Davis et al., Nucl. Phys. 48, 169 (1963).
Da68 D. Dandy et al., AWRE 060/68 (1968).
De62 J. A. DeJuren et al., Phys. Rev. 127, 1229 (1962).
Di70 J. K. Dickens + F. G. Perey, Nucl. Sci. Fng. 40, 283 (1970).
Dr70 D. M. Drake et al., Nucl. Sci. Fing. 40, 294 (1970).
Du71 C. L. Dunford, private commmication (1971).
En67 F. C. Engesser + W. E. Thompson, J. Nucl. Eng. 21, 487 (1967).
Fo6l D. B. Fossan, R. L. Walter, W. E. Wilson, + H. H. Barschall, Phys. Rev. 123, 209 (1961).

Fo70 J. L. Forler and C. H. Johnson, Phys. Rev. C 2, 124 (1970).
Fo7la D. G. Foster, Jr. and D. W. Glasgow, Fhys. Rev. C 3, 576 (1971).
Fo7lb J. L. Fowler, C. H. Johnson, F. X. Haas, and R. M. Feezel, Conf-710301, 179 (1971).

Jol4 W. B. Jones, Jr., Phys. Rev. 74, 364 (1948).
Jo67 C. F. Johnson and J. L. Forler, Phys. Rev. 162, 890 (1967).
Ju64 E. T. Jurney and H. T. Moiz, Bull. Am. Fhys. Soc. 9, 176 (1964)
Ju71 E. T. Jurney, Private Commnication (1971).

Ka71 J. Kalyna, J. J. Taylor, and L. J. Lidofsky, submitted to Third Conference on Neutron Cross Sections and Technology, Knoxs viile, Abstract No. II. 26 (1971); and private communication (1971).

Le68 B. Leroux et al., Nucl Phys. Al16, 196 (1968).
Li52 A. B. Lillie, Phys. Rev. 87, 716 (1952).
Ma54 H. C. Martin, Phys. Rev. 93, 498 (1954).
Ma68 D. R. Maxon + R. D. Murphy, Nucl. Phys. All0, 555 (1968).
Mc66 W. J. McDonald et al., Nucl Phys. 75, 353 (1966).
Mc66a W. N. McDicken + W. Jack, Nucl. Phys. 88, 457 (1966).
Me49 E. Melkonian, Phys. Rev. 76, 1750 (1949).
Ne71 D. O. Nellis + P. S. Buchanan, private communication (1971).
Ny70 K. Nyberg, B. Jonsson and I. Bergquist, AE-INSN-2, (1970).
Ok55 A. Okazaki, Phys. Rev. 99, 55 (1955).
Or70 V. J. Orphan et al., Nucl. Sei. Eng. 42, 352 (1970).
Ph61 D. D. Phillips, private communication to BNL (1961).
Sc71 R. B. Schwartz, private communication (1971).
Se62 K. W. Seeman + W. E. Moore, KAPL-2214 (1962).
Si68 Von I. Sick et al., Helv. Phys. Acta 41, 573 (1968).
Sl65 E. L. Slaggie + J. T. Reynolds, KAPL-M-6452 (1965).

EVALUATION OF SODIUM-23 NEUTRON
Data for the endf/b version ill file*
by
N. C. Paik and T. A. Pisterle

Westinghouse Advanced Reactors Division Waltz Mill Site P. O. Box 158 Madison, Pennsylvania 15663

I. INTRODUCTION

This report describes the evaluation of neutron cross sections of Na-23, material number 1156, for the ENDF/B File. Cross sections were evaluated between $10^{-5} \mathrm{eV}$ and 15 MeV . Experimental data available up to March 1971 were included in the evaluation.

Since the evaluation of sodium neutron cross sections [1] for ENDF/B Version I, significant new measurements have become available for the total, inelastic for the 0.44 MeV level. The new data iuproved the magritude of the resolved level inelastic scattering up to 8.5 MeV , and the accuracy of elastic angular distributions above 1.5 MeV .

II. TOTAL CROSS SECTION

The total cross section of sodium has been re-evaluated for the ENLF/B library in the neutron energy range from 100 eV to 15 MeV . The measurment of the total cross section for neutron energies above 600 eV and below 40 keV at the Nevis Laboratory, Columbia University ${ }^{[2]}$ verifies a spin assignment of $j=1$ for the 2.85 keV resonance and a neutron width of about 410 eV . The data indicates that the width of the resonance is wider than the earlier measurements by Garg ${ }^{[3]}$, and more in agreement with the measurements of Noxon ${ }^{[4]}$ and Lynn ${ }^{[5]}$. The peak value of the resonance is within the statistical uncertainty of the theoretical value, which is 380 barns for a resonance with $\mathrm{J}=1$.

Resonance parameters are given in Table 1. Yamamuro's ${ }^{[6]}$ measured value of 0.47 eV for IY of the 2.85 keV resonance has been used in the present evaluation. Parameters for resonances at 7.53, 35.4, 53.0,
*Work performed under AEC Contract AT(30-1)-4210.
214.7, 129.5, and 139.1 keV were estimated from data by Moxon ${ }^{[4]}$, Hockenbury ${ }^{[7]}$, and Ribon ${ }^{[8]}$ with particular emphasis on the capture areas measured by Hockenbury ${ }^{[7]}$. The parameters for the 53.0 keV resonance, for instance, are Moxon's values with Hockenbury's IY data.

The scattering radius was chosen to provide a good agreement between calculation fo the 2.85 keV resonance at energies above the resonance with measured data from the Nevis Laboratory ${ }^{[2]}$. Background cross sections are given in File 3 to improve agreement between calculated and measured data below 1.50 keV . The resolved resonance range is defined to be from 600 eV to 150 keV . Below 600 eV the total cross section is based on the data of Columbia ${ }^{[2]}$ and of Joki ${ }^{[9]}$. The experimental data ${ }^{[2]}$ near the 2.85 keV resonance is shown together with the evaluated values in Figure 1.

The total cross section evaluation between 150 keV to 520 keV is based primarily on measurements by Whalen and $\mathrm{Smith}^{[10]}$ and Cierjacks ${ }^{[11]}$. The results are shown in Figure 2. Above 520 keV total cross sections measured by Stoler ${ }^{[12]}$ and Cierjacks ${ }^{[11]}$ have been used for the evaluation. These two measurements are in good agreement in both magnitude and energy resolution.

Couparison of these two data sets are shown in Figures 3 and 4. The Version I (retained for Version II) data are also shown in Figures 3 and 4 in comparison with the Version III evaluation. Generally, the data by Cierjacks are in $4-5 \%$ agreement with Stoler's data below the neutron energy of 1.2 KeV , and in a good agreement (27) near the peaks of resonances in the energy range between 1.2 MeV and 2.5 MeV . In the cave energy range the two data sets, however, differ significantly (10\%) in the valleys between major resonances, with corrected Cierjacks data being considerably lower than his earlier values. Evaluation In the Version III in the energy range above 2.5 MeV up to 15 MeV was primarily determined by upper limits of Cierjacks data with some weighiag of Stoler's data.

III.

INEIASTIC SCATTERING CROSS SECTION
Total inelastic scattering cross sections are extensively revised and updated relative to the Version I data of sodium. In the present evaluation there are total eighteen resolved levels for inelastic scattering. The inelastic levels in the file 3 are $0.44 \mathrm{MeV}, 2.08 \mathrm{MeV}, 2.64 \mathrm{MeV}$, 2. $705 \mathrm{MeV}, 2.393 \mathrm{MeV}, 2.98 \mathrm{MeV}, 3.68 \mathrm{MeV}, 3.88 \mathrm{MeV}$ (doublet), 4.43 MeV , $4.77 \mathrm{MeV}, 5.38 \mathrm{MeV}, 5.53 \mathrm{MeV}, 5.76 \mathrm{MeV}$ (a triplet), 5.95 MeV (a doublet), 6.08 MeV (a doublet), 6.27 MeV, 7.11 MeV and 7.79 MeV.

For the levels above 7.79 MeV , inelastic scattering cross section is represented as continuum data.

For the 0.44 MeV level, the high resolution data shown in Figure 5 of Perey [13], which have been normalized to an average of the previous measurements by Chien [14] and Towle ${ }^{[15]}$, have been included up to 2.0 MeV . The thirteen resolved levels from 2.08 to 5.59 MeV are primarily determined by using the recent measurements by Perey and Kinney ${ }^{[16]}$ and those of Fasoli ${ }^{[17]}$ which lead to a complete re-evaluation of the ENDE'B data above 4.0 MeV to 8.5 MeV . The measured doublet at 2.671 MeV has been split into two levels, one at $2.64 \mathrm{MeV}\left(\frac{1-1}{2}\right)$ and at $2.705 \mathrm{MeV}\left(\frac{9+}{2}\right)$, according to calculated zesults by Perey $[18]^{2}$.

The inelastic scattering cross sections for the four resolved levels above 6 MeV are not based on resolved experimental data. Instead, peak inelastic scattering cross sections for $6.72,7.11$, and 7.79 MeV levels were estimated to be 0.06 b , and that for the doublet at 6.08 MeV to be 0.08b. The continurm data for levels above 7.79 MeV were then obtained 38 the difference between the estimated total inelastic scattering cross sections above 7.79 MeV and the sum of all resolved level data which were extrapolated above 7.79 MeV .

The total inelastic scattering cross sections in the present evaluation are 0.907 bam between the neutron energy of 6 and 7 liev. The evaporation theory estimate of Williams on [19] at 7.2 MeV is 0.93 b , which is in fair egreement with the evaluation. Above 8.5 MeV , the continuum data and shapes of four resolved inelastic scattering levels ($6.08 \mathrm{MeV}, 6.27 \mathrm{MeV}$. 7.11 MeV and 7.79 MeV) have been determined in a way so that the total

Inelastic scattering cross section is approximately linear between 9 and 15 MeV with 0.89 b and 0.60 b at respective energy.
IV. ANGULAR DISTRIBUTIONS FOR ELASTIC AND INELASTIC SCATTERING

Angular distributions for all resolved and unresolved levels for inelastic scattering of sodium represented to be isotropic in the Version III file. Measurements of inelastic scattering angular distributions by Fasoli [17] and Perey ${ }^{[16]}$ do not indicate significant deviations from isotropic scattering.

Angular distributions for elastic scattering have been revised by Perey's data ${ }^{[16]}$ in the energy range above 4 MeV to 8.5 MeV . In this energy range the angular distributions are represented by l0th order legendre polynominal fits to the experimental data. Angular distributions above 10 MeV were obtained from the legendre polynominal expansion coefficients by Campbell: $: 0]$ which were based on theoretical results by Agee and Rosen ${ }^{[21]}$.

V. CAPTURE CROSS SECTION

The sodium capture cross section between 100 eV and 200 keV is based primarily on the resonance parameter evaluation (See Section I.) and in agreement with the capture areas measured by Hockenbury [7]. The radiation width for the 2.85 keV resonance, which dominates Na.capture cross section, is $0.47 \mathrm{eV}^{[6]}$ compared to 0.33 eV for the ENDF/B Version 1 evaluation. Integral testing ${ }^{[22]}$ of this capture cross sectinn change of sodium indicated that the eigenvalue calculation of a fast reactor system with a power reactor spectrum is not significantly effected ($0.01 \% \Delta k$ change for $\Gamma_{\gamma}=0.47 \mathrm{eV}$ compared to using $\Gamma_{\gamma}=0.33 \mathrm{eV}$).

Above 200 keV and below 100 eV , the capture cross section of the Version I sodium evaluation [1] was retained for the present evaluation.

V. ELASTIC SCATTERING

The elastic scattering cross section was obtained by subtracting the total nonelastic cross sertion, computed as a suin of its separately evaluated partial cross sections, from the evaluated total cross section. The scattering cross section has the similar structure as the total cross section particularly between 1 keV and about $2 \mathrm{Me} \mathrm{\nabla}$, the evaluated elastic scattering cross section averaged with experimental energy resolution were found to be within the experimental measurement meertainties of Perey's elastic data at 5.44 ± 0.17, $6.37 \pm 0.13,7.60 \pm 0.10,8.52 \pm 0.08 \mathrm{MeV}$. The evaluated elastic scattering cross section as mill as the measured data by Perey has a minimum value of 0.6 b near 8.5 MeV , and tends to increase to 0.8 b at 15 MeV .

VII. THRESHHOLD CROSS SECTIONS

The ($n, 2 n$) cross section was re-evaluated based on measurements indicating a lower cross section than the previous evaluation. The evaluated ($n, 2 n$) cross section in the Version 3 file agree closely with Menlove's measurements ${ }^{[23]}$ and calculations by Pearlstein ${ }^{[24]}$. The (n, p) and (n, α) cross secitons of the previous evaluation ${ }^{[1]}$ was retained in the Version III file.
VIII. SOME COMMENTS ON DATA UNCERTAINTIES AND DATA TESTING

Present estimates of uncertainties on sodium-23 neutron cross sections are given in Table II. Results of calculated integral parameters with the new sodium data for a typical fast porer reactor benchmark critical assembly, ZPPR-2, are compared with experiments and with calculations using Version I sodium data. Due to the simplicity of the cylindrical model, only zelative magnitudes are meaningful, but not absolute magnitudes which are given in Table II.

Eigenvalue, central reaction ratios, central material worths other than sodium are not significantly affected by the cheice of sodium data, but the calculated central sodium worth, however, is about

9\% larger in absolute magnitude using the new sodium data. This 9% difference is due to a 4% change in the capture component and a 5% change in the moderation component of the material worth.

TABLE I. RESONANCE PARAMETERS IN ENDF/B VERSION 3 SODIUM EVALUATION

Resonance

Energy, keV	\underline{J}	$\underline{1}$	$\underline{\Gamma n}, \mathrm{eV}$	$\underline{\Gamma \gamma, \mathrm{eV}}$
2.85	1	0	410	0.47
7.53	1	1	0.012	1.5
35.4	3	1	0.86	0.76
53.0	2	1	1200	1.48
114.7	2	0	11.0	2.72
129.5	3	1	0.374	1.5
139.1	2	1	3.33	1.5

Table II Sumary of $\mathrm{Na}-23$ Data Uncertainties and Data Testings

Estimates of Sodium Neutron Data Uncertainties
$\Gamma_{\gamma}\left(E_{0}=2.85 \mathrm{KeV}\right)=0.47 \mathrm{ev} \pm 30 \%$
$\Gamma_{\mathrm{n}}\left(E_{0}=2.85 \mathrm{KeV}\right)=410 \mathrm{ev} \pm 10 \%$
$\sigma_{t}: \pm 3-5 \%$ over entire energy range
$\sigma_{\text {in }}: \pm 10 \%$ below $2 \mathrm{MeV}, 10-15 \%$ above $2 \mathrm{MeV}, \pm 30 \%$ above 8 MeV
$\sigma_{n \gamma}: \pm 20 \%$ where capture cross section is significant
$\sigma_{\mathrm{np}}: \pm 30 \%$ between 5 to 15 MeV
$\sigma_{n_{\alpha}}: \pm 20 \%$ below $8.5 \mathrm{MeV},\binom{+5 \%}{-50 \%}$ above $8.5 \mathrm{MeV},\binom{+50 \%}{-10 \%}$ above 11 MeV $\sigma_{n 2 n}: \pm 50 \%$ below 15 MeV

Comparison of Calculations ${ }^{\mathbf{a}}$ and Experiment ${ }^{\text {a }}$ for $2 P P R-2$

	Experiment			Version 1 Na	New Na
Eigenvalue	1.00			0.997	0.996
Central Reaction Ratios					
$\mathbf{f}^{\mathbf{2 3 5}} / \mathrm{f}^{\mathbf{2 3 9}}$	1.067	\pm	. 016	1.083	1.083
$\mathbf{f}^{\mathbf{2 3 8}} / \mathbf{f}^{\mathbf{2 3 9}}$	0.0214	\pm	. 0004	0.0228	0.0228
$\mathrm{s}^{240} / \mathrm{f}^{239}$	0.182	\pm	. 003	0.188	0.188
$c^{\mathbf{2 3 8}} / \mathrm{f}^{\mathbf{2 3 9}}$				0.155	0.155

Material Worths (Ih/Kg)
थ core center

$\mathrm{Na}-23$	-5.1	$\pm .44$	-4.09	-4.43
$\mathrm{Pu}-239$	118.4	$\pm .79$	130.24	130.24
$\mathrm{U}-238$	-10.5		-7.85	-7.8
$\mathrm{Ta}-181$	-50.3	± 1.0	-41.9	-41.4
$\mathrm{~B}-10$	-2237	± 41	-2193	-2176

Core-Radial Blanket
Interface

$\mathrm{Na}-23$	3.88	3.34	3.35
$\mathrm{Pu}-239$	25.5	24.7	24.7
$\mathrm{~B}-10$	-358	-344	-345

a: Details of a calculational model and data used in calculations are given in reference 22. Experimental data from reference 25.

REFERENCES

1. T. A. Pitterle, "Evaluated Neutron Cross Sections of Na^{23} for the ENDF/B File," APDA-217, June 1968.
2. F. Rahn et. al., Private Communication, Nevis Laboratory, Columbia University, 1968.
3. J. B. Garg, J. Rainwater, S. Winchank, and W. W. Hazens, Jr., Total Cross Section of Elements With Widely Spaced Levels in the Energy Interval of $200 \mathrm{eV}-600 \mathrm{keV}, "$ in Nuclear Structure Study With Neutrons, Proceedings of the International Conference on the Study of Nuclear Structure With Neutrons, Antwerp, Belgium, July 19-23, 1965, p. 526, North-Holland Publishing Company, Amsterdam, 1966.
4. M. C. Moxon and N. J. Pattenden, CN-23/27, Paris Conference (1966).
5. J. E. Lynn, F. W. K. Firk, and M. C. Moxon, "The 2.85 keV Neutron Resonance of Sodium," Nucl. Phys. 5, pp. 603-614 (1957).
6. N. Yamamuro, R. W. Hockenbury, R. C. Block, and R. H. Wolfe, "A Measurement of the Radiation Width of the 2.85 keV Neutron Resonance and of the Thermal Neutron Capture Cross Section in Sodium, "Nucl. Sci. Eng. 41, Pp. 445-449 (1970).
7. R. W. Hockenbury, Z. M. Bartholome, J. R. Tatarczuk, W. R. Moyer, and R. C. Block, 'Neutron Radiative Capture in Na, Al, Fe, and Ni from 1 to 200 keV ", Physics Rev., 178, pp. 1746-1769, 1969.
8. P. Ribon et. al. CN-23/72, Paris Conference (1966)
9. Joki, Miller, Evans, Phy. Rev. 109, 610 (1955).
10. J. Whalen and A. B. Smith, Private Communication, ANL, 1970.
11. S. Cierjacks, P. Forti, D. Kopsch, L. Kropp, J. Nebe, and H. Unseld, "High Resclution Total Cross Sections Between 0.5 to 30 MeV ," KFK-1000, Jume 1968, and Private Communication for Corrections on Data.
12. P. Stoler, P. F. Yergin, J. C. Clement, C. G. Goulding, and R. Fairchild, "The MeV Total Neutron Cross Section Program at R. P. I.," paper presented at the Third Conference on Neutron Cross Sections and Technology, University of Tennessee, Knoxville, March 15-17, 1971, Oak Ridge National Laboratory.
13. F. G. Perey, W. E. Kinney, and R. L. Macklin, "High Resolution Inelastic Cross Section Measurements for Na, Si, and $\mathrm{Fe}, "$ paper presented at the Third Conference on Neutron Cross Sections and Technology, University of Tennessee, Knoxville, March 15-17, 1971, Oak Ridge National Laboratory.
14. J. P. Chien, and A. B. Smith; "Tast Neutron Scattering from Beryllium, Sodium, and Aluminum," Nucl. Sci. Eng. 26, Pp. 500-510 (1966)
15. J. H. Towle and W. B. Gilboy, "The Interaction of Neutrons with Sodium in the Energy Range 0.5 to 5 MeV ," Nucl. Phys. 32 Pp . 610-636 (1962).
16. F. G. Perey and W. E. Kinney, "Neutron Elastic and Inelastic Scattering Cross Sections for Na in the Range of 5.4 to $8.4 \mathrm{MeV}, "$ ORNL-4518, August 1970.
17. U. Fasoli, D. Toniolo, G. Zago, and V. Benzi, "Elastic and Inelastic Scattering of Neutrons by Na at $1.51,2.47,4.04$, and $6.40 \mathrm{MeV}, "$ Nucl. Phys. A125, פP. 227-240 (1969).
18. F. G. Perey, Private Communications, ORNL (1971).
19. C. F. Williamson, "Absolute Cross Sections of the Reactions Na^{23} (n, p) Ne^{23} and $\mathrm{Na}^{23}(\mathrm{n}, \alpha) \mathrm{F}^{20}$," Phys. Rev. 122, Pp. 1877-1882 (1961).
20. R. Campbell et. al. NAA-SR-12533 (1968).
21. P. Agee and L, Rosen, LA-3538-MS, Vol. I (1966).
22. N. C. Paik, T. A. Pitterle, and C. Durston, "Integral Testing of Modifications to ENDF/B Version II Data", in "Proceedings of the Third Conference Neutron Cross Sections and Technology", CONF-710301, Vol. 1, Argeust 1971, pp. 44-50.
23. H. O. Menlove, Phy. Rev. 163, 163, 1967.
24. S. Pearlstein, ÜSAEC Report BNL-897(T-365) Brookhaven National Laboratory (1964).
25. 2PPR Staff, "ZPPR-2 Benchmark Experimental Data to Janaury 1971" 2PR-TM-48, 1971.

SUMMARY DOCUMENTATION FOR SODIUM GAMMA-RAY PRODUCTION CROSS SECTIONS

F. G. Perey

Oak Ridge National Laboratory

Sodium Ploton Production Evaluation - ORNL August 197.
The previous photon production evaluation for sodium by M. K. Drake et al., Mat 5001, Ref. 1, was performed in 1967. Since then much new experimental information has become available to warrant a revision of this evaluation in the lower energy region. This reevaluation, Mat 1156, was undertaken to be compatible in format with a reevaluation of the neutron cross sections concurrently performed at Ward. Because much data were available and due to the formats chosen, these photon production files should be quite reliable up to 8 MeV incident neutron energy. Above that energy, we have bo::rowed from Mat 5001 to extend the files up to 15 MeV .

Up to 8 MeV neutron capture and inelastic scattering dominate photon production in sodium. Although (n, p) and ($n, a l p h a$) reactions have low thresholds, the cross sections are small below 8 MeV and calculations indicate that mostly the ground states are populated. Therefore we have neglected photon production arising from (n, p) and (n, alpha) reactions.

Above 8 MeV the energy distribution for photons for MT=91 was from Mat 5001.

File 12
$M T=51$ to 63
Transition probabilities are rather well established for these levels and the values adopted follow the review of Ref. 2. MT=58 represents
a doublet of levels having the same spin but opposite parity, Calculations indicate that the cross sections to each member are equal to within a few per cent. The transition probabilities for $M T=58$ are the average of those for the two levels.

$$
M \mathrm{~T}=64 \text { to } 68
$$

Each one of these MT numbers represent groups of levels. No experimental data are available to correctly describe the transition probabilities for MT= 64 to 68. For MTa 64 and 65 equal probability for decay to the ground state and first excited stat:e have deen assigned. For $M T=66$ to 68 we have given the average branching ratio for 6 levels seen from 6.9 to 7.1 MeV in Ref. 3. These assignments for MT= 64 to 68 should not underestimate the amount of penetrating photons for these Levels.
$M T=91$
This is adapted from Mat 5001, Ref. 1.
$\mathrm{MT}=1.02$
The low energy neutron capture in sodium is dominated by the 2.85 keV resonance. There are no data which indicate that the gamma-ray apectrum observed at thermal should not apply to the 2.85 keV resonance. We have therefore used a single gamma ray spectrum to describe capture over the complete energy range. The multiplicities were arrived at from a decay scheme based on the very consistent thermal capture data on Ref. 4 and 5.

File 14
All gamma rays have been assumed to be isotropic. There is sufficient information on many transitions to generate fairly accurate angular distributions should the need arise.

File 15
The continuous photon energy spectra for $M T=91$ in this file were taken from Mat 5001.

File 23

The semi-empirical photon cross section information in this file is from UCRL 50400

References

1. M. K. Drake et al.,GA-7829
2. A. R. Poletti-et al., Phys. Rev. C2-964 (1970)
3. C. P. Swann, Nuc. Phys. Al67-201 (1971)
4. R. C. Greenwood, Phys. Letters 23-482 (1966) and given in Bartholomew et ai., Nuc. Lata 3-.367 (1967)
5. Nichol et al., Can. Jour. Phys: 47-953 (1969)
I. Magnesium (MAT 1014)
E. M. Pennington

Argonne National Laboratory
A. Outline of Cross Sections Included

Smooth total, elastic, inelastic, $(n, 2 n),(n, r),(n, p)$ and (n, α) cross sections are given in File 3, along with values of μ_{L}, ξ and γ calculated from the Legendre coefficients of File 4. The energy range is 0.001 eV to 18 MeV .

File 4 includes Legendre coefficients in the center of mass system for elastic scattering at 33 erscrgies, along with the transformation matrix from the center of mass to the laboratory system.

File 5 presents secondary energy distributions for inelastic scattering to four resolved levels and the continuum, along with tabulated nuclear temperatures. Nuclear temperatures for the ($n, 2 n$) reaction are also given.

Parameters for the free gas thermal scattering law are given in File 7.

No resonance parameters are included for magnesium.
B. Sources of Magnesium Data

The main source of magnesium data was the compilation by N. Tralli et al., of United Nuclear Corporation. (Ref. 1). This compilation presents smooth cross section data and Legendre coefficients for elastic scattering angular distributions at 400 fixed energies from 0.0383 eV to 18 MeV . Various modifications were made in the UNC-5002 (Ref. 1) data, along with some additions. The data sources for the
individual quantities are described in more detail below. Total Cross Section

The total cross section over most of the energy range is from Table 13 of UNC-5002. Not all energies in Table 13 were used in the present tabulation, either for the total cross section or for other cross sections, in regions where the cross sections are slowly varying. The total cross section was extended downward to 0.001 eV as the sum of constant scattering and $1 / \mathrm{V}$ capture cross sections. From about 2.3 MeV to about 8.5 MeV , total cross sections based on the more recent measurements presented on the Figures on pages 12-0-3 and 12-0-4 of Ref. 2 were used.

Elastic Scattering Cross Section

The elastic scattering cross section over most of the energy range was taken from Table 13 of $\mathbb{U N C}-5002$, with a constant value of 3.41 barns being used below 1.5 eV . Since new total cross sections were used from 2.3 to 8.5 MeV , new elastic cross sections were determined in this range by subtracting the other cross sections from the total. Inelastic Scattering Cross Section

The inelastic scattering cross section is based on Table 13 of $\mathrm{UNC}-5002$, with the ($\mathrm{n}, \mathrm{n}^{\prime}$) and (n, np) cross sections being added to give the inelastic cross section at high energies.
(n, γ) Cross Section
The (n, γ) cross section is from Table 13 of UNC-5002, extended down to 0.001 eV on a $1 / \mathrm{V}$ basis with a cross section of 0.073 barns at 0.0253 eV .

Values of $\sigma_{n, 2 n}, \sigma_{n p}$ and $\sigma_{n a}$ are all from Table 13 of UNC-5002. μ_{L}, ξ and γ

The values of μ_{L}, ξ and γ were calculated from the Legendre coefficients of File 4. A code was written using modified versions of some of the CHAD code (Ref. 3) subroutines for this purpose. The CHAD code already had provision for calculation of μ_{L} and ξ. The calculation of γ is done in a manner similar to that of ξ, presented in Section VII of Ref. 3. Since there is a tendency for large terms to almost cancel one another in the calculation of γ, and to a lesser extent in the calculation of ξ, especially for heavy elements, the computations were done using double precision arithmetic on the CJC-3600, which involves approximately 25 decimal digits.

Elastic Scattering Legendre Coefficients

Legendre coefficients in the center of mass system were obtained from Table 14 of UNC-5002, with enough energies being chosen so that linear-log interpolation could reasonably be used between successive energies. Truncation of the series after too few terms at high energies in Table 14 leads to negative $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ values over part of the angular range. Thus the coefficients at 9.89 MeV were slightly modified, and the coefficients at 14 MeV and 18 MeV were derived from Abacus-2 (Ref. 4,5) optical model calculations. The well parameters used in Abacus-2 were those of Bjorklund and Fernbach (Ref. 6), since the Legendre coefficients at high energies in Table 14 are based on their optical model calculations.

The angular distributions from the Abacus-2 problems were fit by leastsquares techniques using the Argonne code, SAD (Ref. 7). The maximum number of Legendre coefficients used in the magnesium angular distributions is 10 . Thus a transformation matrix from the center of mass to the laboratory systen involving terms through $\ell=10$, calculated with the CHAD code, is included in File 4.

Secondary Energy Distributions

Probabilities of exciting each of the four resolved levels considered in inelastic scattering are tabulated from threshold up to 6.0 MeV , based on Table 15 of UNC-5002. A nuclear temperature for continuum inelastic scattering is tabulated for higher energies. This was determined as follows. At several energies nuclear temperatures were found for the Maxwellian distribution which would give the same average energy loss as the tabulated values of $\sigma_{\mathrm{nn}^{\prime}}\left(\mathrm{E}, \mathrm{E}^{\prime}\right)$ in Table 16 of UNC-5002, which correspond to distributions that are decidedly nonMaxwellian. A slinoth curve of temperature vs. energy was drawn, guided by these calculated temperatures. This led to nuclear temperatures of the same order of magnitude as those given by the Yiftah-OkrentMoldauer prescription (Ref. 8) over part of the range, but which decreased drastically at high energies.

Nuclear temperatures for the ($\mathrm{n}, 2 \mathrm{n}$) reaction are given at the threshold and at 18 MeV , determined as follows. In Ref. 9, one neutron was assumed to have an energy $\mathrm{E}^{-}=0.3\left(\mathrm{E}-\mathrm{E}_{\mathrm{thr}}\right)$, and another an energy $E^{-}=0.4\left(E-E_{t h r}\right)$, where $E_{t h r}$ is the threshold energy. Since the peak of a Maxwellian distribution occurs at $E^{\prime}=\theta(E)$, the value of $\theta(E)$

at 18 MeV was taken as 0.35 (${\left.\mathrm{E}-\mathrm{E}_{\mathrm{thr}}\right)}$) MeV. At $\mathrm{E}=\mathrm{E}_{\text {thr }}$, an arbitrary value of 0.1 MeV was used rather than zero, since a zero value might cause difficulty in processing programs.

Thermal Neutron Scattering Law
A free gas thermal scattering law was assumed. The cutoff above which the static model is used was taken to be 1.5 eV , and a value of 3.41 barns was used for the free atom scattering cross section.
C. Conments on Magnesium Cross Sections

The radiative capture cross section is quite uncertain except at thermal and near thermal energies. Even at thermal energy, the value of 0.073 barns used at 0.0253 eV is somewhat higher than the value of 0.063 ± 0.005 barns recommended in Ref. 2. Since the capture cross section is rather small, the errors are probably tolerable.

The inelastic scattering cross section is uncertain at high energies, although it should be reasonably good over most of the energy range.

The procedure used in UNC-5002 to obtain the ($\mathrm{n}, 2 \mathrm{n}$) cross section yields only a very rough estimate, but the high threshold for this reaction makes it of little importance for reactor calculations.

1. N. Tralli et al., 'Fast Neutron Cross Sections for Titanium, Potassium, Magnesium, Nitrogen, Aluminum, Silicon, Sodium, Oxygen, and Manganese," UNC-5002 (January, 1962).
2. J. R, Stehn et al., "Neutron Cross Sections," BNL-325, Second Edition, Supplement No. 2, Volume I, $Z=1$ to 20 (May, 1964).
3. R. F. Berland, "CHAD, Code to Handle Angular Data," NAA-SR-11231 (December, 1965).
4. E. H. Auerbach et a1., "Abacus-1: A Program for the Calculation of Nuclear Cross Sections Using the Cloudy Crystal Ball Model," KAPL-3020 (June 1, 1964).
5. E. H. Auerbach, "Abacus-2 (Revised Version) Program Operation and Input Description," BNL-6562 (November, 1962).
6. F. Bjorklund and S. Fermbach, "Optical Model Analyses of Scattering of 4-, 7-, and 14-MeV Neutrons by Complex Nuclei," Phys. Rev. 109, 1295-1298 (1958).
7. E. M. Pennington, J. C. Gajniak and R. A. Mewaldt, "Programs for Analysis of Scattering Angular Distributions," ANL-7306 (to be issued).
8. S. Yiftah, D. Okrent and P. A. Moldauer, Fast Reactor Cross Sections, Pergamon Press, New York (1960), p.49.
9. S. Miller and K. Parker, 'Neutron Cross Sections of Natural Titanium in the Energy Range $0.001 \mathrm{eV}-18 \mathrm{MeV}$-Incorporation of United Nuclear Corporation Data in the UKAEA Nuclear Data Library," AWRE 0-77/64 (October, 1964).

SUMMARY DOCUMENTATION FOR AIUMINUM
 P. G. Young and D. G. Foster, Jr.
 Los Alamos Scientific Laboratory
 ABSTRACT

A preliminary evaluation of the neutron and photon-production cross sections of 27 Al is presented, covering the range $10-5 \mathrm{eV}$ to 20 MeV . For a full description, see LA-4726. The following files are included:

File 1. Summary of the method of evaluation, with tables of the Q-values corresponding to each MT number and a list of the most important references.
File 2. Effective scattering radius of 3.468 fm , corresponding to the zero-energy scattering cross section of 1.511 b .

File 3. Smooth cross sections, including the total cross section, elastic scettering, inelastic scattering, and the $(n, \gamma),(n, p),(n, d),(n, t),(n, \alpha)$, and $(n, 2 n)$ reactions. The ($n, n^{\prime} p$) and ($n, n^{\prime}(x)$ reactions are included in the ($\mathrm{n}, \mathrm{n}^{\prime}$) cross section, using flags to indicate the mode of decay. Excitation of highlying levels is grouped into discrete bands instead of a continuum, to permit calculation of the correct energy-angle relations in the lab system.
File 4. Secondary-neutron angular distributions, given as Legendre coefficients in the C.M. system for inelastic scattering and as normalized probability distributions in the lab system for the ($n, 2 n$) reaction.
File 5. Secondary-neutron spectrum for the ($n, 2 n$) reaction in the lab system.
File 12. Photon multiplicities for the (n, γ) reaction.
File 13. Photon-production cross sections for ($n, x \gamma$) reactions, consistent with the excitation cross sections in File 3.
File 14. Angular distributions of photons from radiative capture and ($n, x y$) reactions, assumed isotropic in all cases.

File 15. Continuous-energy spectra of photons from radiative capture, inelastic scattering, and the ($\mathrm{n}, \mathrm{p} \gamma$) reaction.

NEUTRON CROSS SECTIONS

MAT \#1135 contains a preliminary evaluation of the neutron and photonproduction cross sections of 27Al. Although it has been accepted for circulation in ENDF/B-III, extensive revisions of this evaluation are planned for the future, and it should be recognized that the literature search is incomplete, some experimental work has been ignored and much of it has not been studied critically before inclusion, the treatment of resolved resonances is sketchy, much of the partially-resolved fine structure has been smoothed out, and only a bare

[^6]minimum of supporting nuclear-model calculations have been carried out. A more complete description of the evaluation is given in LA-4726.

The evaluated total cross section was determined entixely from experimental measurements, using the time-of-flight results of Schwartz (Sc70) and of Foster and Glasgow (Fo7l) and the point-by-point results of Carlson and Barschall (Ca67) in the MeV region as a starting point. These three measurements agree within better than 2% (allowing for differences in resolution) over a wide energy range, so older work in this range was simply ignored. The high-resolution results of Cierjacks et al. (Ci68) exhibit several percent of residual dead-time errors, even after recorrection in accordance with later studies, so the actual evaluation was taken from Cierjack's results normalized to the composite of the other three recent measurements.

The Cierjacks work begins at 0.46 MeV , and was extended to lower energies by normalizing the results of Chien and Smith (Ch66) to Ci68 just above 0.46 MeV , and normalizing the work of Hibdon (Hi59) and of Merrison and Wiblin (Me52) to that. This lower-energy extension then served to normalize the results of Garg et al. (GaE5), which have the best resolution below 0.2 MeV , but which have absolute values that are unreliable by as much as 20%. The normalized results of Merrison and Wiblin (Me52) below the $6-\mathrm{keV}$ resonance served to determine a zero-energy potential-scattering cross section of 1.511 barns, and the low-energy end of the free-atom total cross section was reconstructed from this scattering cross section plus the $1 / v$ radiative capture cross section taken from Goldman's evaluation (Go7l). The narrow resonances below 0.25 MeV were smoothed with approximate single-level Breit-Wigner fits and assigned the energies given by Garg's measurements (GaE5). From 0.25 to 3 MeV the fluctuating cross section was smoothed with a sliding polynomial fit. Above 3 MeV the fluctuations, although still clearly visible in the data, were deliberately smoothed out in order to reduce the nurnber of points required to represent the total cross section. The entire energy range is represented pointwise in File 3, and no effort has been made to describe the resolved resonances in File ' 2 .

The evaluated elastic cross section at neutron energies below 5 MeV was determined by subtracting the sum of the individual reaction cross sections from the evaluated total cross section. In the region from 5 to 16 MeV the emphasis was shifted, and the elastic and nonelastic cross sections were determined simultaneously from a composite of the available elastic measurements (Be56, Be58, Co58, Co59, Ho69, Ki70, Mi68, St59, St65) and the nonelastic measurements (Ba58, Be56, Ch67, De6l, De65, F156, Gr55, Ma57, Ph52, Ta55), assuming the total cross section to be a known quantity. In the region from 5 to 9 MeV , the above data were augmented by nonelastic information obtained by combining the evaluated (n, p) and (n, α) cross sections with the total (n, n^{\prime}) cross section, as estimated from the sum of all ground-state transitions in the ($n, n^{\prime \prime} \gamma$) measurements of Difl. The resulting elastic cross section in the region from 9 to 16 MeV is systematically lower than half the total cross section. Between 16 and 20 MeV , the elastic was arbitrarily extrapolated to reach half the total cross section at 20 MeV .

The (n, n^{\prime}) cross sections to the first thirteen excited states of 27 Al ($\mathrm{MT}=51-63, \mathrm{E}_{\mathrm{x}}<5 \mathrm{MeV}$) are based on inelastic neutron (To62, Ts61, Wi63) and photon-production (Ch68, Ma65) measurements below $E_{n}=5 \mathrm{MeV}$, on the evaluation of several measurements by Dickens (Di7l) for $E_{n}=5-9 \mathrm{MeV}$, and on a smooth extrapolation passing through the $14-\mathrm{MeV}$ measurements (St65, Bo65a) for the energy region 9 to 20 MeV . To estimate the ($n, n^{\prime \prime}$) cross section to levels with $\mathrm{E}_{\mathrm{X}}>5 \mathrm{MeV}$, the total inelastic cross section was taken as the evaluated
nonelastic cross section minus the contributions from the known reaction channels, and the difference between that and the cross sections to discrete states in ${ }^{27} 7_{\mathrm{Al}}$ ($\mathrm{E}_{\mathrm{x}}<5 \mathrm{MeV}$) was assigned to 27 groups of unresolved levels ("bands") with average excitation energies from 5.25 to 18.875 MeV . This treatment as quasi-discrete levels allows the energy-angle relationships to be preserved in the laboratory coordinate system; in particular, it preserves the forward peaking of the lower-energy secondary neutrons due to center-of-mass motion. The cross section was apportioned among the groups by an evaporation-model calculation, using temperatures inferred from measurements of secondary-neutron spectra at 7 MeV (Th63) and 14 MeV (Gr53). Those bands which correspond to excitation energies above the ($n, n^{\prime} \mathrm{p}$) threshold are flagged in the ENDF/B records to indicate proton emission, and at somewhat higher excitation energies, several bands are flagged as decaying by alpha emission. These (n, n 'p) and ($n, n^{\prime} \alpha$) data are only found under MT = 64-90 in File 3; that is, explicit entries for MT $=22$ and 28 are not present in the neutron files.

Since only a fraction of the ($n, 2 n$) cross section goes to the easily-detected $6.5-\mathrm{min}$ isomer of ${ }^{26} \mathrm{Al}$, the ($\mathrm{n}, 2 \mathrm{n}$) cross section from threshold to 20 MeV was estimated by assuming arbitrarily that halr of the excitation cross section of levels in 27 Al above the ($\mathrm{n}, 2 \mathrm{n}$) threshold leads to neutron emission rather than proton or alpha emission, and diverting the cross section which would otherwise have been in File $3, M T=64-90$, into $M T=16$. Except for giving the ($n, x y$) cross sections for some of the intense lines, no attempt has been made to divide the (n, x) cross sections into their respective groundstate and excited-state excitations for levels in ${ }^{26} A l$. The (n, p) cross section was taken from an evaluation by Joanou and Stevens (Jo64) up to 5 MeV , and extended to 20 MeV using activation measurements (B059, Fe67, Ga62, Gr67, Ma60, and several additional $14-\mathrm{MeV}$ experiments). The (n, d) cross section is given by a curve which has the same general shape as the (n, p) curve (but shifted in energy) and which passes through the single measurement (G161) at 14 MeV . The (n, t) cross section was similarly assumed to exhibit the same shape as the (n, d) cross section, with a maximum value of 15 mb at 20 MeV . The ($\mathrm{n}, \mathrm{\alpha}$) cross section, on the other hand, has been the subject of numerous measurements (Ba6l, Ga62, Gr58, Gr67, Im64, Ke59, Ma60, Pa65, Sc61, plus several 14-MeV experiments), and the evaluated curve is based upon the experimental data.

The angular distributions for elastic scattering are given in File 4 by Legendre coefficients in the C.M. system. These were obtained by passing smooth curves through the coefficients obtained from fitting all of the available data (mainly Be58, Ch66, Ki70, La57, To62, Is6l) without any attempt to evaluate the individual experiments or to reproduce the rapid changes with energy at the lower neutron energies. An optical-model calculation was used to interpolate between measurements below 15 MeV and a single measurement at 24 MeV (St62). Wherever necessary, the fits were forced to satisfy Wick's limit by adding an artificial point at 0° with a small standard deviation, and the smoothed coefficients were adjusted empirically at the end of the evaluation so as to conform to Wick's limit between the energies of the experiments. The angular distributions for inelastic scattering were assumed to be isotropic in the C.M. system, without attempting to consider the available measurements. As pointed out above, they can be substantially anisotropic in the lab system.

The angular distributions for the ($n, 2 n$) reaction in File 4 are given as normalized pointwise distributions in the lab system and were abtained by assuming isotropic emission of a dineutron in the C.M. system and transforming to the lab system via the 2 -body Jacobian. These calculations were performed
at each incident neutron energy using mean Q-values for the ($n, 2 n$) reaction which were obtained from the secondary-energy distributions given in File 5. The energy distributions were estimated by assuming that the ($n, 2 n$) reaction procedes sequentially as ${ }^{27} A l\left(n, n^{\prime}\right)^{27} A I^{*}\left(n^{\prime \prime}\right)^{26} A l^{*}$, with the distribution of emitted neutrons in each step being represented by a Maxwellian. Nuclear temperatures based on secondary-neutron spectrum measurements at 7 MeV (Th63) and 14 MeV ($G r 53$) were used in the calculations. The assumption was made that levels in 27Al decay 100% by particle emission if energetically possible; this assumption is not valid for levels slightly above the separation energy and leads to a rather abrupt cutoff in the distributions at the maximum energies for emitted neutrons.

PHOTON-PRODUCTION CROSS SECTIONS

The cross section for radiative capture is given in File 3 . At the lowest energies it varies as l/v from an evaluated (Go7l) 232 mb at $2200 \mathrm{~m} / \mathrm{sec}$. From 1 to 140 keV the data of Block (B168) were taken, but the widths of the sharp resonances were taken from the total cross section. Other measurements (Ca62, He50, He53) were used to extend the evaluation to 5 MeV . Two points near 14 MeV (Cs53, Pe58) gave evidence of a major increase in cross section in the inverse photonuclear giant resonance; for the present preliminary evaluation the curve was assumed to be a straight line from 5 to 14 MeV , with a constant cross section above 14 MeV . The thermal multiplicities in File 12 were taken mainly from the compilation of Bartholomew et al. (Ba67), but using the energies given by Rasmussen et al. (Ra70). Preliminary measurements by Jurney (Ju7l) with a very pure sample showed that all of the weak lines bel.ow 1 MeV given by Rasmussen are spurious, so these were discarded. The existing measurements and their derived decay schemes do not begin to account for the very high intensity of the decays from the lowest levels in 28 Al. Accordingly, a continuous spectrum has been given in File l5, based on the weak lines and "continuum" of Rasmussen, which supplies the missing excitation of the low-lying levels without any further attempt at internal consistency.

The ($n, n^{\prime} \gamma$) cross sections in File 13 for discrete gamma rays come directly from the excitation cross sections in File 3 via the decay scheme of 27_{Al} for neutron energies up to 5 MeV . Above 5 MeV they follow the photonproduction measurements (Be66, Bo65, Ca60, Cl69, Di7l, Dr70, En67, Ma68, Pe64, Pr60) supplemented by simple statistical-model calculations. These calculations were also used to estimate a photon-production cross section and secondaryenergy distribution from (n, n^{p}) reactions to a continuum of levels in 27al with $E_{x}>5 \mathrm{MeV}$. The calculations, which were performed with the code SPECTIO, assume that the $\left(n, n^{\prime}\right)$ reaction populates states with a probability proportional to $\epsilon p(E)$, where ϵ is the center-of-mass energy of the outgoing neutron and ρ (E) is the density of states at excitation energy E in the residual nucleus, and that the probability for gamma ray transitions from energy E to E ' in the residual nucleus is proportional to $\left(E-E^{\prime}\right)^{3} \rho\left(E^{\prime}\right)$. The density-of-states function was assumed to be of the form $\rho(E) \sim \exp (E / T)$ for the calculations using temperatures based on the 7 MeV (Th63) and 14 MeV (Gr53) secondaryneutron spectrum measurements, as mentioned earlier.

The photon cross sections and energy distributions from the ($n, 2 n \gamma$) and ($n, n p \gamma$) reactions were estimated from similar calculations, using the ($n, 2 n$) and ($n, n p$) cross sections discussed earlier. The ($n, 2 n \gamma$) results are included in the continuum contributions given under MT $=4$ in Files $13-15$.

The ($n, n p \gamma$) results, which are given separately as MP = 28 in Files 13-15, were adjusted to agree with measurements of the strong $1.809-\mathrm{MeV}$ gaman ray (En67, Cl69). The entries for ($n, p \gamma$) were taken from the Dickens measurement (Di7l) up to 9 MeV and were smoothly extrapolated to 20 MeV .

The angular distributions are assumed isotropic for all gamma rays
in File 14.

REFFERENCES

Ba58 W. P. Ball et al. (LRL), Phys. Rev. 110, 1392 (1958).
Ba5l B. P. Bayhurst + R. J. Prestwood (LAS), Phys. Rev. 121, 1438 (1961).
Be67, G. A. Bartholomew et al, Nucl. Data A3, 367 (1967).
Be55 J. R. Beyster et al. (LAS), Phys. Rev. 98, 1216 (1955).
Be56 J. R. Beyster et al., (LAS), Phys. Rev. 104, 1319 (1956).
Be58 S. Berko et al., Nucl Phys. 6, 210 (1958).
Be66 V. M. Bezotosnyi et al.(RUS), Sov. J. Kucl. Phys. 3, 632 (1966).
B168 R. C. Block, private communication to R. J. Howerton (1968).
Bo59 N. A. Bostrom et al. (TNC), WADC-TNT-59-107 (1959).
Bo65 V. N. Bochkarev + V. V. Nefedov (LEB), Sov. J. Nucl. Phys. 1, 574 (1965).
Bo65a G. C. Bonazzola et al. (TUR), Phys. Rev. 140, 835 (1965).
Ca60 R. L. Caldwell et al. (SOC), Nucl. Sci. Eog. 8, 173 (1960).
Ca62 G. Calvi et ai., Nucl. Phys. 39, 621 (1962).
Ca67 A. D. Carlson and H. H. Barschall, Phys. Rev. 158, 1142 (1967).
Ch66 J. P. Chien and A. B. Smith, Nucl. Sci. Eng. 26, 500 (1966).
Cn67 A. Chatterjee + A. M. Ghose (BOS), Phys. Rev. 161, 1181 (1967).
Ch68 K. C. Chung et al. (KTY), Nucl. Phys. 68, 476 (1968).
Ci68 S. Cierjacks et al., KFK-1000 (1968).
C169 G. Clayeux + G. Grenier (FR), CEA-R-3807, (1969).
Co58 J. H. Coon et al., (LAS), Phys. Rev. 111, 250 (1958).
Co59 J. H. Coon (LAS), private commuication to R. J. Howerton (1959).
Cs63 J. Csikav, B. Gyarmati, and I. Hunyadi, Nucl. Phys. 46, 141 (1963).
De61 Yu.G.Degtyarev + V. G. Nadtochii (RUS), Sov. J. At. Energy 11, 1043 (1961).
De65 Yu.G.Degtyarev (RUS), J. Nucl. Energy 20, 818 (1965).
Di7l J. K. Dickens (ORL), ORNL-TM-3284, 1971.
Dr70 D. M. Drake et al. (LAS), Wucl Sci. Eng. 40, 294 (1970).
En67 F. C. Engesser + W. E. Thompson (NRD), J. Nucl. Energy 2l, 487 (1967).

Fe67 J. M. Ferguson + J.C. Albergotti (NRD), Nucl. Phys. 98, 65 (1967).
Fl56 N. N. Flerov + V. M. Talyzin (RUS), Atomnaya Energiya 1 , 155 (1956).
Fo71 D. G. Foster Jr., and D. W. Glasgow, Phys. Rev. C 3, 576 (1971).
Ga62 F. Gabbard + B. D. Kern (KITY), Phys. Rev. 128, 1276 (1962).
Ga65 J. . Garg et al., private communication to R. J. Howerton (1965).
Gl61 R. N. Glover.+ E. Wiegold (CBR), Nucl. Phys. 24, 630 (1961).
Go71 D. T. Goldman, Unpublished evaluation (1971).
Gr53 E. R. Graves + L. Rosen (LAS), Phys. Rev. 89, 343 (1953).
Gr55 E. R. Graves + R. W. Davis (IAS), Fhys. Rev. 97, 1205 (1955).
Gr58 J. A. Grundl et al., (IAS), Phys. Tev. 109, 425 (1958).
Gr67 J. A. Grundl (LAS), Nucl. Sci. Eng. 30, 69 (1967).
He50 R. L. Henkel and H. H. Barschall, Fhys. Rev. 80, 145 (1950).
He 53 R. L. Henkel, Private communication to Sigma Center (1953).
Hi59 C. T. Hibdon, Phys. Rev. 114, 179 (1959).
Ho69 B. Holmqvist + T. Wiedling (AE), AE-366 (1969).
Im64 W. L. Imhof (LOK), private communication to BNL Sigma Center (1964).
Jo64 G. D. Joanou + C. A. Stevens (GA), GA-5884 (1964).
Ju71 E.T. Jurney, private communication (1971).
Ke59 B. D. Kern et al., (NRD), Nucl. Phys. 10, 226 (1959).
Ki70 W. E. Kinney + F. G. Perey (ORL), ORNL m4516, (1970).
Ia57 A. Langsdorf et al., Phys. Rev. 107, 1077 (1957).
Ma57 M. H. MacGregor et al., (LRL), Phys. Rev. 108, 726 (1957).
Ma60 G. S. Mani et al., (HAR), Nucl. Phys. 19, 535 (1960).
Ma65 S. C. Mathur et al., (TNC), Nuci Phys. 73, 561 (1965).
Ma68 G. N. Maslov et al., (RUS), Sov. J. At. Energy 24, 704 (1968).
Me52 A. W. Merrison and E. R. Wiblin, Proc. Roy. Soc. (L) 215, 278 (1952).
Mi68 A. Mittler et al. (KTY), Bull. Am. Phys. Soc. 13, 1420 (1968).
Pa65 A. Paulsen + H. Liskien (Gel), J. Nucl. Energy 19, 907 (1965).

```
Pe58 J. I. Perkin, L. P. O'Connor, and R. F. Coleman, Proc. Phys. Soc. 72,
        505 (1958).
Pe64 J. L. Perkin (ALD), Nucl. Phys. 60, 561 (1964).
Ph52 D. D. Phillips et al. (IAS), Phys. Rev. 88, 600 (1952).
Pr60 J. T. Pruahomme et al. (TNC), AFSWC-TR-60-30 (1960).
Ra70 N. C. Rasmussen et al., GA-10248 (1970).
Sc6l H. W. Schmitt + J. Halperin (ORL), Phys. Rev. 121, 827 (1961).
Sc70 R. B. Schwartz, private communication (1970).
St59 C. St. Pierre et al. (MON), Phys. Rev. 115, 999 (1959).
St62 T. P. Stuart, et al., Phys. Rev, 125, 276 (1962).
St65 P. H. Stelson + R. L. Fobinson (ORL), Nuc1. Phys. 68, 97 (1965).
Ta55 H. L. Taylor et al. (RIC), Phys. Rev. 100, 174 (1955).
Th63 D. B. Thompson (LAS), Phys. Rev. 129, 1649 (1963).
To62 J. H. Towle and W. B. Gilboy, Nucl. Phys. 39, 300 (1962).
T067 J. H. Towle + R. O. Owens (ALD), Nucl. Phys. Al00, 257 (1967).
Ts61 K. Tsukada et al., Physics of Fast and Intermediate Reactors, Vienna (1961).
Wi63 D. Winterhalter (ZAG), Nucl. Phys. 43, 339 (1963).
```


by

R. R. Kinsey

FILE 3

Section 1 - Total Cross Section

Below 5. keV the total cross section is taken as the sum of a constant scattering cross section and a $1 / v$ radiative capture cross section.

From 5 to 100 keV , the cross section is a smooth curve through the data of Fields and Walt. (l)

From 100 to 500 keV , the cross section is based on the results of Whalen and Meadows. (2)

As of January 15, 1972, the cross section from .5 to 20 MeV has been
 recent data of Karlsruhe. (3) The file represents the data of Cox ${ }^{(4)}$ for the range from . 5 to 1.2 MeV , Frier, et al. (5) from 1.2 to 1.8 , Rarlsruhe ${ }^{(3)}$ from 1.8 yo 3.62, Foster ${ }^{(6)}$ from 3.62 to 5.0 , Carlson and Barschall ${ }^{(7)}$ from 5 to 14 MeV as adjusted as recommended by Davis and, Noda, (8) and Peterson, et al., (9) and Day and Henkel ${ }^{(10)}$ from 14 to 20.

Section 2-Elastic Scattering Cross Section
Below 5 keV the elastic cross section is taken as 2.15 b based on the measurements of Niklaus, et al. (11) and Wiess. (12) From 5 keV to 20 MeV , it was obtained by subtracting the nonelastic from the total cross section.

Section 3 - Nonelastic Cross Section

For neutron energies below 9 MeV , the nonelastic cross section is the sum of the $(n, \gamma),\left(n, n^{\prime}\right),(n, p)$, and (n, α) cross sections. Above 9 MeV , the cross section was obtained from an optical model code.

Section 4 - Total Inelastic Scattering Cross Section
The total inelastic cross section was obtained by summing the cross sections for excitation of individual levels. for neutron energies up to 9 MeV . Above 9 MeV , the cross section is the difference between the
nonelastic and the sum of the $(n, p),(n, \alpha),(n, 2 n)$, and (n, γ) cross sections.

Section 16 - ($n, 2 n$) Cross Section
The ($n, 2 n$) cross sections for ${ }^{29} S i$ and ${ }^{30}$ Si have been calculated with a simple statistical model. These cross sections combined with the measured values of Arnold ${ }^{(13)}$ for ${ }^{28} \mathrm{Si}$ from threshold at 17.7 MeV to 18.3 MeV have been used to estimate the ($n, 2 n$) cross section for natural silicon.

Section 28 - ($n, n p$) Cross Section
A recomended ($n, n p$) cross section was obtained using the value of Allan (14) to establish the magnitude of the cross section at 14 MeV and extrapolating from threshold.

Sections 51 to 91 - Inelastic Excitation Cross Sections for Niscrete Levels and the Continuum
The recommended cross section for the $1.7787 .2^{+}$) MeV level which is the major part of the inelastic scattering cross section below 6 kiv was obtalned in the energy range from 1.85 to 3.53 MeV from the data of Perey. Between 3.53 and 7.5 MeV , the cross section has been obtained by drawing a curve through the available experimental data. Above 7.5, a smoothly decreasing curve was drawn through a value of 0.430 b as measured by Sattler, et al. ${ }^{(16)}$ to a value of 0.1106 at 14.5 MeV obtained from the data of Scelson, et al., (17) Clarke and Cross, (18), and Martin, et al. (19)

Cross section for the $4.614\left(4^{+}\right), 4.975\left(0^{+}\right)$, and $6.272\left(3^{+}\right)$levels used the experimental data of Sattler, et al. (16) between 6.0 and 7.5 MeV and the data of Stelson, et al. (17) and Clarke and Cross (18) near 14 MeV with the general shape of these cross sections as calculated by the ELIESE code.

The ELIESE Code was used to calculate the cross sections of seven Levels between 6.878 and 8.260 MeV . All levels up to 5.887 cover the energy range from threshold to 20 MeV . For higher energies, the cross sections extend up to 9 MeV .

Cross sections for the first five levels in ${ }^{29} S i$ and the first four levels in ${ }^{30}$ Si up to 4 MeV were obtained by using optical model and HauserFeshbach calculations combined with measurements by Lind and Day. (21) Above 4 MeV it was assumed the total contribution of the minor isotopes of Si were constant with energy.

The continuum cross section from 4 to 9 MeV is a constant representing the total contribution of the minor isotopes. Above 9 MeV the continuum is the difference between tie sum of the discrete levels of ${ }^{28}$ Si up to the 6.887 MeV level and the total inelastic cross section.

Section 102 - Radiative Capture Cross Section
The (n, γ) cross section has been obtained up to 20 keV by using a value of 0.16 b at .0253 eV and assuming a $1 / \mathrm{v}$ energy dependence. From 20 keV to 200 keV , the cross section is based on an analysis by Macklin and Gibbons. (22) Between 200 keV and 20 MeV , the (n, y) cross section is assumed to be relatively constant.

Section 103 - (n, p) Cross Section
The recommended (n, p) cross section for natural silicon was obtained by adding small contributions from the ${ }^{29} S i$ and ${ }^{30} S i(n, p)$ cross sections to the evaluated (n, p) cross section of ${ }^{28}$ Si. Below 6 MeV , the ${ }^{28} \mathrm{Si}(n, p)$ cross section was buscu on the data of Marion, et al. (23) From 6 to 9 MeV , the experimental results of Bass, et al. ${ }^{(24)}$ were used. From 9.0 to 12.6 MeV , a smooth curve was drawn to join with the data of Kern, et al. (25) at 12.6 which was renormalized to a value of 220.0 mb at 14.5
MeV . From 12.6 to 20.0 MeV , the curve follows the renormalized data of Jeronymo, et al. (26) and Kern, et al. (25) The ${ }^{29} \mathrm{Si}$ and ${ }^{30} \mathrm{Si}$ contributions were estimated by using values of 101.0 mb and 180.0 mb for these isotopes at 14.0 MeV and using the same general shape for the cross section as obtained for ${ }^{28}$ Si.

Section 104 - (n, d) Cross Section
A speculative (n, d) cross section has been obtained by starting with a value of zero at 10.5 MeV , passing through a maximum value of 19 mb at 14 MeV and decreasing to .7 mb at 20 MeV .

Section 107 - (n, α) Cross Section
The (n, α) cross section of ${ }^{28}$ Si below 6.2 MeV was obtained using the data of Bety and RBssle. (27) Between 6.2 and 8.4 MeV , the values measured by Mainsbridge, et al. (28) reduced by 30% were used. From 8.4 MeV , the recommended cross section increases to a peak value of $3 / 8.6 \mathrm{mb}$ at 11 MeV and then decreases to a value of 275.0 mb at 14.0 MeV . Above 14 MeV ,
the curve was extrapolated to 20 MeV using the observed shape of the partial (n, α) cross sections.

The ${ }^{29} S_{i}(n, \alpha)$ cross section was obtained from the data of Konijn and Lauber ${ }^{(29)}$ for neutron energies between 2.4 and 3.5 MeV . Between 3.5 and 5.5 MeV , the data of Potenza, et al., (30) Birk, et al., (31) and Mainsbridge, et al. were used. From 5.5 to 8.0 MeV , the data of Bety and RHssle ${ }^{(27)}$ were used. Between 8 and 20 MeV , a curve reaching a maximum of 123 mb as measured by Khurana and Govil ${ }^{(32)}$ at 11 MeV was drawn.

The ${ }^{30}$ Si (n, α) cross section was obtained using the general energy shape of ${ }^{28}$ Si, starting from threshold and passing through a value at $^{\text {a }}$ 14 MeV based on the ratio of the cross sections for the silicon isotope calculated by Gardner and Yu.

The (n, α) cross section for natural silicon was then obtained by combining the isotopic cross sections using the fractional abundance. Sections 251, 252, and 253

The slowing down parameters for elastic scattering were calculated using the angular distributions of elastically scattered neutrons in Section 2, File 4.

FILE 4

Section 2-Elastically Scattered Neutrons
Below 158 keV , the angular distributions are given as isotopic as boserved by Lane, et al. ${ }^{(34)}$ Between .15 and 0.7 MeV , the distributions of Lane, et al. ${ }^{(35)}$ have been used. For 0.7 to 1.17 MeV , the data of Cox ${ }^{(36)}$ was used. For neutron energies from 1.2 to 3.0 MeV , the recommended data were measured by Lane, et al, ${ }^{(34)}$ Bredin, ${ }^{(37)}$ Coppola and Knitter, ${ }^{(38)}$ and Olkhovaskii and Tsekhmstrenko. (39) The experimental results of Popov, (40) Tsukada, et al., (41) and Sattler, et al. ${ }^{(16)}$ were used in the energy range from 3.0 to 7.0 MeV . From 7.0 to 20.0 MeV the recommended distributions were obtained using the ELIESE code ${ }^{(20)}$ which was in good agreement with the avallable experiments.

Section 16 - (n,2n) Angular Distributions
The ($n, 2 n$) angular distributions were assumed to be isotropic.

Section 28 - (n,np) Angular Distributions
The ($n, n \mathrm{n}$) angular distributions were assumed to be isotropic.

Section 51 to 91 - Inelastically Scattered Neutrons
For the ${ }^{*} 1.78 \mathrm{MeV}\left(2^{+}\right)$level in ${ }^{28} \mathrm{Si}$ the angular distributions from threshold to 3.5 MeV were taken from calculated results of the ELIESE Code. (20) In the energy range from 3.5 to 7.5 MeV , the data of Pititt, et al. (16) were used. At 14 MeV , the experimental results of Clarke and Cross ${ }^{(18)}$ were used.

For the $4.61 \mathrm{MeV}\left(4^{+}\right)$and $4.98\left(0^{+}\right)$levels of ${ }^{28} \mathrm{Si}$, the calculated distributions were used from threshold to 6.0 MeV . Between 6.0 and 7.5 MeV, the distributions of Sattler, et al. ${ }^{(16)}$ were used. Above 7.5 MeV , calculated distributions have been used.

For the $6.27,6.88,6.89$, and 7.38 MeV levels, the calculated angular distributions were used. All other levels were assumed to have isotropic distributions in the center-of-mass system.

FILE 5

Euergy Distribution of Secondary Neutrons
Sections 16 and $28-(n, 2 n)$ and ($n, n p$) Reactions
The energy distributions of neutrons from ($n, 2 n$) and ($n, n p$) reactions were considered to have a Maxwellian shape. The same nuclear temperature was assumed as was used for the (n, n^{\prime}) reaction. This temperature was assumed to be proportional to the square root of the energy.

Section 91 - Inelastically Scattered Neutron Continuum
An evaporation-type spectrum has been used to describe the secondary energy distributions. The nuclear temperature obtained by Anufrienko, et al. (43) has been used at 14.1 MeV . For other neutron energies, the nuclear temperature was assumed to be proportional to the square root of the energy.

Section 102 - Radiative Capture Gamma Rays
The recommended multiplicaties for the radiative capture gamma rays of .00001 eV to 50 keV neutrons were obtained from the thermal neutron capture experiments of Spits, et al., (44) Lycklama, et al., (45) and Blichert-Toft and Tripathi. (46)

From 50 keV to 20 MeV , the gama spectra of Lundberg and Bergqvist ${ }^{(47)}$ measured at 68 keV was used. For incident neutron energies from 50 keV to 1 MeV the spectra are represented as discrete gamma rays in 1 keV steps. From 1 MeV to 20 MeV , a continuum representation is used.

FILE 13

Section 3

This section was used to represent that part of the gama ray production cross section from 9 to 20 MeV that was treated as a continuous spectrum. It was obtained by subtracting the sum of the production cross section for discrete gama rays from the total production cross section.

Section 4 - ($n, n^{\prime} \gamma$) Production Cross Sections
The cross sections of discrete gamma rays were obtained up to 9 MeV using the excitation cross sections of File 3, Sections 51-71, and the transition probabilities giver in Section 2.4 of the primary documentation.

Using the data of Engesser and Thompson, (48) Caldwe11, et al.,
Nellis, et al., (50) and Martin and Stewart, ${ }^{(51)}$ the gamma ray production cross section of the $1.78,6.878,5.108$, and 2.835 MeV gamma rays were determined at 14.5 MeV . For these gama rays, the production cross sections were obtained by extrapolating the values at 9 MeV to 20 MeV and passing through the 14.5 MeV values.

Section 103 - (n, PY) Gamma Rays
The production of photons from the ($n, p y$) reactions were obtained up to 9 MeV by analyzing the partial (n, p) cross sections in this energy
range and using transition probabilities. The experimental measurements used were Andersson-Lindstrom and RBssle, (52) Mausberg, (53) and Debertin, et al.

Section 107 - ($n, \alpha \gamma$) Gamma Rays
The gamma ray production cross sections up to 9 MeV were obtained by using the partail cross sections and transition probabilities. The (n, α_{0}) cross section was measured by Bety and RBssle ${ }^{(27)}$ and Miller and Kavanagh. (55) The $(n, \alpha),\left(n, \alpha_{2}\right)$, and $\left(n, \alpha_{3}\right)$ cross sections were obtained by reducing the values of Mainsbridge, et al. ${ }^{(28)}$ by 30%. The (n, α_{4}) cross section was deduced from values by Shannon and Trice. (56) For the .9747, . 5852 , and .3894 MeV gamma rays, values obtained at 14.7 MeV by Engesser and Thompson ${ }^{(48)}$ were used to extrapolate from 9 to 20 MeV .

RILE 14

Sections 3, 102, 103, and 107
The photons that were treated as a part of the continuum and the photons from (n, γ), ($n, p \gamma$), and ($n, \alpha \gamma$) reactions were assumed to be isotropic.

Section 4

The angular distributions of secondary gamma rays from the ($n, n^{\prime} \gamma$) reaction were calculated using the MANDY Code. (56)

FILS 15

Section 3

The recommended secondary gamma ray energy distributions for that part of the gamma ray production cross section between 9 and 20 MeV treated as a continuous spectra of photons in Section 3, File 13, has been obtained using a Maxwellian type spectra. The empirically determined temperatures of Howerton and Plechaty ${ }^{(58)}$ have been used.

Seqtion 102
The recomended gama ray energy distributions for that part of the radiative capture of neutrons from 1 to 20 MeV represented as a continuum Lin Section 102, File 12 , has represented in this section as normalized probability distributions.

1 FIELDS AND WALT, PHYS, REV, 83, 479 (1951)
WHALEN AND MEADOWS, WASHEI®G日, PG.9 - ALSO PRIVATE COMM FEB68 CIERJACKS ET ALOI KFKM1EOG,SUPP. 1 (1968)
COX, WASH=1068, PG,7 - UNPUBLISHED OATA FROM SCISRS OCT 67
FRE!ER EY AL., PHYS, REV, 78, 508 :1950)
6 FOSTER, UNPUBLICHED DATA FROM BNL SCISRS DATA TAPE OCT 67
7 CARLSON AND BARSCHALL, PHYS, REY, 158, 1142 (1967)
8 DAVIS AND NODA, SECCND CONF, ON NEUTRON CROSS SECTION AND
TECHNOLOGY, AFSTRACT, WASHINGTON, D,C., 1968, PAPER B. 8
PETERSON, GRATEVAHL, AND STOERING, PHYS, REV, 120 , 521 (1960)
DAY ANO HENKEL, PHYS, REV. 92. 358 (1953)
NIKLAUS ET AL., Ë' PHYSIK 190, 295 (1966)
WEISS, PHYS. REY, 83, 379 (1951)
ARNOLD, DISSERTATION ABSTRACTS 26. 3425 (1985)
ALLAN, NUCL. PHYS, 24, 274 (1961)
PEREY, ORNL PRIV, COMM. FEB 71
16 SATTLER ET AL., BULL. AM. PHYS. SOC. 11,909 (1966) ALSO SEE CONDE ET AL:, PROC, OF CONF, FOR NUC. DATA FOR REACTORS, IAEA, PARIS, OCT 66, VOL. ! PG. 419
SYELSON ET AL., NUCL. PHYS. 68, 97 (1965)
CL'ARKE AND CROS5, NUCL. PHYS, 53, 177 (1964)
MARTIN, STENART, AND MARTIN, NUCL. PHYS, 61, 524 (1965)
NAKASH:MA, JAER! 1096 (SEP 1965)
LIND ANO DAY, ANN, PHYS, (N.Y.) 12, 485 (1961)
MACKLIN AND GIBRONS, REV, MOD, PHYS. 37, 166 (1965)
MAFION, BRUGGER, AND CHAPMAN: PHYS. REV, 101, 24? (1956)
BASS ET AL., EANDC(E) 66 U. PG. 64
KERN, THOMPSON, AND FERGUSON, NUCL. PHYS, 10.226 (1959)
JERONYMO, J.M,F, ET, AL., NUCL, PHYS, 47, 157,1963)
EETZ ANO ROSSLE, EANDE(E) 57 U , (FEQ 65), PG. 3
MAINSBRIDGE, BCMNER, AND RABSON, NUCL, PHYS, 48, 83 (1963)
KONIJN SND LAUEER, NUCL. PHYS, 48, 191 (1963)
POTENZA, RICAMO, AND RUBBINO, NUCL, PHYS, 41: 298 (1983)
EIRK, GOLDRING, ANO HILLMAN, NUCL, INSTR. METHODS 21, 197(63)
KHIRANA AND GOVIL, NUCL, FHYS, 69, 153 (1965)
GARONER ANO YU, NUCL, PHYS. 60. 49 (1964)
LANE EY AL,: ANN, PHYS, (N.Y.) 12, 135 (1961)
LANE, ELWYN, AND LANGSDORF: PHYS. REV:, 126. 1105 (1962)
SEE REF. 4
BREDIN, PHYS, REV, 135, B412 (1964)
COPPOLA ANO KNITTER, EUR 2798.E, GEEL ESTABL:: BELGIUM, (66)
OKLHOVSK!! AND PSEKHM!STRENKO, IZV. AKAD. NAUK SSSR, SER, FIZ 29. 319 (1965)

40 POPOV: SOVIET PROGRESS IN NEUTRON PHYSICS, ED, KRUPSCHITSKII, 1966. PG. 224

PETITTET AL." NUCL:: PHYS. 79, 231 (1966)
ANUFRIENKO ET AL, YADERN, FIZ. 2, 589 (1966)
SP!TS ET AL.. NICL. PHYS. A145. 449 (1970)
LYCKLAMA ET AL, CAN, JOUR. PHYS. 45, 187! (1967)
GLICHERT=TOFT AND TRIPATHI, G9STUDSVIK, STl/PUB/235 (1969)
LUNOBERG AND EEDGQVIST, PHYS, SCRIPTA 2, 265 (1970)
ENGESSER ANO THOMPSON, J. NUCL. ENERGY 21; 487 (1967)
CALENELL, MILIS, AND HICKMAN, NUCL. SCI. ENG, 8, 173 (1960) NELLIS ET AL, IISAEC REPORT TID-23657 (1062)
MARTIN ANO STEWART, J, NUCL, ENERGY 19, 447 (1965)
ANDERSSCN=LINOSTROM AND ROSSLE, FHYS, LETT, 5, 71 (1963)
MAUSEER'S IKF-14 (DEC 65)
54 DEBERTIN, GUNTHER, ANO ROSSLE, NUCL, PHYS. A101, 473 11967)

531
531
531
531
5311451
531 1451
5311451
5311451
5311451
5311451
5311451
531 1451
5311451
5311451
531 1451
5311451
5311451
531 1451
5311451
5311451
5311451
5311451
5311451
5311451
5311451
531 1451
5311451
5311451
5311451
5311451
5311451
5311451
5311451
5311451
5311451
531 1451
531 1451
5311451
5312451
5311451
531 1451
5311451
5311451
5311451
5311451
5311451
531 1451
5311451
5311451
5311451
531 2451
5311451
5311451
5311451
5311451
5311451
5311451
5311451
531 1451
5311451
5311451

56 SHANNON ANO TRICE, NUCL, INSTR:̈. METHODS 41. 255 (1966)
5311459
57 SHELDON ANO VAN PATTER, REV. MOD. PHYS, 3a, 143 (1966)
531 1451
58 HOWERTON AND PLECHATY, UCRL-50185 (1967)
531 1451

N.GAMMA CROSS SECTION

THE X / S WAS TAKEN TO be 1/V NEAR THERMAL NEUTRON ENERGIES
ABOVE $2 O$ EV THE OATA OF KASHUKEEV (G) AND MACKLIN I7) WERE USED
INELASTIC ERESS SECTIONS
UP TO 7.D MEV THE TOTAL AND DISEREFE LEVEL EXCITATION CROSS
SECTIONS WERE OBTAINED USING THE ABACUS-II CODE
ABOVE 7. G MEV THE TOTAL INELASTIC CROSS SECTION HAS OBTAINED
RY SLGTRACTING OTHER PARTIAL X/S FROM FHE NON-ELASTING CROSS SECTION WHICH WAS BASEC ON DATA MEASURED BY PASECHNIK I8) AND FRASCA 197

N, P CROSS SECTION
UP TO 10 EV THE X/S WAS TAKEN TO BE 1/V
FROM 10 EV TO 10 KEV THE DATA SHOWN IN BNLm325 (1964) WERE USED FROM 3; \quad MEV TO 20 MEV A SMOOTH CURVE WAS DRAWN THROUGH THE EXPERIMENTAL DATA MEASURED GY MATHUR AN MORGAN (10). COHEN AND WHITE (11), AND PAUL AAD CLARKE (12)

NI2N CROSS SECTION
THE N, 2N CROSS SECTION WAS BASED ON EXPERIMENTAL MEASUREMENTS OF EACH ISOTOPE

FILE 4
ElaSTIC SCATTERING
THE RESULTS FROM OPTICAL MDDEL CALCULATIONS WERE USED \&SEE REPCRY OTHER REACTION
ANGULAR ©ISTRIBUTIONS CF NEUTRONS FROM DISCREFE LEVEL INELASTIC SCATTERING WERE DBTAINED USING THE ABACUS CODE, OTHER NEUPRONS WERE ASSUMED TO BE ISOTROPIC.

FILE 5
a Statistical model has used to describe all secondary neutrons EXGEFT D!SCRETE LEVE! :NELASTIC

FILE 12
Rauiative cafture
THESE GAMMA RAYS WERF CBTAINED BY ANALYZING MEASUREMENTS OF

ENDF/B MATERIAL NO: 1149
THERMAL NEUTRON CAPTURE, TEE RECOMMENDED TRANSITION PROBABILITIES WERE TAKEN FROM ENDT AND VAN DER LEUN (13) AND HAZEW!NOUS (141, SINCE NO EPITHERMAL IATA WERE AVAILA日LE THE SAME SECONDARY gamma spectra was usec for all incident neutron energies DISCRETE INEGASTIC
The recommended oata were obtalned by using the level exeitation CROSS SECTIONS AND THE RECOMMENDED BRANCHING RATIOS(SEE GA-7829) * * *

FILE 14
ANGULAR DISTRIBUTION OF GAMMA RAYS FROM DISCRETE LEYEL INELASTIC were calculated using phe mandy code, all ofher gamma rays WERE ASSUMED TO OE ISOTROPIC

REFERENCES
(1) R.M,BRUGGER, ET AL,,PHYS,REV,104,1054(1956)
(2) J.B.GARG, ET AL., FAPER 74 CONF. ON NUCLEAR STRUCTURE, ANTWERP, JULY 1965.
(3) H.W.NEWSON, ET AL, PHYS,REV. 105,198 (1957)
(4) R,M,KIEHN, ET AL,.PHYS;'REV;91,66 (1953)
(5) D.W,GLASGOW AND D,G,FOSTER,JR., BAPS 8, 321 (1963)
(6) N.T.KASHUKEEV, ET,AL, J.NUCL,ENG. PARTS A AND B 14.76 (1961)
(7) R.L.MACKLIN, ET,AL, PHYS,REV,129,269(1963)
(8) M,V,PASECHNIK, GEN CONF,VOL,2, P, 3 (1955)
(9) A,J,FRASCA, ET,AL,,PHYS,REV,144,854(1966)
(10) S.C.MATHUR AND 1,L,MORGAN, NUCL,PHYS, 75,561 (1966)
(11) A,V,COHEN AND P,H,WHJTE, NUCL,PHYS, 1, 73 (1956)
(12) E,P,PAUL AND R,L,CLARKE, CAN,J,PHYS, 31,267 (1953)
(13) P,M,F.NDT AND C,VAN DER LEUN. NUCL,PHYS,34,1 (1962́)
(14) N.HAZEWINDUS, ET,AL., PHYSICA 29; 681 (1963)
"ChLORINE**TRANSLATED AT U.VA, FRÖM GA EVALUATION OY DRAKE, ET AL", PLEASE REFER COMMENTS CR QUESTIONS REGARDING ERRORS IN TRANSL-
TION OR IN FORMAT, OR CONCERNING THE TRANSLATION CODE (LATEX) PO
DONALD J, DUDZIAK, UAIVERSITY OF CALIFORNIA, LOS ALAMOS
SCIENTIFIC LABORATORY LOS ALAMOS NM 87544
any comments regarding the data evaluation should be referred to M, K. DRAKE, ET AL, THE AUFHORS OF GA\#7829 (NOLOTRE89), THE PER= MISSION OF MR, DRAKE TE TRANSLATE HIS EVALUATION IS GRATEFULLY ACKNOWLEOGED, TRANSITION PROBARILITY ARRAYS FOR INELASTIC SCATm TERING WERE TAKEN FROM DIAGRAMS IN GA-7829,PARY IV, DATA FOR RTN 1032 AND 3032 WERE ASSIGNED MY=28, AS RECOMMENDED BY DRAKE';
TRANSLATION COMPLETED JULY, 1969,
PHOTON PRODUCTICN FILES GONVERTED TO NEW FORMAT IN LA=4549(ENDF1D2,REVISED,VOL, II) EY DONALD J, DUOZIAK OCTOBER 1970;
NEUTRON AND PHOTON PRCDUCTION FILES CONVERTED TO ENDF/B-I!
FORMAT FOR THE RADIATIEN SHIELDING INFORMATION CENTER BY SINGLETARY, PENNY, AND ROUSSIN, FILE 2 AND FILE 23 ALSO ADDED IN MARCH 1971.

TABLE of CONTENTS

** MF=1 * GENERAL INFORMATION

* MFE3 * SMOOTH CROSS SECTIONS * D1 TO 2, OE*7 EV *

MT= 1 TOTAL* 0.01 TO 2.0E*7 EV*
MT= 2 ELASTIC SAME ENERGY RANGE AS MT=1*
MT = 3 NONELASTIC *SAME ENERGY RANGE AS MT=1*
MT = 4 TOTAL 1NELASTIC -- (N,N-PRIME)GAMMA*Q3-1,2ZMEV
$M T=16$ ($N, 2 N$) $Q=012,65 \mathrm{MEV}$

ENDF／B MATERIAL NO＝ 1149

$M T=22$									
$M T=26$	（ N, N EPR\＃ME			＊	0	37	7 MEV		
MT $=31$	（ $N, N=P R I M E$ ）	T0	＋	15°		TED	STATE＊	20	EV
$M T=52$	（M，A EPRIME）	TO	TH	2ND	EX	PED	STATE\＃	762	V
53	（ $N, A=P R I M E$ ）	TO	THE	3RD		PED	STATE＊	645	EV
$M T=54$	（ $N, A \ni P R I M E)$	TO	THE	4 TH		ITED S	STATE＊	695	M ${ }^{\text {V }}$
$M T=55$	（ $N, N=P R$ IME）	TO	THE	5 TH	EX	IFED	STATE＊	D06	EV
$M T=56$	（ N A $=$ PRIME）	T0	THE	6 TH	EXC	FED	STATE	163	MEV
$M T=57$	（ N ，A－PRIME）	T0	THE	77H	EX	FED	STATE	058	NEV
$M T=58$	（ $N, A=P R I M E$ ）	70	THE	8 TH	EXC	FED	STATE 4	113	MEV
MTE 59	（ N ，AGPRIME）	70	THE	97 H	EXC	ITED S	STATE＊4，	． 174	NEV
$M T=60$	（ N, A－PRIME）	T0	THE	107H	EX	CITED	STATE＊S	5.13	MEV
$M T=61$	（ N, M－PRIME）	T0	THE	117 M		ITED	STATE＊S	5.22	NEV
$M T=62$	（N，N＝PRIME）	T0	THE	12 TH		ITED	STATE＊ 6	6，04	NEV
$M T=63$	（N： N （ NPRIME ）	70	THE	13 TH		ITED	STATE＊ 6	6．10	MEV
$M T=9 \mathrm{I}$	（N，APRIME）	TO	THE	CONT	I！${ }^{\text {d }}$				
$M T=102$	（N，CAMMA）								
$M T=123$	（ N, F ）		－	0 ME					
$M T=127$	（N，ALPHA）			\square ME					
$M T=251$	MUのEAR íL S	$5 T$		SAM	ME EN	NERGY	RaNGE	S	$1 *$

SECONLARY ANGULAR DISTRIBUTIONS \＃TABULAR © C SYSTEM ＊NO TRANSFORMATION MATRICES＊
MT $=2$ ELASTIC
MT＝5月（NAA＝PRIME）TO THE 1ST EXCITED STATE
$M T=52$（N，$A=P R I M E$ ）TO THE 2ND EXCITED STATE
$M T=53$（ $N, A=P R I M E$ ）TO FHE 3RD EXCITEO STATE
MT＝ 54 （N， 1 ＝PRIME）TO THE 4TM EXCITEO STATE
MT＝55（N，N＝PRIME）TO THE 5TH EXCIPED STATE
MT $=50$（ $N, A=F R I M E)$ TO THE GTH EXEIFED STATE
$M T=57$（N，A－PRIME）TO THE 7TH EXCITED STATE
MT＝5
MT＝59（N，EEPRIME）TO THE 9TH EXCIFED STATE
MT $=6$ ©（N，$A=P R I M E$ ）TO THE 1めTH EXCITED STATE
$M T=67$（N，$A=P R I M E)$ TO THE 11TH EXCITEO STATE
MT＝62（N，N＝FRIME）TO THE 12TH EXCITED STATE
MT＝
＊\quad MF $=5$＊SECONDARY ENERGY DISTRIBUTIONS
$M T=15 \quad(N, E N)$
$M T=22 \quad(N, \Lambda-P R I M E) A L P H A$
MT＝2日（NAAEPRIME）P
MT＝ 9 I（N，$A=P R I M E$ ）TO FHE CONTINUUM
＊MF＝12＊MULTIPLICITIES OR TRANSITION PROBABILITIES

MT $=51$	（ $\mathrm{N}, \mathrm{A}=$ PRIME）	10	THE	1－1	ExC！	STATE		
5	（ $\mathrm{N}, \mathrm{A}=\mathrm{PR}$ IME）	TO	FHE	2ND	EXCITED	STATE		OPTICN2
53		T0	THE	3 RO	EXCITED	STATE		OPTICN2
$T=54$	（ $N, A-P R I M E)$	10	THE	4 TH	EXCITED	STATE		OPTICN2
$T=55$	（ $\mathrm{N}, \mathrm{A}=$ PRIME）	T0	THE	5TH	EXCITED	STATE	－	OPTIONE
$M T=50$	（ $N, A=P R$（ME）	TO	THE	6 TH	EXCITED	STATE		OPTICN2
$M T=57$	（ $N, N=P R I M E$ ）	TO	THE	7TH	EXCITEO	STATE	－	OFTICN2
$M T=58$	（N，\quad＝PRIME）	T0	FHE	8TH	EXCITED	STATE		OPTICN2
T＝59	（NAMEPRIME）	F0	THE	9 TH	EXCIFED	STATE		OPTICN2
$T=60$	（NAMERIME）	70	H	16	EXCITED	STAFE		OPTICN2
$T=61$	（ $N, N \equiv P R I M E)$	70	THE	1174	－EXCITED	Stat		OPTICN2
$M T=91$		70	HE	CON	NUUM	PTION		
MT $=102$	（N，GAMMA）		－	1				
T	RCOUCTION		S	C				
MTE 3	OTENS FROM				N OF 2	$C L-37$		ELS

```
    ENDF/B MATERIAL NO= 1149
    MT= 5{ PHOTCNS FROM DE-EXCITATJON OF 1ST STATE
    MT= 52 PHOTCNS FROM DEmEXCITATION OF 2ND STATE
    MT= 53 PHOTENS FROM DE-EXC!TATION OF 3RD STATE
    MT= 54 PHOTCNS FROM DE-EXCITATION OF 4TH STATE
    MT= 55 PHOTCNS FROM DE|EXCITATION OF 5TH STATE
    MT= 50 PHOTENS FROM DE-EXCITATION OF 6TH STATE
    MT= 57 PHOTCNS FRUM DE-EXCITATION OF 7TH STATE
    MI= SH PHOTENS FROM DE-EXCITATION OF 8TH STATE
    MT= 59 PHOTCNS FROM DE-EXCITATION OF 9TH STATE
    MT= 60 PHOTENS FROM DE-EXCITATION OF IRTH STATE
    MT= 61 PHOTCNS FROM DE-EXCITATION DF 11TH STATE
** MF=14 ** FHOYON ANGULAR DISTRIBUTIONS * TABULAR
    MT = 3 PHOTON PRODUCTION (3 LEVELS OF CL-S7) (ISO,)
    MT= 51 (N,A=PRIME) TO FHE 1ST EXCITED STATE (\SO,)
    MT= 5? (N,N-PFIME) TO PHE 2ND EXCITED STATE
    MT= 53 (N,ADPR!ME) TO THE 3RD EXCITED STATE
    MT= 54 (N;A=PRIME) TO THE 4TH EXCITED STATE
    MT= SS (N,hOPRIME) TO THE STH EXCITED STATE
    MT= 56 (N,NEPRIME) TO THE 6TH EXCITED STATE
    MT= 57 (N,A-PRIME) TO THE 7TH EXCITED STATE
```

19-K 1150 GGA GA-7829 VOL 5 (67) FEB67 M.K.ORAKE
ENDFAB MATERIAL NOE 1150

			POTASSIUM GGA	$E Y A L=1967$ DISTこJAN72
$\text { GA. } 7829$		VOL-5	(1967)	
		\$		natural po
${ }^{*}$		*		*

TOTAL CROSS SECTION
UP TO 10 EV A SMOOTH CLRVE WAS DRAWN THROUGH THE DATA OF JOKI(I) FROM $1 D$ EV TO 17 KEV TFE TOTAL CROSS SECTION WAS OBTAINED FROM A RESOLVED RESONANCE CALCULATION BASED ON THE TWO PRINCIPLE ISOTOPES. PARAMETERS OF GOOD,ET AL (2) WERE USED
BETNEEN 17 KEV AND 315 KEV A SMOOTH CURVE WAS DRAWN THRQUGB THE 1958 DATA MEASURED BY AEWSON (3).
THE TOTAL CROSS SEETIOA WAS VERY POORLY MEASURED BETWEEN DTS AND 1. $\begin{aligned} & \text { MEV. THE RECOMMENDED CURVE WAS DRAWN PHROUGH DATA }\end{aligned}$ MEASURED BY PETERSON (A).
BETWEEN D, 9 AND 2,10 MEV AN AVERAGED WAS TAKEN OF DATA MEASURED RY VAUGHN (5), STRUCTURE IN THE CROSS SECTION IS PRESENT BUT COULD NOT BE ANALYZED FROM VAUGHNS DATA.
ABOVE 2.1 MEV DATA MEASURED BY FOSTER (6) AND DECONNINCK (7) WERE USED.

HADIATIVE CAFTURE CROSS SECTION
THE LOW ENERGY CROSS SECTION WAS MODIFIED TO AGREE WIPH THE TSEWG NOFMALIZATION ANC STANDAROS SUBCOMMITTEE RECOMMENDED $2200 \mathrm{M} / \mathrm{SCC}$ VALUE OF © 2.10 BARNS):
FROM 1, 0.5 EV 1020 KEV THE CROSS SECFION WAS OBTAINED FROM THE RESOLVED RESONANEE PARAMETERS (SEE GA-7829 VOL®4) PLUS ADDITIOAAL 1/V COMPONENT TO OBTAIA THE DESIRED 0. 0253 EV VALUE ASOVE ZQKEV THE CROSS SECTION WAS DRAWN THROUGH THE EXPERIMENTAL POINTS AT 30,5 AND 65:D KEV MEASURED BY MACKLIN ET AL (8): THE SLOPE WAS TAKEN TO BE THE SAME AS WAS MEASURED FOR K=41 ACTIVATION BY STUPEGIA (9)::

INELASTIC SCATTERING
THE FIRST THREE LEVEL EXCITATION CROSS SECTIONS WERE BASED ON MEASUREMENTS BY LIND AAD DAY (10) AND TOWLE AND GILBOY (111 FOR NEUTRON ENERGIES UP TO 4, O MEV: OFHER LEVEL EXCITATION CROSS SECTIONS WERE OBTAINED USING THE ABACUS-II CODE (SEE REPORF) CALCULATIONS WERE MADE FOR NEUTRON ENERGIES UP TO 6,8 MEV ABOVE G. B MEV THE TOTAL INELASTIC CROSS SECTION WAS TAKEN AS THE DIFFERENTE BETHEEN THE NONGELASTIC CROSS SECTION AND THE SUM OF (N;P) * (N,NP) * (N,A) + (NONA) - (N, 2N). SEE REPORT FOR THE NON-ELASTIC CROSS SECTION.

N, PROTON CROSS SECTIGNS
UP TO $70 \square$ KEV THE (A,P) CROSS SECTION IS 1/V WITH A 2200 MASEC VALUE OF O, 1551 BARNS \&NORMALIZATION AND STANDARDS SUBCOMMYTTEE RECOMMENDATION), FROM 720 KEV 704.0 MEV MEASURED VALUES FOR THE
 MEASUREMENTS BY RASS ET AL (12.13).
BEYWFEN 4, O AND $0, D$ MEV THE DATA OF BASS ET AL (I3) WERE USED THE RECOMMEND CURVE WAS EXTRAPOLATED THROUGH TO DATA MEASURED BY LANGKAU (14) (12.6 TO 19.4 MEV$)$
THE (N,MP) CROSS SECTICN WAS BASED ON MEASUREMEATS MADE BY LANGKAU (14) AND BORMANN (15): N, ALPHA CROSE SECTIONS
UP TO 1.0 MEV THE CROSS SECTION WAS TAKEN TO BE 1/V WITH A 2200 M/SEC VALUE OF R. 2046 BARNS RNORMALIZATION AND SFANDARDS SURCOMMITTEE RECOMMENDATION', FROM 1, MEV TO 3,5 MEV THE (N, A) CROSS SECTION WAS BASEC ON (N:ALPH-ZERO) MEASUREMENTS OF BASS $\{12.13\rangle$, FROM 3.5 TO 8,0 MEV DATA OF BASS (14) WERE USED. ABOVE S, ! MEV THE DATA OF BORMANN (15,16) WERE USED.

ENDF/B MATERIAL NO: 1150
THE (NOAN) CROSS SECTICN WAS BASED ON DATA MEASURED BY BORMANN\{15 NO'2N CROSS SECTION
THE V, $2 N$ CROSS SECTION WAS BASED ON MEASUREMENTS MADE BY
BURMANN (47,18) FOR THE K. 39 (N, 2 N) K-38G REACTION AND BY ARNOLS \{19) AND BORMANA (17) FOR THE K-39 (N, 2N\} K-3BM REACTION

* * * *

FILE 4 (ANGULAR DISTRIGUTIONS)
ELASTIC SCATTERING
FFOM D. 23 TO 1,3 MEV THE OATA OF LANGSDORF, ET AL (2D) WERE USED FROM 1,5 FO 5,8 MEV THE DATA OF FOWLE ANO GLLBOY (11) WERE USEC ABOVE 4. ${ }^{\text {A MEV THE ABACLSOII CODE WAS USEO }}$

NON=ELASTIC FEACTIONS
ANGULAR IISTRIBUTIONS FOR (N, 2N), (N, NP), (N, NA), AN $\{N, I N E L A S T I C$ CONTINUUMY NEUTRONS HAVE BEEN ASSUMED TO BE ISOTROPIC: ANG DISTR, FOR NEUTRONS FROM DISCRETE LEVEL EXGITATION REAGTIONS HAVE BEEN CALCULATED USING THE ABACUSOII CODE:

* *

FILE 5 (ENERGY DISTFIBUTIONS)
AN EVAPORATION MODEL KAS BEEN USED FOR MTE16,22,28, AND OI
THE EFFECTIVE NUCLEAR TEMPERATURE WAS BASED ON
T(E) = B*SORT(E/A)
E= INCIDENT NEUTRON ENERGY
AE NUCLEEAR MASS
Be 2,5 FOR MT=91, $=1,59$ FOR $M T=16,22, ~ A N D 28$
(SEE VOLm1 OF GA-7829)
FILE 12. AND 13 PHOTON PRODUCTION CROSS SECTIONS
GAMMA RAYS FROM THERMAL NEUTRON CAPTURE WERE OBTAINED FROM DATA SUMMAR!シ̈ED GY ENDY AND VAN DER LEUN (21) AND GROSHEV ET AL (ZZ̃) ANO MEASUREMENTS OF RUCOLPH AND GERSCH (23). SINCE HO EPI THEGMAL MEASUREMENTS WERE AVAILABLE THE SAME SPECTRA WAS ASSUMED FOR GLI INCIDENT NEUTRON ENERGIES:

PHOTONS FROM DISERETE INELASTIC LEVEL EXCITATION WERE OBTAINED FROM THE LEVEL CROSS SECTION. ALL SIX LEVELS WERE ASSUMED TO DEGAY TO FHE GROUND STATE,
PHOTONS FROM (N,PI), (A,PZ? AND (N:A1) REAETIONS WERE OBTAYNED RY ANALYZING THE IHDIVIDUAL REACTIONS.

PHOTONS FROM NEUTRON REACTION ABOVE 7.0 MEV WAS BASED ON a measlrement by caldwell for phosphorous, these data are POORLY KNOWN.

THE ANGULAR DISTRIEUTICNS FOR DISCRETE PHOFONS WAS CALCULAFED USING THE MANDY COOE,
THE ANGULAR DISTRIBUTIENS FOR CONFINUUM PHOTONS WAS ASSUMEE TO EE ISOTROPIC.
*
(1) E,G.JOKI, ET,AL., PHYS,REV.99.610 (1955)
(2) W,m, SOOD, ET,AL., PHYS,REV.109.926 (1958)
(3) H.W.NFWSON (DUKE UF) PRI.COMM. (SEE BNLE883,1964)
(4) R,F,PETERSON, PHYS:REV: 77. 747 (1950)
(5) F.J.VAUGHN, ET,AL: NUCL,SCI,ENG, 17, 325 (1963)
(6) D, G.FOSTER,JR, (PRI, COMM 1966)
(7) G, IECONNINCK, ET,AL•• J.PHYS.PPARIS\} 22. 652 \{1961\}
(8) R, M, MACKLIN, ET.AL", PHYS,REV. 129; 2695 (1963)
(9) D,C.STUPEGIA, ET,AGO, IAEA CONF,ON NUCLEAR DATA (OCT, 1966)
(10) D.A,LIND ANO R,B,CAY, ANN:PHYS. 12, 485 (1961)
(11) J.H.FOWLE AND W,B\% GILBOY: NUEL,PNYS: 72: 515 (1965)

ENDF/B MATERIAL NO: 1150

(12) R,EASS, ET,AL,' NLCL,PHYS, 28, 478 (1961)
(13) R,BASS, ET,AL, ENDC(E)=57, 1965
(14) R,LANGKAU, Z, NATUFFORSH, 18 A, 914 (1963)
(15) M, GORMANN, ET,AL,: Z,NATURFORSH, 15A, 200 (1960)
(16) M,GORMANN: ET,AL,. Z,PHYS.166, 477 (1962)
(17) M, PORMANN, NIUCL,PHYS, 65, 257(1965)
(18) M, BORMANN, EF,AL,,NUCL.PHYS, 63, 438 (1965)
(19) D.M.ARNOLD, THESIS, U_{G} OF GEGRGIA (1965)
(20) A, LANGSDORF, ET,AL,, PHYS,REF,107,1077 (1957)
(21) P,M,ENDT AND C,VAA DER LEUN, NUCL, PHYS. 34. 1 (1962)
(22) L, V,GROSHEV, ET,AL, ATLAS OF GAMMA-RAY SPECTRA FROM

RADIAFIVE CA'PTURE (TRAASI, PERGAMMON PRESS, 1959
(23) W, RUDOLPH AND H, V,GERSCH, NUCL,PHYS. 71, 221 (1965)
(24) R,L,CALOWELL, ET.AL.: NUCL.SCI.ENG. 8, 173 (1960)

* * * * * * * * *

POTASSIUM-ETRANSLATED JUN 69 FROM GA EVALUATION (GA-7829, 1967)
PLEASE REFER COMMENTS CR QUESTIONS REGARDING ERRORS IN TRANSLAG
FION OR IN FORMAT, OR CONCERNING THE TRANSLATION CODE (LATEX)
TO** DONALD J. DUDZIAK, UNIVERSITY OF CALIFORNIA, LOS AL'AMOS SGIENTIFIC LABCRATORY, LOS ALAMOS, NM 87544
ANY COMmENTS REGARDING THE DATA EVALUATION SHOULD bE REFERRED TO M,K, DRAKE, ET AL, THE AUTHORS OF GA-7829 (NDL=TR.89), THE PEFMISSION OF MR, DRAKE TC TRANSLATE HIS EVALUATION IS GRATEFULLY acknowlegged Transition probability arrays for inelastic seatTERING NERE TAKEN FROM DIAGRAMS IN GAg7829,PART V DATA FOR RTN 1032 ANO 3032 WERE ASSIGNED MY=28, AS RECDMMENDED BY URAKE, TFANSLATION COMPLETED ULY, 1969.
PHOTON PRODUCTIUN FILES CONVERTED TO NEW FORMAT IN LA=AgAgIENCF 1A2,REVISED,VOL, !!! BY DONALD J, DUDZIAK JULY 1970. NEUTRON AND PHOTON PREDUCTION FILES CONVERTED TO ENDF/B-I! FORMAT FOR THE RADIATICN SHIELDING INFGRMATION CENTER BY SINGLETARY, PENNY, AND ROUSSIN, FILE 2 AND FILE 23 ALSO ADDED IN MARCH 997:

TABLE OF CONTENTS

** Mfai ** general information

* MF = 4 * SECONDARY ANGULAR DISTRIBUTIONS TABULAR C SYSTEM MT= 2 ELASTIC
$M T=5 q$ (N, AEPRIME) TO PHE 1ST EXCITED STATE
MT=52 (Pi,ACPRIME) TO FHE 2ND EXCIFED STATE
MT= 53 (N.A-PRIME) TO THE 3RD EXCITED STATE
$M T=54$ (M, \quad-PRIME) TO FHE ATH EXCITED STATE
MTE 55 (NA-PRIME) TO THE 5TH EXCITED STATE
$M T=56$ (N.A-PRIME) YO THE 6TH EXCITED STATE
MT= 57 (N,A=PRIME) TO THE 7TH EXCITED STATE
$M T=59$ (N.A-PRIME) TO THE 8TH EXCIFED STATE
MTE 59 (N, $=$ =PRIME) TO YHE 9TH EXCITED STATE (ISO.)
MT= 60 (N, $\sim P R I M E)$ TO THE 1OTH EXCITED STATE (ISO,)
* MFE5 * SECONDARY ENERGY DISTRIBUTIONS * ALL LAW 1 (TABULAF)
$M T=22(N, N=P R I M E) A L P H A$
$M T=2 甘 \quad(N, N-P R I M E) P$
MT= 91 (N.AGPRIME) TO THE CONFINUUM

20-CA 1152 ORNL,GGA GA-7日29 VOL $6(67) \quad$ OCT71 F.PEREY(ORNL) M.K.DRAKE(GGA)

```
            ENDF/B MATERIAL NOE 1152
    CALCIUM ORNL EVAL=1967 F.PEPEY(ORNL) M,K,DRAKE
GA-7829 VOL=6 (1967) DIST-JAN72 REV=OCT71
```



```
DATA MODIFIED JAN,7Z
LOW ENERGY N:ALPHA CROSS SECTION ADDEO (1/V)
22DD M/SEC VALUE NAS F.DD25 BARNS (NORMALIZATION AND STANDARDS
SUBCTMMITTEE RECOMMENDED VALUEI
```


CALEIUM EVALUATION - ORAL ANGUST 1971
A COMPLETF. REEVALUATION OF CALCUIM NEUTRON AND GAMMA RAY CROSS SEC TIONS FROM D,D2 EV TO 22, D MEV IS PRESENTLY IN FROGRESS AT ORNL, THIS EFFORT. WAS UNDERTAKEN TO IMPROVE THE ORIGINAL EVAGUATIGN BY M, K, DRAKE, GULF GENERAL, ATOMIC REPORT GA 27829, VOL, 4,1967 . THE DRAKE EVALUATION WAS ORIGINALY TRANSLATED INTO ENOF FORMAT BY
D, J, DUDFIAK, LASL, JULY 1969: REVISED BY PGGYYUNG; LASG: MAY 1970 AND BEARS MATERःAL NUMEER 540.
THE GRNL REEVALUATION IS NOT COMPLETE AS OF AUGUST 1971; HOWEVEA IT WAS POSSIBLE TO MERGE THE WORK UONE TO DATE UP TO 9, D MEV WITH MAT 540 ABOVE 9, 2 MEV. THIS EVALUATION, MAT 1152, IS THE RESULT OF SUCH A MFRGING.

THE FOLLOWING FILES AND REACYION TYPE NUMBERS HAVE BEEN TAKEN FROM MAT 54is,

FILE	NT				
3	1	UP	13	0.466	MEV
3	16	UP	PO	20.600	MEV
3	22	UP	TO	20.000	MEV
3	28	UP	TO	20.000	MEV
3	102	UP	70	20.000	MEV
3	251	UP	T0	20.000	MEV
4	2	UP	TO	20.000	MEV
5	16	UP	T0	20.000	MEV
5	22	UP	T0	20.0000	MEV
5	28	UP	TO	20.000	MEV
5	91	UP	TO	26.000	MEV

CAJTION

SINCE WE GAVE FOUND NECESSARY TO ALTER ALL FILES IN MAT 540 BELOW 9. 0 MEV,EXCEPT FOF TOTAL CROSS SECTION UP TO D.466 MEV CAPTURE CRCSS SECTIUN AAD ELASTIC ANGULAR DISTRIBUTIONS IT IS POSSIBLF. THAT HORK IN PFOGRESS WILL REVEAL GROSS INADEQUACIES IA THIS EVALUATION ABOVE 9 :O MEV.

COMPLETE DOCUMENTATION FOR THIS EVALUATION WILL ONLY BE AVAILABLE WHEN WE HAVE. EXTENDED THE REEVALUATION UP TO $20, D$ MEV. HOWEVER, JUESTIONS ANO COMMENTS CONCERNING FHIS EVALUATION, MAT 115\%. ARE WELCOME AND SHOULD BE ADORESSED TO FiG,PEREY, ORNL. SEMI-EMPIRICAL PHOTON CROSS SECTION INFORMATION FROM UCRL 5040\%

SUMMARY DOCUMENTATION FOR CaLCIUM GAMMA-RAY PRODUGTION CROSS SECTIONS

F. G. Perey, C. Y. Fu and W. E. Kinney Oak Ridge National Laboratory

A complete reevaluation of neutron and gamma-ray production cross section for calcium is underway at ORNL. A previous evaluation for this nuclei was done by M. K. Drake in 1967, Reference 1. The Drake evaluation was originally transferred into ENDF format by D. J. Dudziak, LASL, July 1969 and revised by P. G. Young, LASL, May 1970 and has been assigned ENDF Mat 540. The ORNL reevaluation was not completed as of August 1971, the deadline for consideration of evaluations for ENDF-III. It was, however, possible to improve significantly Mat 540 for reactor shielding applications by incorporating some of the work performed at ORNL. No attempt was made to modify Mat 540 above 9 MeV except for the total cross section. Therefore, full documentation on Mat 1152 above 9 MeV can be found in Reference 1. The major differences of Mat 1152 with Mat 540 are:

1. Total Cross Sections - The total cross sections were completely reevaluated from 460 keV to 20 MeV on the basis of two recent extensive data sets, References 2 and 3. The Karlsruhe, Reference 2, time-of-flight measurement was recently recorrected for residual dead-time errors and has the best energy resolution of the two. The NBS data, Reference 3, was remeasured for this evaluation in an attempt to resolve the differences between a previous NBS measurement and the newly corrected Karlsruhe data. The two recent sets of data still differ by about 20% in the deep minimum
around 550 keV and by a few percent at 14.5 MeV . The evaluation is based mostly on the Karlsruhe data because of the higher energy resolution, but we have renormalized it to the NBS data in the neighborhood of the 550 keV window.
2. Inelastic Cross Sections in 1967 - When Mat 540 was prepared there existed very little inelastic-scattering data for calcium above 5 MeV and our knowledge of level energies and spin-parities for ${ }^{40} \mathrm{Ca}$ was very incomplete. The situation has changed drastically since then. There is now inelastic-scattering data up to 8.5 MeV , Reference 4, and a wealth of information on level energies and spin-parities for ${ }^{40} \mathrm{Ca}$, Reference 5. For instance, in 1967 only 14 energy levels were known below 8.3 MeV. We now have approximately 50 levels up to this energy with spin-parity assignments and branching ratios for most of them. The ineiastic-scattering files in Mat 1152 were generated using the Hauser-Feshbach formalism after having fitted the available data. Cross sections as a function of energy were generated for the lower 17 levels of ${ }^{40} \mathrm{Ca}$ and the first excited state of ${ }^{44} \mathrm{Ca}$. Inelastic scattering to levels above the 17 th one were grouped in groups approximately 250 keV of excitation energy. Above an incident neutron energy of 9 MeV , a continuum representation for inelastic scattering in file MT=91 is the same as in Mat 540.
3. Gamma-Ray Production Cross Sections - As a matter of expediency for ENDF/B-III, the gama-ray production files were generated under MT=3.

Up to 2 MeV neutron energy the only gamma-ray production mechanism considered is capture. The gamma-ray spectra for capture are based on a decay scheme established on the basis of the thermal data of Reference 6. Gauma-ray production cross sections for (n, n^{\prime}), (n, p) and (n, α) reactions were computed on the basis of Hauser-Feshbach calculations and the extensive knowledge of branching ratios in the residual nuclei, Reference 5.

REFERENCES

1. M. K. Drake, Gulf General Atomic Report GA-7829, Part IV (1967).
2. S. Cierjacks et al., KFK-1000 (1968).
3. R. A. Schrack et al., Bull. Am. Phys. Soc. 17, 555 (1972).
4. F. G. Perey and W. E. Kinney, Oak Ridge National Laboratory Report. ORNL-4519 (1970).
5. P. M. Endt and C. Van der Leun, Nucl. Phys. Al05, 1 (1967); H. Lindeman, G. A. Engelbertink, M. W. Ockeloen, and H. S. Pruys, Nucl. Phys. Al22, 373 (1968); A. Tellez, R. Ballini, J. Delauney, and J. P. Fouan, Nucl. Phys. A127, 438 (1969); R. Anderson, A. G. Robertson, D. F. Start, L. E. Carlson, and M. A. Grace, Nucl. Phys. A131, 113 (1969); A. R. Poletti, A. D. W. Jones, J. A. Becker, and R. E. McDonald, Phys. Rev. 181, 1606 (1969); J. R. MacDonald, D. H. Wilkinson, and D. E. Alburger, Phys. Rev. C3, 219 (1971); A. Tellez-Arenas, Thesis University of Paris, Orsay (Orsay Report Series A, No. 738) February 1971.
6. G. H. Gruppelaar and P. Spilling, Nuc1. Phys. Alo2, 226 (1967).

Titanium

A. B. Smith and E. M. Pennington Argonne National Laboratory

A. Outline of Bata Included

Smooth total, elastic, total inelastic, $(n, 2 n),(n, \gamma),(n, p)$ and (n, α) cross sections are given in File 3, along with inelastic excitation cross sections for five levels and the continum. Values of $\bar{\mu}_{L}, \xi$ and γ derived from the File 4 elastic scattering Legendre coefficients are also given.

File 4 contains elastic scattering Legendre coefficients in the center-of-mass system for 103 energies, along with the transformation matrix. Also File 4 contains angular distributions assumed isotropic in the center-of-mass system for the inelastic data and istropic in the laboratory system for the ($n, 2 n$) reaction.

Nuclear temperatures for continum inelastic and ($n, 2 n$) scattering are presented in File 5.

No resonance parameters are given for titanium. A scattering radius yielding a potential scattering cross section of 4.13 barns is given as minimum File 2 data.

B. Sources of Titanium Data

The original ENDF/B titanuim evaluation was prepared as MAT1016 by E. Pennington in 1966 with revisions in 1967. That evaluation was based largely on the compilation by N. Tralli et al., (Ref. 1) of United Nuclear Corporation, which was later slightly modified at AWRE (Ref. 2). Revisions were made in the data of Ref. 1 based on later experimental results, and various additions were made. In 1971 new experimental data and calculations were used by A. B. Smith to prepare a new titanium evaluation which was assigned MAT1144. A description of the data sources is given below.

Total Cross Section

The total cross section u to 100 eV was obtained by adding the scattering and capture cross sections. From 100 eV to 2.5 keV , the σ_{nT} of Ref. 1 was used. From 2.5 to about 100 keV , values were obtained from Ref. 3. Experimental results of Whaled and Smith (to be published) were used from 0.1 to 1.5 MeV . Above 1.5 MeV experimental values from Schwartz (Ref. 4), Barschall et al (Ref. 5) and Foster and Glasgow (Ref. 6) were used.

Elastic Scattering Cross Section

Below 100 eV , the elastic cross section of Ref. 1 was used, except that a constant 4.13 barns was assumed below 1.5 eV . At all higher energies, σ_{nn} was obtained by subtracting all other partial cross sections from the total. The results agree with the measurements of Smith et al (to be published) when averaged over the experimental resolution.

Inelastic Excitation Cross Sections

At incident energies below about 1.5 MeV , recent Argonne experimental results by Smith et al for two levels were used. These cross sections plus cross sections due to excitation of known states at $2.32,2.44$ and 3.29 MeV were extrapolated to incident neutron energies of about 7 MeV using optical model calculations. The inelastic continuum cross section was also estimated from optical model calculations.

($\mathrm{n}, 2 \mathrm{n}$), (n, p) and (n, α) Cross Sections

The values of $\sigma_{n, 2 n}, \sigma_{n p}$ and $\sigma_{n \alpha}$ are all based on Ref. 1 .

(n, γ) Cross Section

A $1 / \mathrm{V}$ capture cross section with a value of 6.1 barns at 0.0253 eV , as recommended in Ref. 3, was assumed up to 100 eV . From 100 eV to 22.5 keV , $\sigma_{\mathrm{n} \gamma}$ was computed using resonance parameters from Ref. 3 in the single-level

Breit-Wigner formula without Doppler broadening. An assumed Γ_{γ} of 0.75 eV was used. From 22.5 keV to about 1 MeV , the capture cross section was based on Ref. 3. Values from Ref, 1 were used at higher energies. $\bar{\mu}_{\mathrm{L}}, \xi$ and γ

Values of $\vec{\mu}_{L}, \xi$ and γ were calculated from the elastic scaittering Legendre coefficients of File 4.

Elastic Scattering Legendre Coefficients

E1astic scattering Legendre coefficients from about 300 keV to 1.5 MeV are the experimental results of Smith et al. At lower and higher energies, the coefficients are from Ref. 1, except that optical model calculations were performed to yield coefficients at 14 and 18 MeV . The 15×15 transformation matrix from the center of mass to the laboratory system was calculated at Brookhaven.

Continuum Secondary Energy Distributions

Rule-of thumb type estimates were made for the nuclear temperatures for the $L F=9$ laws for the inelastic continum and ($n, 2 n$) reactions.

REFERENCES

1. N. Tralli et al., "Fast Neutron Cross Sections for Titanium, Potassium, Magnesium, Nitrogen, Aluminum, Silicon, Sodium, Oxygen and Manganese', UNC-5002 (January 1962).
2. S. Miller and K. Parker, '"Neutron Cross Sections of Natural Titanium in the Energy Range 0.001 ev -18MeV-Incorporation of United Nuclear Corporation Data in the UKAEA Nuclear Data Library", ANRE 0-77/E4 (October 1964).
3. M. D. Goldberg et al., "Neutron Cross Sections", BNL-325, Second Edition, Supplement No. 2, Volume IIA, $2=21$ to 40 (February 1966).
4. R. Schwartz et al., private commmication to A. B. Smith. Numerical data available from the NNCSC.
5. H. Barschall et al, numerical data available fron the NNCSC.
6. D. Glasgow and D. Foster, HW-SE-2875 (1963), numerical data available from the NNCSC.

23-V 1017 ANE AN. 7307 (MAR.6日) SEFEG E.M.PEANINGTON. J.C.GAJNIAK
III. Vanadium
E. M. Pennington

Argonne National Laboratory
A. Outline of Cross Sections Included

Snooth total, elastic, inelastic, $(n, 2 n),(n, y),(n, p)$ and (n, a) cross sections are given in File 3, as well as values of μ_{L}, ξ and r derived from the Legendre coefficients of File 4 . The energy range is 0.001 eV to 15 MeV .

File 4 contains Legendre coefficients in the center of mass systen for 42 energies, along with the eransfomation matrix.

File 5 includes secondary energy distributions for four resolved levels and the continum in the case of inelastic scattering, along with tabulated nuclear temperatures. Naclear temperatures are also given for the ($n, 2 n$) reaction.

Parameters for the free gas themal scattering law are in File 7.

No vanadium resonance parameters are given.

B. Sources of Vanadium Data

The present compilation is entirely new, in the sense that it is not based on any previous compilation for reactor calculations. The sources of the vanadium data are described in detail in the following paragraphs.

Total Cross Section
The total cross section below 100 eV was calculated as the sum of scattering and capture cross sections. From 100 eV to about 2 keV ,
$\sigma_{n T}$ was read from the graph in Ref. 1. From 2 keV to 220 keV , values were read from the graphs on p. 23-0-3 and 23-0-4 of Ref. 2. Values from Ref. 1 were then used up to abour 0.4 MeV , followed by values from p. 23-0-5 and 23-0-6 of Ref. 2 at higher energies, except for tite range from 1.3 to 2.0 MeV in which Ref. 1 values were used.

Elastic Scattering Cross Section

A value of 5 bams was used for the eiastic scattering cross section at tabulated energies below 100 eV . At all higher energies σ_{nn} was obtained by subtracting the other cross sections from the total cross section.
($\mathrm{n}, \gamma)$ Cross Section
The capture cross section was taken as $1 / \mathrm{V}$ up to 1.5 eV , based on the value of 5.06 barns at 0.0253 eV recommended in Ref. 2. From 1.5 eV up to 22.5 keV , the capture cross section was calculated from parameters for the first two resonances in V-50 and the first six resonances in V-51 as given in Ref. 2, along with the $1 / V$ contribution required to give agreement with the experimental cross section at 0.0253 eV , The single-level Breit-Wigner formula without Doppler broadening was used. Values of 0.50 and 0.75 eV were assumed for r_{γ} for the $\mathrm{V}-50$ and $\mathrm{V}-51$ resonances, respectively. These values were suggested by Kapchigashev (Ref. 3) to give agreement with his broad resolution measurenents of capture cross section shown on p. 23-0-3 of Ref. 2. From 22.5 keV to 2 MeV , the capture cross section was read from the smooth curve for V-51 on p. 23-51-5 of Ref. 2. A 1/E dependence for $\sigma_{n \gamma}$ was assumed at higher energies.

Inelastic Scattering Cross Sections

Inelastic scattering cross sections were calculated up to
2.4 MeV for scattering to four resolved levels in V-51 using the Abacus-2 (Ref. 4,5) and Nearrex (Ref. 6) optical model codes. The optical model parameters used are those of Eq. (8) of Ref. 7. The parameter Q in the Nearrex calculations was taken to be 1.0. Energies of the four resolved levels considered in V-51 are $0.320,0.930,1.609$ and 1.813 MeV . The spins and parities of the ground state and the first four excited states were taken as 7/2-, 5/2-, 3/2-, 11/3- and 9/2-, respectively (Ref. 8). Since $V-50$ has an abundance of only 0.24%, it was not considered in the inelastic scattering calculations. From 2.4 MeV to 5.0 MeV the inelastic scattering cross section was arbitrarily extrapolated using the assumption that compound elastic scattering vanished at 5 MeV . At higher energies, the other reaction cross sections were subtracted from the total optical model reaction cross section to yield σ_{nn}..

Recent experimental data (Ref. 9,2) for inelastic scattering to the first four resolved levels, for an incident energy of 2.35 MeV only, is in rather good agreement with the calculations as is shown in the table below. Calculations using $Q=0.0$ rather than 1.0 in the Nearrex code did not agree quite as well with this experimental data.

Level-MeV	$\frac{\sigma-\mathrm{mb}}{}$ 	(Experimental)
0.320	360 ± 30	
0.930	160 ± 8	369
1.609	207 ± 10	153
1.813	145 ± 15	207
		186

($\mathrm{n}, 2 \mathrm{n}$) Cross Section

The ($\mathrm{n}, 2 \mathrm{n}$) cross section was calculated for $\mathrm{V}-51$ according to the method of S. Pearlstein (Ref. 10) and was then increased by about 20% throughout the entire energy range in order to pass through a single experimental point (Ref. 11). In this calculation, no distinction was made between the laboratory and center of mass systems. This is in contrast to the calculations reported for the molybdenum and gadolinium evaluations in which the distinction between the coordinate systems was treaied correctly.
(n, p) Cross Section
A smooth curve was drawn through the experimental V-51 (n, p) Ti-51 points given in Ref. 12. Since the experimental points were measured only at energies well above threshold, the curve was extrapolated downard to an assumed effective threshold of 3 MeV . This value was estimated by inspecting $\sigma_{n p}$ cross sections for other isotopes with 2 values near that of vanadium and observing how far effective thresholds are above actual thresholds. The smooth curve on p. 23-51-6 of Ref. 2 is almost in agreement with the $\sigma_{n p}$ values used here in the range above 13 MeV covered by the curve,
(n, α) Cross Section
The (n, α) cross section was read from the smooth curve on p. 23-51-8 of Ref. 2, and extended downwards to an effective threshold of 7 MeV , estimated as for the (n, p) reaction.
μ_{L}, ξ and r
Values of μ_{L}, ξ and γ were calculated from the Legendre coefficients of File 4, as outlined in the documentation of the magnesium sross sections.

Elastic Scattering Legendre Coefficients

Below 1.8 MeV , the Legendre coefficients are based on the experimental results of Langsdorf et al., (Ref. 13), who plot coefficients in the laboratory system as a function of energy. Values were read off these curves, renormalized as in ENDF/B, and transformed to the center of mass system using the transformation matrix routine from the CHAD code (Ref. 14). Since these experimental results include inelastically scattered neutrons, corrections were made above the inelastic scattering threshold, assuming isotropic scattering in the center of mass system. The elastic scattering angular distributions of the Abacus-2 problems were fit at 1.8 MeV and above, using the least-squares fitting routine of the Argonne SAD code (Ref. 15). From 2.6 through 4.0 MeV , the coefficients were adjusted using an estimated compound elastic scattering cross section, assumed isotropic in the center of mass system. At 5 MeV and above, it was assumed that compound elastic scattering is negligible. Since 12 Legendre coefficients are used at high energies, a transformation matrix from the center of mass to laboratory system including terms through $\ell=12$ is contained in File 4.

Secondary Energy Distributions
The probabilities of exciting each of the four resolved inelastic levels of the Abacus-2 Nearrex calculations are tabulated from threshold to 2.4 MeV . Nuclear temperatures calculated from the

Yiftah-Okrent-Moldauer prescription (Ref. 16), are given at 2.4 and 15 MeV as the variation is linear on a $\log -\log$ scale.

Thermal Neutron Scattering Law
A free gas thermal neutron scattering law was assumed. The cutoff above which the static model is used was taken to be 1.5 eV , and a free atom scattering cross section of 5.0 barns was used.
C. Comments on Vanadium Cross Sections

The recent measurements of $\sigma_{n \gamma}$ by Kapchigashev (Ref. 3) have helped to reduce the uncertainty in the capture cross section in the resonance region. Experimental data on inelastic scattering is available only at 2.35 MeV (Ref. 9,2), but the good agreenent between this data and the optical model calculations does give some confinnation of the validity of the calculations. There is uncertainty in the (n, p) and (n, α) cross sections at low energies since the data had to be extrapolated downard from higher energies, with the extrapolation covering a rather large range in the case of the (n, p) cross section. No elastic angular distribution measurements exist above 1.8 MeV . However, optical model calculations of elastic angular distributions are generally rather reliable above a few MeV.

1. D. J. Hughes and R. B. Schwartz, 'Neutron Cross Sections," BNL-325, Second Edition (July 1, 1958).
2. M. D. Goldberg et al., 'Neutron Cross Sections," BNL-325, Second Edition, Supplement No. 2, Volume IIA, $\mathrm{Z}=.21$ to 40 (February, 1966).
3. S. P. Kapchigashev, "Cross Sections of $\mathrm{V}, \mathrm{Zr}, \mathrm{Zr}^{90}, \mathrm{Zr}^{91}$ and Zr^{94} for Radjative Capture of Neutrons with Energies $1-50,000 \mathrm{eV} . "$ Soviet Atomic Energy 19, 1212, (1965), (Translated from Atomnaya Energiya, Vol. 19, No. 3, pp. 294-296. September, 1965).
4. E. H. Auerbach et al., "Abacus-1: A Program for the Calculation of Nuclear Cross Sections Using the Cloudy Crystal Ball Model," KAPL-3020 (June 1, 1964).
5. E. H. Auerbach. "Abacus-2 (Revised Version) Program Operation and Input Description," BNL-6562 (November, 1962).
6. P. A. Moldauer et al., 'Nearrex, A Computer Code for Nuclear Reactor Calculation," ANL-6978 (December, 1964).
7. P. A. Moldauer, "Optical Model of Low Energy Neutroni Interactions with Spherical Nuclei," Nuclear Physics 47, 65-92 (1963).
8. J. E. Schwager, "Capture-Gamma Determination of Vanadium Levels," UCRL-6003 (January, 1960).
9. A. T. G. Ferguson, "Inelastic Neutron Scaittering," P. 63-69 of Nuclear Structure Study with Neutrons, Proceedings of the International Conference on the Study of Nuclear Structure with Neutrons, Antwerp, July 19-23, 1965, North Holland Publishing Co. (1966). See Figure 6a.
10. S. Pear1stein, "Analysis of ($n, 2 n$) Cross Sections for Medium and Heavy Mass Nuclei," Nuc1. Sci. Eng. 23, 238-250 (November, 1965). Also BNL-897 (December, 1964).
11. V. J. Ashby et al., "Absolute Measurements of ($\mathrm{n}, 2 \mathrm{n}$) Cross Sections at $14.1 \mathrm{MeV}, "$ Phys. Rev. 111, $616-621$ (1958).
12. M. Bomann et al., 'Investigation of the Energy Dependence of Nuclear Reactions of Neutrons in the Energy Range between 12 and $19 \mathrm{MeV} . "$ Zeit. Phys. 174, 1-17 (1963).
13. A. Langsdorf ex ail., "Angular Distributions of Scattered Neutrons," Phys. Rev. 107 (nc. 4), 1077-1087 (1957). Also ANL-5800, Second Edition, Reactor Physics Constants, p. 62.
14. R. F. Berland, "CHAD, Code to Handle Angular Data," NAA-SR-11231 (December, 1965).
15. E. M. Pennington, J. C. Gajniak and R. A. Mewaldt, "Programs for Analysis of Scattering Angular Distributions," ANL-7306 (to be issued).
16. S. Yiftah, D. Okrent and P. A. Moldauer, Fast Reactor Cross Sections, Pergamon Press, New York (1960), p. 49.

FNDF/B MATER:AL NO = 1121
CHORMIJM WNESEBAL EVALE1969 N,AZZIZ AND J.CORNYN (WNES) $W C A P-7281$

DISTEJUL70 REV=JUL70

CHROMIUM
EVALUATE! EY N, AZZIZ AND J. CORNYN, 1967, AT WAPD,
REEEVALUATED BY N, AFZZZ AND J.W.CONNELLEY, 1969, AT WAPD,
AND DRAKE. AT BNL,FOR DETAILS SEE N, AZZIZ,WCAP7281.
3.1
$1,2,3,4,5,6,7,8,9$
P. 2

TAKEN AS SIGMAEL SIGMATOTAL• SIGMAN,GAMMA= SIGMANONEL
3,3
SUM UF RFACTIGUS 4,1世.106.107. WITH CONTRIBUTIONS FROM (N,NP),
(N, D), EPC
3,4
$17.13,23$
3.16
$19,28,23$
3.102
10.11 .12 .15
3.103

21,22,23
3.1077

23
1, E.MELKONIAN,W,W,HAVENE JR, ,L, J.RAINWATER,PHYS,REV,92,762.
2. R,E,COTE,L,M,ROLLINEEF, J.M,LEBLANC, PHYS, REV,111,288,1958.
3. C.T.HIPDON, PHYS,REV:128,414,1957.
4. C, D, BOWMAN, E, SILPUCF, H, NEWSON, ANN, PHYS,17, З19,1962,
5. J.F.WHALEN, ANL=7218,1966.
6. J.CABE,M.LAURAT,P,YCON,1963 (SEE 24).
7. A.LANGSDURF JH, R R, O,LANE: ,, E, MONAHAN, PHYS,REV,107,1077,1957,
8. D.MILLER,R,AOAIR,C,K,BOCKELMAN,S, QARDEN, PHYS,REV, 88,83;1952.
9. D.G.FOSTER, UW, GLASSEON,1965 (SEE 24).

16; S,V,KAPGHIGASHEV,YL,P,POPOV,ATOM,ENER, 15,120,1963
11: J.H,GIBEONS,R,L.MACKLIN,P,P, 7ILLER,N,H,NEIKI,PHYS,REV, I 12Z, 982,1961.
12: YU,YA,STAVISSKII, A', V, SHAPAR,ATOM,ENER, 10,264,1961,
UO. B, C.DIVEN, J,FEPRFLL, A, HEMMENDINGER;PHYS,REV, 120,556,1960.
14: 3NL 4DO.
15: S.A.COX,CONF 25D-12,1962.
16: P.H.STELSON,R, H, ROEINSON,H:J,KIM,J;RAPAPORT, G;R, SATCHLER, NUC, PHYS,68,97,1963.
17: D,L. AROSER,V,E,KOLESOV;A,I.LASHUK,I,P;SADOKHIN, A, GODOVBENKC, J. NUC, ENER,118,645;1964,

1d: D, H, VAN PATTER,N,NATH,S,M, SHAFROTH,S,S,MALIK,M, A, ROTHMAN, PHYS, AEV.,127,1246,1962.

ENDF/B MATERIAL NO: 1121
19. M, DORMANN,F, DREYER,P,JESSEN,P,SCHEHKA \{SEE 24).

2月, Re WENUSCH,H,VONACF,OESTERR,AKAD,WISS,, MATH-NATURW,GKI, ANZ, 1, i.1962.
21. B, O, KERN,W, E, THOMPSON, J,M,FERGUSON,NUC, PHYS, 10,226,1959,
22. D.L.ALLAN, NLE, PHYS, 24,274,1961,
23. N,AZZIZ,J,W,CONNELLEY,WCAP 7280,1969.

24, 日NL 325:1960,

T.E. Stephenson, A. Prince, and S. Pearlstein

I. INTRODUCTION

This report describes the collection and choice of Mn-55 data placed in the proper format for the Evaluated Nuclear Data File - Version B, ENDF/B. The description of how the evaluation was performed is contained in Sections III and IV. Section III deals with the manganese cross section below 80 keV , and Section IV deals with the manganese cross section from 80 keV to 20 MeV .

II. GENERAL INFORMATTON

The decay data for File 1 were taken from the Chart of the Nuclides. The ratio of the manganese atomic mass to that of the neutron (54.566) is based on data taken from the Handbook of Chemistry and Physics.

III. LOW ENERGY CROSS SECTIONS

The total and partial cross sections from 0.001 eV to 80 keV can be calculated from the resonance parameters of 27 levels as recorded on the ENDF/B tape, using the Breit-Wigner multilevel scattering formula. When the single level breit-Wigner formalism is used, as required in the present version of ENDF/B, it is necessary to add a smooth, elastic cross section, which is simply the resonance-resonance interference cross section. Above 8.95 keV another smooth cross section is added, this one for absorption.

We found that the capture cross section calculated from the resonance parameters from 10 keV to 80 keV gave a capture resonance integral which was $\sim 20 \%$ of that which can be computed from broad resolution measurements of the capture cross section within this energy interval. We therefore have added a smooth capture cross section which is $\sim 80 \%$ of the experimental measurements in this region.

A. Resonance Parameters

Parameters for the 27 levels are given in Table I. References for 21 of the levels are given in the Table. Earameters for the remaining six were generated at BNL. ${ }^{(3)}$ The bound level parameters were determined by the requirements of fitting the total cross section and giving the correct thermal absorption cross section. Parameters for the four levels in the 30 keV region were calculated in order to fit the measured total cross section in the vicinity of the spin domblet. Morgenstern, et al., (4) give a $g \Gamma_{n}=1500 \pm 200$ for the doublet. Oux parameters, including the narrow resonance at $36,450 \mathrm{eV}$, give a combined $g \Gamma_{n}$ of 1327 eV , which is within Morgenstern's error bar.

B. Thermal Cross Sections

The effective scattering radius, 4.54 fermis, was selected on the basis of giving the best over-all fit. Tests of the correctness of the resonance parameters and the scattering radius, in addition to that effected by the over-all fit, are comparisons of the calculated values of the thermal absorption cross section, the low energy scattering cross section, and the coherent acattering cross section with measured values of these quantities. Our value for $\sigma_{a, t h}=13.4$ barns is within the error bar of the value recommended ${ }^{(5)}$ from experimental measurements, $13.3 \pm 0.1 \mathrm{~b}$. There is some energy dependence in the low energy calculated scattering

RESONANCE PARAMETERS

J	$\begin{gathered} E_{0} \\ (e V) \end{gathered}$	$\begin{gathered} \Gamma_{n} \\ (e V) \end{gathered}$	$\begin{aligned} & \Gamma_{n}^{0} \\ & (\mathrm{e} V) \end{aligned}$	Reference
2	335.5	22.4		R.E. Coté, L. M. Bollinger,
3	1098	14.6		and G.E. Thomas, Phys. Rev.
3	2355	404	,	134, B1048 (1964)
2	7110	425	,	
3	8740	370)	
(3)	17774	11	1	
(2)	17945	65		
3	20910	860		
2	23640	380		
2	26370	120		J. Morgenstern, S. de Barros,
3	26910	380		G. Bianchi, C. Corge,
3	40980	280		V. D. Huynh, J. Julien,
2	53280	80		G. Le Poittevin, F. Netter, and
	57380	420	,	C. Samour, International Conf.
2	58060	950		on the Study of Nuclear Structure
2	59480	750		with Neutrons, Antwerp, Belgium
3	64130	800		(July 19-23, 1965)
3	66460	120		
2	69470	170		
3	70000	270		
2	73880	1000	I	
2	30400	23		
2	34650	1200		
3	35300	1400		
2	36450	26		
3	-4700		6.9	
2	-3300		4.73	

cross section. However, the value calculated in the $7-20 \mathrm{eV}$ range is in agreement with the recomended value ${ }^{(6)}$ of $2.0 \pm 0.1 \mathrm{~b}$. The recommended value is for the bound atcon cross section; the Breit-Wigner formula computes the free atom cross section. For example, our calculated scattering cross section at $10 \mathrm{eV}, 1.87 \mathrm{~b}$, when multiplied by the factor ($A+1 / \mathrm{A})^{2}$, gives 1.94 b , which is within the error bar of the recommended value. Below ~ 7 eV the scattering cross section decreases gradually, reaching 1.8 b (including the reduced mass correction). Above $\sim 20 \mathrm{~b}$ the scattering cross section increases due to the $335.5-e V$ resonance. The calculated value of the coherent scattering cross section, 1.71 b , is in good agreement with the value recommended ${ }^{(6)}$ from experiment, 1.7 ± 0.1 b.

C. Resonance Integrals

We have chosen 0.52 eV as the value of the radiation width. When this value of Γ_{y} is used to calculate the absorption resonance integral, we ob$\operatorname{tain} I_{a}=15 \mathrm{~b}$, a result which is in agreement with the recent measurement of Louwrier and Aten. (7) There are many measurements of the resonance incegral and as many values. (8) We have chosen the resuits from Ref. 7 because the description of the method appeared to promise accurate results. The cadmium cutoff for our calculation is taken as 0.56 eV , as was done in Ref. 7.

The calculated value of the scattering resonance integral is 556 barns. The only reported measurement by Harris, et al. (9) is 509 barns.

IV. HIGH ENERGY CROSS SECTIONS

A. Optical Model Parameters

Optical model calculations using ABACUS II ${ }^{(10)}$ were carried out to determine the total, elastic, inelastic, and differential scattering cross sections from 100 keV to 20 MeV .

The oprical model. potential was given by (11)

$$
V(r)=-V_{R E} f(r)-i V_{I M} g(r)-V_{S R} h(r) \bar{l} \cdot \vec{\sigma}
$$

where $V_{R E}, V_{I M}$, and $V_{S R}$ are the real, imaginary, and real spin-dependent potentials, respectively; $f(r), g(r)$, and $h(r)$ are their radial variation; and $\bar{\sigma}$ is the Pauli spin operator.

The radial variations of the potentials were assumed to have the following Forms ${ }^{(11)}$:
$f(r)$ - Saxon-Wood
$g(r)$ - Gaussian Surface
$h(r)=$ Thomas

In order to obtain satisfactory agrement with available experimental data, it was necessary to use two sets of optical model parameters. The potentials were explicit functions of energy given by:

$$
\text { Set } B \begin{cases}V_{R E}=52.5-0.6 \mathrm{~F}_{\mathrm{n}}(\mathrm{MeV}) & r_{0}=1.25 \mathrm{~A}^{\frac{1}{3}} \text { (fermi) } \\ \mathrm{V}_{\mathrm{IM}}=2.5+0.3 \mathrm{E}_{\mathrm{n}}(\mathrm{MeV}) & a=0.35 \quad \text { (fermi) } \\ V_{S R}=10-0.15 \mathrm{E}_{\mathrm{n}}(\mathrm{MeV}) & b=0.98 \quad \text { (fermi) }\end{cases}
$$

$$
E_{n}=\text { neutron energy in } \mathrm{MeV} \quad \mathrm{~A}=\text { Mass Number }
$$

In the discrete level energy range (threshold to 2 MeV), Set 3 was used to calculate the excitation cross section of the very low $0.126-\mathrm{MeV}$ level, while the higher level excitation cross sections wert calculated with Set A.

The energy level diagram is shown in Table II (below) and is based on the work of kefs. 12-14. The spins and parities of all levels above 0.126 are still somewhat in doubt.
table II
Energy Levels for Mn-55

B. Total Cross Section, σ_{T}

In the low energy region ($\mathrm{E}<1.0 \mathrm{MeV}$), the manganese total cross section shows pronounced gross structure fluctuations; therefore the optical model calculations were adjusted so as to agree with the smooth cross sections averaged over the resonances. For $\mathrm{E}>1 \mathrm{MeV}$ the optical model yielded very good results.
C. Elastic Scattering, $\sigma_{\mathrm{e} \ell}$

For $\mathrm{E} \leq 1.0 \mathrm{MeV}$ the total elastic and differential elastic cross sections from the optical model calculations were corrected such that

$$
\sigma_{\mathrm{e} \ell}=\sigma_{T}-\sigma_{\mathrm{ne}},
$$

where

$$
\sigma_{n e}=\sigma_{n n^{\prime}}+\sigma_{n \gamma} \text { for } E<1 \mathrm{MeV}
$$

and σ_{T} was the averaged total cross section described earlier. For $\mathrm{E}>1.0 \mathrm{MeV}$ the shape elastic cross sections given by the optical model were assumed to be correct and the calculated compound elastic scattering cross section was corrected primarily to account for the competition arising from the inelastic excitations. Beyond 6 MeV this correction was practically nil. In general,

$$
\sigma_{e \ell}=\sigma_{T}-\left\{\begin{array}{lr}
\sigma_{n \gamma} & E<0.13 \mathrm{MeV} \\
\sigma_{\mathrm{nn}} \cdot+\sigma_{\mathrm{n} \gamma} & 0.13 \leq \mathrm{E}<4 \mathrm{MeV} \\
\sigma_{\mathrm{nn}} \cdot+\sigma_{\mathrm{n} \gamma}+\sigma_{\mathrm{np}} & 4.0 \leq \mathrm{E}<9 \mathrm{MeV} \\
\sigma_{\mathrm{nn}} \cdot+\sigma_{\mathrm{n} \gamma}+\sigma_{\mathrm{np}}+\sigma_{\mathrm{n} \alpha} & 9 \\
\sigma_{\mathrm{nn}} \cdot+\sigma_{\mathrm{n} \gamma}+\sigma_{\mathrm{np}}+\sigma_{\mathrm{n} \alpha}+\sigma_{\mathrm{n}, 2 \mathrm{n}} & \leq \mathrm{E}<10.5 \mathrm{MeV} \\
& \mathrm{E}>10.5 \mathrm{MeV}
\end{array}\right.
$$

In the low energy region, due to the extreme fluctuations in the cross sections no normalization of the calculated distribution to the experimental data was made, and any agreement in this region must be considered fortuitous.

As pointed out by A. B. Smith, ${ }^{(15)}$ the elastic scattering in the energy region about 0.9 MeV is subject to violent changes due to the resonant structure, and since his incident energy is uncertain by 20 keV , different measurements are obtained in the energy range of $900 \pm 20 \mathrm{keV}$. This is adequate reason not to resort to a parameter search routine for a "consistent" set of optical model parameters. The agreement between calculation and experiment at 3.0 MeV is rather good, and one might then hope that above this energy the calculated values provide an adequate description of the angular distributions.

The elastic differential scattering cross section was converted by CHAD ${ }^{(16)}$ into Legendre coefficients. This program also produced $\bar{\mu}_{L}$, the average cosine of the scattering angle in the laboratory system, and $\boldsymbol{\xi}$, the average logarithmic energy decrement per elastic collision, and the matrix for tr:nsforming from the center-of-mass to the laboratory system.

D. Nonelastic Cross Sections, $\sigma_{n e}$

Up to $2 \mathrm{MeV}, \sigma_{n e}=\sigma_{n n}{ }^{+} \sigma_{n y}$. Beyond this region (inelastic continumm), $\sigma_{\text {ne }}$ was adjusted so as to agree with the shape of Fe. (5) This adjustment was necessary due to the low lying 0.126 level in Mr-55, as compared with the first level of 0.845 MeV in Fe .

E. Radiative Capture, σ_{n}

Quite a bit of experimental data exists for $\sigma_{n y}$ in manganese $(5,17)$ in the high energy region up to 20 MoV . SAUDEX, (18) a computer program
based on the theory of Lane and Lynn, (19) was used to produce the s - and p-wave contributions to the total capture cross section in the kev region. From the low energy resonance data the s - and p-wave strength functions were calculated to be $s_{0}=s_{1}=4.5 \times 10^{-4}$. These produced excellent agreement up to about .50 keV , where deviations from the experimental data began to show due to higher ℓ-wave contributions and the onset of competition with inelastic scattering at 0.13 MeV . The peak in the experimental capture cross section ${ }^{(20)}$ around 15.0 MeV is in agreement with the prediction of Lane's ${ }^{(20)}$ "collective capture" model.
F. Inelastic Cross Section, $\sigma_{n n}{ }^{\prime}$

The inelastic cross section was calculated in the discrete energy region ($\mathrm{E}<2.0 \mathrm{MeV}$) with the Hauser-Feshbach interpretation, (21) and the partial excitation cross sections were compared with Ref. 5 and A. B. Smith's ${ }^{(15)}$ experimental data on the $0.126-\mathrm{MeV}$ level. The calculated value for excitation of the $0.126-\mathrm{MeV}$ levels, although falling within the low side of Smith's data, appears to be somewhat less than that depicted in Refs. 5 and 22. This possibly could be improved by employing a width fluctuation correction factor to the Hauser-Feshbach formula as described by P. A. Moldauer, ${ }^{(23)}$ in which case another set of optical potential parameters might be necessary. For the levels above the 0.126 level, the agreement with experimental data ${ }^{(12)}$ was excellent, despite the uncertainty of the spins and parities. In the continumm region ($\mathrm{E}>2.0 \mathrm{MeV}$) the inelastic cross section was determined from

$$
\sigma_{n n}{ }^{\prime}=\sigma_{n e}-\left(\sigma_{n p}+\sigma_{n \alpha}+\sigma_{n \gamma}+\sigma_{n, 2 n}\right)
$$

G. $\sigma_{n, p}$ Cross Section

The experimental data for this reaction in the $14-\mathrm{MeV}$ region differs considerably, ranging from 30 mb to $110 \mathrm{mb}(5,25,26)$ Since the n, p threshold is approximately 2 MeV for $\mathrm{Mn}-55$ and 3 MeV for Fe-56, the larger
of the experimental values was chosen on the grounds of systematic consistency with $\mathrm{Fe}-56$. Thus the $\sigma_{n, p}$ cross section for $\mathrm{Mn}-55$ was deterrined from threshold to 20 MeV by shape normalization to $\sigma_{n, p}$ of Fe-56. (5)
H. $\sigma_{n, x}$ Cross Section

Although the threshold for this reaction is rather low ($\mathrm{E} \approx 0.7 \mathrm{MeV}$), the extrapolated experimental data ${ }^{(5)}$ was assumed to be insignificant below $E=9.0 \mathrm{MeV}$. Recent experimental data by Minetti, et al., (25) are in gentral agreement with those indicated in Ref. 5.
I. $\sigma_{n, 2 n}$ Cross Section

Values of the $n, 2 n$ cross section were taken from the work of Pearl(24)

J. Composite Cross Section

The nuclear temperature for inelastically scattered neutrons is about 1.0 MeV and 0.5 MeV for the secondary neutrons. (27)

RE FERENCES

1. D. Goldman, Chart of the Nuclides, General Electric Company, Schenectady, New York (1965).
2. Handbook of Chemistry and Physics, Chemical Rubber Publishing Co., Cleveland, Ohio (1966).
3. T. Stephenson and S. Pearlstein, "Total Neutron Cross Section and Resonance Integrals of Manganese" - (A), Bul1. Am. Phys. Soc. 11, 742 (July 1964).
4. J. Morgenstern, S. de Barros, G. Bianchi, C. Corge, V. D. Huynh, J. Julien, G. Le Poittevin, F. Netter, and C. Samour, International Conf. on the Study of Nuclear Structure with Neutrons, Antwerp, Belgium (July 19-23, 1965), Paper 86.
5. M. Goldberg, S. Mughabghab, B. Magurno, and V. May, Neutron Cross Sections, BNL 325, 2'2d Ed., Supplement No. 2, Vol. IIA (February 1556).
6. D. Hughes and R. Schwartz, Neutron Cross Sections, BNL 325, 2nd Ed., (July 1958).
7. P. Louwrier and A. Aten, Jr., "Determination of the Resonance Integral of ${ }^{55} \mathrm{Mn}$," J. Nuclear Energy A/B 19, 267 (1965).
8. M. Drake, "A Compilation of Resonance Integrals," Nucleonics 24, 108 (August 1966).
9. S. P. Harris, C. T. Hibdon, and C. O. Muehlhause, Phys. Rev. 80, 1014 (1950).
10. E. H. Auerbach, "ABACUS II," BNL 6562 (unpublished).
11. H. Feshbach, Ann. Rev. Nucl. Sci. 8, 49 (1958).
12. H. Nath, et al., Nuclear Phys. 13, 74 (1959).
13. R. C. Lamb, et al., Phys. Letters 4, 211 (1963).
14. A. W. Barrows, Jr., Thesis, Univ. of Kentucky, 1965 (urpubiished), p. 17.
15. A. B. Smith and S. A. Cox, Argonne National Laboratory, priv. comm,
16. CHAD-NAA-SR-11231.
17. WASH 1068, p. 91 (1966).
18. V. Benzi, et al., "SAUDEX," (Italy). Available at ANL Code Center.
19. A. M. Lane, et al., Proc. Phys. Soc. (London) 70A, 557 (1957).
20. A. M. Lane, "Direct Radiative Capture," Nuclear Structure Study with Neutrons, edited by M. Neve de Mevergnies, et al., NorthHolland Publishing Co. (1966), p. 344 ff.
21. W. Hauser and H. Feshbach, Phys. Rev. 87, 366 (1952).
22. J. J. Van Loef, et al., Phys. Rev. 101, 103 (1956).
23. P. A. Moldauer, Rev. Mod. Phys. 36, 1079 (1964).
24. S. Pearlstein, Nuclear Sci. Eng. 23, 238 (1965).
25. B. Minetti, et al., Zeit. f. Phys. 199, 275 (1967).
26. P. Avignon, et al., Compt. rend. 247, 1849 (1958).
27. S. C. Mathur, et al., Buli. Am. Phys. Soc. 12, 107 (1967).

detalls of the evaluation are reported in
S.K. PENNY AND W, E, KINNEY, A RE-EVALUATION OF NATURAL IRON NEUTRON AND GAMMA-RAY-PRODUCTION CROSS SECFIONS, ENDF/B MATERIAL 1124, ORNLr.4617 ENDF-139 1970

In mDO, 2 The gammazray production files have been modified TAKING INTO GCCOUNT THE DATA OF ORPHAN AND HOOT, REF, 5D.

FILE 2 RESJNANCE PARAMETERS

MULTILEVEL BREIT-WIGNER PARAMETERS ARE GIVEN FOR FE-54; FE=56 - AND FE-57 FOR PHE ENERGY RANGE $1=60$ KEV,

REFS. 1 AND 2.
FILE S NEUTRON CROSS SECTIONS
SECTIOV 1 TOTAL INTERACTION
-00001 EV TO 330 KEV =-- REFS, 1, 2, AND 3.
BACKGROUND CORRECTIONS FOR THE 2A-KEV WINDOW HAIVE BEEN EATEREO TO RAISE TRE MINIMUM TO A2S MBNS;-OOMPRELIMINARY RE. SULTS FROM ORELA MEASUREMENTS OF JACK HARVEY ET AL, 33 KEV TO 15 MEY -5 REFS, 4, 5, 6, AND 7,
SECTION 2 ELASTIC SCATTERING
DERIVED BY SUBTRACTING THE NON-ELASTIC CROSS SECTION FRON THE TOTAL CROSS SECTION.
SECTICN 3 NON-ELASTIC INTERACTION OERIVED GY ADOING THE TOTAL INELASTIC SCATTERING, NI2N, CAPPURE, N,A , AND N,P CROSS SECTIONS;'
SECTION 4 TOTAL INELASTIC SCATTERING
DERIVEO BY AUDING INELASTIC SCATTERING CROSS SECTIONS FOR EXCITING DISCRETE LEVELS AND THE CONTINUUM OF LEVELS;
SECTION 16 N, 2 N GEACTION REF, 8
SECTION 51 INELASTIC SCATTERING EXCITING FIRST LEVEG IN FEmb 0.8611 MEV TO $1,5 \mathrm{MEV}-\infty$ REF゙S. 8 AND 91 1.5 MEV TO 2,122 MEV $-=-$ REFS, 9 AND 10 , 2.122 MEV TO $15 \mathrm{NEV}=$ - REFS, 11 - 19, 47, ANO 48,

SECTION 52 INELASTIC SCATTERING EXCITING FIART LEVEL̆ IN FE-54 REF. 4
SEGTION 53 INEINASTIC SCATTERING EXCITING SECOND THROUGH /THROUGH/ NIMETEENTH LEVELS IN FE.556,
SECTION 70 REFS, 11 - 19, 47, AND 48,
SECTION 91 INELASTIC SCATTERING EXCITING THE CONFINUUM REFS. 11 AND 20.
SECTICN IDZ RADIATIVE CAPTURE ogyalue is averaced with thermal cross sections, REFS, 1 AND 2.

ENDF/B MATERBAL NO: 1180
SECTION LDS N, P REACTIDN
Q-VALUE iS AVERAGED WITH ABUNDANCES.
REFS, 3 AND 4.
SECTION 107 N,A REACTION Q=VALUE IS AVERAGED WITH ABUNOANEES. REFS. 3 AND 4,
SECTION 251 MU BAR
DERIVED FROM ELAST\&C SCATTERING ANGULAR OISTRIBUFIONS AND KINEMATICS USING THE COMPUTER PROGRAM SAQ.
SECTION 252 XI
SEE SECTION 251,
SECTION 253 GAMMA
SEE SECTION 259,
FILE 4 ANGUGAR DISTRIBUTIONS OF SECONDARY NEUTRONS
AIL DISTRIEUTIONS ARE GIVEN IN THE CENTER OF MASS SYSTEM IN
THE LEGENDRE POLYNCMIAL REPRESENTAFION,
SECTION 2 ELASTIC SCATTERING
, 00001 EV TO 1,23 MEV $-\infty$ REFS, 21, 22, AND 23,
1.23 MEV TO 4 MEV -Ḗ REFS. 11, 12, AND 24 PHROUGH 34, 4 MEV TO 15 MEV-2- REFS, 11, 12, AND 24, transformation matrix given was calculated using the compa UTER PROGRAM SAD:
SECTION 16 N,ZN REACTION
BOTH NEUTRONS ARE ASSUMED TO BE ISOTROP!C,
SECTION 51 INELASTIC SCATTERING EXCITING FIRST LEVEL IN FE=bG REFS, 11 THROUGH 19.
SECTION 52 INELASTIC SCATTERING EXCIPING FIRST LEVEL IN PE~D4 ASSUMMED ISOTROPIC.
SECTION 53 INELASTIC SCATTERING EXCITING SECOND THROUGH /THROUGH/ NINETEENTH LEVELS IN FE.56.
SECTION 70
REFS, 11 THROUGH 19,
SECTION 91 INELASTIC SCATTERING EXCITING THE CONTINUUM ASSUMMED ISOTROPIC EE REF. 11.
FILE 5 ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS
SECTION 16 N, $2 N$ REACTION REF, 49,
SECTION 91 INELASTIC SCATPERING EXCITING THE CONTINUUM THERE ARE TWO laHS FOR THIS SECTION NAMELY, A MAXWELLIAN DISTRIBUTION, WHICH GAS A NENGZERO PROBABILITY ONLY AFTER 7.2 MEV INCIDENT NEUTRON ENERGY, AND AN AREITRARY TABULATEO DISTRIBUTION, -E- REFS, 11, 47, AND 48,
FILE 12 MULTIPLICITIES CF GAMMA RAYS PRODUCED BY NEUTRON REACTICNS THERE IS NO REPETIYION OF GAMMA RAYS IN THIS FILE TO ACCOLNT FOR ALL GAMMA RAYS ONE MUST TAKE THE JOIN OF ALG SECTIONS, SECTION 3 NON-ELASTIC INTERACTION

Tinese gamma rays are from $N_{i} N^{*}$, $N_{1} A$, and $N_{1} P$ reace TIONS IN FE-56. FHE REPRESENTATION IS A OONTINUUM DISTRIO BUTION AND THE NEUTRON ENERGY RANGE IS 2.122 MEV TO 15 MEV. REFS, 11 THROUGH 19, 35, 36, 37, AND 50,
SECTION IG N, 2N REACTION these gamma rays are treated as a continuum distribution, SEGTION 51 INELASTIC SCATTERING EXCITING FIRST LEVEL IN FE-SG NE!TRON ENERGY RANGE IS 0.8611 TO 2,122 MEV, ONE DISCRETE gamma ray is given.
SECTION 52 INELASTIC SCATTERING EXCITING FIRST LEVEL IN FE-54 one dischete gamna ray is given.
SECTIOA 1D2 RADIATIVE CAPTURE THESE GAMMA RAYS ARE REPRESENTATIVE OF NEUPRON ENERGY ranges. the hast range strictly extends only to 1 mev but

ENDF/B MATERIAL NO: 1180
IS aSSUMMED TO EXTEND TO 15 MEV, the Gamba rays are freated AS A CONT!NUUM DISTRIBUTION. REFS, $1,2,15,98$, AND 38 THROUGH 44,
FILE 14 ANGULAR DISTRIBLTIONS OF SECONDARY GAMMA RAYS
THE SECTIONS CORRESPOND TO THE SECTIONS IN FILE 12 AND IT IS ASSUNED THAT ALL THE DISTRIBUTIONS ARE ISOTROPIC.
FILE 15 ENERGY DISTRIBUYIONS OF SECONDARY GAMMA RAYS, THE DISTRIEUTIONS ARE GISTOGRAMS WITH UNIFORM GAMMA RAY ENERGY WIDTHS OF 5R KEV, OGOREFS, SEE FILE 12
FILE 23 PHOTON INTERACTION CROSS SECTIONS
REFS, 45 AND 46.
SECTION 501 TOTAL INPERACTION
SECTION 502 COHERENT SCATTER!NG
SECTIUN 504 INCOHEREAT SCATTERING
SECTIUN 516 PAIR PROCUCTION PLUS TRIPLET PRODUCTION
SECTION 602 PHOTOELECTRIC INTERACTION
REFERENCES
1, J.S. STORY, U,K,A,ETA, WINFRITH, PRIVATE COMMUNICAFION 1972
2. R.W. HOCKENBURY ET AL,. PHYS, REV, 178, P, 17461969
3. J.J. SCHMIDT, NELTRCN CROSS SECTIONS FOR FAST REACTOR MATERO IALS, PART - EVALLATION, KFK-120 EANDC-E 35 U 1966
4. D.C. IRVING AND E, A; STRAKER, EVALUATION OF THE CROSS SECTICNS OF IFON- ENDF/R MATn1101, ORNL-TM-2891 ENDF-138 1970
5. S, CIERJACKS ET AL,i HIGH RESOLUTION TOTAL NEUTRON EROSS SEC. TIONS BETWEEN ©, 5 ARD 3® MEV, KFKmIEDO 1968
6. A,D, CARLSON AND R... CERBONE, HIGH RESOLUTION MEASUREMENTS OF THE TOPAL NEUTKON CFOSS SECFIONS OF NITROGEN AND IRON, GAm9149 1969
7. E, BARNAPD ET AL, AUCL:̈ PHYS. A118, 3211968

8, NESTOF AZZIE ET AL, I JRON, NICKEL, AND CHROMIUM NEUTRON CROSS SECTIGNS FROM E TO 15 MEV, WCAP 7281 ENDFm129 1969
9. R.L. MACKLIN, ORNL, PRIVATE COMMUNICATION
10. W.B. GILBOY AND J.H', TOWLE, NUCL, PHYS, 64, 1301965
11. W, E, KINNEY AND FiG', PEREY, NEUTRON ELASTICE AND INELASTIC= SCATTERING CROSS SECTIONS FOR FE-SG IN FHE ENERGY RANGE 4.19 TO 8.56 MEV, ORNL-4515 1970
12. S.K. PENNY, HELENE-A COMPUTER PROGRAM TO CALCULATE NUCLEAR CROSS SECTIONS EMPLCYING THE HAUSERIFESHEACH MODEL, PORFERTHOMAS WIDTH FLUCTUATIONS, AND CONTINUUM STATES, ORNL-TM-2כ9. 1969
13. A. ASPINALL ET AL, NUCL. PHYS. 46, 33 1963. A, SPEROUTO ANO N.H. GUECHNER, PHYS', REV. 134, B142 $1964 . A, D ;$ KAYSANOS EY AL.. FHYS, REV, 141, 10531966 - G', 日ROWN ET Ab, 10 NUCL"̈ PHYS. 77, 3651966 - B.L' COHEN AND R, MIDDLETON, PHYS, REV, 146, 7481966 a J,R. MACDONALO AND M, A, GRACE, NUCG, PHYS, A92, 5431967 - P,F, HEARICHSEN ET AL., NUCL, PHYS, A101, 8I $1967=K$, VALIGHAN ET AL.. NUCL: PHYS, A130, 621969
14. M, N. PAO ET AL, NUCL, PHYS, A121, 11968
15. NIICLEAR DATA GROUP, NUCLEAR DATA SHEETS B3, NOS, 3GA, ACADEMIC PRESS, 1970
16. R,H. BASSEL, PRIVATE COMMUNICATION
17. C.M. PGREY ET AI.A. CISTORTED-WAVE BORN ANALYSIS OF 11-MEV PRO. TON SEATTERING. NEUT, PHYS, DIV, ANN, PROGR, REPT, FOR PERIOD ENDING MAY 31, 1967; ORNL=4134 1967
18. A. GILBERT AND A,G.H, CAMERON, CAN', J, PHYS, 43,14462966
19. R. H. BASSEL ET ALA: THE DISTORTED WAVE THEORY OF DIIFECF NUUCLEAR REACTIONS, ORNL-32AD 1962
20. M, D, GOLDBERG ET ALi, NEUTRON CROSS SECTIONS, VOL, IIA, Z 21 TO AO, 日NL $=326,2 N D E D, i$ SUPPL, 21966

ENDF/B MATERIAL NO 1180

21. S.A. COX, TUL! 1 AM. PHYS, SOC. 8, 4981983
22. 1, O. KORZH ANN M, T, SKYLAR, UKR, F\&Z, ZH, 8, 13891963

2J. M, V. FASECHN!K ET AL., AT, EN, USSR 16. 2071964
<4. Fig. PC̈REY, ORNL, PFIVATE COMMUNICATION
25. W, D, WHITEHEAD AND S,C. SNOWOON, PHYS, REV, 92, 1141953
26. NORMAN A, BOSTRUM ET AL; WADC. PR-59-31 1959
27. B, HOLMOVIST, ARKIV FYSIK 38, 403 1968
28. K. TSUKADA ET AL, E EAN J 3. 181966

3. H.H. LANDON ET AL, P PHYS. REV, 112, 11921.958

S1. LAWRENCE CRANBERG AAD JULES S. LEVIN. PHYS, REV. 1D日3, 343 1969
S2. J.R. aEYSTER ET ALi, PHYS, REV, 10A, 13194936
33. R.L. $\operatorname{BECKER~ET~AL,'~NUCL,~PHYS,~89,~} 1541966$

34, MOK. MACHWE ET AL,' PHYS, REV, 114, 15631959
35. J.B, MCORORY, PHYS, REV: 160, 9151967
36. J"K. UICKENS, ORNL, PRIVATE COMMUNIOATION
37. R.E. MAERKER AND Fi.. MUCKENTHALER, GAMMAMRAY SPECTRA ARISING FPOM FAST-NEUTRON IATERACTIONS IN EEEMENTS FOUNO IN SOILS, CONCRETES, ANC STRUCTURAL MATERIALS; ORNL-4475 1970
38, J,E, HHITE, ORNL, PFIVATE COMMUNICATION
39. K.J. YOST, NUCL, SCI, ENG. 32. 621968
40. R.E. CHRIEN ET AL., GAMMA RAYS FOLLOWING RESONANT NEUTRON CAF. TURE IN FE=56, BNLG14104 1970
41. B. biv. RAJU ET AL., the measurement of thermal neufron captire GAMMA RAYS IA IRON, COBALT, AND SCANDIUM, AAEC/TM 3128969
42. NIIRMAN E. RASNUSSFN ET ALI THERMAL NEUTRON CAPPURE GAMMA-RAY SPECTRA OF THE ELEMENTS; AECRL-69-RE71 MTNE-85 1969
43. C.Y, FU, DRNL, PRIVATE COMMUNICATION

44, S.K. PENNY, \&YA, TO BE PUBLISHED
45. W.H. MCMASTER ET AL'i, COMPILATION OF XmRAY CROSS SECTIONS。 UCRL 50174 SEE, I! REV'i 1969
46. ERNEST F. PLECHATY AND JOHN R, TERRALL, AN INTEGRATED SYSTEM FOR PROISUCTION OF NEUTRON IC AND PHOTONIC CALCULATIONAL CON STANTS:VOL, VI PHOTCN CROSS SECTIONS 1 KEV TO 100 MEV, UCRL 504DE 2968
47. G.S. MANI, SPIN ASSIGNMENTS TO EXCITED STATES OF FEE56 USING INELASTIC PROTON SEATTERING, SCHUSTER LABORATORY, MANCHESTER UNIVERSITY, MANCHESTER, ENGLAND 1970
48, R,J, PETERSON, ANNALS OF PHYSICS 53; 40 1969
49. SURESH C, MATHUR ET Ah,i PHYS, REV: 106, 10381969
50. V,J, ORPHAN AND C,G', HOOT, GAMMA-RAY PRODUCTION CROSS SECTICNS FCR IRON AND ALUMINLM, GULF-RT-A19743, 1971

EVALUATORS A PHINCE
 Ratio m sug co te m sub n also from chart of nuclides 22 ดी M／SEC CROSS SECTIENS N，G天 37,20 BARNS，SCATTERING $=67802$ 日 РОT，ЗСАТ，$=5,3096$

RESOLVED RESONANCE PARAMETERS

RESOLVED RESONANCE REGICN EXTENOS FROM E－DS EV TO 30 KEV
35 g－NAVE AND 5 PaWAVE FOSITIVE ENERGY LEVELS SELECTED FROM THE literature neme used as a starting poinf in fitting total choss SFCT！ON DATA TO THE GREITOWIGNER MULTILEVEL SCATPERING AND SINGLE LEVEL CAPTURE FORMULAE AS PROGRAMMED IN SIGPLOT，PARAMETERS FOH 2 GOUND LEVELS CONSTRUCTEL TO IMPROVE FIT TO（1）LON ENERGY TOTAL CROSS SECTION DATA，（2）THERMAL CAPTURE DATA．AND（3）FHERMAL PC－ LARIZAYION DATR，HTHER fARAMETERS ADJUSTED AS NEEDED DURING THE FITTING PROCESS，CATA REFERENCES INCLUDE（1）D．J．HUGHES AND R．G：SCHKARTZ，NEUTRON CFOSS SECTIONS．BNL 325．2ND ED．IJULY 19 1958）．ANO H，GOLDAERG ET AL，ANL－325．2ND ED，SUPP，NO， 2 （FEB，1966） （2） 1. STORY，ON THE THEFMAL CAPTURE CROSS SECTION OF COBALT：AEEK－ R597（1963）．AND M，GOLDEERG，OP，CIT．，AND（3）R，SCHERMER，SP！N DE＝ PENDANCE OF THE THERMAL NEUPNON CROSS SECTION OF CO－59，PHYS，REV． 1301907（1963），REPERENCES FOR RESONANCE PARAMETERS INCLUDE M，GOLDBERG，OP，CIT，N，GARG；ET AI．CR－186日（1864），AND J，MORGENF STERN，EY AL，NUC，PHYS，A1R2；602（1967）；VALUE DF THE POFENTIAL SGATTERING RADIUS IS G．EF．LEVELS HAVING NO EXPERIMENTALLY MEAS＝ URED RADIATION WICTH HAYE BEEN ASSIGNED GAMMA SUB GAMMA $=0$ OTA EV． SMOOFH CROSS SECTIDNS
file 3 cgoss sections in the resolved resonance，region are zero or SMALL．The ELASTIC SCATTERING CROSS SECTION FROM 36 TO 200 KEV BASED ON WORK OF GARG ET AL（OP CIT）ANO IS JOINEO TO OPTICAL MODEL FESULTS AT zgQKEV，CAPTURE CROSS SECTION IS JOINED TO OPTICAL MODEL RESULTS AT 3GKEV． MU－BAR，XI，AND GAMMA CALCULATED GY PROGRAM MATRIX， ANGULAR DISTRISUPIONS OF SECONQARY NEUPRONS ANGULAR DISTRIBUTIONS FCR ELASTICALGY SCATTERED NEUTRONS GIVEN EY LEGENDRE COEFFICJENTS CALCULATED IN CM SYSTEM BY CHAD，THE FRANS． FORMATICN MATRIX，CALCULATEU RY PROGRAM MATRIX，IS GIVEN，DISTRI－ BUTIONS FOR INELASTIC DISCRETE LEVEL AND CONTINUUM SCATTERING ARE GIVEN AS ISOTROPIC NORMALIZED PROBABILITY DISTRIBUTIONS IN FHE CM SYSTEM．

SECONDARY ENERGY DISTRIBUTION
NUCLEAR TEMPERATURES FOF EMISSION OF FIRST ANO SECOND NEUTRONS AT E SUE $N=14,8$ MEV TAKEN FROM EXPERIMENT，S，C．MATHUR ET AL， Phys，REV，iB6，P，i56，（ECT，69），PEMPERAFURES AT OTHER ENERGIES ARE calculated values．
thermal neutron scatterlng law
FREE ATOM SIGMA＝G，802B，OBTAINED GY RESONANCE PARAMETER F！Y，

ENDF／日 MATERIAL NO： 1123
NICKEL WNESOENL EUAL－1969 N，AZZIZAND J，CORNYN（HNES）
WCAP＝7281 DISTEJUL70 REV＝SEP71
NATURAL NICKEL
EVALUATE \quad BY NGAZZIZ ARD J\＃CORNYN（WEST．）PLUS DRAKE $\{B N L)$
ПATA MODIFICATIOAS MADE SEPT．1971
1．ERRQR CORREGTED IA FILE 3，MT＝102 AT 1．0Em05 EV
2．BACKGRDUND CAPTURF．CROSS SECTION（9；0 TO 25．0 KEV）REDUCED 10 EE．IA AGREEMEAT WITH HOCKENBURY，ET，AL．，PHYS，REV，178，1746（1Y6G）
3．MT 26 （N，NP）GROSS SECTION ADOED．DATA BASEO ON MEASUREMENTS GIVEN IN GNL゙ー325（2NC EGISIPPPLOZ，VOLIIIA；SHAPE BASED ON CALC． DONE BY S，PEARLSTEIA

ENDF／B MATERIAL NO： 1123
11．S．V．KAPCHIGASHEV，VU，P，POPOV，ATOM．ENER，15．120（1963），
 182（1361）．
13．YU，YA，STAVISSKII，A，Y，SHAPAR，ATOM，ENER，10，264（1961）， 14：B，C，DIVEN：J．TERREL．L，A，HEMMENOINGER，PHYS，REV，120，556（1960）． 15；BNL 3ク5，SUPHL，B，VOLIIIA（1966），
16． $1 . J, S C H M I D T, K F K ~ \perp 26(E A N D C-E=35 U)(1966)$.
17：ALOERMASTON＇NINFRITH NUCLEAR DATA FILE／B4．
1月．S．A．COX，CONF 250－13（1962）．
19．BNL 400
2ヵ；P，H，$S^{\top} F, L S O N, R, L, R O B I N S O N, H, J, K I M, J, R A P A F O R T ; G, R ; S A T E H L E R$, NUC，PHYS，6B， 97 （19世5）．
21；D，GFROOEK，V，F，KOLESOV，A，I，LASHUK，I；P，SADOKHIN：A，G，DOVBENKO， ATOM．FNER．16．ND3（19E4）．
22：TOWLE，ET，AL，（1964，SEE HEF，24）
23，E，G，BILPUCH，K，K，SETH，C，D，BOWMAN，R，H：TABONY，R，C，SMITH，H，W， NEWSON，ANN，PHYS，14， 387 （1961）． 24．J．RAVIER，PNR／SEPR／CA／65：010（1965）． 25．A．PAULSON，H．LISKIEN；NUKLEONIK 7．117（1965）
26，R，J\＃PRESTNOOD，B；P，BAYHURST，PHYS，REV：121，1438（1961）：
27．H．LISKIEN，A，PAULSON；NUC：FFHYS．63．393（1965）．
20，J．H：MEADONS，J，F，WHALEN，PHYS，REV，130．2022（1963），
29\％J，FABARRY，JOUR，NUC，ENER：＂16，467（1962）．
30：N，AZZIZ，J．W，CONNELUEY，WCAP 7280（1969），

ENOF/B MATERIAL NO 1087
FFOM UNRESOLYED RES, PARAMETERS USING TRIX-REF, 4 . THE $3 Z$ TO 1 GIE KEV RANGE FROM EVALUATION OF REFERENCE nocument, agrve ion kev, abundance weighted isotapic VALUES-REF, E. NOTE- ABUNDANCE UEIGHTE ISOTOPIC DATA ARE 45-80 PERCENT HIGHER THAN EVALUATEE NATUFAL CU MEASUREMENTS IN UNRESOLVED REGICM,
$M T=143$
$M T=107$
$M F=4$
$M^{T}=2$
HEF, \quad S
REF, ${ }^{2}$
SECGNPAFY ANGULAR DISTRIBUTIONS
LEGENDRE COEFF, FOR ELASTIC SCATT. ARE GIVEN, DATA ARE FRIM REFERANCES 7,8.9, WHERE LEGENDRE COEFF, WERE NOT gIVEN THEY WERE OBTAINED FROM THE DATA POINTS BY USIAg CHADEREF, 6 .
secontafy energy distributions
FEF. 5
REF. 5
REFERENCES

1. GOLDMAN,DAVID T., CHARY OF THE NUCLIDES,KAPL(1966)
2. GOLDAERG,M, D, ET, AL., BNL 325 2ND; ED; SUPPL; NO, 2 VOL.
3. DTTER,J, NAASER-11980 VOL, 0 (1966)
4. STTER, J., NAA-SR=MEMD-11538 (1965)

E. TERLAND,R,F, NAA-SR=11231 (1965)

T, SOLDEERG,M,D, DET. AL, 1 BNL 4DO 2ND ED, VOL, 1! (1962)
E, HOLMEVIST,E,,WIEDLING,T,, NUCLEAR DATA FOR REACTORS, VCL, l, IAEA,VIENNA (1967)
S, SMITH,A,B,,ET, AL,i PHY, REV, 135, 日76 (1964)
1R: OTTER,J.M., NSE 28 (149 (1967)

ENDF/B MATERIAL NO $=1085$

$M T=252 \quad X I$ CALCULATEC FROM LEGENDRE COEFF, IN FILE 4 USING CHAD -REF, 6.
MT=253 GAMMA $\because A L C U L A T E D ~ F R O M ~ L E G E N D R E ~ C O E F F: I N F I L E ~ A ~ U S I N G ~$ CHAD-REF:6.
MTE1B2 BELOW RESONAACE REGION CALCULATED AS PER MTE2, FOR RESOLVED RESCNANCE RANGEIL.GT, D CONFRIBUTION CALCULATEE FROM UFIRESOLVED RESONANCE PARAMETERS USING TRIXOREF,4. THE 3D TO 10 O KEV RANGE FROM EVALUATION OF REFERENCE DOCUMENT, ABCVE : DO KEV-REF.5.
MT=123 REF,
MTi=107 REF:5
$M F=4$
$M T=2$

SECONLARY ANGULAR DISTRIBUTIONS

LEGENIRE COEFF, FOR ELASTIC SCATT, ARE GIVEN: DATA ARE AVAILARLE FOR NATURALLY OCCURING CU AND ARE ASSUMED TC GE THE SAME FOR THE SEPERATE ISOTOPES, DATA OBTAINED FROM REFERANCES 7,8,9. WHERE LEGENDRE COEFF WERE NOT GIVEN THEY WERE OBPAINED FROM THE DAFA POINFS BY USIAG

ENOF/B MATERIAL NO= 1085
G.HADOPEF. 6.
$M F=5$ SECONEARY ENERGY DISTRIBUFIONS
MTE4 REF, 5
MTEN6 REF, 16
REFERENCES
i. (:OLOMAN,MAVIT T., CHART OF THE NUCLIDES,KAPL(1966)
2. GOLDEERG, M, D, ET, AL, 1 ENL 325 2ND, ED, SUPPL, NO, 2 VOL. I(A (1966)
3. OTTER, vi, NAA=SR=11980 VOL. 6(1966)
4. こTTER,N.NAA-SF-MEMD-11538 (1965)
5. OFFORD,SUSAN M: PARKER,K., AWRE ©Im63/67 (1967)
6. RERLAND, R,F, NAAA-SRC11231 (1965)
\%. GOLDBERG,M, $1, E T$ AL, ANL 400 2ND ED, VOLI II (1962)
3. HOLMQVIST:B, WIEDLING,F:, NUCLEAR OATA FOR REACTORS, VCL. J,IAEA, VIENNA \{1967)
9. SMITH,A,P:ET, AL: PHY, REV, 135, B76 (1964)
1.0. OTTEK,J,MI: NSE 28; 149 (1967)

CU-65	AI EVALESEP6A J.M.OTPER ET AL (* UKAEA EVAL,GIB)
MODIFIED TO CONFORM TO ENDF/B-II FORMATS	
COPPER-GE ENDF/E MAT 1E86 REF, AI-AEC-12741 SEPT, 1968 $M F=1$ GENERAL INFORMATION	
$\begin{aligned} & \text { ATOMI } \\ & M T=453 \end{aligned}$	IC MASS GIVEN AS 64,9278 FOR A NEUTRON MASS OF 1,008665 RADIDACTIVE EECAY DATA FROM REF. 1
$M F=2$ RESONANCE PARAMETERS	
1511.all resolved resonances Treated as h=0 RESONANCES	
2,RESOLVED RFSCNANCE PARAMETERS FROM REF, 2,	
3.G VALUES FOR D, 229 KEV AND ABOVE 14 KEV ÁSSIGNED	
4,NEGATIVE ENEFGY RESONANCE GAMMA N AND EQ OBIAINED FRCM	
$\text { GAMMA }=\mathbb{V}_{2}, 24 E V_{i}^{\circ}$	
5.L $=\triangle$ UNRESOLYED RESONANCE PARAMETERS FROM AVERAGED	
RESOLVED RESCNANCE PARAMETERS. OBSERVED LEVEL SPACING	
	$=D y=1,4 \mathrm{KEV}$, ETRENGTH FUNCTION/J STATE=SQJ=1,7E-D4, FCR
EACH J STATE DEDD/G	
6,L=1,2 S1J=SEJ=1;0E-D4, DJ=00/OJ, GAMMAnGAMMA $=0,24 E V$	
ASSUMED,	
$M F=3$ SMGOTH CROSS SECTIONS	
	NO EXF. VALUES AVAILABLE FOR SEPERATE CU ISOTOPES
	TOTAL, WAS SET EQUAL TO SUM Of ITS PARTSEX
	TO 100 KEV WhERE IT WAS ASSUMED TO BE EQUAL TO
	SMOOTHING OF NATURAL COPPER GIVEN IN REF
$M T=2$	below resoniance region values were calculated from
	RESOLIED RF.SCNANCE Parameters using unicorneref, 3, In
	the resolved resonance range the smooth data is fhe
	CONTRIGUTION FROM L, GT, CALCULATED FROM UNRESOLVEC
	ReSonance pafameters using trixaref, 4.
	FROM 30 TO 102 KEV Yalues are the
	DIFFERENCE BETWEEN THE TOTAL AND NON=ELASTIC CROSS
	SECTIONS, $A B C V E$ IOD KEV, Values we
	asSumed to be identical to naturally occuring cue
MTE4s8	LEVEL CATA FFOM REF, 5 , ABOVE 1,75MEV CONTINUUM WAS
	WhICH WAS MATCHED TO LEVEL data ano when welghteg alcig
	WITH CLob3 Gave continuum of natural cu
$\begin{aligned} & M T=16 \\ & M T=251 \end{aligned}$	REF, 5
	mubar calculated from legendre coeff. in file 4 dsing
	OHADSREF, 6
MT=252	XI CALCULATEP FROM LEGENDRE COEFF, IN FILE 4 USING Chad
	-REFMA'G. ${ }^{\text {GALCULATED FROM LEGENDRE COEFF, in File a using }}$
$M T=253$	CHAD-REF; 6 ,
$M T=102$	PELOW RESONANCE REGION CALCULATED AS PER MTE2, FOA
	from unresolved resonance paramefers using frixoref
	THE 30 TO 102 KEV Range from evaluapion of meferenge
	DOCUMENT, ABCVE 100 KEV-REF,5,
$M T=103$	REF, \quad b
$M T=107 \quad R$	
MF $=4$	SECONEARY ANGULAR DISTRIBUTIONS
$M T=2$	LEGENDRE COEFF. FOR ELASTIC SCATF. ARE
	AVAIGAHLE FDR NATURALLY OCCURING CU AND ARE ASSUMED TO
	be the same for the seperate isotopes, data obtalned
	FROM REFERANCES 7,8,9. WHERE LEGENORE COEFF, WERE NO
	GIVEN THEY WERE OBTAINED FROM ThE data points by using

```
                    ENDF/B MATER\AL NO=2086
            CHAD-REF,6.
MFF5 SECONCARY ENERGY OISTRIBUPIONS
    MT=4 REF,5
    MTE16 REF:5
                                    REFERENCES
            1. GOLDMAN,DAVID T,,CHART OF'THE NUCLIDES,KAPL(1966)
            2. GOLOBERG,M,D,,ET, AL,, BNL 325 2ND, ED, SUPPL, NO,2 VOL,
                IIA (1966)
            3. DTTER,J, NAA-SR-11980 VOL,6(1966)
            4. OTTER,N.NAA-SF=MEMO=1153日 (1965)
            5. DFFOKD,SUSAN M", PARKER,K,,AWRE D-63/67 (1967)
            6. RERLAND,R,F,NNAA-SR=11231 (1965)
            7. GOLDBERG,M,D,ET, AL,. BNL 400 2ND EO, VOL, I\ (1962)
            9. HOLMQVIST,B.,WIEQLING,T., NUCLEAR DATA FOR REACTORS, VCL.
                I,IAEA,VIENNA {1967)
            9. SMITH,A,B,ET, AL,: PHY, REV, 135, B76 (1964)
                    2W. OTTER,N,M,N NSE 28: 149(1967)
```

These evaluations will be superceded in ENDF/B-IV.

1. INTRODUCTION

Fifty nuclides, which represent the most important fission fragments in nuclear reactors, either thermal or fast, were selected by CSEWG. The capture data will be shown in ENDF/B3 for the following nuclides:

Krypton-83	Silver-107	Promethium-148g
Zirconium-95	Silver-109	Promethium-148m
Niobium-95	Cadmium-113	Promethium-149
Molybdenum-95	Lodine-131	Promet:hium-151
Molybdenum-97	Iodine-1 15	Samarium-147
Technetium-99	Xenon-131	Samarium-148
Ruthenium-101	Xenon-133	Samarium-150
Ruthenium-102	Cesium-133	Samarium-151
Ruthenium-103	Cesium-135	Samarium-152
Ruthenium-104	Lanthanum-139	Samarium-153
Ruthenium-105	Cerium-141	Europium-154
Ruthenium-106	Praseodymium-141	Europium-155
Rhodium-103	Praseodymium-143	Europium-156
Rhodium-105	Neodymium-143	Europium-157
Palladium-105	Neodymium-145	Gadolinium-155
Palladium-106	Neodymium-147	Gadolinium-157
Palladium-107	Promethium-147	

Five of these nuclides - Tc-99, $\mathrm{Rh}-103$, $\mathrm{Ag}-107$, $\mathrm{Ag}-109$, and $\mathrm{Cs}-133$ were completely evaluated (LI71, BH71) separately. For the 45 remaining nuclides the main sources of data were provided by W. H. Walker (WA70) and J. L. Cook (CO71).

A computer code, FFRESCO, was written especially to handle both sets of data, to select the information on nuclides chosen by CSEWG, to perform resonance integral calculations, and to combine both sets from Walker and Cook into one ENDF/B3 set consistent with the recommendations of the Fission Products Subcommittee.

Table 2. Capture Resonance Integral Comparison

NUCLI		RES	ENDF/日2	HALKER	HOLOEN	COOK	0 R A	K E		ETOG
36KR	83	YES	2. $313 \mathrm{E}+02$	1.500E+92	$2.250 \mathrm{E}+02$	2.106E+02	$1.500 \mathrm{E}+02$	+OR-	50.	2.338E402
402R	95	-	$7.429 E+00$	-	2.000E+00	$5.394 E+00$	- .	+OR-	-	$7.436 \mathrm{E}+02$
$41 N B$	95	-	2.612E+01	-	$1.600 \mathrm{E}+90$	$2.496 E+01$	-	+OR-	-	$2.616 \mathrm{E}+01$
42 HO	95	YES	1.066E+02	1. $000 \mathrm{E}+02$	$1.100 \mathrm{E}+02$	1.058E+02	1.100E+02	+OR-	5.	$1.084 \mathrm{E}+\mathrm{BL}$
42 MO	97	YES	$1.578 \mathrm{E}+01$	$1.500 \mathrm{E}+01$	$1.600 \mathrm{E}+01$	$1.498 \mathrm{E}+01$	$1.600 \mathrm{E}+01$	+ OR-	1.	$1.586 \mathrm{E}+01$
43 TC	99	YES	1.929E+02	2.000E+02	$3.060 \mathrm{E}+02$	1.972E+02	1.900E+02	+0R-	20.	2.009E+02
44 RU	101	YES	8. $488 \mathrm{EE}+01$	7.600E+01	$7.900 \mathrm{E}+01$	$8.572 \mathrm{E}+01$	$8.500 \mathrm{E}+01$	+OR-	10.	$8.577 E+01$
44 RU	102	-	4.076E+00	$4.200 E+00$	$4.400 \mathrm{E}+00$	$4.117 \mathrm{E}+00$	5,000E+00	+OR-	1.	4.090E+00
44 RU	103	-	2. $249 \mathrm{E}+00$	-	2.000E+00	6.191E+01	-	+0R-	-	
44 RU	104	-	$5.428 \mathrm{E}+00$	$4.400 \mathrm{E}+00$	$4.600 \mathrm{E}+00$	$5.408 \mathrm{E}+00$	6. $000 \mathrm{E}+0 \mathrm{C}$	+OR-	2.	$5.439 E+00$
44 RU	105	-	5.121E+00	-	1.200E-01	$5.069 E+00$	-	+0R-	-	$5.151 E+00$
44 RU	106	-	1. $273 \mathrm{E}+00$	$2.000 E+00$	2.000E+00	$1.277 E+00$	2.000E+00	+OR-	. 6	1.278E+00
45 RH	103	YES	1.032E+03	$1.100 \mathrm{E}+03$	$1.160 E+03$	$1.013 \mathrm{E}+03$	1.160E+03	+OR-	40.	$1.032 \mathrm{E}+03$
45RH	105	-	1.898E +04	1.700E+ 94	$1.700 \mathrm{E}+04$	1.696E+04	$1.800 \mathrm{E}+04$	+0R-	5K1	$1.878 \mathrm{E}+04$
46PD	105	YES	8.107E+01	8.500E+01	8.900E+01	T.449E+01	9.000E+01	+0R-	20.	$8.180 E+01$
46 PD	106	YES	8. $338 \mathrm{E}+00$	$5.600 E+00$	$5.700 \mathrm{E}+00$	$8.340 \mathrm{E}+00$	1.600E+01	+OR-	5.	
46P0	107	-	7.819E+01		$2.000 \mathrm{E}+00$.	8.008E+01		+OR-	-	7.833E+01
47 AG	109	YES	1. $430 \mathrm{E}+03$	$1.450 E+03$	1.430E+03	$1.432 E+03$	$1.460 \mathrm{E}+03$	+OR-	80.	$1.467 \mathrm{E}+03$
48 CD	113	YES	3.766E+02	-	$2.050 \mathrm{E}+02$	$3.800 E+02$	$3.800 E+02$	+OR-	20.	$3.793 \mathrm{E}+02$
531	131	-	$6.439 E+00$	$8.000 E+00$	B. $000 \mathrm{OE}+00$	6.279E+00	B.000E+00	\$OR=	4.	$6.458 \mathrm{E}+00$
531	135	-	$6.765 E+00$	-	-	2.641E-02	-	+0R-	-	$6.753 \mathrm{E}+00$
$54 \times \mathrm{E}$	131	YES	8.572E+C2	$8.300 \mathrm{E}+02$	0.700E+02	$7.873 \mathrm{E}+02$	$8.400 \mathrm{E}+02$	+OR-	50.	$8.860 E+02$
$54 \times \mathrm{XE}$	133	-	5.235E+01	-	1.600E+02	$5.267 E+01$	$1.600 E+02$	+OR-	20.	$5.238 \mathrm{E}+01$
55cs	133	Yes	3.766E+02	$4.500 E+02$	$4.500 \mathrm{E}+02$	$3.740 \mathrm{E}+02$	$4.200 \mathrm{E}+02$	+OR-	40.	$3.826 E+02$
55cs	135		5.828E+01	$5.800 E+01$	$6.200 \mathrm{E}+01$	$5.805 \mathrm{E}+01$	$6.000 \mathrm{E}+01$	GOR-	5.	5.828E+01
57La	139	YES	1.560E+01	1.100E+01	$1.200 E+01$	$1=526 E+01$	$1.200 \mathrm{E}+01$	-OR-	1.	1.564E+01
58CE	141	-	2.909E+01	-	1.200E+01	2.869E+01	-	+ $\mathrm{OR}=$	-	$2.913 \mathrm{E}+01$
59PR	141	YES	$1.839 E+01$	1.300E+01	$1.800 \mathrm{E}+01$	$1.786 \mathrm{E}+01$	$1.830 \mathrm{E}+01$	+OR-	1.	$1.868 \mathrm{E}+01$
59PR	143	-	$1.565 E+02$	$1.508 E+32$	$1.900 E+02$	$1.496 \mathrm{E}+02$	$1.900 E+02$	+OR-	40.	$1.5715+02$
60 NO	143	YES	$1.347 \mathrm{E}+02$	$6.000 \mathrm{E}+01$	$1.150 \mathrm{E}+02$	6.452E+01	$\therefore .150 \mathrm{E}+02$	+OR-	10.	$1.356 \mathrm{E}+02$
60ND	145	YES	2.933E+02	$2.500 \mathrm{E}+02$	3.000E+02	2.715E+02	$2.600 E+02$	+OR-	15.	2.964E+02
60NO	147	-	6. $450 \mathrm{EE}+02$	-	2.000E+01	6.441E+02	-	+OR=	-	$6.468 \mathrm{E} \rightarrow 02$
61 PM	147	YES	2.197E+13	$2.200 E+03$	$2.200 E+03$	$2.156 \mathrm{E}+03$	2.300E+03	+OR-	400.	2.229E+03
61PM	148	-	$4.497 E+04$	-	2.000E +04	$4.395 E+04$	$4.000 E+04$	+OR-	10 KB	$4.400 \mathrm{E}+04$
61PM	149	-	8.321E+02	-	$5.400 \mathrm{E}+02$	$9.169 E+02$	-	+OR-	-	1.389E+02
61PM	151	-	1.197E 03	-	6.000E+01	$1.205 \mathrm{E}+03$	-	+OR-	-	1.199E+03
62SM	147	YES	7.244E+02	6.000E+02	$6.700 E+02$	5.658E× 02	5.900E+02	+OR-	20.	
62SM	148	-	5.394E+01	-	$2.700 \mathrm{E}+01$	$5.554 \mathrm{E}+01$	2.000E+01	+OR-	10.	$5.404 \mathrm{E}+01$
62SM	150	YES	$3.185 \mathrm{E}+02$	2.400E+02	2.550E+02	2.400E+02	$2.500 \mathrm{E}+02$	+OR-	50.	
62SM	151	YES	3. $047 \mathrm{E}+03$	3.100E+13	$3.300 E+03$	2.173E+03	$2.450 \mathrm{E}+03$	+OR-	300.	
62SH	152	YES	3.351E+03	3. $000 \mathrm{E}+03$	$3.100 E+03$	2.992E+03	$3.100 \mathrm{E}+03$	+OR-	100.	3.458E+03
62SM	153	-	$5.464 \mathrm{E}+03$	-	$6.000 \mathrm{E}+02$	1.111E-03	-	+OR-	-	5.459E+03
63 EU	154	-	1.321E+03	-	$9.500 E+02$	$1.250 E+03$	$9.500 E+02$	+OR-	300.	1.321E+03
63EU	155	-	$1.818 \mathrm{E}+03$	-	$1.625 E+03$	$1.149 \mathrm{E}+03$	$6.000 E+03$	+OR-	1 KB	
63EU	156	-	1.947E +03	-	$8.000 E+02$	$1.258 \mathrm{E}+03$	-	+OR-	-	$1.947 \mathrm{E}+03$
63 EU	157	-	1.640E+ 93	-		$8.241 E+02$	-	+OR-	-	$1.640 E+03$
64 GD	155	YES	$1.479 \mathrm{E}+03$	-	$2.630 \mathrm{E}+03$	$1.561 E+03$	$1.730 \mathrm{E}+03$	+OR-	200.	1.505E+03
64GD	157	YES	8. $351 \mathrm{E}+02$	-	$7.000 \mathrm{E}+02$	$1.315 \mathrm{E}+03$	$7.900 \mathrm{E}+02$	+OR-	50.	8.407E+02
61PM	148	-	3.103E+ 14	-	$5.500 \mathrm{E}+93$	$3.197 E+04$	$3.000 \mathrm{E}+04$	+OR-	10KB	$3.103 E+04$

2. DATA PROCESSING PROCEDURE

Walker has recommended the resolved resonance parameters for approximately 130 fission fragment nuclides. Cook has included in the Australian file, similar to ENDF, data for about 190 nuclides. None, however, have explicit resonance parameters. Furthermore, below 5 keV Cook's data are represented by a histogram. It is undoubtedly an average cross section taken over the possible range of resonances.

The 2200 m capture cross section values for the 50 recommended nuclides were worked out for the Fission Product Subcommittee (FPS) by the Standards Subcommittee (STD) of CSEWG.

The following procedure was used in combining the three sets of data:

1. All nuclides in the Walker, Cook, and FPS sets were analyzed.
2. Only the FPS nuclides were prepared for ENDF/B3.
3. For all nuclides, whether or not they had explicit resonance parameters, the effective scattering radius was calculated, and for those nuclides with resonances the upper limit EH of the resonance range was determined, the lower limit being $10^{-2} \mathrm{meV}$.
4. While all the FPS requested nuclides could be found in Cook's file, not all of them may have resonance parameters; therefore:
a. If a requested nuclide does not have explicit resonance parameters, the cross section of 2200 m given by Cook is compared with the one recommended by STD. The difference between these two values is assumed as a $1 / v$-type correction and is applied to the entire energy range.
b. If the requested nuclide has explicit resonance parameters, the cross sections at 2200 m from the resonance

> tails and from Cook are compared with the one recommended by STD. Two $1 / \mathrm{v}$-type components are then obtained - one for the resonance energy range $\left(10^{-5} \mathrm{eV}\right.$ up to EH) and the other to affect Cook's cross sections (from EH $+\varepsilon$ up to 15 MeV).
5. Reduced resonance integrals were calculated for nuclides with resonance parameters. Toral and partial (from EH + e to 15 MeV) capture integrals were calculated from Cook's smooth data. Any $1 / v$-type correction effect on the integrals was also taken into consideration.
6. Finally, tabulations of the cross sections at 2200 m with components to the resonance integrals and a comparison of the latter with values given by several evaluators were compiled automatically.

3. RESULTS

3.1. Thermal Cross Section

All the nuclides, Walker's and Cook's, whose data were analyzed are reported in Table 1. The nuclides requested by FPS are indicated by an asterisk, and the last nuclide is Pm-148m. The 2200 m value of the cross section is reported in Table 1. For those nuclides which have resonance parameters, the $1 / v$ CORR column reports the difference between the $S T D$ recommended value and the one obtained from the resonance tails. For those nuclides without resonance parameters, the same column reports the difference between STD and Cook's values.

3.2. Resonance Integrals

The contributions to the resonance integral, the capture integral calculated from Cook's data, and, finaliy, the total integral for the requested nu:lides are also listed in Table 1.

Table 2 shows a comparison of resonance integrals as computed for the set of nuclides requested by FPS with the values estimated by Walker, Holden, and Drake (WA70, DR71). It must be mentioned that Walker's values are for the reduced resonance integral. In the majority of cases this would make little difference, but it does account for the large discrepancy of $N \mathrm{~N}-143$ and a few other nuclides.

The third and last columns of Table 2 report the resonance integral values calculated by FFRESCO and ETOG. These values are very close for any given nuclide, and the difference may be found in the different calculational techniques used by the two codes. For example, while ETOG computes the resonance integral by integrating point resonance cross sections on a more or less tight energy mesh, FFRESCO calculates the integral of each peak according to

$$
I_{\infty}=2 \frac{\pi^{2}}{k^{2}} g_{J} \times \frac{\Gamma_{n} \Gamma_{\gamma}}{\Gamma_{T}} \times \frac{1}{E_{r}}
$$

provided that $\mathrm{E}_{\mathrm{r}} \gg \mathrm{I}_{\mathrm{T}}$. If this condition is not satisfied, the integral is calculated from point cross sections obtained through DR70:

$$
\sigma(E)=\frac{\pi}{k^{2}} \delta_{J} \sum_{i} \frac{\Gamma_{n i} \Gamma_{\gamma_{i}}}{\left(E-E_{r i}\right)^{2}+\frac{1}{4} \Gamma_{r i}^{2}}
$$

summed over all resonances for which $E_{r} \sim \Gamma_{T}$, and the total number of points distributed between $E_{r i}-5 \Gamma_{r i}$ and $E_{r_{i}}+5 \Gamma_{r i}$ is no less than 400.

Different interpolating techniques also account for some slight differences in the total integration.

3.3. High Energy Cross Sections

In order to have a more direct way to compare Cook's high energy cross section, the $30-k e V$ energy point was selected since it is one of the most recurrent points in experiment reports listed in BNL-325. Table 3 reports Cook's capture cross section at 30 keV and also the capture integral over a fission spectrum (Pu-239, ENDF/B2), since similar integral data are becoming more frequent (SC71).

Not all 192 nuclides in Cook's file have experimental reports for the $30-\mathrm{keV}$ cross section. However, the agreement between Cook's values and the one reported in BNL-325 is very good for Mo-95, -96, -97, -100; $\mathrm{Sn}-115,-117,-118,-119,-120 ; \mathrm{Te}-124,-125,-126,-128,-130 ; \mathrm{I}-127$; Pr-141; Sm-147, $-148,-149,-150,-152$; and $\mathrm{Tb}-159$. Close agreement was also reported for $\mathrm{Ru}-103,-104, \mathrm{Cd}-114, \mathrm{Sn}-124, \mathrm{Ba}-138, \mathrm{Ce}-142$, and Sm-154.

Somewhat puzzling are the $30-\mathrm{keV}$ capture cross sections for Pd-110 and $\operatorname{Sn}-122$. However, no complete search of the SCISRS file was made to ascertain the direction that ENDF/B should follow since neither nuclide was requested by FPS.

Since Benzi and Reffo (BE69) have worked on the fission fragment capture cross section from 1 keV to 10 MeV , it was thought worthwhile to make a spot comparison of Cook's and Benzi's sets at 30 keV . Not all nuclides common to both sets have been compared. The agreement is excellent for As-75, Kr-82, Mo-97, Ru-102, Ru-104, I-127, Xe-131, La-139, Nd143, $\mathrm{Sm}-48$, and $\mathrm{Sm}-150$.

Cook's values are lower than Benzi's for $\mathrm{Ge}-72,-73,-74,-76$; Se-76, $-77,-78 ; \mathrm{Kr}-83 ; \operatorname{Pd}-105,-106 ; \mathrm{Cd}-113,-114 ; \operatorname{Pr}-141 ; \mathrm{Sm}-147$, -152; Gd-155, and Gd-157. The situation is reversed for $\mathrm{Se}-80, \mathrm{Br}-81$, Kr-84, Zr-95, Mo-95, and Ru-101.

REFERENCES

BE69
V. Benzi, G. Reffo, CCDN-NW/10 (D/1969).

BH71 B. H. Bhat, A, Prince, ENDF-163 (0/1971).
C070 J. L. Cook, AAEC-TM-549 (1970).
C071 J. L. Cook, Private Communication to M. K. Drake (evaluated data made available by JLC to NNCSC in January 1971).

DR70 M. K. Drake, ENDF-102, Volume 1 (0/1970).
DR71 M. K. Drake, Private Communication to A. Z. Livolsi (3/1971).
EI71 H. M. Eiland, S. Weinstein, K. W. Seemann, Conf. 710301-2 (3/1971).

EI7la H. M. Eiland, Private Communication to A. Z. Livolsi (3/1971).
LI71 A. Z. Livolsi, BAW-1367 or ENDF-144 (N/1971).
LI7la A. Z. Livolsi, Private Communication to M. K. Drake (6/30/71).
MA63 R. L. Macklin, J. H. Gibbons, T. Imada, Nature -197, 369 (1963).
SC71 J. J. Scoville, CONF-710301-1.
WA69 W. H. Walker, AECL-3037, Part 1 (D/1969).
WA70 W. H. Walker, Communication to FPS (4/8/1970).
WA71 W. H. Walker, Private Communication to A. Z. Livolsi (8/11/1971).
WI70 W. A. Wittkopf, Communication to CSEWG (9/1970).

SUMMARY dOCumentation of twenty-Seven fission product isotopes FOR ENDF/B-III, MAT 1201-1231*
 R. E. Schenter and F. A. Schmittroth

I. INTRODUCTION

This summary describes the cross section evaluation of 27 (MA'T 1201-1231) of 55 fission product isotopes selected by the Fission Product Subcommittee of the Cross Section Evaluation Working Group (CSEWG) for inclusion in ENDF/B-III. The 55 isotopes were selected because they were determined to be most important for fast and thermal reactor analyses. The authors of this report were assigned responsibilities for the evaluatioa of isotopes with an atomic mass number less than 142 , which generally constitute nuclei of non-deformation. Not included are the following isotopes which have been previously evaluated by other groups: $\mathrm{Tc}-99$, $\mathrm{Rh}-103$, $\mathrm{Ag}-109, \mathrm{Cs}-133$, and Xe-135 (MAT 1209, 1216, 1222, 1228, 1026).

Theoretical calculations of the radiative capture cross section of all 27 isotopes were made using the Hauser-Feshbach (with width fluctuation correction) formalism. These results were incorporated in the evaluations for the "fast neutron" energy region ($\mathrm{E}>\mathrm{EH}$, $\mathrm{EH}=$ Maximum of 1 KeV or upper energy of the resolved resonance region).

Radiative capture cross sections for the thermal and the resolved resonance energy regions and radioactive decay data were obtained from the evaluations of Livolsi ${ }^{(2)}$.

Elastic scattering and inelastic scattering cross section values were obtained from the work of Cook. (3)

The form of this sumnary follows the ENDF/B data tape structure (File 1, File 2, and File 3). ${ }^{(4)}$ A description of the methods and results which go into producing File 3 ("smooth cross section" data) is included.

[^7]II. FILE 1: GENERAL INFORMATION

Atomic masses of individual isotopes were obtained from the "Chart of the Nuclides"(5) and the "Table of Isotopes" ${ }^{(6)}$.

Radioactive decay data ($M T=453$) was put into the ENDF/B format by Livolsi ${ }^{(2)}$. The "Table of Isotopes"(6) and works by Cenacchi ${ }^{(7)}$ and Mattauch et al ${ }^{(8)}$ were used for decay constants, chains and Q-values of target and compound nuclei.

Additional information ($M T=451$) was also taken from Livolsi ${ }^{(2)}$ relating to $2200 \mathrm{M} / \mathrm{S}$ capture cross sections and capture resonance integrals as calculated from the File 2 and File 3 data.

III. FILE 2: RESONANCE PARAMETERS

All File 2 information was put into the ENDF/B format by Livolsi ${ }^{(2)}$. Resolved resonance parameters from Walker ${ }^{(9)}$ are given. All resonances are prescribed to be s-waves. When no resolved resonance energy region is specified (LRP $=0$) the effective scattering radius is included, consistent with ENDF/B format specifications ${ }^{(4)}$.
IV. FILE 3: SMOOTH CROSS SECTIONS

The energy points are the same for all reaction types. They were obtained by combining the energy mesh of Livolsi ${ }^{(2)}$, Cook ${ }^{(3)}$, and the theoretical calculations described in the radiative-capture section. The log-log interpolation scheme (INT=5) is prescribed for all reaction types.
A. Total Cross Sections ($M T=1$)

Total cross sections were obtained by adding elastic scattering,
inelastic and radiative capture cross sections at all energies ($1.0 \times 10^{-5} \mathrm{ev}$ to 15 Mev).
B. Elastic Scattering Cross Sections (MT=2)

Elastic scattering cross section values were obtained from the work of Cook (3). For energy points intermediate to Cook's, a log-lo; interpolation was made to get the cross section.
C. Inelastic Scattering Cross Sections $(M T=4)$

Inelastic scattering cross section values were obtained from the work of Cook(3). For energy prints intermediate to Cook's a log-log interpolation was made to get the cross section.
D. Radiative Capture Cross Sections (MTw102)

Evaluation of the radiative capture cross section ($\sigma(n, \gamma)$) was divided into two energy regions $E<E H$ and $E>E H$. The boundary energy EH was determined to be the maximum of 1 KeV or EHF? (the upper energy limit of the resolved resonance region).

1. $\mathrm{E}<\mathrm{EH}$

Livolsi's ${ }^{(2)}$ evaluation was mainly used here. In general, the cross section which is added to the resonance parameter results, is constructed to give correct $2200 \mathrm{M} / \mathrm{S}$ and resonance integral values. For the case EH > EHF2, Cook's (3) results were used for energies greater than EHF2.
2. $\mathrm{E}>\mathrm{EH}$ - Theoretical Model

For this energy region the cross section is completely given by the File 3 values. It is also given in terms of an average cross section. The ultrafine energy structure for the resolved resonance region is to longer provided. This average cross section was obi:ained using a theoretical model, the well known

Hauser-Feslibach ${ }^{(10)}$ (with width fluctuation correction) formalism. In addition for high energies ($E \subseteq 1 \mathrm{Mev}$) the direct capture cross section contribution was included. A detailed report on the use of this model for the calculation of the capture cross section of fission product isotopes including comparisons with experimental data has been published by one of the authors (FAS) (11).

3. $\mathrm{E}>\mathrm{EH}$ - Results

The averaged radiative capture cross section $\sigma_{n \gamma}$ was calculated using Eq. (1) for several incident neutron energies. The calculations were made with the computer code NCAP*. Results of these calculations for all 27 fission product isotopes are given in Figures 5-31.**

In Figures 5-31 the results called "Evaluation Case $101^{1 " \dagger}$ are plotted along with the evaluations of Cook ${ }^{(3)}$ and Benzi ${ }^{(13)}$ and, when available, experimental data obtained from the CSISRS library ${ }^{\dagger \dagger}$.

The following information, together with the above equations, essentially specifies these cross section calculations:

1. Neutron transmission coefficients T_{c} were calculated using the Moldauer ${ }^{(14)}$ optical model potential, except that the spinorbit term was set equal to zero.
2. Level spacing input parameters used for each isotope are given in Table 2. The level density parameters a and pairing energies P were computed from tables given by Cook and Musgrove ${ }^{(15)}$. Except for the following cases, the level-density parameters a were readjusted to give recent $D_{o b s}$ values given by Musgrove ${ }^{\text {(16) }}$: Values for Mo-95, Mo-97, and Mo-98 were obtained from Shwe and Cote ${ }^{(17)}$. For Pd-105, $D_{\text {obs }}$ was obtained from

* The computer code NCAP was written to do radiative capture cross section calculations. A complete description of the equations used by this code are given in Reference 11.
+ Case numbers identify particular sets of results for a given isotope and are only significant to the authors of this report.
$\dagger \dagger$ An automated Cross Section Information Storage and Retrieval System (CSISRS) is maintained and made available from the National Neutron Cross Section Center (NNCSC at Brookhaven National Laboratory.
** The figures were obtained from Reference 1.

BNL-325, (18) and for La-139 $D_{\text {obs }}$ was adjusted to fit the neutron capture data. $D_{\text {obs }}$, the mean s-wave level spacing, is related to the level-density parameter a through the following expression:

$$
\begin{equation*}
1 / D_{o b s}=\left[(I+1) e^{-(I+1)^{2} / 2 \sigma^{2}}+I e^{-I^{2} / 2 \sigma^{2}}\right] \rho_{0}\left(B_{N}\right) . \tag{16}
\end{equation*}
$$

3. Radiation widths at binding energy excitation $\Gamma_{\gamma}\left(B_{n}\right)$ called $G G$ in Table 2 were obtained in several ways. Experimental values were obtained from BNL-325 (18) and from work by Shwe and Cote ${ }^{-(17)}$ and by Julien et al (19) where available. If experimental values for r_{γ} were unknown, values were obtained by interpolation from known values of neighboring isotopes. In addition, for some cases with experimental neutron-capture data, the theoretical cross sections were made to agree with the data by varying r_{γ} as for Mo-95, Mo-97, Mo-98, and Mo-100.
4. The constant C in Eq. (15) was adjusted to fit radiative-capture data at 14.5 MeV . Its value was found to be 1.0×10^{-6} barns $-(\mathrm{MeV})^{-3 / 2}$
5. The cross section for Mo-98 was taken to be . 5 times the value calculated from the parameters given in Table 2. This adjustment was made to give a cross section more consistent with experimental data points and also a measured integral result from the C FRMF(20).
6. The sum of the isotopic cross sections for molybdenum, rubidium, and palladium were compared to the experimental cross sections for the naturally occurring elements. Calculations by Benzi and by Musgrove were used for naturally occurring isotopes which are not Included in this work. In each case, however, the isotopes in this work were the main contributors to the cross sections for the naturally occurring eiements. The computed cross sections for natural Mo, Ru, and Pd are .167, . 156, and 3.78 barns respectively.

These numbers compare, respectively, to experimental values of .160 , . 170 , and .440 barns. The maximum discrepancy is only 14% for Pd . The molybdenum and palladium cross sections were compared at 30 KeV while an incident neutron energy of 195 KeV was used for rubidium.

TABLE 2. INPUT PARAMETERS FOR CAPTURE CALCULATIONS

```
GG = RADIATION WIDTH (MV)
DOBS = S-WAVE LEVEL SPACING (EV)
BN = NEUTRON BINDING ENERGY (MEV)
```


REFERENCES

1. R. E. Schenter and F. A. Schmittroth. "Cross Section Evaluations of Twenty-Seven Fission Product Isotopes for $\sin D \mathrm{DF} / \mathrm{B}-I I I, ~ M A T$ 1201-1231", HEDL-TME-71-143, ENDF-159. October 1971.
2. Z. Livolsi, "Transfer of Fission Fragment Data to ENDF/B-3", BAW-409, October 1971.
3. J. L. Cook, "Fission Product Cross Sections", AAEC TM-549 (1969) and data file sent to NNCSC.
4. M. K. Drake, "Data Formats and Procedures for the ENDF Neutron Cross Section Library", BNL-50274(T-601), October 1970, ENDF 102 Vol. 1.
5. "Chart of the Nuclides", Battelle Memorial Institute, May 1969.
6. C. M. Lederer, J. M. Hollander, I. Perlman, "Table of Isotopes", Sixth Edition (1968).
7. G. Cennacchi, T/FIMA (68)4.
8. J. H. E. Mattauch, W. Thiele, A. H. Wapstra, Nuclear Physics, $67(1965)$.
9. W. H. Walker, AECL-3037, Part 1 (1969).
10. W. Hauser and H. Feshbach, Phys. Rev. 87 (1952) 366.
11. F. A. Schmittroth, "Theoretical Calculations of Fast Neutron Capture Cross Sections", HEDL-TME-71-106, Hanford Engineering Development Laboratory (WADCO Corp.), Richland, Washington, August 1971.
12. A. Gilbert and A. G. W. Cameron, Can. J. Phys. $43(1965) 144$.
13. V. Benzi and G. Reffo, Fast Radiative Capture Cross Sections, CCDN-NW/10 (ENEA Neutron Data Compilation Centre, December 1969).
14. P. A. Moldauer, Nuc. Phys. 47. (1963) 65.
15. J. L. Cook, H. Ferguson, and A. R. del Musgrove, "Nuclear Level Densities in Intermediate and Heavy Nuciei", Aust. J. Phys. 20 (1967) 477.

```
                                    ENGF/B MATERIAL NO= 1164
                                    7.5MEV DATA OF REF, 2, INELASTIC CROSS SECIION RECUCEC
                                    ASOVE N,2N IHRESHOLD TO PRESERVE NON-ELASTIC CROSS
                                    SECTION:
MF=3,MT=16
    THE ARGUMFNY OF REF, 3 WAS ACCEPTED RESULTING IN A
    2.5 TIMES IACREASE IN THE N&2N CROSS SECTION (AF THE
    EXPENSE OF INELASTIC).
MF=3,MT=51-5y
    INDIVIDLIAL LEVELS BASED ON DATA OF REF, 1 WITH SUM CF
    LEVELS NORMALIZED TO THE EVALUAPED TOTAL INELASTIC,
    level gata terminated at i.4mev due to inadequate
    LEVEL UATA aND RAPIDLY INCREASING LEVEL DENSITY,
MF=3,MT=91
    CONTINLUM IS TOTAL INELASTIC ABOVE I,4MEV,
MF=5,MT=91
    NUCLEAR TFMPERATURE bASED ON DATA OF REF, 2,
REFERENCES*
    1. ROGERS, ET AL, NSE 45,297(1971)
    2, HOPKINS AND DRAKE, NSE 36, 275(1969)
    3. BLOW, AEFE=R 6540 (1971)
```

ENDF/B MATERIAL NO= 1111						
ANL-7387	(1908)	DIST-JUL68	REVMJAN72			
	MOLYEDENUM	*****	DATA REVISED	FRO	MAT	1025
*	*	*	-			

THE LOW ENERGY RADIATIVE CAPTURE CROSS SECTION WAS CHANGED TO CONFORM TO THE CSEWG NERMALIZATION AND STANDAROS SUBCOMMITTEE REGOMMENDED VALUE OF $2: 65$ BARNS FOR THE 2200 M/SEC X/S THE ORIGINAL VERSION WAS PREPARED IN OCTOBER 1966. THE JATA WERE REVISEN IN OCTOBER 1969. THE MOST SIGNIFICANT REVISIONS ARE A LARGE DECREASE IN THE (N,GAMMA) CFOSS SECTION IN THE RANGE FROM 1 TO 2D KEV: AND THE INELUSION OF UNRESOLVEE RESONANCE PARAMETERS IN THE RANGE FROM 1 TO 10 KEY, THE ORIGINAL VERSION LED TO HIGH VALUES OF CALCULATED CENTRAL NURTHS FMR FASF ASSEMBLIES BECAUSE OF THE LARGE (NEGAMMAY CROSS SECFION.
A DESCRIPTION OF THE CFMPILATION OF THE ORIGINAL VERSION IS GIVEN IN REF:1.
AN OUTLIAE OF THE OATA SOURCES IS GIVEN BELOWI
$M F=2 \quad M T=151$
RESONANCE PARAMETERS
RESOLVED PARAMETERS FER 46 RESONANCES IN 7 ISOTOPES COVER THE RANGE FROM 4 EV, TO 1 KEV: WHILE UNRESOLVED PARAMETERS COVER THE RANGE FROM I TO 1QO KEV. DATA FROM REF.2-11 HERE CONSIDERED IA UETERMINIVG THE RESOLVED PARAMETERS THE UNRESOLVED PARAMETERS ARE HASED ON REF,12.
MF $=3$ SMOOTH DATA
MTE! THE TOTAL FROSS SECTION WAS OBTAINED BY SUMMING THE PARTIAL CROSS SECTIONS.
MTE2 THE ELASTIC SCATTERING CROSS SECTION IS A CONSTANT 5 BARNS BELOW 4 EV. IN THE RESOLVED RESONANCE RANGE,A SMOOTH BACKGROUND RANGING FROM O,GS BARAS AT 4 EV. TO g:75 BARNS AT 1 KEV. $1 S$ IC DE ADDED TO SCATTERING CALCULATED FROM RESONANCE PARAMETERS, AO SMODTH BACKGROUND IS GIVEN IN THE UNRESOLVED RANGE, ABOVE $10!$ KEV. THE VALUES OF THE ORIGINAL COMPILATION SREF IA ARE USED: MTEA THE INELASTIC SCATTERING GROSS SECTION OF REF: IS USED. FRO:4 2VG KEV,TO 1.5 MEV. THIS CONSISTS OF THE SUM OF THE CROSS SECTIONS FUR THE EXCITATION OF 4 LEVELS AS DETERMINED IN REFIIS. THE VALUE AT 1, 2 MEV, IS JOINED SMOOTHLY TO THE 2 MEV. VALUE OF REF.14. FROM 2 TO 1 N NEV, THE VALUES OF REF. 44 ARE USEO EXCEPT (N,2N) AND (N: N N CROSS SECTIONS ARE SUBTRACTED ABOVE THEIR THRESHOLOS, ABOYE 1R NEV, THE REACTION CROSS SECTION WAS ASSUMED CONSTANT, AND (N, 2N) (N, SN), AND THE ORIGINAL (N,GAMMA) CROSS SECTIONS WERE SUBTRACTED TO YIELD THE INELASTIC CROSS SECTION, $M T=16$ THF (N, 2N) CROSS SECTION WAS CALCULATED BY S.PGARLSTEIN. SEE REF.15.
 SEE REF.15.
MT=102 THE (NAGAMMA) EROSS SEETION IS TAKEN AS I/Y UP TO ABOUT 10 EV: CORRESPONDINE TO A VALUE OF 2.7 EARNS AT D. 0253 EV: FROM 4 EV. TO 10 EV, ONLY THE BACKGROUND TO BE ADDED TO THE CROSS SECTION CALCULATED FREM RESONANCE PARAMETERS IS PROVIDED. THEN NO SMOOTH BACKGROUNG IS GIVEN UNTIL OVER 9 GG EV. WHERE A BACKO GAOUND IS SUPPLIED SO THAT THE CROSS SECTION CALCULAIED FROM RESOLVED PAHAMETERS JFINS SMOOTHLY AT 1 KEV, TO THAT CALCULATED FROM UNRESOLVED PARAMETERS PLUS GACKGROUND. FROM 1 TO 1GO KEV

A Background, which IS negative over almost the entire range, is PROVIOED SO THAT THE LNRESOLVE RESONANCE PLUS BACKGROUND CROSS SECTIONS ADD IO THOSE NOW RECOMMENDED'ं THE NEW RECOMMENDEE CROSS SECTIONS IN THIS IFIDE KEV, RANGE ARE BASED ON A LARGE SELECTION
OF EXPER!MENTAL DATA SUMMARIZED IN REF,11,16,17,AND EVALUATED
CURVES BY SCHMICT (REF,11;18),AND POENITZ (REF,16), FROM 10D
KEV. PO : MEV, , THE (ENGAMMA) CROSS SECTION IS FROM REF,16;EXCEPT FOR BEING RAJSED SLIGKTLY NEAR 1 MEV: TO JOIN SMOOTHLY WITH THE VALUES OF SCHMIOT (REF, 11;18), WHICH ARE USED FROM 1 TO 10 MEVV. THE EXTENSION FROM 10 TO 15 MEV, IS MADE BY ASSUMING A $1 / E$ vaRIATION.
MT=251,252,253 THE VALUES OF MU BAR LAB, XI, AND GAMMA WERE Calculated using hodified versions of subroufines from the chad CODE: (KEF,19.1).
MF=4 MT=? ELASTIC ANGULAR DISTRIBUTIONS
ELASTIC SCATTERING LEGENDRE COEFFICIENTS IN THE CENTER=OFEMASS
SYSTEM NEAE OBTAINED FROM H, ALTER (REF, 2D) UP TO 6 MEV, ABOVE 6
MEV, THE LEGENDRE COEFFICIENTS WERE BASED ON ABACUS OPTICAL
MODEL CALCULATIONS, A CENTER-OF-MASS TO LABORATORY TRANS=
FORMATION MATRIX WAS CALCULATED USING CHAD, (REF.19),
$M F=5$ SECCNOARY ENERGY DISTRIBUTIONS
MT=4 PROEABILITIES FOF EXCITING THE 4 RESOLVED LEVELS (REF,13)
ARE TABULATED, NUCLEAR TEMPERATURES FOR LAW LF=9 ARE CALCULATED
AS IN REF, 2i.
MTE16,17 NUCLEAR TEMPERATURES FOR LFE9 LAWS FOR (N.2N) AND
(N, J^{\prime}) REACTIONS ARE CALCULATEO AS DESCRIBED IN REF.1,
$M F=7 M T=4$
parameters for a free gas thermal scattering law are included,
REFERENCES
1: \because EM, PENNINGTON AND $\therefore C, G A J N I A K, A N L-7387(1968)$.
2:M, I, FEVZNER ET AL, SEVIET PHYSICS JEPP,17,8Ē3(1963).
3.H.SHWE ANO R,E,CCTE;PHYSICAL REVIEW,179,1148(1969),

4;S.WYNCHANK ET AL,PHYSICAL REVIEW, 166,1234 (1968),
5;H,WEIGMANN ANO H,SCHMID;NUCLEAR PHYSICS,A104,513(1967),
$6: \because C$ COCEVA ET AL, NUCLEAR PHYSICS,A117;586(1968).
7,V.D.HUYNH ET AL, NUCLEAR DATA FOR REACTORS,VOLI,I,A,E,A,i(1967)
8;J.J,SCMMIOT,KFK 718;PARTB\{1968),
9;S.F:MUGHABGHAH ET AL,B,A,P,S.,13,721(1958),
10;'S.F.MUGHAYGHAB ET AL,B,A,P,S,1,12,1199(1967).
11:J.J'SCHMIDT:KFK 120, PARTI-EVALUATION,(1966),
12; A. F. DEL, MUSGROVE, AAEC/E998(1969).
13:A.B.SMITH AND R,HAYFS,NUCLEAR PHYSICS,A93,60911967!;
14;J.J.SCHMIUT,KFK 12D, PARTII-TABLES,PARTIII-GRAPHS, (1962;
15:S.PEARLSTEIN,NUCL,SCI,ENG.:23.238,(1965),
16:W, POENITZ, (A,N,LI), FRIVATE COMMUNICATION:(1969),
17;M.DRAKE, ($B, N, L,)_{1}$)PRIVATE COMMUNICATION,(1969).
18:I.LANGNER,J,J.SCHMICT,D;WOLL,KFK 750, (1968);
19.R.F:BERLAND, NAA $=S R=11231$. (1965).
20. H.ALTEF, PRIVATE COMNUNICATION, SEE ALSO NAA-SR-11980, VOL;'4,1967

21, S,YIFTAH ET AL,FAST REACTOR CROSS SECTIONS,PERGAMOíi,1960,P:49,

43－TC－99 1137 B＋W BAW－1367 OCT71 Z．LIVOLSI

ENDF／B MATERIAL NO＝ 1137

TECHNETIUMOg9 EVALUATEE BY ZIZO LIVOLSI BABCOCK＋WILCOX OCTOBER 71

FIR ALL DERTINENT INFOFMATION REGARDING THESE DATA』 PLEASE REFER TO BAW－1357（OR ENDF－144）

File contents

1－453 DECAY CHAIN（i，2，3）
2－jE」 RESOLVED RESONANCES AND BOUND LEVEL（4）ALL STWAVE UNRESOLVED FESONANCES（5）S AND P－WAVES
3－QD．TOTAL CROSS SECTION CALCULATED BY OPTICAL MODEL（6）CONVERm「Jig OH EXPERIMEAT（7）ABOVE Z，MEV
3－GOL ELASTIC SCATTERIAG XSECTION RESULTANT OF COMPOUND（8）AND SHIAPE ELASTIC（S）
3rma4 TCTAL（N，N＊）SCATTERING（8）
3－世́16（N．2N）SCATTERING（9．10）
3－G51 EXCITEU DISCRETE（N，N＊）LEVELSS（1，8）
THRU EXCITEU UISCFETE（N，N世）LEVELS（1，8）
3－161 EXC！TED DISCRETE（N，N＊）LEVELS $\{1,8\rangle$
3－491（N．N＊）LEVELS DFSCFIFED BY CONTINUUM（8）
3－1H2 CAPTURE XSECTION BELOW 3OQEV DUE TO RESOLVED RESONANCES（4） UF F： $14 R K E V$ CORFECTION IMPOSED ON UNRESOLVED XSECTION（S） UF TO 1SMEY IN CEMPETITION WITH EXCITED LEVELS AND CORRECTD FOR ENERGY VARIATION OF GAMMA STRENGTH FUNCTION（8，11）AE． OVE SMEV CONTEIBLTION FROM DIRECT＊COLLECTIVE CAPTURE（12）
4－0V2 DIFF，ELASTIC GALCUI．ATED BY MR BHAT FOR AG（NO EXP DATA）
5－016 MAXWFLLIAN EVAPOFATION SPECTRUM FOR（N，2N）
E－091 MAXWELLIAN EVAPOFATION SPECYRUM FOR（N，N＊）
REFERENCES
1－CM LEDFRER，JM HOLLANDER， 1 PERLMAN， 6 TH ED（1967）
2－G ©ENACCHI，T／FIMA（ó8）4
3－THE MATTAUCH，W THIELE：AH WAPSPRA，NUCL，PHYS 67（1965：
4－T NATANABE，SD REEDER，NSE 41．188（1970）
5－JEN＝CHANG CHOU，INF＝4／70－2S（N／1970）
6－ABACUS＝EH AUEREACH，BNLm6562（1964）
7－WCCSTER，SCISHS FILE（BNW－1967）
5－COMAUC－CL DUNFORD；AI＊AEC－12931
9－S PEARLSTEIN：NUCL：DATA 3A， 327 （1967）
10－JM SL．ATT，VF WEISSKOPF；THEOR，NUCL；PHYSICS，Pe 484
11－GGOD－AZ LIVOLSI，APRINCE（NOF RELEASED）
12－FISPROR＝V BENET，GC PANINI，G REFFO，CEC\｛69124

ENDF/B MATERIAL NO= 1125

RHODIUM - 103 EVALUATEC BY ZIZC LIVOLS: BABCOCK*WILCOX OCTOBER 7I

FOR ALL PERTINENT INFORMATION REGARDING THESE DATA, PLEASE REFER TO BAW=1367 (OR ENDF-1A4)

FILE CONTENTS
1-453 DEGAY CHAIN (1,2,3)
2-151 RESOLVED RESONANCES (4,5) S ET PaWAVES
UNRESOLVED RESONANCES (4) S ET PmWAVES, OBS,GVL,SPAC; (5)
3-801 TOTAL GROS S SECTION CALCULATED BY OPTICAL MODEL (6) CONVEÃ GING ON EXPERIMEAT BELOW (7) AND ABOVE (8) 2MEV
3-dge ELASTIC SCattering xSEction Resultant of COMPDUND (9) AND SHAPE ELASTIC (6)
3-004 TOTAL (N, N (N) SCATTERING (9.10.11.12)
3-016 (N,2N) SCATTERING (13.14)
3-051 EXCITTEU UISCRETE (N,N*) LEVELS $(1,9,10)$
THRU EXCITED OISCRETE (N, N*) LEVELS $(1,9,10)$
3-064 EXCITEO OISCRETE (N,N*) LEVELS $(1,9,10)$
3-091 (N,N*) LEVELS MESCRIBED BY CONTINUUM (9)
3-102 CAPTURE XSECTION BEGOW AgKEV OUE TO RESOLVEO ANO UNRESOLVED RESONANCES (A,5) UP TO L5MEV IN COMPETITION WITH EXC! TED GEVELS AND CCRAECTED FOR ENERGY VARIATION OF GAMMA-STRENGTH FUNCTION (9,15) ABOVE 5MEV CONTRIBUTION FROM DIKEC T AND COLLECTIVE CAPTURE (16,17)
3-102 METASTABLE STATE CAPTURE GIVEN AS HISTOGRAM BELOW 1,b55EV OF Z.12164 LETHAFGY NIDTH UP TO 4.15KEV D, Q7713 DU ABOVE 4.15KEV XSECTION CONTINUOUS, [SOMERIC RATIO FROM PONITZ(18)

4-002 חIFF. ELASTIC CALCULATED BY MR BHAT FOR AG (NO EXP, DATA)
5-016 MAXWELLIAA EVAPOFATION SPECTRUM FOR (N, 2N)
$5 * 091$ MAXWELLIAN EVAPORATION SPECTRUM FOR (N,N*)
REFERENCES
1- CM LEDERER, JM HOLLANDER, 】 PERLMAN, 6 FH ED(1967)
2- G CENACCHI, T/FIMAC6E)A
3- THE MATTAUCH, W THIELE, AH WAPSTRA, NUCL, PHYS 67(1965)
4- AD CAFLSUN: MP FRICKE, UC. 34 (6/1971)
5. P RIRON, CEA-N-1149 (1969)
6. ABACUS- EH AUERBACH, BNL=6562 (1964)

70 CA UTTLEY, KM DIMEAT, AERE-PR/NP9 (1966)
8e W FOSTER, SCISRS FILE, (BNW-1967)
9- COMNUC- CL DUNFORD, A1-AEC=12931
16a MA ROTHMAN ET AL, OFHYS',REV,107,155(1957)
11. KK SETH, SCISRS FILE (DUKE-1965)

120 JP BllTLER, DE SAATEY, NEUT,XSECT,CONF,2,802(1968)
13- H © SSSEM ET AL, FARDC(E)127U,P,38
14- HA TE.WES ET AL, UCFL-6036-T (1960)
15. GGOD- AZ LIVOLSI. A PRINEE (NOT RELEASED)

16- FISPRO2 = V BENZI, CC PANINI, G REFFO, CEC(69)24
17: G LONGC ET AI (TO EE PUBLISHED IN NUCL,FHYSICS)
18. H FCNITZ. EANDC(E)E6:U:

47－AG－167 1138 日NL TO EE PU日L．OCT71 M．R．BHAT AND A．PRINCE

SUMMARY DOCUMENTATION FOR THE EVALUATION OF ${ }^{107} \mathrm{Ag},{ }^{109} \mathrm{Ag}$, AND ${ }^{133} \mathrm{Cs}$
M．R．Bhat and A．Prince
NNCSC，Brookhaven National Laboratory
1．INTRODUCTION
This report describes the evaluation of $\mathrm{Ag}-107, \mathrm{Ag}-109$ and Cs－133 ior the Evaluated Nuclear Data File，Version III（ENDF／B－III）． The choice of the several pieces of experimental data used in the evaluation and the justification for such a choice are discussed in this report．The energy range covered by these evaluations is from $10^{-5} \mathrm{eV}$ to $1.5 \times 10^{7} \mathrm{eV}$ ．The exp rimental data has been supplemented by the results of nuclear model calculations in the energy regions where such data were not available．These codes and the results of their calculations are described in the following pages．

2．LOW ENERGY CROSS SECTIONS

2．1．Resolved Resonance Parameters：

$\mathrm{Ag}-107, \mathrm{Ag}-109$
The most extensive measurements of the resonance parameters on the separated isotopes of silver are due to Muradyan and Adamchuk ${ }^{(1)}$ ． These authors give the resonance parameters of $\mathrm{Ag}-107 \mathrm{up}$ to 915 eV and for Ag－109 up to 903 eV ．We have made use of these parameters as well as those recommended in BNL－325，2nd Edition．（2）Resonance spins where available are indicated as given in the lat今rer reference．The gamma widths given explicitly in BNL－325 for some tesonances have been used；otherwise we have set $\Gamma_{\gamma}=0.140 \mathrm{eV}$ ．The nuclear radius used for $\mathrm{Ag}-107$ is $0.71365 \times 10^{-12} \mathrm{~cm}$ ．which gives $a \sigma_{p}=6.4$ barns；a value obtained in the measurements of Shull and Wollan．（3）This experimental value also agrees with the measurements of Zimmerman and Hughes ${ }^{(4)}$ who obtained $\sigma_{p}=6.5 \pm 0.5$ barns．The nuclear radius used for $\mathrm{Ag}-109$ is
$0.63 \times 10^{-12} \mathrm{~cm}$ a value given by Chrien ${ }^{(5)}$ from an analysis of the transmission data on low energy resonances. It is quite possible that some of the resonances given are p-wave resonances. However, since none of them has been specifically identified as such all the resonances have been grouped together as s-wave resonances.

Cs-133
We have used the resonance parameters of Cs-133 as given by Garg, et al. (6) The measured resonances extend up to an energy of 3.5 keV . The assumed value of Γ_{Y} was 0.110 eV . None of the resonance spins are known. Hence, we have put the resonance spins as $7 / 2$; the spin of the target nucleus. The nuclear radius used here $0.75166 \times 10^{-12} \mathbf{c m}$. Which corresponds to a $\sigma_{p}=7.1$ barns as measured by Shull and Wollan (3). Since none of these resonances has been designated as p-wave resonances we have listed all of them as s-wave resonances.

2.2. $2200 \mathrm{~m} / \mathrm{sec}$ Neutron Capture Cross Section

 Ag-107, Ag-109We have used a value of 92 barns for the $2200 \mathrm{~m} / \mathrm{sec}$ neutron capture cross section for Ag-109 as suggested by Walker. (7) The contribution to the capture cross section from the resonance parameters is 89.96 barns and we have added the difference as a $1 / v$ contribution. For Ag-107 we have used a value of 36.8 barns for the capture cross section. This value was obtained by taking 63.4 barns for the capture cross section of natural silver as measured by Tattersall, et al ${ }^{(8)}$ and calculating the contribution of Ag-107 by assuming 92 barns for $\mathbf{A g - 1 0 9}$.

In the case of $\mathrm{Ag}-107$ the resonance parameters contribution 2.56 barns for the capture cross section and the difference has been added on as a $1 / v$ contribution.

Cs-133
The thermal capture cross section recomended by Walker ${ }^{(9)}$ for this nucleus is 29.5 barns. We have used this value in the evaluation; this is made up of 16.06 barns from the resonance parameters and the rest being added on as a $1 / v$ contribution.

3. HIGH ENERGY CROSS SECTIONS

3.1. Optical Model Parameters

The high energy cross section data available for these nuclei consists of capture and total cross section measurements over limited energy ranges with a few values of the (n, particle) reaction cross sections. Hence, the gaps in the experimental data have to be filled by nuclear model calculations. Therefore, one has to decide on a set of optical model parameters suitable for the nuclei under consideration. Such a choice of optical model parameters was made by fitting the total cross section data of Foster ${ }^{(9)}$ for natural silver and cesium between 2.5 15.0 MeV. It is found that the optical parameters of Wilmore and Hodgson (10) give total cross sections which agree quite well with the experimental data. The calculations were done with the ABACUS-NBARREX Code. (1I) The optical model parameters used are shown in Table I.

3.2. Capture Cross Sections

Ag-107
The calculations of the capture cross section of $\mathrm{Ag}-107$ were done using the code COMMNIJC by C. Dunford. (12) The excited states of Ag-107 used in these calculations are given in Table V.along with their spins and parities. One other input data needed by this program is $2 \pi \frac{\Gamma_{\nu}}{\langle\boldsymbol{D}\rangle}=$ 0.05965 where $\langle D\rangle$ is the average level spacing as determined from the neutron resonance parameter data for this nucleus. This parameter may also be considerad as a normalizing parameter whose value is so adjusted as to get a fit to the experimental capture cross sections. In the case of $\mathrm{Ag}-107$ we obtain a value of $2 \pi \frac{\Gamma_{y}}{\operatorname{DJ}}=0.05965$ from the resonance parameters. However, it was found that the experimental c.apture data could be fitted with a value of 0.04029 . The experimental data chosen for the fit was from Obninsk (13) from 29 keV to 146 keV and from the University of Wisconsin, (14)
from 145 keV to 2.45 MeV . These measurements agree quite well with the Duke University (15) capture data above 60 keV or so though the Duke data seems to be consistently lower for lower energies. There is no experimental data on capture cross sections of $\mathrm{Ag}-107$ at higher energies of $14-15 \mathrm{MeV}$. Hence, one could not estimate the contribution of direct and semi-direct capture at these higher energies. The capture cross section is therefore shown as a monotonically decreasing function of energy and is shown compared with the experimental data in Figure 1.

Ag-109
The experimental capture cross sections used for this isotope is again due to Kononov, et al. (13) from Obninsk. The cross section at 24 keV in this set agrees quite well with the single measurement due to Chaubey, et al. However, all the values of capture cross sections in this set are lower than the Duke values as read off from their published curve. Also, if we combine the Obninsk values for $\mathrm{Ag}-107$ and $\mathrm{Ag}-109$ in the proportion of the natural abundance of these isotopes we get a capture cross section for natural silver which is about 16% lower systematically than the Karlsruhe measurements. (17) These discrepancias indicate need for further accurate measurements on separated isotopes of silver to resolve them. One could obtain a fit for the Obninsk capture data with $2 \pi \frac{\Gamma}{D>}=0.02$ though the resonance parameters give a value of 0.0586 . The calculated and experimental cross ections for Ag-109 are shown in Figure 2.

Cs-133
The most recent and careful measurements of the capture cross section of cesium in the keV region seem to be those due to Kompe ${ }^{(17)}$ from Karlsruhe. We could fit this data by using $2 \pi \frac{\Gamma_{\nu}}{D}=0.03831$; a value obtained from the resonance parameter data. The calculated and experimental
cross sections are shown in Figure 3. In the case of this nucleus we do have an (n, γ) cross section measurement due to Qaim ${ }^{(18)}$ at 14.8 MeV . Therefore calculations of the direct and semi-direct capture cross sections were made using FISSPRO Code of Benzi, et al. (19) and normalized to the evperimental value of 7.1 mbarn at 14.8 MeV . This contribution to the capture cross section was added on to the capture cross section due to compound nuclear processes above 4.0 MeV .

3.3. Differential Elastic Scattering

Since there is no experimental data on the angular distribution of elastically scattered neutrons from these three nculei we used the ABACUS-NEARREX Code to calculate the angular distribution. The calculated cross sections were then fitted to a number of Legendre polynomials using the Code CHAD ${ }^{(20)}$ to obtain the corresponding coefficients of a Legendre fit.

3.4. Inelastic Scattering

There is no experimental data on inelastic scattering for any of these three nuclei. The relevant cross section were therefore calculated using COMMNUC and the energy level scheme shown in Table II.

3.5. (n, particle) Reactions

Ag-107

Amongst all the measurements of the ($n, 2 n$) cross sections on Ag-107, there is only one experiment due to Minetti and Pasquare11i (21) who measure simultaneously the cross sections for populating the $6^{+}(T 1 / 2=8.3$ days) metastable state in Ag-106 as well as the $1^{+}(T 1 / 2=24 \mathrm{~min})$ ground state. They find these two cross sections to be $653 \pm 30 \mathrm{mb}$ and $870 \pm 40 \mathrm{mb}$
respectively at 14.7 MeV . We have chosen then values for normalizing the ($n, 2 n$) reaction cross section curve as calculated by Pearlstein ${ }^{(22)}$ using the code THRESH. This code uses the standard evaporation model of a highly excited nucleus to calculate the various (n, particle) reaction cross sections. The vross sections calculated with this code using a $Q=9.531 \mathrm{MeV}$ give a curve which passes through the experimental value of $1523 \pm 70 \mathrm{mb}$ at 14.7 MeV ; hence we did not have to renormalize the calculated curve. Using the same code and $Q=-0.752,-4.354$ for the (n, p) and (n, α) reactions respectively the corresponding cross sections were calculated. Since there were no experimental daca available on these reactions for $\mathrm{Ag}-107$, the same normalization constants as had been used to normalize the calculated curves of Ag-109 to its experimental points were used here.

Ag-109

Minetti and Pasquarelli ${ }^{(21)}$ obtained a cross section of $797 \pm 50 \mathrm{mb}$ for the $(n, 2 \pi)$ reaction on $A g-109$ leading to the 1^{+}ground state of the final nucleus $\mathrm{Ag}-108$. However, they did not measure the cross section leading to the 6^{+}metastable state in the final nucleus. In the case of the $(n, 2 n)$ reaction on $A g-107$ we populate a 1^{+}ground state and a 6^{+}metastable state in $\mathrm{Ag}-106$. The ratio of these two cross sections are 0.751 . Since we have states of the same spin in Ag-108 we can assume the same ratio for these two cross sections. Assuming $\sigma^{(g)}=797$ we get $\sigma^{(\mathrm{m})}=598 \mathrm{mb}$ giving the total $(n, 2 n)$ cross section as 1395 mb at 14.7 MeV . The ($\mathrm{n}, 2 \mathrm{n}$) reaction cross section curve as calculated from the THRESH code with $Q=9.182 \mathrm{MeV}$ was normalized to this experimental value. Using the same code we also calculated the
(n, p) cross section curve with $a \mathrm{Q}=0.538 \mathrm{MeV}$. This curve was normalized to an experimencal value of 15 mbarn at 14.5 MeV . This value was estimated from the measurements of Bayhurst and Preatwood (23) and Coleman. ${ }^{(24)}$ The (n, α) cross section was similarly calculated with $Q=-3.403$ and the calculated curve normalized to a value due to Mukerjee, et al. ${ }^{(25)}$

Cs-133

The experimental values for the $(n, 2 n)$ cross sections used in the evaluation are $1620 \pm 150 \mathrm{mb}$ at 14.8 MeV by Qaim ${ }^{(18)}$ and $1598 \pm 160 \mathrm{mb}$ by Nage $\mathrm{I}^{(26)}$ at 14.6 MeV . Their mean of 1609 mb was used to normalize the curve calculated using THRESH with $Q=9.038$. The (n, p) cross section curve was calculated using a $Q=0.121 \mathrm{MeV}$ and normalized to 10.5 mb at 14.8 MeV due to Qaim. (18) The (n, α) cross section values were similarly calculated with $Q=-3.695 \mathrm{MeV}$ and normalized to a mean of the experimental values of $1.96 \pm .15 \mathrm{mb}$ at 14.4 MeV due to Lu , et al. (27) and $1.14 \pm$.2 mb at 14.8 MeV due to Qaim. (18)

3.6. Energy Distributions of Secondary Neutrons

For the nuclei under consideration, energy distributions of secondary neutrons originating from ($n, 2 n$) processes and by inelastic scattering to a continuum of levels was also calculated. These energy distributions are expressed as normalized probability distributions. The energy distributions for these nuclei have been specified as an evaporation spectrum of the type

$$
f\left(E \rightarrow E^{\prime}\right)=\frac{E^{\prime}}{I} e^{-E^{\prime} / \theta}
$$

where I is the normalization constant and

$$
I=\theta^{2}\left[1-e-(E-U) / \theta\left(1+\frac{E-U}{\theta}\right)\right]
$$

Where θ is a temperature tabulated as a function of neutron energy E and U defines the upper limit for the final neutron energy such that $0 \leq E^{\prime} \leq E-U$. To calculate 9 as a function of neutron energy, we used the nuclear leveI density formulation of Gilbert and Cameron ${ }^{(28)}$ with shell coriections. The basic idea of their approach is to match two types of level density formulae:

$$
\rho_{1}=\frac{1}{T} e^{\left(\mathrm{E}_{0}\right) / T}
$$

which holds true for energies lower than a characteristic energy E_{x} and

$$
\rho_{2}=\frac{\sqrt{\pi}}{12} \frac{\exp (2 \sqrt{a U})}{a^{1 / 4} U^{5 / 4}} \frac{1}{\sqrt{2 \pi / \sigma}}
$$

applicable to energies greater than $E_{x} . E_{x}$ may be determind from the nuclear systematics given in this paper and T and E_{0} are determined by fitting ρ_{1} and ρ_{2} at $E=E_{x}$. For energies where the formula ρ_{2} is applicable the nuclear temperature τ is

$$
\frac{1}{T}=\sqrt{\frac{a}{U}}-\frac{3}{2 \mathrm{~J}}
$$

where again a and U may be determined from the tables given by Gilbert and Cameron. In the low energy density expression, the nuclear temperature is considered a constant whereas in the high energy expression it is energy dependent as shown by the expression for T.

References

1. G. V. Muradyan and Yu. V. Adamchuk, IAEA Conf. on Nuclear Data, Paris, Vol. I (1966) 79.
2. Neutron Cross Sections, Vol. II B, $Z=41-60$, BNL-325, 2nd Edition, Supplement No. 2, M. D. Goldberg, S. F. Mughabghab, S. N. Purohit, B. A. Magurno, and V. M. May, 1966.
3. C. G. Shull and E. O. Wollan, Phys. Rev. 81 (1951) 527.
4. R. L. Zimmerman and D. J. Hughes, Bull. Am. Phys. Soc. 3 (1958) 176.
5. R. E. Chrien, Phys. Rev. 141 (1966) 1129.
6. J. B. Garg, J. Rainwater, and W. W. Havens, Jr., Phys. Rev. 137 B (1965) 547.
7. W. H. Walker, AECL-3037 and Memo to Fission Products Subcomattee, April 8, 1970.
8. R. B. Tattersall, H. Rose, S. K. Pattenden, and D. Jowitt, Journal Nuclear Energy Al2 (1960) 32.
9. D. G. Foster, Jr., and D. W. Glasgow, Phys. Rev. C3 (1971) 576, and SCISRS -I File.
10. D. Wilmoie and P. E. Hodgson, Nuc. Phys. 55 (1964) 673. There is an error din Eqn(10), p. 676 of this paper where $W=9.52-0.53 E$ should be $W=$ 9.52-0.053. See P. E. Hodgson, Ann. Rev. Nucl. Sci. 17, 1. Also P. Marmier and E. Sheldon, "Physics of Nuclei and Particles" Vol. II, p. 1107, Academic Press, 1970.
11. P. A. Moidauer and S. A. Zawadzki, Private Commnication.
12. C. Dunford, COMMNUC, AI-AEC-12931.
13. V. N. Kononov, Yu. Ya Stavisskii; S. R. Chistozvonov, V. S. Shorin IAEA, Conf. on Nuclear Data, Paris, Vol. I (1966) 469, and SCISRS-I File.
14. A. E. Johnsrud, M. G. Silbert, and H. H. Barschall, Phys. Rev. 116 (1959) 927, and SCISRS-I File.
15. L. W. Weston, K. K. Seth, E. G. Bilpuch, anci H. W. Newson, Annals of Pinysics 10 (1960) 477.
16. A. K. Chaubey and M. L. Sehgal, Phys. Rev 152 (1966) 1055.
17. D. Kompe, Nucl. Phys. Al33 (1969) 513, and SCISRS-I File.
18. S. M. Qaim, Jour. Inorg. and Nucl. Chem. 32 (1970) 1799.
19. V. Benzi, G. C. Panini, and G. Reffo, gec (69)24.
20. R. F. Berland, CHAD, (NAA-SR-11231).
21. B. Minetti and A. Pasquarelli, Nucl. Phys. All8 (1968) 449.
22. S. Pearlstein, Neutron-Induced Reactions in Medium Mass Nuclei, J. Nucl. Energy 27 (1973) 81.
23. B. P. Bayhurst and R. J. Prestwood, Jour. Inorg. and Nuc 1. Chem. 23 (1961) 173.
24. R. F. Coleman, B. E. Hawker, L. P. O'Connor, and J. L. Perkin, Proc. Phys. Soc. 73 (1959) 215.
25. S. K. Mukherjee, A. K. Ganguly and N. K. Majumdar, Proc. Phys. Soc. 77 (1961) 508.
26. W. Nagel and A. H. W. Aten, Jr. Physica 31 (1965) 1097.
27. W. Lu, N. Ranakumar, and R. W. Fink, Phys. Rev. LC (1970) 358.
28. A. Gilbert and A. G. W. Cameron, Can. Jour. Phys. 43 (1965) 1446.

Table I. Optical Model Parameter;

$$
\begin{aligned}
& V(r)=U f(r)+i W g(r) \\
& f(r)=\left[1+\exp (r-R) / a_{U}\right]^{-1} \\
& g(r)=4 \exp \left\{(r-R) / a_{W}\right\}\left[1+\exp (r-R) / a_{W}\right]^{-2} \\
& r_{0}=1.26 f m \quad a_{U}=0.66 f m \quad a_{W}=0.48 \mathrm{fm} \\
& R \quad=r_{0} A^{1 / 3} \mathrm{fm} \\
& U \quad=47.01-0.267-0.00118 E^{2} \mathrm{MeV} \\
& W=9.52-0.053 \mathrm{MeV}
\end{aligned}
$$

$$
\text { Spin orbit term }=0 \text {. }
$$

Table II. Energy Levels

Ag-107		Ag-109		Cs-133	
Eex (keV)		$\mathrm{E}_{\text {ex }}$ (kev)		$\mathrm{E}_{\mathrm{ex}}(\mathrm{keV})$	J^{7}
0.0	1/2-	0.0	1/2 -	0.0	7/2+
93.0	7/2+	88.0	712+	81.0	5/2+
126.0	9/2+	133.0	9/2+	161.0	5/2+
325.0	3/2-	311.0	3/2-	384.0	3/2+
423.0	5/2-	415.0	5/2-	437.0	1/2+
787.0	3/2-	702.0	3/2-	633.0	9/2+
922.0	5/2+				
$\begin{aligned} & \text { Continu } \\ & \geqslant 950 \mathrm{k} \end{aligned}$		$\begin{aligned} & \text { Contir } \\ & \geqslant 710 \end{aligned}$		$\begin{aligned} & \text { Contin } \\ & \geqslant 650 \end{aligned}$	

CAPTURE CROSS SECTION (BARNS)

CAPTURE CROSS SECTION (BARNS)

CAPTURE CROSS SECTION (BARNS)

XENON-132

Gencral Identification

$$
\begin{aligned}
\text { MAI } & =1026 \\
Z A & =1,135.0 \\
\text { AWR } & =133.748
\end{aligned}
$$

$$
\begin{aligned}
& \text { [Everling, 1960] } \\
& \frac{\mathrm{Xe}^{135}}{\mathrm{~N}}=\frac{134.907}{1.008665}
\end{aligned}
$$

Radioactive Decay

```
\(r_{2}^{2}=9.13 \mathrm{hr}\).
\(\lambda(\) derived \()=2.108 \mathrm{E}-05\)
```

[Nuclear Data Tables] (2)

Cross Section Evaluations

A careful study of the low-energy cross section has been done by [Sumner]. (3) The results of this study were accepted in the apparent absence of any controversy. [Sumner] lists point values from 0.01 to 1000 eV for $20^{\circ} \mathrm{C}$, For the ENDF/B tabulation it was decided to tabulate data for $0^{0} \mathrm{~K}$. Therefore, the parameters of [Sumner] were used to generate point values frci 10^{-4} to $10^{3} \mathrm{eV}$ using the program UNICORN [Otter]. 4 In the UNICORN calculation a Xe ${ }^{135}$ mass of 10^{4} wes used since laboratory energy parameters were used. This calculation gives

$$
\sigma_{n, \gamma}=2.637 \times 10^{6} \text { barns at } 0.0253 \mathrm{eV}\left(0^{\circ} \mathrm{K}\right)
$$

compared with

$$
\sigma_{n, \gamma}=2.652 \times 10^{6} \text { barns }\left(20^{\circ} \mathrm{c}\right) \text { [Sumner]. }
$$

ENDPY/13
IThe data file contains 51 point values for each of $\sigma_{T}(M T=1)$, $\sigma_{n}(M I=2)$, and $\sigma_{\gamma}(M I=102)$. The energy range covered 10^{-4} to $10^{3} \mathrm{eV}$, The energy mesh is calculated by UNICORN to minimize error in a Ind vs E interpolation.

$$
a=0.746 \times 10^{-12} \mathrm{~cm}
$$

RIFRPRUNCES

1. l. Evcrling, L. A. König, J. E. H. Mattauch, and A. H. Wapstra, Nuclear Physics 18, 529 (1960).
2. Nuclear Data Tables, NRC 61-2-117.
3. H. M. Sumner, AEEW-R-116 (June 1962).
4. J. M. Otter, NAA-SR-11980, Vol. VI (June 1966).

SAMAliIUM-149

Gencral Iucntification

$$
\begin{aligned}
\text { MAI' } & =1027 \\
\mathrm{ZA} & =62149.0 \\
\text { AWR } & =147.638 \\
I & =3.5
\end{aligned}
$$

$$
\begin{aligned}
& \text { [Everling] (1) } \\
& \frac{\mathrm{MSm}^{149}}{\mathrm{Mn}}=\frac{148.9169}{1.008665}=147.638
\end{aligned}
$$

Introduction

The primary objective of establishing the data file for sm-149 was to provide a best estimate of cross sections in the thermal and epithermal energy range for the calculation of absorptions in thermal systems. The ENDF/B entries as of this date consequently include smooth cross sections in the thermal region, resonance parameters from 3.55 to 100 eV , and average parameters for the region of 100 eV to $10,000 \mathrm{eV}$.

Cross Sections

Low-Energy
Although a great deal of effort has gone into measurement of resonance parameters of Sm^{149}, there is a paucity of precise data in the thermal recion. The measurements which exist show that althoueh the resonance at 0.0976 eV dominates the thermal region there is a significant contribution from a bound level (210% at 0.025 ev). The parameters of the bound level have never heen precisely determined. [Pattenden] (2), for example, added a $1 / v$ component which gave much too large a contribution in the low cross section regions between resonances at higher energies. To establish the low energy behavior the following data sources were considered:

Source	Sample	linergy Rance
lattenden (2)	Sm^{149}	$0.01-1 \mathrm{eV}$
Mcheynolds (3)	Sm	$0.005-\mathrm{eV}$
Sailor (4)	Sm	$0.04-1 \mathrm{eV}$
Marshak (5)	Sm	$0.06-.19 \mathrm{eV}$

The resonance parameters listed in file 2 were also used in the calculation. The calcuiated cross section was then used with the measured data listed above, corrected for the contributions of other Sm isotopes where necessary, to establish the residual cross section. The residual cross section was then fitted by standard graphical techniques to establish the parameters of the bound level. The resulting fit was not very precise but was well within the rather large scatter of the data. The following resonance parameters were derived:

The value of Γ_{γ}, of course, could not be determined for a level so fa removed but was input as the approximate average value of the lowestlying resonances. Similarly, the value of $J=3$ was input, having been determined by others. (7)

The negative energy resonance parameters were then added to the UNICORN input. The resulting cross sections were recalculated, found to be
in reasonable agreement with expectations and no further adjustment was made. The calculated cross sections gave the following values for σ_{γ} at 0.0253 eV :

	$\mathrm{ENDF} / \mathrm{B}$	$[\mathrm{BNL}-325(1966)](7)$
Sm^{149}	41,200	$41,000 \pm 2,000$
Sm	5,780	$5,820 \pm 100$

The $\mathcal{L N D F} / 13$ data file consists of 82 point values for $\sigma_{T}(M \Gamma=1)$, $\sigma_{n}(M T=2)$, and σ_{γ} (MT=102) over the energy range 10^{-4} to 3.554 eV . The point values were calculated by UNICORN for $0^{\circ} \mathrm{K} . \mathrm{Sm}^{149}$ was given a mass of 10^{4} in the calculations to remove the center-of-mass term. Ind vs \dot{L} interpolation is specified because the energy mesh calculated by UNICORN is designed for minimum interpolation error in that fashion. Point values were continued to the minimum cross-section region (3.554 eV) between the 0.873 eV and 4.98 eV resonances to minimize discontinuities from joining smooth cross section values to values calculated from resonance parameters in the presence of interference. Smooth cross sections in the resonance region 3.554 eV to 10^{4} eV are spe;ified to be zero in the $\mathrm{ENDF} / \mathrm{B}$ file.

Resonance Region

Resolved

A preliminary version of $\left[\operatorname{BNL}-325\right.$ (2966)] ${ }^{(7)}$ lists resonance parameters for 27 resonances from 4.98 to 99 eV . The recommended parameters were used in most cases except where rounding had reduced precision. In the case of the 4.98 eV resonance the recommended value ${ }^{(7)}$ of $\Gamma_{n}{ }^{\circ}=0.90 \mathrm{meV}$ is inconsistent with the determination of $J=4$. The value used in the ENDF/B file of $\Gamma_{n}{ }^{0}=.7854 \mathrm{meV}$ is
consistent with the results of Marshak. (5) In the case of the 9.0 eV resonance the value given by Marshak (5) and quoted in [BNL-325 (1966) ${ }^{(7)}$ for $\Gamma_{n}{ }^{\circ}$ is in error. The correct Marshak value, for $J=4$, of $\Gamma_{n}{ }^{\circ}=3.093 \mathrm{meV}$ is used in the ENDF/B data file. This corrected value is to be applied to the value of Γ (not to Γ_{γ} as done in $\operatorname{Ref} 7$) to obtain the value of $\Gamma_{\gamma}=58.6 \mathrm{meV}$ used in the ENDF/B file.

In the ENDF/B file the value of $J=I=3.5$ was used to generate the value $g=.5$ for those resonances where J has not been determined. Unresolved

The transmission coefficient constant was determined from

$$
\rho=c \Gamma E=k R=1.118 .10^{-3} / E_{E}
$$

The following average parameters were specified in ENDF/B as determined from the resolved parameters and asauming the same values for $J=3$ and $J=4$ resonances:

$$
\begin{aligned}
D & =6.8 \mathrm{eV} \\
\left\langle\Gamma_{n} 0\right\rangle & =5.1 \times 20^{-3} \mathrm{eV} \\
\left\langle\Gamma_{\gamma}\right\rangle & =62 \mathrm{meV}
\end{aligned}
$$

where the value of $\left\langle\Gamma_{\gamma}\right\rangle$ was determined from the average of the lowest energy resonances where precise determinations exist. The high-energy cutoff of the unresolved region was arbitrarily aet at $10^{4} \mathrm{eV}$ in ENDF/B.

RLFLRTINCES

1. F. Everling, L. A. König, J. E. H. Mattauch, and A. H. Wapstre, Nuclear Physics 18, 529 (1960).
2. N. J. Pattenden, P.I.C., Vol. 16, $\sigma \sigma$ (Geneva 1958).
3. A. W. McRcynolds.and E. Andersen, Phys. Rev. 23, 195 (1954).
4. V. L. Sailor, H. H. Landon, and H. Foote, Phys. Rev. ©6, 1014 (1954).
5. H. Marshak and V. L. Sailor, Phys. Rev. 109, 1219 (1958).
6. J. M. Otter, NAA-SR-11980, Vol. VI (June 1966).
7. INL-325, Second vaition, Suppl. $2, z=41-80$ (2966) (Preliminary
Draft).

BUKOPIUM-151

Gencral Identilication

$$
\begin{aligned}
M A^{\prime} & =10.28 \\
Z A & =63151.0 \\
A W R & =149.623 \\
R & =.63 \times 10^{-12} \mathrm{~cm} \\
I & =2.5
\end{aligned}
$$

[Everling] ${ }^{(1)}$
[Nereson] ${ }^{\text {(2) }}$

Radioactive Decay
$\mathrm{MT}=16 \quad \mathrm{Eu}^{150} \rightarrow \mathrm{Ga}^{150}$
$\mathrm{Ga}^{150} \rightarrow \mathrm{Sm}^{146}$
$\mathrm{MT}=17 \quad \mathrm{Eu}^{149} \rightarrow \mathrm{Sm}^{149}$
$\mathrm{MT}=102 \quad \mathrm{Eu}^{152} \rightarrow \mathrm{Sm}^{152}$
$\mathrm{MT}=103 \quad \mathrm{Sm}^{151} \rightarrow \mathrm{Eu}^{151}$
$M T=107$
$\mathrm{Pm}^{148} \rightarrow \mathrm{Sm}^{148}$
$=1.375 \times 10^{-5} \mathrm{sec}^{-1} \quad$ Ref 3
$=1.234 \times 10^{-14} \mathrm{sec}^{-1} \quad$ Ref 4
$=7.567 \times 10^{-8} \mathrm{sec}^{-1} \quad$ Ref 5
$=1.77 \times 10^{-9} \mathrm{sec}^{-1} \quad$ Ref 5
$=2.35 \times 10^{-10} \mathrm{sec}^{-1} \quad$ Ref 5
$=1.485 \times 10^{-10} \mathrm{sec}^{-1} \quad$ Ref 4

Introanction
The primary objective was to provide for $\operatorname{END} / \mathrm{B}$ a set of evaluated data in the thermal and resonance region for the calculation of absorptions in (near-) thermal reactors. Due in part to the stimulus of being provided calculeted $n, 2 n$ and $n, 3 n$ cross sections some data have been provided for the fast-neutron energy range. These are the total and capture cross sections in addition to the $n, 2 n$ and $n, 3 n$ cross sections. These values will constitute a basis for model calculations to complete the set for this isotope.

Cross Sections

Low Energy

No existing evaluation as such was discovered. Consequently the following deta sets were considered in arriving at e fit to the lowenergy croas section:

1 HCO
Tassan
Sailor ${ }^{(7)}$

Pattenden ${ }^{(8)}$
Holt ${ }^{\text {(9) }}$
Sturm ${ }^{(1)}$

Sample
Lu^{151}
Eu
Eu ${ }^{151}$
Eu ${ }^{152}$
Eu

Lincrey Runise

.2	-.7	eV
$.08-.8$	cV	
$.01-6$	eV	
$10^{-4}-10^{-2}$	eV	
$.007-.1$	eV	

These data are observed to be badly discrepant, e.b., the values of Pattenden and Holt differ by 50% at $10^{-2} \mathrm{eV}$. No definite reason for this discrepancy was established. Most of the cross section at thermal energies (430% at .025 eV) is due to a bound level. In order to analyze this level a calculation was made of the resonance contribution using the program UNICORN. ${ }^{(11)}$ In this caiculation the resonance parameters listed in file 2 were used along with the parameters established for the first two levels by [Tassan]. (6) The parameters of Tassan were sccepted as the most accurate measurements and were adjusted to conform to the presently established value of $J=3$ for the first four resonances (${ }^{(22)}$ (including the bound). The parameters used arc licted below:

L_{0}	Γ_{n}	Γ_{γ}	\underline{J}	\underline{R}
0.321 eV	.07139 meV	79.53 meV	3	$.63 \times 10^{-12} \mathrm{~cm}$
0.46	.665	87.34	3	$.63 \times 10^{-12 \mathrm{~cm}}$

The residual cross section was then calculated correcting for the rather small contribution of Eu ${ }^{153}$ using the Eu ${ }^{153}$ values listed in ENLF/B MAT 1029. The residual cross section was fitted to a singlelevel B-W using standard graphical techniques. The chosen fit favors the data of Sturm and Holt and disagrees significantly with the data of Pattenden ㄴor energies less than about 0.06 eV . The agreement with
the data of Sturm for energies less than about 0.04 eV is of little significance since the correction for higher-order neutrons in that measurement was in error. An equally good fit of a bound levei could have been made to the data of Pattenden. Measurements made in thermalized spectrs scemed, however, to favor the higher values of Holt and the resulting fit falls only slightly below those data.

The parameters derived for the bound level were:

$$
\begin{aligned}
E_{0} & =-0.0006 \mathrm{eV} \\
\Gamma_{n} & =2.58 \times 10^{-6} \mathrm{eV} \\
\Gamma_{\gamma} & =0.100 \mathrm{eV} \\
J & =3 \\
R & =.63 \times 10^{-12} \mathrm{~cm}
\end{aligned}
$$

The values of J and R were, of course, not determined but were input. The value of Γ_{γ} was determined but not very precisely because of the discrepiant data. This value of Γ_{γ} differs significantly from the value of 67 meV deduced by Holt. ${ }^{(9)}$ This difference is meaningless, however, since it was not possible to deduce a significant value of Γ from Holt's data since the measurement only covered an energy range of about $1 / 10 \Gamma$ near the peak of the resonance. A much wider resonance was required to contribute to the energy region of 0.2 to 0.3 eV .

The low-erergy cross sections in the ENDF/B file 3 for $\sigma_{T}\left(N_{T l}=1\right)$, $\sigma_{n}(M T=2)$, and $\sigma_{\gamma}(M T=102)$ were calculated from the resonance parameters given in this discussion for the $-0.0006 \mathrm{eV}, 0.321 \mathrm{eV}$, and 0.46 eV resonances plus the resonances listed in file 2. The calculations wore made by UNICORN for $0^{\circ} \mathrm{K}$ and with a mass of $E u^{151}$ of 10^{4} to remove the center-of-mass term in UNICORN. Sixty-seven (67) point values are ilsted for each reaction over the energy range 10^{-4} to 0.84 eV .

The calcuiated value of σ_{γ} at .0253 eV is 9350 barns compared with a recomended value of 8800 ± 100 barns eiven in [BNL-325 (1966)]. (13) Since wc have not calculated any spectrum-averaged cross sections with the $\mathrm{L}_{\mathrm{NLH}} / \mathrm{B}$ cross section we have not established any sigaificance to this difference.

Resonance Region

A preliminary draft of [BNL-325 (1966)] ${ }^{(13)}$ gives resonance parameters for 25 resonances from 1.055 to 27 eV . The recommended values given there are listed in ENDF/B with few exceptions. These exceptions occur for the 1.055 eV and 3.368 eV resonances where the very precise measurements of Domanic ${ }^{(14)}$ have been used along with the J factors ${ }^{(12)}$ which were determined after the measurements of Domenic. Note that the values recommended in BNL-325 for Γ_{n} and Γ_{n}^{0} for the 1.055 eV resonance have not been adjusted for the value $\therefore \mathrm{J}=3$ as implied.

The resonance parameters as described are listed in file 2 of ENDF/B. The value of $J=I=2.5$ has been prescribed for those resonances where the value of J has not been determined in order to generate the value of $g=.5$. A value of $11.9 \mathrm{E}^{-\frac{1}{2}} \mathrm{~b}$ has been added to the smooth cross sections of σ_{T} and σ_{γ} in file 3 from 0.84 to 28 eV to account for the effects of the bound level.

Unresolved resonance parameters are prescribed in file 2 from 28 eV to $1.6 \times 10^{5} \mathrm{eV}$. The values listed are taken as the same for $\mathrm{J}=2$ and $J=3$ and specified for $L=0$. The values were obtained from averages of the resolved parameters and are:

$$
\begin{gathered}
\rho=c \Gamma E=k R=2.77 \times 10^{-3} \Gamma_{E} \\
D_{J}=1.5 \mathrm{eV}
\end{gathered}
$$

$$
\begin{aligned}
& \left\langle\Gamma_{n}^{0}\right\rangle=0.4 \times 10^{-3} \mathrm{eV} \\
& \left\langle\Gamma_{\gamma}\right\rangle=.092 \mathrm{eV}
\end{aligned}
$$

Inst-Ncutron licgion

Values of $\sigma_{T}(M T=1), \sigma_{\gamma}(M T=102), \sigma_{n, 2 n}(M T=16)$, and $\sigma_{n, 3 n}(M T=17)$ are given in file 3 from $1.6 \times 10^{5} \mathrm{eV}$ to 20 MeV . The values of $\sigma_{n, 2 n}$ and $\sigma_{n, 3 n}$ were calculated by Pearistein. (15) The values of σ_{γ} were taken from a smooth curve through the data of Johnsxud ${ }^{(16)}$ and extrapolated by intuition to higher energies. The values of σ_{T} were taken from a smooth curve drawn through recent data of Foster and Glasgoy (17) for natural europium and extrapolated to lower energies by comparison with the data for neighboring nucled.

RLPMRNCLS

1. F. bverling, L. A. König, J. E. H. Mattauch, and A. H. Warstra, Nuclear Physics, 18, 529 (1960).
2. N. G. Nereson, C. E. Olson, and G. P. Arnold, Phys. Rev. 127, 2101 (1962).
3. B. T. Kenna and F. J. Conrad, SC-RR-66-229 (June 1966).
4. G. E. Chart of the Nuclides ($8 / 64$).
5. G. Goldstein and S. A. Reynolds, Nuclear Data A, 1, 435 (1966).
6. S. Tassan, A. Hèllsten, and V. L. Sailor, Nucl. Sci. Engr. 10 , 169 (1961).
7. V. L. Sailor, H. L. Landon, and H. Foote, Phys. Rev. 93, 2292 (1954).
8. N. J. Pattenden, P.I.C. 16, 44 (Geneva 1958).
9. N. Holt, Phys. Rev. 28, 1162A (1955).
10. W. J. Sturm, Phys. Rev. 71, 757 (1947).
11. I. M. Otter, NMA-SR-11980, Vol. VI (June 1966).
12. J. Stolovy, Phys. Rev. 134, B68 (1964).
13. BNL-325, Second Edition, Suppl. 2 (1966) Preliminary Draít.
14. F. Domanic and E. T. Patronis, Jr., Phys. Rev. 114, 1577 (1959).
15. S. Pearlstein, BNL, Private Communication.
16. A. E. Johnsrud, M. G. Silbert, and H. H. Barschall, Phys. Rev. 116, 927 (1959).
17. D. G. Foster, Jr. and D. W. Glasgow, FNWL, Unpublished Data (1966) Available from BNL Sigma Center.

LUROIMUM-153

General Identification

$$
\begin{aligned}
\text { MAT } & =1029 \\
\mathrm{ZA} & =6315.3 . \mathrm{v} \\
\mathrm{AWR} & =1.51 .607 \\
\mathrm{R} & =.63 \times 10^{-12} \mathrm{~cm} \\
\mathrm{I} & =2.5
\end{aligned}
$$

Radioactive Decay

$\mathrm{MT}=16$	$\mathrm{Eu}^{152} \rightarrow \mathrm{Sm}^{152}$	$\lambda=1.77 \times 10^{-9} \mathrm{sec}^{-1}$	Ref 3
$\mathrm{MT}=102$	$\mathrm{Eu}^{154} \rightarrow \mathrm{Ga}^{154}$	$\lambda=1.37 \times 10^{-9} \mathrm{sec}^{-1}$	Ref 3
$\mathrm{MT}=103$	$\mathrm{Sm}^{153} \rightarrow \mathrm{Eu}^{153}$	$\lambda=4.10 \times 10^{-6} \mathrm{sec}^{-1}$	Ref 3
$M T=107$	$\mathrm{Pm}^{150} \rightarrow \mathrm{Sm}^{150}$	$\lambda=7.13 \times 10^{-5} \mathrm{sec}^{-1}$	Ref 4

Introduction
The primary objective was tu provide for $\operatorname{liNDF} / \mathrm{B}$ a set of evnlurited data in the thermal and resonance region for the calculation of absorptions in thermal and near-thermal reactors. Since calculated values of $n, 2 n$ and $n, 3 n$ cross sections were provided some other dats were alsc provided in the fast neutron energy range. These are the total and capture cross sections in addition to the $n, 2 n$ and $n, 3 n$. These values will provide a basis for model calculations to complete the set for this isctope.

Cross Sections

Low linergy

No esisting evaluation as such was discovered. The cnly known measurements of the total crcess section in the low energy range which was made with a sample enriched in Eu ${ }^{153}$ was that of Patienden. (5) These measurements showed that the thermal cross section of Eu ${ }^{153}$ was only about one-tenth that of natural europium. In addition the measurements showed that the lcw energy cross secticn of Eu ${ }^{153}$ was dcminated by a bound level (285% of the cross section at 0.025 eV). However,

Fattenden did not present an anslysis of the results in terma of bound level paramelers. It was felt desirable to make such an analysis in order to minimize possible spurious structure in the datio and provide an extrapolation beyond the range of measurement.

The program UNICORN ${ }^{(6)}$ was used to calculate the resonance contribution in the thermal region. The resunance parameters listed in file 2 were used along with the parameters of Pattenden for the 0.457 eV resonance:

$$
\begin{aligned}
E_{0} & =0.457 \mathrm{eV} \\
2 g \Gamma_{n} & =0.010 \mathrm{eV} \\
\Gamma_{\gamma} & =59 \mathrm{meV}
\end{aligned}
$$

The calculated resonance contribution was subtracted from the data of Pattenden and the residual cross section was andlyzed fur bound level parameters using standard graphical techniques. The residual crcss section could not be fitted adequately to a single bound level and two levels were invoked. The results of the analysis gave the following parameters for the bound levels:

These parameters were then added to those previcusly used in UNICORN to calculate 58 point values cf $\sigma_{T}(M T=1)$, $\sigma_{n}(M T=2)$, and $\sigma_{\gamma}(M T=102)$ from $10^{-4} \mathrm{eV}$ to 0.77 eV . These values are given in file 3 with \&na-E interpolation since the energy mesh calculated in UNICORN is designed to give minimum interpolation error in ℓ no vs E. The point values are for $0^{\circ} \mathrm{K}$.

The resulting ceilculation gives a total cross section at 0.0253 eV of 457.5 barns in agrecment with Pattenden's value of 496 ± 16 barns. HNL-325 (1966) ${ }^{(7)}$ gives a recommended value of 370 ± 60 barns for σ_{γ} (.0253). \#his valuc is based in part on measurements made in a thermalized speatrum. Since we have not made spectrum-sveraged calculations using the ENDF/B cross sections, the significance of this difference is not known at present.

Resonance Region
BNL-325 (1966) lists parameters for 18 resonances from 1.73 eV to 24 eV . For the first four resonances we have used the precise parameters determined by Domanic which differ from the recommended parameters primarily because of rounding. The parameters of the 18 resonances are listed in file 2. The value of $J=I=2.5$ is specified for all of the resonances except the 2.456 eV resonance where $J=3$ has been determined. ${ }^{(8)}$

Parameters for the unresolved region were calculated from the resolved parameters. The average value of $\left\langle 2 g \Gamma_{n}{ }^{\circ}\right\rangle$ is 0.6×10^{-3} eV. There are 20 resonances observed in 24.9 eV which give an average spacing of 2.5 eV (spin state) ${ }^{-1}$. The value of c was calculated. from:

$$
\rho=c \Gamma E=k R=2.77 \times 10^{-3} / \mathrm{E}
$$

It was assumed that the average parameters are the same for ach spin state and the unresolved region was specified from 26 eV vo 1.6×10^{5} eV for $L=0$ neutrons. The smooth cross section file specified zero cross sections for all reactions throughout the resonance region (.77 eV to $2 \times 10^{5} \mathrm{eV}$).

Fast-Neutron Region

The total cross section given in file 3 from 1.6×10^{5} to 20 MeV is the same as that given for bu ${ }^{151}$ (MAT 102B) since the measurements werc for natiural europium. The capture cross section is aloo the same although the measurements were for $E u^{151}$. The $n, 2 n$ and $n, 3 n$ cross sections were calculated by Pearlstein. (9)

1. F. Everling, L. A. König, J. E. H. Mattauch, and A. H. Wapstra, Nuclear Physics, 18, 529 (1960).
2. N. G. Nereson, C. E. Olson, and G. P. Arnold, Phys. Rev. 1272101 (1962).
3. G. Goldstein and S. A. Reynolds, Nuclear Data A, 1, 435 (1966).
4. G. E. Chart of the Nuclides (8/64).
5. N. J. Pattenden, PIC, Vol. 16, 44 (Geneva 1958).
6. J. M. Otter, NAA-SR-11980, Vol. VI (June 1966).
7. inN-325, Second Edition, Suppl. 2 (1966) Proliminary Draft.
8. J. Stolovy, Thys. Rev. 234, 168 (1964).
9. S. Pearlatein, BNL, Private Commanication.

64-60 1030 ANL ANL-73日7 (MAR GB) OCTGG E.M.PENNINGTON. J.C.GAJNIAK
V. Gadolinium (MAT 1030)
E. M. Pennington

Argonne National Laboratory
A. Outline of Cross Sections Included

File 3 contains smooth total, elastic, inelastic, ($n, 2 n$), ($n, 3 n$) and (n, γ) cross sections, along with values of $\mu_{L}, 5$ and γ calculated from the Legendre coefficients of File 4. The energy range covered extends from 0.001 eV to 15 MeV .

Resolved resonance parameters for 24 resonances in Gd - 155 and 5 resonances in Gd-157 are included in File 2, with the resonance calculations extending from 0.001 eV to 50 eV .

Legendre coefficients for elastic scattering in the center of mass system for 32 energies and the transformation matrix from the center of mass to laboratory systems are included in File 4 :

Nuclear temperatures are given in File 5 for inelastic scattering and for the ($n, 2 n$) and ($n, 3 n$) reactions. No resolved levels were considered for inelastic scattering.

Free gas thermal scattering law parameters are given in File 7.

B. Sources of Gadolinium Data

The chief source of gadolinium data was the recent Karlsruhe evaluation (Ref. 1). Data from other sources were also used as described in detail in the following.

Total Cross Section

The total cross section up to 50 eV is calculated entirely from resonance parameters. From 50 eV to $10 \mathrm{keV}, \sigma_{\mathrm{nT}}$ was read from the

BNL- 325 graphs (Ref. 2). Values from 10 keV to 10 MeV were obtained trom KFK-352 (Ref. 1). The total cross section was extended from 10 to 15 MeV using the sparse data of Ref, 2 as a guide.

Elastic Scattering Cross Section

Relow 50 eV , the elastic scattering cross section is calculated from the resonance parameters of File 2. From 50 eV to 10 keV , the total cross section was split into scattering and capture components using a computer program based on Equations (39), (40), (43) and (44) of KFK-352. Equations (3J) and (40) are expressions for the average scattering and capture cross sections for $\ell=0$ neutrons in the unresolved resonance region for Gd-155. The parameters used in these equations were deternined by averaging the known resonance parameters. Since not enough resolved parameters are known to find average parameters for the other isotopes, Gd-155 was assumed typical of natural gadolinium. Equations (43) and (44) merely use Equations (39) and (40) to split the experimental σ_{nT} into the scattering and capture components.

From 10 keV to 10 MeV , values of σ_{nn} were obtained from KFK-352. The reaction cross section was subtracted from the total cross section to give the elastic scattering cross section from 10 to 15 MeV . (n, y) Cross Section

The (n, r) cross section is calculated from resonance parameters below 50 eV . From 50 eV to $10 \mathrm{keV}, \sigma_{\mathrm{n} \mathrm{\gamma}}$ was determined as described above in the discussion of the elastic scattering cross section. Values from KFK-352 were used from 10 keV to 10 MeV , with the extension to 15 MeV
being made on the basis of linear extrapolation on a log-log scale. Inelastic Scattering Cross Section

The inelastic scattering cross section was obtained up to the thresheld of the ($n, 2 n$) reaction from KFK-352. From the ($n, 2 n$) threshold to $10 \mathrm{MeV}, \sigma_{\mathrm{n}, 2 \mathrm{n}}$ was subtracted from the σ_{nn} - of KFK-352 to give the inelastic scattering cross section. From 10 to 15 MeV , the reaction cross section of KFK-352 was extrapolated on a basis of a value at 15 MeV equal to 1.01 times the sum of $\sigma_{n, 2 n}, \sigma_{n, 3 n}$ and $\sigma_{n \gamma}$. Then $\sigma_{n n}$ - from 10 to 15 MeV was obtained by subtracting the other reactions from this total reaction cross section.
$(\mathrm{n}, 2 \mathrm{n})$ and ($\mathrm{n}, 3 \mathrm{n}$) Cross Sections
The $(n, 2 n)$ and ($n, 3 n$) cross sections were both calculated by S. Pearlstein, according to the methods of Ref. 3.
μ_{L}, ξ and γ
The values of μ_{L}, ξ and γ were calculated from the File 4 Legendre coefficients, as described in the magnesium documentation. Resonance Parameters

Resonance parameters are included for 24 s -wave resonances in Gd-155 and 5 s-wave resonances in Gd-157. The parameters for the first three resonances in Gd-155 and the first two in Gd-157 are from Ref. 4. Parameters for the remaining resonances are from BNL-325 (Ref. 2). Elastic Scattering Legendre Coefficients

Legendre coefficients in the center of mass system, which were obtained from H. Alter (Ref. 5), were used in the energy range from
0.3 to 1.5 MeV . Below 0.3 MeV , coefficients were estimated from extrapolation of the Alter data, with isotropic scattering assumed below 5 keV . Above 1.5 MeV , coefficients were calculated at seven energies by performing Abacus-2 (Ref. 6,7) calculations and fitting the resulting shape elastic angular distributions with the Argonne SAD code (Ref. 8). The parameters used in these optical model calculations were derived from approximations to Eq. (35) of Ref. 9, since the optical model parameters used in KFK-352 were also obtained in this manner. This equation is used to obtain local parameters which are approximately equivalent to non-local ones. As in KFK-352, the parameters of Table 4 of Ref. 9 without the spin-orbit term were used for the non-local parameters. The transformation matrix from the center of mass to laboratory systems, calculated using CHAD (Ref. 10), includes elements through $\ell=19$ in agreement with the number of coefficients in the high energy Legendre expansions.

Secondary Energy Distributions

Nuclear temperatures for inelastic scattering, calculated from the prescription of Ref. 11, are given at 60 keV and 15 MeV . Only continuum inelastic scattering was considered, both in this evaluation and in KFK-3.52, since there are many low-lying levels in the various Gd isotopes above the (n, n^{\prime}) threshold.

Nuclear temperatures are given for the ($n, 2 n$) and ($n, 3 n$)
reactions. These were determined by the methods described under magnesium and molybdenum.

The free gas thermal scattering law in File 7 has a cutoff of 1.5 eV above which the static model is used, and a value of 8.0 barns for the free atom scattering cross section. This 8.0 barn value is that which is calculated from resonance parameters near 1.5 eV .

C. Comments on Gadolinium Cross Sections

The cross section of gadolinium in the thermal energy range is the largest of any stable element. The resonance parameters of Ref. 4, which were used in this evaluation, give a very good fit to the gadolinium cross section at low energy.

There is not a great deal of experimental data available for gadolinium above one or two MeV . Thus optical model calculations were used to a large extent at higher energies. The ($n, 2 n$) and ($n, 3 n$) cross sections are also based entirely on calculation. No (n, p) and (n, α) cross sections are included in this compilation, but the Coulomb barrier is sufficiently high to make these cross sections quite small.

1. J. J. Schmidt and I. Siep, "26 Gruppen-Wirkungquerschnitte fur Europium, Samarium, Gadolinium und Hafnium," KFK-352 (August, 1965).
2. D. J. Hughes and R. B. Schwartz, "Neutron Cross Sections," BNL-325, Second Edition (July 1, 1958).
3. S. Pear1stein, "Analysis of ($\mathrm{n}, 2 \mathrm{n}$) Cross Sections for Medium and Heavy Mass Nuclei," Nucl. Sci. Eng. 23, 238-250 (November, 1965). Also BNL-897 (December, 1964).
4. H. B. Möller et al., 'Low Energy Neutron Resonances in Erbium and and Gadolinium,".Nucl. Sci. Eng. 8, 183-192 (September, 1960).
5. H. Alter, Atomics International, private communication. See also R. W. Campbell et al., "Compilation, Evaluation and Reduction of Neutron Differential Scattering Data," NAA-SR-11980, Volume IV,(April, 1967).
6. E. H. Auerbach et al., "Abacus-1: A Program for the Calculation of Nuclear Cross Sections Using the Cloudy Crystal Ball Model," KAPL-3020 (June 1, 1964).
7. E. H. Auerbach, "Abacus-2 (Revised Version) Program Operation and Input Description," BNL-6562. (November, 1962).
8. E. M. Pennington, J. C. Gajniak and R. A. Mewaldt, "Programs for Analysis of Scattering Angular Distributions," ANL-7306 (to be issued).
9. F. Perey and B. Buck, "A Non-Local Potential Model for the Scattering of Neutrons by Nuclei," Nuclear Physics 32, 353-380 (1962).
10. R. F. Berland, "CHAD, Code to Handle Angular Data," NAA-SR-11231 (December, 1965).
11. S. Yiftah, D. Okrent and P. A. Mo1dauer, Fast Reactor Cross Sections, Pergamon Press, New York (1960), p. 49.

66-DY-164 1031 BNW PRI.COMM.1967 JUNG7 日.R.LEONARD.JR. AND K.B.STEWART

DYSPROSIUM-164

Gencral Identification

$$
\begin{array}{rlrl}
\text { MAI } & =1031 & & \\
\mathrm{ZA} & =66164.0 & & \\
\text { AWR } & =162.52 & & \text { [Everling] } \\
I & =0 & \frac{163.9281}{1.008 E 6 \frac{1}{5}}=162.52 \\
R & =.77 \times 10^{-12} \mathrm{~cm} & & \text { Ref. } 2
\end{array}
$$

Radioactive Decay

$$
M T=102
$$

$\mathrm{Dy}{ }^{165} \rightarrow \mathrm{Ho}^{165}$

$$
\lambda=8.309 \times 10^{-5} \mathrm{sec}^{-1} \operatorname{Ref} 3
$$

Cross Sections

Low linergy
The cross sections of Dy ${ }^{164}$ are rather non-controversial. The July 1, 1966, edition of CINDA (3) shows three monoenergetic measurements: 1) σ_{T} measured from 10^{-3} to $1.5 \times 10^{-2} \mathrm{eV}$ by Moure ${ }^{(4)}$, 2) σ_{T} and $\sigma_{\text {act }}$ measured from . 02 to 1.5 eV by Sher (5) and 3) resonance parameters for a resonance at 146 eV by Zimmerman. (6)

Sher used his data and those of Mare to derive parameters for the bound level that dominates the thermal cross section. The parameters quoter by Sher are rather confusing. He quates a value of $\Gamma=166 \pm 4$ meV . Since the resonance is at -1.89 eV the analysis is very insensitive to the value of Γ. Consequently we have refitted the datir preserving the quoted parameters as much as possible, particularly hoping to improve the fit to the activation cross section. We found no significant improvement. Our derived parameters are:

$$
\begin{aligned}
E_{o} & =-1.89 \\
\Gamma_{\mathrm{n}}^{\circ} & =0.0420 \mathrm{eV} \\
\Gamma_{\gamma} & =0.0538 \mathrm{eV} \\
\mathrm{R} & =.77 \times 10^{-12 \mathrm{~cm}}
\end{aligned}
$$

where the value of Γ_{γ} was chosen to agree with the value obtained for the 146 oV resonance.

Ihe program UNICORN ${ }^{(7)}$ was used to calculate the low-eneigy criss sections using our parameters for the -1.89 eV resonance and the parameters of Zimmerman for the 146 eV resonance. The calculation was done for $0^{\circ} \mathrm{K}$ and the center-of-muss term removed from UNICORN. The point values are given in file 3 as 40 values from 10^{-4} to 2.229 eV . In σ - E interpolation is specified.

Resonance Reyion

The parameters of Zimmerman for the 146 eV resonance are given in filc 2. The resolved resonance region is specified from 2.229 to 27'2 eV. The smooth cross section file is specified to be zero in this energy range.

The UNICORN calculation yields a capture resonance integral of 352 barns from 0.45 eV to $10^{3} \mathrm{eV}$. This is to be compared with a recent measured value of 377 ± 34 barns. (8)

Fast-Neutron Region

roster and Glasgow ${ }^{(9)}$ have recently measured the total cross section of elemental dysprosium from 3 to 15 MeV . These results form the basis for 18 point values given in file 3 from 3 to 20 MeV .

Rli liRTNCES

1. F. Everling, L. A. König, J. E. H. Mattauch, and A. H. Wapstra, Nuclear Physics 18, 529 (1960).
2. Chrien, Col. Univ., Private Communication.
3. D. Strominger, J. M. Hollander, and G. T. Seaborg, Rev. Mod. Phys. 30 , 585 (19178).
4. W. E. Moore, KAPL, quoted in Rer 5.
5. R. Sher, S. Tassan, E. V. Weinstock, and A. Hellsten, Nucl. Sci. Engr. 11, 369 (1961).
6. R. L. Zimmerman, Bull. Am. Phys. Soc. II, 2, 42 (1957).
7. J. M. Otter, NAA-SR-11980, Vol. VI (June 1966).
8. J. J. Scoville, E. Fast, and J. W. Rogers, Nucl. Sci. Engr. 25, 12 (1966).
9. D. G. Foster, Jr. and D. W. Glasgow, PNWL, Unpublished Data (1966) Available from BNL Sigms Center.

LUTETIUM-175

General Identification

```
MAT \(=1032\)
    \(Z A=71175.0\)
\(\mathrm{AWR}=173.438\)
    \(I=3.5\)
    \(I=3.5\)
\(R=.73 \times 10^{-12} \mathrm{~cm}\)
Ref 1.
\(\frac{174.9409}{1.008665}\)
    Ref 2.
```


Radioactive Decay

$\mathrm{MT}=102 \quad \mathrm{Lu} 176^{\mathrm{m}} \rightarrow \mathrm{Hf}^{176}$
$\lambda=5.20 \times 10^{-5} \mathrm{sec}^{-1} \quad \operatorname{Ref} 3$

Introduction

The primary objective was to provide a set of evaluated data for low-energy neutrons since the primary interest in Lu-175 is in application as a neutron spectrum indicatior. However, since new data were availeble on the fast-neutron total cross sections we have also entered σ_{T} and σ_{γ} in the fast-neutron range. Hopefully these data will provide a basis for model calculations to complete the data set on this nucleus. Cross Sections

Low Energy

Although Lu ${ }^{175}$ is the major isotope in elemental Lutetium (97.41\%) the Lu ${ }^{175}$ cross section at low energies constitutes only about $1 / 3$ of the elemental cross section. In a literature search through July 1, 1966 [cINDA] ${ }^{4}$ we have found only one attempt to establish the low energy cross section of $\mathrm{Lu}{ }^{175}$. In this work of [Baston] ${ }^{5}$ measurements of σ_{T} were made over the energy region 0.01 to 1.0 eV with a time-of-flight spectrometer. The authors made no attempt to fit the observed cross section but presented a best fit $1 / v$ behavior from which they inferred a value of $\sigma_{\gamma}(.0253 \mathrm{eV})=$ 23 ± 3 barns. The data which they presented were, however, noticeably non-l/v. Consequently, we have fitted these data in order to provide
an imporved estimate of the energy variation of the cross section. The resonance parameters given in file 2 were used to calculate the resonance contribu:ion to the low energy cross section using the program UNICORN. The residual cross section was than analyzed by standard graphical techniques to obtain parameters for a bound level. Our evaluation of the parameters gives:

$$
\begin{aligned}
\mathrm{E}_{\mathrm{o}} & =-.1785 \mathrm{eV} \\
2 \mathrm{~g} \Gamma_{\mathrm{n}} & =3.907 \times 10^{-6} \mathrm{eV} \\
\Gamma_{\gamma} & =0.060 \mathrm{eV} \\
\mathrm{R} & =.73 \times 10^{-12} \mathrm{~cm}
\end{aligned}
$$

The values of R and Γ_{γ} are, of course, input values. The resonance is sufficiently far removed that the analysis is insensitive to the value of Γ_{γ} so we have used the value established for the observed parameters.

The parameters of the bound level plus the parameters contained in file 2 were used to calculate the final cross section. The calculations as performed by UNICORN for $0^{\circ} \mathrm{K}$. The results of the calculations are given in file 3 as 33 point values for $\sigma_{T}(M T=1), \sigma_{n}(M T=102)$, and $\sigma_{\gamma}(M T-102)$ over the energy range of 10^{-4} to 1.075 eV .

The results of these calculations gave the following values at $E=.0253 \mathrm{eV}$:

$$
\begin{aligned}
& \sigma_{\mathrm{T}}=28.2 \text { barns } \\
& \sigma_{\gamma}=23.5 \text { barns } \\
& \sigma_{\mathrm{p}}=4.7 \text { barns }
\end{aligned}
$$

The cross section values in the low energy range which are calculated
for elemental lutetium using the lNDF / B data for $L u^{175}$ and $L u^{176}$ are seriously discrepant wiin recent total cross section measurements. $(2,7)$ The contribution of $\mathrm{Iu}^{1 / 7}$ to the eiemental cross section is so small that it would require a factor of z or more error in the absolute scale of the $L u^{175}$ cross section to explain the discrepancy. Resonance Region

No now information on the resonance parametiers of $\mathrm{Lu}{ }^{1 / 7}$ has appeared ${ }^{(4)}$ since the 1960 Supplement to BNL-325. (8) Ihe purameters for the 26 resonances extending from 2.61 to 57.4 eV are eiven in file 2. The value $J=I=3.5$ is specified for each resonance so that $g=.5$.

The unresolved parameters were obtained from averaging the resolved parameters. The unresolved region is specified in file 2 from 60 to $10^{5} \mathrm{eV}$ with the following parameters for each of the $J=3$ and $J=4$ states for $L=0:$

$$
\begin{aligned}
\rho & =c \\
D & =7.25 \mathrm{eV} \\
& =\mathrm{kR}=3.2 \times 10^{-3} \Gamma \mathrm{E} \\
\left\langle\Gamma_{n}^{0}\right\rangle & =1.27 \times 10^{-3} \mathrm{eV} \\
\left\langle\Gamma_{\gamma}\right\rangle & =.060 \mathrm{eV} .
\end{aligned}
$$

The smooth cross sections in file 3 are specified to be zero through the resonance region $\mathrm{E}=1.075$ to $10^{5} \mathrm{eV}$. Fast Neutron Region

Fast-neutron values of σ_{T} are specified for 29 energy values from 10^{5} to $2 \times 10^{7} \mathrm{eV}$ in file 3. The values for $E>2.5 \mathrm{MeV}$ are based on the measurements of Foster and Glasgow (9) and the lower energy values are guessed from systematics.

The fast capture cross bection σ_{γ} is specified in file 3 from 10^{5} to $2 \times 10^{7} \mathrm{eV}$ based on the data shown in Ref 8. The extrapolated behavior falls off slightiy faster than $1 / v$.

RLM RRLNCES

1. G. E. Chart of the Nuclides (8/64).
2. M. Atoji, Phys. Rev. 121, 610 (1961).
3. D. Strominger, J. M. Hollander, and G. Tr Seaborg, Rev. Mod. Phys. 30, 535 (19'33).
4. CINDA, EANDC-60U (July 1, 1966).
5. A. H. Baston, J. C. Lisle, and G. S. G. Tuckey, Journ. Nucl. Energy A 13, 35 (1900).
6. J. M. Otter, NAA-SR-11980, Vol. VI (June 1966).
7. L. (i. Amaral. M. Abreu, F. G. Bianchini, and M. C. Mattos, IWA-86 (1963).
8. D. J. Hughes, B. A. Magurno, and M. K. Brussel, BNL-325, Second Ed., Supp1. 1 (Jan. 1, 1960).
9. D. G. Foster, Jr. and D. W. Glasgow, PNWL, Unpublished Data (1966) Available from BnL Sigma Center.

LUTETIUM-176

General Identification

```
MA'L' = 1033
    \(\mathrm{ZA}=71176.0\)
\(A W R=174.43\)
    \(I=7\)
    \(R=.73 \times 10^{-12} \mathrm{~cm} \quad\) Ref 2
\[
175.94
\]
\[
\frac{175.94}{1.008665}
\]
\[
\text { Ref } 2
\]
```

Radioactive Decay

$$
M T=102
$$

$L u^{177} \rightarrow \mathrm{He}^{177}$
$\lambda=1.20 \times 10^{-6} \mathrm{sec}^{-1}$
Ref 3

Introduction

The primary objective was to provide a set of evaluated data. for lowenergy neutrons since the primary interest in Lu-176 is in application as a neutron spectrum indicator. However, since new data were available on σ_{T} for fast neutrons for elemental lutetium we have included the same fast-neutron data for σ_{T} and σ_{γ} as is contained in the Lu ${ }^{175}$ ENDF/B file.

Cross Sections

Low Energy

Roberge and Sailor ${ }^{(4)}$ have published the results of precision measurements which they made on σ_{Γ} from 0.02 to 0.25 eV for a sample enriched in Lu ${ }^{176}$. Their data were used to derive very precise values of the pararneters of the 0.142 eV resonance which dominates the thermal cross section of $L u^{1.76}$. Their data apparently show that essentially al. 1 of the thermal cross section is due to this resonance. In the ENDF/B file we have used the parameters determined by Roberge plus the resonance parameters listed in file 2 to calculate the low energy cross sections of L^{176}. The calculations were performed by UNICOINN ${ }^{(5)}$ for a temperature of $0^{\circ} \mathrm{K}$ with the center-of-mnss term removed since laboratory enersy coordinates were used. The results of this calculation are entered in
$\operatorname{lNDF} / 3$ file 3 as 37 point values of $\sigma_{T}(N T=1), \sigma_{n}(M P=2)$, and $\sigma_{\gamma}(M P=102)$ from $10^{-4 / 4}$ to 0.88 eV . The resulta Eive the following values for a neutron energy of $0.0253 \mathrm{eV}:$
$\sigma_{T}=1955$ barns
$\sigma_{n}=3.04$ barns
$\sigma_{\gamma}=1952$ barns

There are other measurements of lutetium cross sections at low energies which are discrepant with the low energy cross sections given in the ENDF/B file. These other measurements imply a significant contribution at thermal energies from a bound level.

Atoji ${ }^{(2)}$ measured a value of $\sigma_{T}=105 \pm 2$ barns for elemental lutetium at an energy of 0.0735 eV . If this discrepancy were due to L^{176} it would require a value of $\sigma_{T}=3430$ barns at 0.0735 eV . The precise measurements of Roberge give a value of about 2950 barns at this energy.

Amaral, et al ${ }^{(6)}$ have measured the total cross section from 0.0185 to 0.203 eV with a crystal spectrometer. Although they obtained 0.142 eV resonance parameters that were sensibly the same as those of Roberge they report a value of $\sigma_{T}=118 \pm 1$ barns at 0.0253 eV for elemental lutetium. Subtracting the $L u^{175}$ cross section from this value would leave a Lu^{176} cross section of 3500 barns. However, Baston (7) has made measurements on an enriched sample of Lu 176 in this region with a time-of-flight spectrometer. Bastcn's resonance parameters again agree well with those of Roberge. Baston's data in the low energy region lie somewhat higher on the average than the values calculated from the resonance parameters but his average values in the region of 0.0253 eV are only about 2200 barns.

Thus it is concluded that the results of Roberge are the best estimate of the low energy cross sections of Lu^{176} at this time.

Resonance Region

A search of CINDA (1966)(8) shows no new information on the resonance parameters of Lul76. Thus the values given in the 1960 supplement to $B N-325^{(9)}$ have been incorporated in the ENDF/B file. The resolved resonance region extends from 0.8796 to 48 eV and contains 20 resonances. The value of $J=I=7.0$ is specified to obtain $g=0.50$.

The unresolved resonance region is specified from 48 eV to 100 keV . The average resonance parameters are assumed the same for each spin state and $L=U$:

$$
\begin{gathered}
\rho=c \sqrt{\mathrm{E}}=\mathrm{kR}=3.2 \times 10^{-3} \sqrt{\mathrm{E}} \\
\mathrm{D}=4.66 \mathrm{eV} \\
<\Gamma_{\mathrm{n}} 0>=8.47 \times 10^{-4} \mathrm{eV} \\
<\Gamma_{\gamma}>=0.060 \mathrm{eV}
\end{gathered}
$$

The smooth cross sections in file 3 are specified to be zero throughout the resonance range 0.88 to $1 \times 10^{5} \mathrm{eV}$.

Fast-Neutron Range

Values of σ_{T} and σ_{γ} are specified in file 3. These are the same values given for Lul75 (MAT = 1032).

1. F. Lverling, L. A. König, J. E. H. Mattauch, and M. H. Wapstra, Nuclear Physics 18, 529 (1960).
2. M. Atoji, Phys. Rev. 121, 610 (1961).
3. G. Golcistein and S. A. Reynolds, Nuclear Data A j. 435 (1966).
4. J. P. Roberge and V. L. Sailor, Nucl. Sci. Engr. 7. 02 (1960).
5. J. M. Otter, NAA-SR-11980, Vol. VI (June 1966).
6. L. A. Amaral, M. Abreu, F. G. Bianchini, and M. C. Matios, IEA-86 (1963).
7. A. H. Baston, J. C. Lisle, and G. S. G. Tuckey, Journ. Nucl. Energy A, 13, 35 (1960).
8. CINDA, EANDC-60U, July 1, 2966.
9. D. J. Hughes, B. A. Magurno, and M. K. Brussell, BNI-32.!, Second Edition, Supp1. 1 (Jan. 1, 1960).

73-TA-181	1126	AI	AI-AEC-12990(1971)	APR71	OTTER. DUNFORD.OTTEWITTE
73-TA-182	1127	AI	AI-AEC-12990(1971)	APR71	OTTER. DUNFORD.OTTEWITTE

Thermal Region
Experimental values of the total cross section for Ta^{181} below 1 ev are taken from Havens, Evans, Schmunk, and Adib. The total cross section at 0.0253 ev was evaluated to be 28 ± 3 barns. The evaluated capture cross section at 0.2253 ev of $21 \neq 3$ barns was taken from BNL-325. Cross sections calculated from the positive energy resonance parameters were $\sigma_{c}=16.3$ barns and $\sigma_{t}=21.4$ barns.
if the $0.0253-e v$ discrepancies were to be accounted for by adjustment of the 4.3-ev resonance capture width, the revised width would be improbably large and the total cross section too small. If the scattering width of the $4.3-e v$ resonance were revised, disagreement with the measured capture resonance integral would result. Thus, the discrepancies were attributed to negative energy resonances.

The parameters for a negative energy resonance were determined by fitting the evaluated capture and total $2200 \mathrm{~m} / \mathrm{s}$ cross sections. Γ_{γ} was fixed at its average value and Γ_{n} and E_{0} allowed to vary. The spin assignment made little difference when the variable parameters were independently optimized. The $2200 \mathrm{~m} / \mathrm{s}$ cross sections calculated from all resonances are $\sigma_{c}=21.1$ barns, $\sigma_{s}=6.2$ barns, and $\sigma_{t}=27.3$ barns. The scattering cross section is in good agreement with the value of 6 barns recommended by Hughes.

The only data for Ta^{182} is that of Stokes who gives a $2200 \mathrm{~m} / \mathrm{s}$ total cross section of 8200 ± 600 barns. The value calculated from positive energy resolved resonances is 8215 barns. The other spin assignment for the $0.147-e v$ resonance would change this value by +20 barns. At 1 and 3 ev , which are near minima in the local cross section, the calculated total cross sections are about 30 barns less than the measured values. These calculated values are affected little by spin assignments. The presence of a negative energy level is thus indicated.

A negative energy level was created with Γ_{γ} chosen to be the average radiation width and the resonance energy, E_{0} taken to be -20 ev , which is small enough to give an approximately $1 / v$ capture cross section below 1 ev , i. e., $\left|E_{0} / 2\right| \gg 1$. The neutron width was calculated to give $\sigma_{t}=29$ barns
at l ev. The calculated $2200 \mathrm{~m} / \mathrm{s}$ cross sections are $\sigma_{c}=8249$ barns, $\sigma_{s}=31$ barns, and $\sigma_{t}=8280$ barns. The choice of negative energy resonance parameters and spin assignments for resonances may vary the scattering cross section considerably. Below 0.4 ev it is estimated to be known only to about $\pm 75 \%$.

Resolved Resonance Region
Resolved resonance parameters derived from transmission measurements were evaluated for Ta^{181} and Ta^{182}. Missing values for radiation widths, Γ_{γ}, and compound nucleus spins, J, were supplied via theory. The set of resolved resonances was examined to determine: (1) the probable number of p-wave resonances which had been resolved and (2) the upper energy limit of resolution.

The potential scattering cross section was evaluated. Cross sections at thermal energies were calculated from the selected parameters and compared to measured values. Since the calculated thermal cross sections were smaller than measured values, parameters were determined for a negative energy resonance which would supply the additional thermal cross section contributions necessary to match the evaluation of measured values.

All resolved resonances in the evaluated set are assumed to be for swave ($\ell=0$) neutrons. All suspected p-wave resonances were eliminated. The p-wave contributions in the resolved resonance range have been given as smooth background. However, the unresolved resonance parameters may be used to generate the p-wave contributions, and thus allow for resonance self-shielding. By eliminating p-wave resolved resonances and supplying all the p-wave cross sections from unresolved parameters (or smooth cross sections), it is more certain that the p-wave cross section is adequately represented.

Values of $E_{0}, 2 g \Gamma_{n}$, and Γ_{γ} are taken from BNL-325 for Ta ${ }^{181}$. The value of $2 \mathrm{~g} \Gamma_{\mathrm{n}}$ for the $55.8 \mathrm{-ev}$ resonance was corrected to 0.2 mv .

Measured values of J for Ta^{181} are taken from Wasson 1969. J values are known for the $4.3,10.3,14.0$, and 23.9 ev resonances. The resonances at 35.1 and 35.9 ev have been determined to have different J values. $J=3$ was assigned to the $35.1-\mathrm{ev}$ resonance and $J=4$ to the $35.9-\mathrm{ev}$ resonance.

Values of $\mathrm{E}_{0}, 2 \mathrm{~g} \Gamma_{\mathrm{n}}$, and I_{γ} derived from measurements on $\mathrm{Ta}{ }^{182}$ are taken from Stokes, which is the only data available. No measured values of J have been reported.
$T a^{181}$ and Ta^{182} have spin $\mathrm{I} \neq 0$ so that two values of compound nucleus spin $J=I \pm 1 / 2$ are possible. For many resonances of the tantalum isotopes these values have not been established experimentally. Often resonances with unknown J values are assigned $J=I$ to form a third group. This approach may lead to serious errors when calculating thermal scattering cross sections, because interference between resonance and potential scattering is usually important in this calculation. The interference takes place between the potential scattering amplitude and the total resonance scattering amplitude of each set of resonances having a particular J value. Thus, if a third set of resonances is formed (whether or not they are allowed to interfere with potential scattering), the calculation will be in error.

The procedure used in this evaluation was to assign a possible J value to each resonance so that the poiential scattering interferes with more nearly correct resonance scattering terms. The J values were assigned in proportion to ($2 \mathrm{~J}+1$) as given by theory. (This division is less sophisticated than thit used for determining the unresolved resonance level spacings, but appears to be adequate for this purpose.)

The value of Γ_{n} was changed to preserve the experimentally determined values of $2 \mathrm{~g} \Gamma_{\mathrm{n}}$ in all cases except for the three lowest energy resonances of Ta^{182}. For these, the peak cross section $\propto\left(\mathrm{g} \Gamma_{\mathrm{n}} / \Gamma\right)$ was preserved because shape analysis, rather than area analysis, had been used to derive their parameters. The total width is nearly preserved in these cases because $\Gamma_{n} \gg \Gamma$.

For resonances with unknown radiation widths, an average value of Γ_{γ} was used. The arithmetic average of the 26 resolved values for Ta^{181},

56 mv , was used. This value is lower than that obtained for the unresolved resonance range. The capture resonance integral calculated using 56 mv for the unknown resonances is in good agreement with the evaluated value. The capture width of Ta^{182} is reported for only three resonances. The value of 67 mv found for all three was used for the other resolved resonances.

For Ta^{182}, no resonances of very small width were resolved, so all resolved resonances were assumed to be s-wave resonances.

For Ta^{181}, the upper end of the linear region coincides with the energy below which all observed s-wave resonances have resolved values of Γ_{n}. This occurs about 330 ev , and the limit is taken there. For Ta ${ }^{182}$, the small number of resonances resolved and the obscuring of energy regions by resonances of other isotopes in the measured samples make the above analysis inapplicable. The resolved range was set to include all resonances with resolved values of $\Gamma_{n^{\prime}}$. Unfortunately, a large resonance exists at 34.7 ev , just above the resolved range.

Potential Scattering Cross Section

Seth determined the potential scattering cross section of natural tantalum to be 8.5 ± 0.8 barns by subtracting calculated resonance contributions from measured total cross sections in the low energy resolved resonance range, and by transmission analysis in the kev range. The total cross section at 100 kev , using the latter value, is about 0.2 barn higher than the evaluated experimental cioss section of 9.0 ± 0.9 barns. The comparison at 100 kev is a good test because potential scattering contributes over 80% of the total cross section, which is known to be $\pm 10 \%$. The value of 8.3 ± 0.8 barns was adopted for both tantalum isotopes. This velue fits well an interpolation of measured potential scattering cross sections vs atomic mass near $A=180$.

Unresolved Resonance Region

The unresolved resonance parameters were determined by a combination of theoretical assumptions and fits to evaluated measured cross sections. Theory had to be invoked to limit the number of independent variables, because
the accuracy of the measured cross sections was only sufficient to determine a few variables unambiguously.

Two types of fits were made. For the convenience of those without computer codes which accommodate energy-dependent parameters, a fit with energy-independent parameters was given for the ENDF/B.

The following assumptions were made for the energy-independent fit:

1) The radiation level width is independent of energy, neutron angular momentum ℓ, and compound nucleus spin J.
2) The strength functions,

$$
\mathrm{S}_{\ell, \mathrm{J}}=\frac{\left\langle\Gamma_{\mathrm{n}}{ }^{0}\right\rangle_{\ell, \mathrm{J}}}{\langle\mathrm{D}\rangle_{\ell, \mathrm{J}}},
$$

are independent of J and energy E.
3) The average level spacing $\langle D\rangle_{\ell, J}$ is independent of ℓ and energy, and its J dependence is given by the formula of Cook; namely,

$$
\langle D\rangle_{J} \propto(2 J+1)^{-1} \exp \left[-\frac{\left(J+\frac{1}{2}\right)^{2}}{2 \sigma^{2}}\right]
$$

where σ is a constant for each isotope.
4) Elastic scattering with a change of ℓ value and inelastic scattering are neglected. This assumption is necessary because the ENDF/B format does not allow for these processes explicitly.
5) Doubly occurring (ℓ, J) series were assumed to be single series with two degrees of freedom rather than two competing series, each with one degree of freedom. The former is easier to accommodate in the current ENDF/B format and the practical difference is negligible.

A second, more accurate fit was made without invoking assumption 4 above, and with the energy dependence of $\langle\mathrm{D}\rangle_{\ell, J}$ given by Cook et al. The strength functions for inelastic scattering were assumed to be the same as for elastic scattering.

Smooth background cross sections were supplied (ENDF/B File 3) to match evaluated results for both the energy-dependent and energyindependent fits.

The radius "a" of the centrifugal potential well used to calculate angular momentum barxier penetration probabilities for neutrons with non-zero angular momenta was taken equal to $\left[1.23\left(A / M_{n}\right)^{1 / 3}+0.8\right]$ fermis as required by ENDF/B.

The calculation of average cross sections from resonance parameters involves averaging over the distributions of reaction level widths. This is often done by combining a "fluctuation integral" $\mathrm{R}_{\mathbf{i}_{\ell, J}}$ with cross sections calculated from average widths.

$$
R_{i_{\ell, J}}=\frac{\left\langle\bar{I}_{n} \Gamma_{i}\right\rangle_{\ell, J}}{\left(\frac{\bar{\Gamma}_{n_{\ell, J}} \bar{\Gamma}_{\ell, J}}{\bar{\Gamma}_{\ell, J}}\right)}
$$

In calculating $R_{i_{\ell, J}}$, a x^{2} distribution with $\mu_{i, J}$ degrees of freedom is assumed. In addition, $\mu_{n_{\ell, J}}$ is used to obtain $\bar{\Gamma}_{n_{\ell, J}}$ from the input $\bar{\Gamma}_{n_{\ell, J}}^{0}$:

$$
\bar{\Gamma}_{\mathbf{n}_{\ell, J}}=\bar{\Gamma}_{\mathbf{n}_{\ell, J}} \mu_{\mathbf{n}_{\ell, J}} \nu_{\ell} \sqrt{E}
$$

where v_{ℓ} is the angular momentum barrier penetration factor and the radiative width $\Gamma_{\gamma_{\ell, J}}$ is assumed constant.

The remaining independent variables include the potential scattering cross section, $\sigma_{p o t}$, the average radiation width $\left\langle\Gamma_{\gamma}\right\rangle$, the strength functions, and $\langle D\rangle_{\ell, J}$ for one (ℓ, J) series. In practice, the $\ell=0$ level spacing, $\langle D\rangle_{\ell=0}$, was used.

The unresolved resonance parameters were ultimately determined by minimizing the goodness-of-fit between calculated and evaluated (described later) capture cross sections. The uncertainty in evaluated cross sections was assumed to be independent of energy.

Energy Range for Unresolved Resonances Region

Very large lumps of tantalum have been proposed for reflector poisonbackings of compact reactors and control rods of fast breeder reactors. The combination of the high importance at high energies and the large lump sizes cause resonance self-shielding to have significant reactivity effects at unusually high energies. Consequently, the upper limit of the unresolved energy range has been set at 100 kev for Ta^{181}. For high temperatures this may be unnecessarily high because of overlapping of resonances due to Doppler broadening. However, it is easier to transform resonance parameters into smooth cross sections than vice versa.
$\mathrm{Ta}{ }^{182}$ is almost always combined with Ta^{181}, but is normally present at low concentrations. Self-shielding for Ta^{182} is a factor only at low energy where the optical dimension is significant. For this reason the unresolved resonance high energy limit has been set at 10 kev . Smooth cross sections generated from resonance parameters have been supplied from 10 to 100 kev .
$\mathrm{s}-, \mathrm{p}-$, and $\mathrm{d}-$ wave neutrons contribute significantly to reaction rates over different restricted energy ranges. p-wave contributions to capture are less than 0.2% of the total below 330 ev , and d-wave contributions less than 0.1% below 10 kev. Two energy ranges were made for unresolved resonances in Ta 181. From 330 ev to 10 kev , only s - and p -wave contributions were calculated and from 10 to $100 \mathrm{kev}, \mathrm{s}-, \mathrm{p}-$, and d -wave contributions were all calculated. Since the upper energy limit of the unresolved range for Ta^{182} is 10 kev , no d-wave calculation was made, and a single unresolved energy range was used, namely, 35 ev to 10 kev .

In general, since the resolved resonance range contains only s-wave resonances, some contribution from unresolved p-wave resonances is called for. However, as noted previously, these contributions are negligible for tantalum.

Average Parameters Derived From Resolved Resonances
181

The s-wave strength function determined from the resolved resonance data is $S_{0}=(1.8 \pm 0.4) \times 10^{-4},\left\langle\Gamma_{\gamma}\right\rangle=56 \pm 2 \mathrm{mv}$, and $\langle D\rangle_{\ell=0}=4.4 \pm 0.5 \mathrm{ev}$. $\left\langle\Gamma_{\gamma}\right\rangle$ was obtained by an unweighted average of the 26 measured values. The distribution of values conformed closely to a normal distribution and was unusually narrow.
Ta^{182}
The s-wave strength function of 1.0×10^{-4} is based upon 8 resonances and is thus not very helpful. It is apparent from the data of Stokes that the value is considerably larger in the region adjacent to the resolved resonance range. All three measured values of Γ_{γ} are the same, 67 mv , with $\langle D\rangle_{\ell=0}$ $=3.5 \pm 1.2 \mathrm{ev}$. Since a good test against measured cross sections was not possible, $\left\langle I_{\gamma}\right\rangle=67 \mathrm{mv}$ and $\langle D\rangle_{\ell=0}=3.5 \mathrm{ev}$ were adopted for the unresolved resonance range.

Comparison of Calculated and Measured Resonance Integrals
181

The capture resonance integral calculated from the evaluated resonance parameters plus smooth cross sections is 738.7 barns. This agrees well with a recent evaluation of measurements by Drake which gave 740 ± 40 barns.
: A breakdown of the calculated result by component is given in the following table.

INFINITELY DILUTE RESONANCE INTEGRAL FOR CAPTURE IN Tal 81

Description	Component of Integral (barns)
Resolved Resonances $(0.5$ to 330 ev$)$	
Negative energy resonance	1.37
4.28 ev resonance	465.55
Other.74 resonances	243.52
Unresolved Resonances (330 to $\left.10^{5} \mathrm{ev}\right)$	
$\ell=$ resonances	26.88
$\ell=1$	0.86
$\ell=2$	Total
Smooth Cross Section	0.01

182
Ta
The capture resonance integral calculated from the evaluated resonance parameters is 1020 barns. A breakdown by component is given below. No measured values have been found in the open literature for comparison. The resonance integral of 943 ± 50 barns deduced by Stokes is in reasonable agreement with our value.

INFINITELY DILUTE RESONANCE INTEGRAL FOR CAPTURE IN Ta 182

Description	Component of Integral (barns)
Resolved Resonances (0.5 to 35 ev)	12.7
Negative energy resonance	12.7
0.147 ev resonance	715.2
Other 8 resonances	154.1
Unresolved Resonances (35 to $\left.10^{5} \mathrm{ev}\right)$	
$\ell=0$ resonances	137.0
$\ell=1$	0.8
$\ell=2$	Total

EVALUATION OF CROSS SECTION DATA ABOVE 100 kev

A complete set of neutron cross sections was calculated for each isotope in the energy range between 100 kev and 17 Mev . The calculations were carried out on an energy grid whicíi was fine enough to provide an adequate shape description of the various reaction cross sections. A deformed optical model was used to describe the total cross section and all direct processes. A statistical model of the compound nucleus was used to separate the compound nucleus formation cross section into its constituent parts.

Radiative Capture Cross Sections

Above 100 kev smooth cross sections were specified for the tantalum isotopes in ENDF/B File 3. In the case of Ta ${ }^{182}$, these data were derived entirely from theory. Arguments for the choice of sapture cross section in the neighborhood of 100 kev are given in AI-AEC-12990. From 100 to 140 kev a visual fit was made from the data of Kompe, Brzosko, and Miskel. The capture data of Fricke tend to remain high in this energy range. Upon renormalization, the data of Macklin and Biggons, and Kononov support the evaluation made in this energy range. From 140 to about 240 kev the numerous experiments were found to be in good agreement. From 240 kev up to 2 Mev we relied upon the data of Fricke, Brzosko, and Cox which were in close agreement. Limited guidance was provided by the somewhat oscillatory data of Miskel in this energy range.

Above 2 Mev , considerable uncertainty exists regarding the capture cross section, as it rapidly approaches zero. In this region, the data of Miskel were used in preference to those of Kompe as the former agree better with the shape of our theoretical calculations:

Above 5 Mev , no data exist for the capture cross section. The theory of Benzi and Reffo was utilized to describe the collective and direct interaction capture cross sections to 17 Mev . For these calculations, the nuclear deformation, β, was taken to be 0.265 for both isotopes. The nuclear radius, R, was taken to be $1.2 \mathrm{~A}^{1 / 3}$ fermis. Credibility of these calculations is reasonable based upon agreement with the measurement available in the neighboring nucleus, W^{186}, at 14.5 Mev .

Total Cross Section

Total cross sections were specified for the tantalum isotopes in ENDF/B File 3. Again, in the case of Ta^{182}, these data were derived entirely from the results of the 2.-PLUS and COMNUC computer runs.

The total cross section for Ta^{181} just above 100 kev was established from the 1949 University of Wisconsin measurements of Bockelman and the time-of-flight data of A. B. Smith. Bockelman's measurements were done at 0 and at 115°. Above 250 kev , the measurements at 115° deviated markedly from those at 0° and were ignored. Data were received from Divadeenam at Duke University (1970) which revised the 1965 Duke measurements in the energy range above 100 kev . Smith's data and the newer Duke measurements agree quite well up to their maximum energies of 650 kev . From 700 kev to 1 Mev , the 1967 RPI measurements of Martin were relied upon.

Elastic Cross Sections and Angular Distributions of Elastically

 Scattered NeutronsThe elastic data is specified in ENDF/B File 3, while the angular distributions are specified in File 4. Theory was used for the Ta ${ }^{182}$ file.

Little experimental data are available for the Ta^{181} elastic cross section. Below 100 kev there apparently is none available. ABove 100 kev there are essentially two large sets of data and six single-energy experiments, the references for which may be found in CINDA.

The two large sets of data are those of Smith and Holmqvist. The theoretical cross sections generated in this study consisted of shape elastic scattering obtained from 2-PLUS and compound elastic scattering obtained obtained from the COMNUC code. Comparison of these calculations to Holmqvist's data and to most of the single-energy experimental points show good agreement.

Comparison to the experimental points of Smith shows relatively poor agreement. Two observations regaraing the Smith data must be noted, however. First Smith measured total, elastic, and inelastic cross sections. The sum of the elastic and inelastic measurements is considerably greater
than the total measurement. This occurs over most of the range measured (300 kev to 1.5 Mev). Secondly, the sum of our calculated elastic cross section plus the partial cross section exciting the $135-\mathrm{kev}$ level gives excellent agreement with Smith's quoted elastic cross section. This suggests that Smith was unable to completely resolve the $136-\mathrm{kev}$ excitation from the elastic cross section. Indeed they show only a single data curve for the doublet centered at 144 kev , and indicate that the excitation of the lower energy state of the pair was roughly 1.6 times more intense than that of the higher energy state.

The Ta^{181} theoretical calculations of the elastic cross section were adopted with the following changes: small increases were made in the elastic cross section corresponding to adjustments made in the total cross section, and minor changes were also made to the elastic cross section corresponding to differences between the evaluated radiative capture cross section and COMNUC results above 100 kev.

These modifications produce an evaluated elastic cross section which is in good agreement with those of Holmqvist and most of the single-energypoint experimental data.

Theoretical values of the angular distribution of elastically scattered neutrons for the tantalum isotopes were obtained from the 2-PLUS and COMNUC calculations. Legendre coefficient data was printed out directly. The derived quantities, $\bar{\mu}_{1 a b}, \xi$, and γ were calculated from the angular distributions using the CHAD code.

The angular distributions were assumed isotropic in the center-ofmass system from thermal energies to 10 kev . Linear interpolation of the Legendre coefficients was assumed between 10 and 100 kev.

Inelastic Cross Section and Angular Distributions of Inelastically Scattered Neutrons

No experimental data were available for the evaluation of Ta^{182} sets of experimental data were available for evaluation of the Ta ${ }^{181}$ partial excitation functions. The most extensive were those of Smith and the MIT measurements of Rogers et al. None of the available data was adequate to
define a suitable set of partial inelastic excitation functions. Consequently, comparison of theory and measurement was of limited value. In general, where comparison was possible, the agreement was reasonable. This generally meant adding up the theoretical excitation functions for several levels to compare to one "experimental average" excitation function.

Comparison was made, however, between calculation and the measured Ta ${ }^{181}$ total inelastic cross section. Summed partial excitation data to 1.5 Mev showed reasonable agreement within the band of fluctuations. Above 5 Mev , the data of Owens, Rosen, and Thomson, substantiate the theoretical calculations which formed a basis for the evaluated cross sections.

In the case of Ta^{182}, the cross sections for exciting individual levels calculated with COMNUC were adopted, with minor changes at energies near the threshold of 0.0975 Mev . Structure in the $97 \mathrm{-kev}$ level cross sections calculated by COMNUC near the threshold was smoothed out. Similar structure calculated for the 2nd level (114 kev) was also smoothed out near threshold. The smoothing procedure was constrained by the total inelastic cross section. The structure was believed to be caused by competition for open channels due to the fact that the 1 st level is weakly coupled and the $2 n d$ level strongly coupled to the ground state.

Eelow 3 Mev , the theoretical calculations included 9 levels (Ta^{181}), or 8 levels (Ta^{182}) plus a continuum. The continuum represents both the ($n, \gamma n$) process and the ($n, n \gamma$) excitation above the 9 th (or 8 th) level. The ($\mathrm{n}, \gamma \mathrm{n}$) process involves a photon cascade and could not be allocated to a specific energy level.

Discrete level angular distributions were specified in ENDF/B File 4. Very limited experimental data exist for differential inelastic scattering. The little data observed offer no opposition to the decision to make all level distributions isotropic in the center-of-mass frame for both isotopes. The continuum was made isotropic in the lab frame.

Cross Sections for the ($\mathrm{n}, 2 \mathrm{n}$) and ($\mathrm{n}, 3 \mathrm{n}$) Reaction
The thresholds for the ($n, 2 n$) and ($n, 3 n$) reaction were obtained from Mattauch et al. For Ta^{181}, the thresholds are at 7.68 and 14.49 Mev ,
respectively. The Ta^{182} thresholds are lower; at 6.10 and 13.79 Mev , respectively. The only experimental data available were for the Ta^{181} $(n, 2 n)$ Ta ${ }^{180}$ reaction. These are referenced in CINDA.

Since no experimental data were available for the ($n, 3 n$) reaction, the adopted cross sections for both isotopes were obtained by simply subtracting the ($n, 2 n$) and inelastic continuum from the remaining nonelastic cross sections.

Cross Sections for the (n, α) Reaction
To obtain the cross section set for ENDF/B, the compound nucleus reactions and the direct interaction measurements were added to form the total (n, α) $+(n, n \alpha)$ cross section. The same cross sections were used for the Ta^{182} file.

Cross Sections for the (n, p) Reaction

The (n, p) cross section, being small and not well known, was not put in the ENDF/B data file.

Secondary Neutron Energy Distributions

The ENDF/B File 5 contains data for the energy distributions of secondary neutrons. These distributions are expressed as normalized probability distributions,

$$
P\left(E \rightarrow E^{\prime}\right)=\sum_{k=1}^{N K} P_{k}(E) f_{k}\left(E \rightarrow E^{\prime}\right)
$$

where $P_{k}(E)$ is the fractional probability that the distribution $f_{k}\left(E \rightarrow E^{\prime}\right)$ is used at incident energy, E.

The partial energy distribution for tantalum has been specified by a Maxwellian evaporation spectrum

$$
f\left(E \rightarrow E^{\prime}\right)=\frac{E^{\prime}}{I} e^{-E^{\prime} / \theta} .
$$

I is the normalization constant and θ is the incident energy dependent nuclear temperature.

Data presented by Owens and Towle, Tsukada et al, and Buccino et al indicate that the nuclear temperatures can be expressed adequately as a function of excitation energy, E^{*}, by the expression:

$$
\theta(E)=\left(\frac{E^{*}}{a}\right)^{1 / 2}
$$

where

$$
\begin{aligned}
\mathrm{E}^{*} & =\mathrm{E}_{\mathrm{inc}}-\mathrm{E}_{\mathrm{th}} \\
\mathrm{E}_{\text {inc }} & =\text { incident neutron energy } \\
E_{\text {th }} & =\text { threshold energy for the inelastic process } \\
& =137 \mathrm{kev} \text { for } \mathrm{Ta}^{181} .
\end{aligned}
$$

This formulation was used for the continuum inelastic neutrons. The level density parameter, a, was evaluated from the reference data: The value $a=17.4$ fits Ta^{181} adequately over most of the continuum energy range and was used for Ta^{182}.

For the ($n, 2 n$) reaction the energy distribution of the emitted neutrons was specified by a mixture of Maxwellian evaporation spectra. Here $P_{1}(E)=P_{2}(E)=1 / 2$ for all incident neutron energies. The characteristic nuclear temperature of the first emitted neutron, θ_{1}, was assumed to be the same as that prescribed for the inelastic continuum process above. θ_{2} was approximated from above with $E_{2}^{*}=E-2 \theta_{1}-E_{b}$. Here E_{2}^{*} is the excitation energy of the residual nucleus following emission of the second neutron, $2 \theta_{1}$ is the average kinetic energy of the first emitted neutron, and E_{b} is the binding energy of the second emitted neutron (7.68 Mev for $\mathrm{Ta}^{181}, 6.10 \mathrm{Mev}$ for Ta^{182}).

The approximation is not valid for energies $-2 \theta<\mathrm{E}^{*}<0$. Here the nuclear temperatures were held at a constant value, somewhat lower than the calculated in the transition energy range.

A similar evaluation was used for the ($n, 3 n$) reaction. θ_{3} was evaluated with $P_{k}(E)=1 / 3$ and the excitation energy, $E_{3}^{*}=E-E_{b}-2 \theta_{1}-2 \theta_{2}$. For this reaction, $\mathrm{E}_{\mathrm{b}}=14.49 \mathrm{Mev}$ for Ta^{181} and 13.79 Mev for Tal82.

 TUNGSTEN-182,GE-RMPO, OCTOBER 30,1966
EVALUATEN PRIMARILY BY A, PRINCE,FORMERLY AT GE=NMPO,NOW AT BNL, un Es Solved resonance parameters and smooth capture evaluated by W, B, HENDERSON:GE-NMPO
=---RESOLVED RESONANCE PARAMETERS--n-

1) 5 LEVELS,PRIVATE COMMUNICATION, X,R,STEHN,FEB,26,1964
2) GAMMA SUB GAMNA=0, DETEV WAS ASSUMED FOR 213EV AND NEG, LEVEL.
3) NEG; ENERGY LEVEL AY -D:7EV WITH GAMMA SUB N=I;41En5 AND SCATTER LENGTH OF B'SEEEZ CHOSEN TO FIT DATA OF FRIESENGAHN ET AL.NASA CH- GAm6832'
4) RESULTING SCATTER AAD ABSORPTION SIGMAS AT D.D253EV ARE 4,22 AND 21,59日,

$=-==U R R E S O L Y E D$ RESONANCE PARAMETERSE--

1) REDUCED NEUTRON WIDTH AND LEVEL SPAC!NG FOR L=D FROM EVALUE ATION BY BLOCK ET AL,ORNL-3924,MAY $1966, P, 31, S 052,905 E m 4$.
2) REQUCED WIDTH FOR L=1 BASED ON BEST FIT TO EVALUATÉD CAPTURE OATA (C41) FOR NATURAL TUNGSTEN FROM 1GKEV TO 10DKEV, RESULTING
 ASSUMING PROCESSING CODE WILL USE ONLY LEO AND LEI,SMOOFH FILE 3 COMPENSATES, GAMMA SUB GAMMA=0, D70EV FOR ALL STATES,
3) RANGE $1 S$ TRAEV TO 160 KEV,SCATTER LENGTH IS 7,2E-13,
4) LARGg. LEVEL SHACING MAKES UNRESOLVED AVERAGE SIGMAS SUSPECT AT LOWER ENERGIES, HCWEVER NO CORRECTION HAS BEEN ATFEMPFED SINCE RESOLVED PARANETERS TO 117gEV (C17) ARE AVAILABLE AND WILL BE INCLUDED IN FIRST UPDAYING
----SMOOTH CROSS SECTICNS,ANGLE,AND ENERGY DISTRiBUTIONS=-Ë-
5) PRIMARILY FROM ABACLS-2 CALCULATIONS AND MODIFICATIONS THERETE BY A,FRINCE,GEMPE3BE,NOV,12,1965:MODIFICATIONS DESCRIBEE BELOW
6) BFILOW D,5bMEV THE AEICUS ELASTIC SIGMA WAS REDUGED TO MATCH WITH UNRESOLVED CALC, AT D, 1MEV,ALSO THE INELASTIC SIGMA FOR FIRST EXCITED STATE WAS TAKEN FROM 2-PLUS CALEE BY DUNFARD, NAA-SR=11973,JULY 15,1966,BOYH CHANGES REDUCE SGATTER AND TOTAL SIGMAS AT LOWER ENERGIES,AND AGREEMENT WITH NAT, W DATA (ANL-5567 AND A,B, SMITH,PRIVATE COMM,) IS IMPROVED.,
7) EIUERGY,SPIN,AND PARITY OF GROUND STATE AND 15 EXCITED LEVELS TAKEN FROM NRC NUCLEAR DATA SHEETS AND KONDRAP EY,JETP 29.1964 P.1513.
8) RIDIATIVE CAPTURE IE BASED ON EVALUATION OF NATURAG TUNGSTEN BY TROU日ETZKOY ET AL,UNC=5099,DEC,31,1964,WHICH PRDDUCES GDOD REACTIVITY WORTH GOFRELATION IN 7IO FAST SPECTRUM CRITICAL SPLIT AMONG ISOTOPES IS BASED ON UNRESOLVED RESONANCE CALC\&
9) FROM 2, DMEV TO B, AMEV ABACUS RESULTS WERE USED, BUT SINCE LEYEL DATA ARE INCOMPLETE;NO INDIVIDUAL LEVEL DATA WERE USED AND INELASTIC NEUTRON EAERGY DISTRIBUTION IS MAXWELLIAN WITG THETA=SQRT(E/A), WHEFE SMALLA IS 25MEV-1 BASED ON DATA OF D, E, TLOMPSON, PHYS,REV.129,1963,P,649,
10) AN EMPIRICAL SIGMA AIZN CURVE WAS DRAWN ABOVE THRESHOLDI8,D3 MEV,AS FOR TAm1.81, MAT=1D35, ABOVE N, 2 N THRESHOLD THE ABACUS REACTION CROSS SECTION WAS EXTRAPOLATED FOLLOWING NON-ELASTIC TREND IN BNL $-325,2 N$ E EO; JULY 1,1958, SHAPE ELASTIC WAS FAKEN as abacus total minls extrapolafed reaction sigma,
11) OPTICAL MODEL FARAMETERS WERE FROM WILMORE AND HODGSON, NUCL, PHYS,55,1964,P,673 AS GIVEN FOR TA-181,MAT=1,035,
R) SIGNA NAP FOLLOWS EVALUATION OF TROUBETZKOY ET AL (C41) AND DATA GUOTED EY CHATYERJEE, MUCLEONICS 23,Nn,8,1965,P,112,
12) SHARE OF DIFFERENTIAL ELASTIC SIGMA ABOVE 4,IMEV ASSUMED SAME AS AEACUS RESULTS FCR W=184, MAT=1062
 --=sCEGAY DATA FROM D, f,gOLDMAN, CHART OF THE NUOLIDES,8iH ED.

DATA MODIFIED JAN， 1972
Low energy radiative capture modified to conform to phe cseng NORMALIESTION ANE STANCARDS SUBCOMMITTEE RECOMMENDED VALUE DF 10，2 日ARNS FOR THE 2．2DE M／SEC CROSS SECTION ＊DATA MODIFIED NUNE， 197% TO CONFORM TO ENDF／B－II FORMAFS TUNGSTEN－183，GE－NMPO，OCTOBER 30， 1966
EVALUATED PRIMARILY RY A，PRINCE，FORMERLY AT GE＝NMPO，NOW AT ENL： unRESOLVEG RESONANCE PaRameters and smooth capture evaluated by W．B．HENDERSON，GE－NMPO
＝－－－RESOLVED RESONANCE PARAMETERS＝－－－
1） 15 LEVELSSPRIVATE CCMMUNICATIONIJ，R，STEHN，FEB，26，1964
2）NEG，ENERGY LEVEL AT－6，DEV WITH GAMMA SUB N＝4，104Em4 AND GAMMA SUG GAMMA＝G．D7EEV WERE CHOSEN TO FIT DATA OF FRIESENHAHN ET AL NASA CR－GA－6日32．SCATTER LENGTHEB，5E－13
3）RESULTING SCATTER AND ABSORPTION SIGMAS AT D，D253EV ARE 4，54 AND 9，008．

UNRESCLVED RESONANCE PARAMETERS－－＝
1）REDUCED NEUTRON WIDYH AND LEVEL SPACING FOR L＝ø FROM EVALUE ATION BY BLOCK ET AL，ORNL－3924，MAY 1966，P，31，SQ＝2，000Em4．
2）REDUCEO WIDTH FOR L＝I BASED ON BEST FIT TO EVALUATED CAPTURE DATA FOR NATURAL TUNGSTEN FROM 1GKEV TO 100KEV，INCLUDING COMPETITION WITH THE INELASTIC LEVEL AT 46 ．5KEV AND L＝2 CONE TRIBUTION，RESULTING P AND D STRENGTH FUNCTIONS WERE OBTAINEC USING SAME RATIOS AS FOR THE EVEN A ISOTOPES，S1＝0，35＊SD AND S2 $=0.75 * S \varphi, A S S U M I N G$ PROCESSING CODE WILL USE ONLY $L=0$ ANG L＝1 AND WILL IGNORE INELASTIC COMPETITION，SMOOFH FILE 3 COMPENE SATES．GAMMA SUB GAMNA＝0；＇OBOEV FOR ALL STATES WAS USED（C16）．
3）RANGE IS 2S7EY TO 1ZDKEV．SCATTER LENGTH IS 7．2E－13，
4）Large level spacing makes unresolved average sigmas suspect at LONER F．NEKGIES，HOWEYER NO CORRECTION HAS BEEN ATTEMPTED：＇ BESOLVED PARAMETERS TO 392EV（C16）aRE AVAILABLE FOR INCLUSION AT FIRST UPDATING．
－－－－SMOOTH CKOSS SECTICNS，ANGLE，AND ENERGY DISTRIBUTIONS－－－－
1）SAME REMARKS AS FOR W－182，MATIIO6O，APPLY EXCEPT AS NOTED BELOW
2）ALL INELASTIC LEVEL SIGMAS ARE FROM ABACUSㅍz，
3）ENERGY，SPIN，AND PARITY OF GROUND STATE AND ID EXCITED LEVELS TAKEN FROM NRC NUCLEAR DATA SHEETS ANO HEMATZ，PHYS，REV，128； 1952，F，1186
6）iN．2N THRESHCLD IS 6：23MEV．
9）ALL DIFFERENTIAL ELLSTIC SIGMAS WERE TAKEN FROM ABACUS EALC．
 －－－DECAY DATA FROM GOLDMAN，CHART OF THE NUCLIDES；8TH ED．o－－－

74－W－186 1063 GE－NMPO GEMP－448（NOV S6）NOVG6 A．PR」NCE．W．G．HENDERSON ET．AL．
 TUNGSYEN－186，GENNMPD，OE TOBER 30,1966
EVALUATED PRIMKRILY RY A，PRINCE，FORMERLY AT GE＝NMPO，NOW AT BNL， unresolyed resonance parameters and smooth capture evaluated by W，B．HENDERSON，GE－NMPO
＝－－－RESOLVED RESONANCE PARAMETERS－－＝－
1） 4 LEVELS，PRIVATE CONMUNICATION，J，R，STEHN，FE日，26，1964
2）GAMMA SUB GAMMA＝0．DE2 ASSUMED FOR 22ØEV ，D，D6D FOR NEG，LEVEL，
3）FIT TO DATA OF FRIESENHAHN ET AL．，NASA CR－GA－6832 REQUIRES NEUTREN AND GAMMA WIDTHS FOR 18.83 LEVEL OF 2,390 AND O：D45， NEGiLEVEL AT m11DEViNEUTRON WIOTH＝1，DEV，
4）RESULTING SCATTER ARD ABSORPTION SIGMAS AT D，D25JEV ARE 3，77 ANO 38,558 ，

1）REDUCED NEUTRON H！DTH AND LEVEL SPACING FOR LaD FROM EVALU－ ATIDN EY BLOCK ET AL，ORNL－3924，MAY 1966，P，31，S0＝1，804E－4．
2）REDUCED WIDTH FQR L＝1－SAME REMARKS AS FOR W＝182，MATE1060，APPLY
3）RANGE IS 334EV TO 1ROKEV，SCATTER LENGTH IS 7，2E－13，
4）LARGE LEVEL SPACING MAKES UNRESOLVED AVERAGE SIGMAS SUSPECT AT LOWER ENEREJES，HEWEVER NO CORRECTION HAS BEEN ATTEMPYED SINCE RESOLVEI PARAYETERS TO 212øEV（C17）ARE AVAILABLE AND WILL EE INCLUIJED IN FIRST UPDATING．
$-6=-$ SMOOTH GROSS SECTICNS，ANGLE，AND ENERGY DISTRIBUTIONS＝－0－
1）SAME FEFHARKS AS FQR W－182，MAT $=1060$ ，APPLY EXCEPT AS NOTED BELOK
3）ENERGY SPIN，AND PARITY OF GROUND STATE AND 6 EXCITED LEVELS TAKEN FROM NRC NUCLEAR DATA SHEETS，
6）N．2N THRESHOLD IS 7．3IMEV， －－－THE ABSORPTION INTEGRAL ABOVE D．5EV IS 487 BARNS， －－＝－DECAY DATA FRDM GOLDMAN，CHART OF THE NUCLIDES，GTH ED，－天E－

| $75-R E-185$ | $10 B 3$ | $G E-N M P O$ | GEMP-5B7 | JANGB W.E.HENDERSON. T.W.ZWICK |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $75-R E-187$ | $10 B 4$ | $G E-N M P O$ | GEMP-5B7 | JANGB W.B.HENDERSON. J.W.ZWICK |

RHENIUM-185 (MAT 1083) and RHENIUM-187 (MAT 1084)

Background

This work* was undertaken specifically to supdly ENDF/B with evaluated neutron cross sections of $\mathrm{Re}-185$ and $\mathrm{Re}-187$. It is an extension of an earlier evaluation* by A. Prince to include more recent data and make use of improved nuclear models. Most remarks below pertain to both isotopes. Where the information applies to only one isotope, it is so identified. Formal documention will be published as ENDF 115.

$$
M F=1, M T=451-\text { GENERAL INFORMATION AND INTEGRAL DATA }
$$

The weight of the atom and neutron in the ratio, AWR, were taken from the Chart of the Nuclides. ${ }^{1}$

The absorption integràl above 0.5 ev was computed from resolved and unresolved resonance parameters in File 2 and smooth absorption cross sections in File 3. For $\mathrm{Re}-185$ the calculation gives 1748.3 barns versus $1726 \pm 68^{2}, 1650 \pm 90^{3}, 1753$ $\pm 90^{3}$, and 1828 ± 120^{4} measured. For Re-187 the calculation gives 287.7 barns versus $292 \pm 42^{2}, 308 \pm 20^{3}$, and 312 ± 22^{4} measured. Using the abundances ${ }^{5}$ of 0.3707 for $\operatorname{Re}-185$ and 0.6293 for $\operatorname{Re}-187$ the calculated value for natural rhenium is 829.1 barns versus $823 \pm 52^{2}, 856 \pm 65^{3}, 842 \pm 50^{3}, 874 \pm 58^{4}$, and 694 ± 125^{6} measured.

The calculated absorption cross section at 0.0253 ev for Re-185 is 114.0 barns versus 114 ± 3^{2} measured and 105 ± 10^{7} evaluated by Goldberg, et al. For $\operatorname{Re}-187 * *$ the calculation gives 74.8 barns versus 75 ± 4^{2} and 73 ± 7^{7}. For natural rhenium the calculation gives 89.3 varns versus 89 ± 5^{2}.

The calculated scattering cross section at 0.0253 ev for $\mathrm{Re}-185$ is 20.6 barns and for Re-187, 10.1 barns. For natural rhenium this corresponds to 14.0 barns versus 14 ± 4^{5} evaluated by Hughes and Schwartz.

The calculated total cross section at 0.0253 ev for Re-185 is 134.6 barns versus 118 ± 2^{8} measured. The calculated value for $\mathrm{Re}-185$ is a consequence of producing the 114.0 barns absorption from resonance parameters, which requires strong (or many) bound levels. The calcuiated scattering is the free atom cross section while the measured values contain solid state effects. The calculated total cross section for $\operatorname{Re}-187$ is 84.8 barns versus 90 ± 2^{8} measured. For natural rhenium the calculation gives 103.3 barns versus 100 ± 1^{2} and 100 ± 2^{8} measured.

The caiculated reactivity worth of core-length natural rhenium samples in the fast-spectrum, refractory metal 710 Basic Critical Experiment No. 1^{9} using the ENDF/B rhenium cross sections is $-7.1 \times 10^{-5 \%}$ per gram versus $(-5.7 \pm 1.0) \times 10^{-5}$

[^8]measured. Although this evaluation produces natural rhenium absorption cross sections which are lower than most measured vaiues above 100 ev , no change is recommended, pending further data testing, since absorption cross sections in agreement with those measurements lead to predictions of reactivity worth more negative than measured in both the 710 and the ZPR-910 fast critical experiments.
$$
M F=1, M T=453-\text { RADIOACTIVE DECAY DATA }
$$

The data were taken from the Chart of Nuclides ${ }^{1}$. The decay constants were computed from the half lives of the ground states. Lacking a means of specifying branching ratios in the ENDF/B format, OS-186 was made the daughter of $\mathrm{Re}-186$, since 95% of the decays ${ }^{31}$ go that way.

$$
M F=2, M T=151-\text { RESONANCE PARAMETERS }
$$

Resolved resonance parameters of Friesenhahn, et al ${ }^{2}$ were used except for bound levels, which were determined from a multi-level Breit-Wigner fit to the low energy capture and total cross sections of Friesenhahn, et al ${ }^{2}$. The J values are from Goldberg, et al ${ }^{7}$, where given; otherwise they were arbitrarily assigned 3 or 2 in the ratio 7 to 5 to facilitate multi-level calculations. In Re-185 a single bound level with $\mathrm{J}=3$ provided an adequate fit to the data. In Pe-187 two bound levels were required and results were very insensitive to the J assignments. The spin-independent radii correspond to potential scattering cross sections of 7.45 and 7.55 barns in Re-185 and Re-187 respectively and were assigned to fit the measured low energy ${ }^{2}$ total cross section of natural rhenium, as well as intermediat? energy ${ }^{2}, 11,12$ values.

In the unresolved resonance region the average capture width and otiserved level spacing were taken from Friesenhahn, st al^{2}. Strength functions for s, p, and d waves were assigned to be in approximate agreement with average optici 1 model values and to fit the total cross section at intemediate energies. The resulting capture cross sections are somewhat lower than most measured ${ }^{2}, 13-20$ values, as mentioned in the description of $M F=1, M T=451$.

In the resolved resonance region the single-level Breit-bigner formula is specified, and a "smooth" correction is supplied in File 3 to correct the resulting scattering and total cross sections to the values obtained by the multi-level evaluation. The capture cross sections in this region are also corrected by file 3 to correct for the contribution of unresolved resonances, which were iricluded in the evaluation.

In the unresolved resonance region smooth file 3 cross sections correct for use of energy-independent level spacing and ignoring contributions of higher order than p-wave, both of which are presently limitations of ENDF/E. Since the threshold for inelastic scattering is above the upper boundary ($10^{5} \mathrm{ev}$) of the unresolved region, no difficulties are encountered by the ENDF/B exclusion of inelastic competition in the unresolved resonance formulation.

$$
M_{1}=3, M T=1-\text { SMOOTH TOTAL CROSS SECTION }
$$

The values in the resolved resonance region, $E \leq 99.8 \mathrm{ev}$ in $\mathrm{Re}-185$ and 93.8 ev in Re-187, correct the single-level Breit-Wigner results to multi-level values, and correct capture for the omission of unresolved resonance contributions.

The values in the unresolved resonance region, to 100 keV , correct for use of constant level spacing and omission of contributions of higher order than p-wave.

The values above 100 keV were obtained from ABACUS-NEARREX ${ }^{21}$ calculations, where the optical model parameters, which are given in File? were adjusted to provide a good fit to the measured total cross section ${ }^{11}, 12,22,23$ of natura? rhenium (and to the measured partial cross sections, but not at the expense of agreement with the total).

$M F=3, M T=2-$ SYYOOTH ELASTIC CROSS SECTION

The values in the resolved resonance region correct the single-level results to multi-level values.

The values in the unresolved resonance region correct for use of constant level spacing and omission of d-wave contributions.

From 100 keV to 5 MeV the sum of shape and compound elastic cross sections from ABACUS-HEARREX was used. Above 5 MeV the compound elastic cross section was negligible and only the shape elastic cross section was used. The caiculated values are somewhat higher than measured ${ }^{24}$ at energies between 0.6 and 1.5 MeV and may indicate the need for an energy-dependent Moldauer Q value in the ABACUSNEARREX calculation. The calculated values were nevertheless used since they provide an internally consistent set of partial isotopic cross sections.

$$
M F=3, M T=4-\text { INELASTIC CROSS SECTION }
$$

From 100 keV to 1.5 MeV the cross sections for individual inelastic level excitations were computed in ABACUS-NEARREX. The energy, spin, and parity of 8 levels plus ground state of Re-18524-26 and 11 levels plus ground state of Re$187^{10,27}$ were used. From 100 keV to 1.0 MEV the on, rn^{\prime} cross section from ABACUSNEARREX was also included. Above 1.0 Fk V the o_{n}, γ and $\sigma_{n,} \gamma^{n^{\prime}}$ cioss sections from ABACUS-NEARREX could not be used because lack of inelastic level data precludes correct competition. From 1 to 5 MeV the inelastic cross section was computed as the eaction cross section minus compound elastic and capture, the latter obtained as described in MF $=3$, MT $=102$ below. Above 5 MeV the inelastic cross section is $\sigma_{\text {reaction }}{ }^{-\sigma_{\text {capt }}}-\left(\sigma_{n, 2 n}+\sigma_{n}, 3 n\right)$.

Comparison with Smith's measurements ${ }^{24}$ shows underpredictions near threshold which again may indicate need for an energy-dependent Moldauer Q value.

$$
M F=3, M T=16-n_{1} 2 n \text { CROSS SECTION }
$$

The threshold and shape were taken from values supplied by Pearistein ${ }^{2.6}$. The amplitudes were normalized to best fit measured values ${ }^{7,29}$.

$$
M F=3, M T=17-n, 3 n \text { CROSS SECTION }
$$

The threshold and shape were taken from values supplied by Pearlstein ${ }^{28}$. The normalization factor is the same as determined for the corresponding $n, 2 n$ cross section.

$$
M F=3, M T=27-S M O O T H \text { ABSORPTION CROJS SECTION }
$$

Same as MT $=102$, smooth capture cross section. The n, p and n_{i} a cross sections ${ }^{7}$ over the energy range covered by this evaluation were considered negligible and were not included.

$$
\text { MF }=3, M T=102-\text { SMOOTH CAPTURE CROSS SECTION }
$$

In the resolved resonance region the correction for the contribution of unresolved resonances is given.
in the unresolved resonance region the corrections for use of constant level spacing and omission of contributions of higher order than p-wave are given.

From 100 keV to MeV the values were obtained from ABACUS-NEARREX calculations. Above 1 MeV the shape of the ENDF/B Ta-181 (MAT 1035) capture cross section was used, normalized to the isotopic rhenium capture cross sections evaluated at 1 MeV .

$$
M F=3, M T=251,252, \text { and } 253-\text { ELASTIC } \bar{\mu}, \xi, \text { and } \gamma
$$

These were computed from the differential elastic cross sections calculated by ABACUS-NEARREX. A modified version of the LHAD ${ }^{35}$ code was used.

$$
\text { ME }=4, \text { MT }=2-\text { ELASTIC SECONDARY ANGULAR DISTRIBUTIONS }
$$

The transformation matrix and the Legendre coefficients for 19 moments were computed by CHAD as above. Comparison with Siniths measurements ${ }^{24}$ shows good correlation of the odd moments and a tendency to overpredict the even moments which may stem from the deformed nature of the Re nuclei.

$$
M F=5, M T=4,16,17-\text { SECONDARY ENERGY DISTRIBUTIONS }
$$

The fractional contributions of the discrete levels and $\sigma_{n}, y^{\prime \prime}$ to the total inelastic cross section were computed from threshold to 1.5 MeV using ABACUSNEARREX results.

The ($n, n^{\prime} \gamma$) secondary neutron energy distributions above 1.5 MeV and all $\left(n, \gamma n^{\prime}\right),(n, 2 n)$ and ($n, 3 n$) secondary neutron distributions were described as Maxwellian with $T=\sqrt{E / 25} \mathrm{MeV}$ (same as Ta-181, MAT 1035). This spectrum is no doubt harder than the $n_{1} \mathrm{rn}^{\prime}$ secondaries and the secondaries following the first inelastic neutron emitted, but softer than the inelastic neutrons from direct reactions, which constitute the major portion of inelastic reactions above the onset of the $n, 2 n$ reaction. An accurate calculation of these effects was beyond the scope of this evaluation.

$$
\text { MF }=7, M T=4-\text { THERMAL NEUTRON SCATTERING LAW }
$$

The free gas law was specified below 1.0 ev . The free atom scattering cross section was specified as the value at $0.0253 \mathrm{ev}, 5^{\text {although in }} \mathrm{Re}-185$ the calculated value varies from 20.7 to 15.0 barns between 10^{-5} to 1.0 ev and in $\mathrm{Re}-187$ it varies from 10.1 to 8.9 barns.

REFERENCES

1. D. T. Goldman and J. R. Roesser, "Chart of the iuclides, Nintin Edition," Knol is Atomic Power Laboratory, November 1966.
2. S. J. Friesenhainn, et al., "Meutron Capture Cross Sections and Resonance Parameters of Rhenium from . 01 ev t. 30 kev," GA-8189, August 16, 1967.
3. ?. Sher, et al., "The Resonance Integrals of Phenium and Tungsten," Trans. Am. Nucl. Soc. 9 , 248 (1966).
4. D. F. Shook and C. R. Pierce, "Resonance Integrals of Rhenium for a Wide Range of Sample Sizes," Trans. Am. Nucl. Soc. 10, 261 (1967). Data taken from Friesenhahn, et $a i^{2}$.
5. D. J. Hughes and R. B. Schwartz, "Neutron Cross Sections," BNL-325, Second Edition, July 1, 1958.
6. R. A. Karam and T. F. Parkinsons "The Resonance Absorption Integral of Rhenium," Conf. on Neutron Cross Section Technology, March 22-24, 1966, CONF-660303, p. 171.
7. M. D. Goldberg, et al., "Neutron Cross Sections," Vol. IIC, $Z=61$ to 87, BNL-325, Second Edition, Supplement No. 2, August 1966.
8. V. P. Vertebny, et al., "Total Neutron Cross Sections of Re-185 and Re-187," Atomnaya Energiya 19, 250 (1965). [Trans1. Soviet Atomic Energy 19, 1i62].
9. F. L. Sims, et ai., "Fast-Spectrum Refractory-Metal Critical Experiment Measurements," Trans. An. Nucl. Soc. 9, 488 (1966).
10. R. C. Doerner, et al., "Physics Measurements in Tungsten-Based, AluminumReflected Fast Reactors," ANL-7007, March 1967.
11. D. C. Stupegia, A. A. fladson, and M. Schmidt, private communication to BNL. Sigma Center (1966). Data taken from SCISRS file.
12. R. H. Tabony, K. K. Seth, and E. G. Bilpuch, private communication to BNL Sigma Center. Data taken from SCISRS file.
13. R. C. Block, et al.s "Neutron Radiative Capture Measurements Utilizing a Large Liquid Scintillator Detector at the ORNL Fast Chopper," Neutron Time of Flight Methods, Saclay Conf. (1961). Data taken from BNL SCISRS file.
14. D. C. Stupegia, et al. "Fast Neutron Capture in Rhenium" J. Nucl. Energy Parts A/B 19, 767 (1965).
15. Yu. Ya Stavisskii, et al. "Fast Neutren Capture Cross Sections for Rhenium," Atomnaya Energiya 19, 42 (1965). [Trans1. Soviet Atomic Energy 19, 935 (1965)]. Data taken from BNL SCISRS file.
16. D. Kompe, "Capture Cross Section Measurements for Some Medium and Heavy Weight Nuclei Using a Large Liquid Scintillator," KFK-455, October, 1966.
17. V. N. Kononov and Yu. Ya. Stavisskii, "Cross Sections for the Radiative Capture of Fast Neutrons in Rhenium and Tantalum," Atomnaya Energiya 19, 457 (1955). [Trans1. Soviet Atomic Energy 19, 1428 (1965)]. Data taken from BNL SCISRS file.
18. R. L. Macklin, et al., "Average Radiative Capture Cross Sections for 30and 65-keV Neutrons," Phys. Rev. 129. 2695 (1963).
19. R. L. Macklin, et al., "Neutron Activation Cross Sections with Sb-Be Neutrons," Phys. Rev. 107, 504 (1957).
20. A. K. Chaubey and M. L. Seghal, "Test of Statistical Theory of Nuclear Reactions at 24 keV ," Phys. Rev. 152, 1055 (1966).
21. Unpublished. See P. A. Moldauer, et al., "NEARREX, A Computer Code for Nuclear Reaction Calculations," ANL-6978, December, 1964.
22. A. B. Smith, private communication to BNL Sigma Center (1964). Data taken from SCISRS file.
23. D. G. Foster and U. W. Glasgow, private communication to BNL Sigma Center (1967). Data supplied by B. A. Magurno, BNL.
24. A. B. Smith, et al., "Fast Neutron Scattering from Tantalum, Rhenium, and Platinum," ANL-7363, August 1967.
25. Nuclear Datz, Section B. Vol. 1, No. 1, Academic press, February, 1966.
26. Nuclear Data Sheet NRC 59-6-127, National Research Council.
27. K. Maack Bisgard, et al., "The Level Structure of 187 Re, Nucl. Phys. 71, 192 (1965).
28. S. Pearlstein, private communication.
29. A. A. Druzhinin, et al., "The Fast Neutron (n, r) and ($n, 2 n$) Reaction Cross-Sections on Rhenium Isotopes," J. Nuc1. Phys. (USSR) 5, 18 (1967).
30. R. Berland, "CHAD - Code to Handle Angular Data," NAA-SR-11231, December 31, 1965.
31. Nuclear Data, Section B. Vo1. 1, No. 2, Academic press, June, 1966.

General Identification

$$
\begin{aligned}
\mathrm{MAT} & =1037 \\
2 A & =79197.0 \\
\mathrm{AWR} & =195.275 \\
I & =1.5
\end{aligned}
$$

Ref 1

Radioactive Decay

MI $=26$	$\mathrm{Au}^{196}+\mathrm{Pt}^{196}$	$\lambda=1.30 \cdot 10^{-6} \mathrm{sec}^{-1}$	Ref 2
M'I' $=17$	$\mathrm{Au}^{195} \rightarrow \mathrm{Pt}{ }^{195}$	$\lambda=4.18 \cdot 10^{-8} \mathrm{sec}^{-1}$	Ref 2
M' ${ }^{\prime}=102$	$\mathrm{su}^{198} \rightarrow \mathrm{Hg}^{198}$	$\lambda=2.974 \cdot 10^{-6} \mathrm{sec}^{-1}$	Ref 3
$\mathrm{MI}=103$	$\mathrm{Ft}^{197} \rightarrow \mathrm{Au}^{197}$	$\lambda=9.625 \cdot 10^{-6} \mathrm{sec}^{-1}$	Ref 4
	$\mathrm{Ir}^{194} \rightarrow \mathrm{Pt}^{294}$	$\lambda=1: 013 \cdot 10^{-5} \mathrm{sec}^{-1}$	Ref

General Discussion
The original intent was to supply data for ENDF/B in the thermal end resonance region. However, we have supplied σ_{T} and σ_{γ} for the entire energy range and ($n, 2 n$), ($n, 3 n$) and, (n, p) and (n, α) cross sections above threshold. Data on inelastic scattering, anguiar distributions, and secondary energy distributions are presently missing from the file.

Cross Sections

Low kincrgy

The low energy cross sections were calculated from the resolved resonance parameters given in file 2 up to 10^{3} eV. Calculations made with the program UNICORN ${ }^{(5)}$ gave a value of $\sigma_{\gamma}(.0253 \mathrm{eV})=95.28$. The cross section was normalized to the accepted value of 98.8 barns ${ }^{(6)}$ by adding a $1 / v$ component of $\sigma_{\gamma}=0.56\left(\mathrm{~L}^{-\frac{1}{2}}\right.$ barns. This component was also specified as a background to be added in file 3 to $\sigma_{T}(M T=1)$ and σ_{γ} ($M I=102$) throughout the resolved resonance region,

The program UNICORN was then used to calculate 67 point values throughout the energy range 10^{-4} to 1.00 eV for $\sigma_{T}(M T=1), \sigma_{n}(M L=2)$,
and σ_{γ} (M'I'=102). These values are given in file 3 . Ino vs interioletion is specified since the encrgy mesh calculated by UNICORN is degiened to give minimum interpolation error this way.

liesonance kerion

linc primary data sources considered were thowe of Julicn ${ }^{(7)}$ and Columbia University. (8) Both scts of data are very extensive and extend to $10^{3} \mathrm{eV}$. Many more J valuec were determined by Julien while the Columbia University measurements apparently had a better concitivity and furnished values of small Γ_{n} which were missing in some instances in Julien's results. Unfortunately there is a small discrepancy in energy scale in the two measurements ($\sim 6 \mathrm{eV}$ at 900 eV). There are three instances where different J values were assiened to a resonance. The data of Julien were adopted for the ENDF/B. The Columbia University results have been used to supply missing values of Γ_{n} and, in one instance, a J value. The parameters of the 4.906 eV resonance are those of Wood, et al. (9) File 2 contains parameters for 63 resonances from 4.9 eV to 995.4 eV . For the resonances where J has not been determined the specification $J=I=1.5$ was made to provide $g=.5$.

The UNICORN calculation of the resonance capture integral from 0.45 eV to $20^{3} \mathrm{eV}$ gave 1577.5 barns.

Unresolved resonance parameters are specified in the energy region 20^{3} to $10^{4} \mathrm{eV}$

Fast-Noutiron Pegion
$\underline{\sigma_{1^{\prime}}\left(M^{\prime} L^{\prime}-1\right)}$
Whe total crobs acction is opectricd in rile 3. Vulucu from 10^{4} to $6 \times 10^{4} \mathrm{eV}$ were obtained rrom a smooth curve guided by cye through the data of Newson. (10) Ihe values from 6×10^{4} to $2.5 \times 10^{6} \mathrm{cV}$ were obtained in the same manner from the data given in BNL-325. (11) Data of Foster and Glasgow (12) were used to obtain the values for energied from 2.5 to 15 MeV .
$\sigma_{n, 2 n}(M \mathrm{P}=16), \sigma_{n, 3 n}(M T=17)$
Point values of these cross sections were provided by Peari= sticin ${ }^{(13)}$ from model calculations. These data are contained in file 3.
$\sigma_{\gamma}(M I=102)$
The discrepancies in experimental data here are well known. Recent reviews and data which nexe considered were those of Bogart ${ }^{(14)}$, Cox ${ }^{(15)}$, Gibbons ${ }^{(16)}$, and Grench ${ }^{(17)}$. Although it is not clear to the authors that ε d 11 of the significant diacrepancies have been removed we have adopted the analysis of Bogart for this file. Point values are given in file 3 from 10^{4} to 6×10^{6} ev from Bogart and are extrapolated by the authors to 20 meV . $\sigma_{n_{2} p}(M I=103) \quad \sigma_{n_{2} \alpha^{\prime}}(M T=107)$

Point values are given in file 3 which were obtained by smooth curves drawn through the data contained on the graphs in Nuclear Data. (18)

RLTFERLNCHS

1. F. bverling, L. A. König, J. E. H. Mattauch, and A. H. Wapstra, Nuclear Phasics 18, 529 (1960).

2. D. Strominger, J. M. Hollander, and G. T. Seaborg, Rev. Mod. Phys. 30, 585 (1958).
3. G. E. Chart of the Nuclides $(8 / 64)$.
4. J. M. Otter, NAA-SR-11980, Vol. VI (June 1966).
5. BrIL-326 (1966) Preliminary Draft.
6. J. Julien, et al, Nuclear Physics 76, 391 (1966).
7. Columbia University, Preliminary Results, Documentation Not Identified.
8. R. E. Wood, H. H. Landon, and V. L. Sailor, Phys. Rev. 28, 639 (1955).
9. H. Newson, Wash. Conf. Neut. Cross Section Technology, p. 575 (March 1966).
10. BNL-325 and Edition, Suppl. 1 (Jan. 1, 1960).
11. D. G. Foster, Jr. and D. W. Glasgow, PNWL, Unpublished Data (1g66) Available from BNL Sigma Center.
12. S. Pearlstein, BNL, Private Communication (1966).
13. D. Bogart, Wash. Conf. Neutron Cross Section Techn., p. 486 (March 1966).
14. S. A. COX, WASH 1068.
15. J. H. Gibbons, quoted in Phys. Rev. $140 \mathrm{~B}, 1277$ (1965).
16. H. A. Grench, WASH 1068.
17. Nuclear Data A, 1, 103 (1966).

日2-PGG TO EE PUEL. JULT1 C.Y.FU AND F.PEREY

SUMMARY DCCUMENTATION FOR LEAD
C. Y. Fu and F. G. Perey

Oak Ridge National Laboratory

A complete evaluation is given of the neutron and photon production cross sections of natural lead from 0.00001 eV to 20 MeV . A detailed documentation ${ }^{1}$ of the evaluation is now available. The following files and sections are included:

File 1. General Information
Section 451. Descriptive Data and Dictionary
File 2. Resonance Parameters
Section 151. General Designation for Resonance Information Only effective scattering length ${ }^{2}$ given.

File 3. Neutron Cross Sections
Section 1. Total Interaction 0.00001 eV to 1 eV - sum of the free atom scattering cross section and the $1 / v$ capture cross section. 1 eV to $1 \mathrm{keV}-\mathrm{BNL}-325 .^{3}$

1 keV to 0.47 MeV - resonance structure based on reference 4 and values adjusted to conform with other data. 5 0.47 MeV to 20 MeV - reference 6.

Section 2. Elastic Scattering
Derived by subtracting the nonelastic from the total.
Section 3. Nonelastic Interaction

Below the ($n, 2 n$) threshold, it was determined by suming the partial cross sections. Above the ($n, 2 n$) threshold, it was obtained from optical model calculations. The results are in good agreement with nonelastic data.

Section 4. Total Inelastic Scattering
Below the ($n, 2 n$) threshold, it was calculated for each isotope using the Hauser-Feshbach theory. Above the ($n, 2 n$) threshold, it was obtained from the ratio of $\sigma\left(n, n^{\prime}\right)$ and the sum of $\sigma(n, 2 n)$ and $\sigma(n, 3 n)$. The ratio was calculated by a method similar to the Pearlstein formalism, ${ }^{7}$ but direct-interaction contribution to $\sigma\left(n, n^{\prime}\right)$ was considered. Data were available below 8 MeV and near 14 MeV and were in good agreement with the calculation.

Section 16. ($n, 2 n$) Reaction
Below approximately 14 MeV , it was determined by subtracting $\sigma\left(n, n^{\prime}\right)$ from the nonelastic. Above 14 MeV it was obtained by subtracitng $\sigma(n, 3 n)$ from the nonelastic. Data were available near 14 MeV .

Section 17. ($n, 3 n$) Reaction
Calculated using the Pearlstein formalism. ${ }^{7}$ No data were available.

Section 51 thorugh 85. Inelastic Scattering Exciting Levels Below 4.4 MeV of excitation energy 48 levels in ${ }^{206} \mathrm{~Pb}$, 49 levels in ${ }^{207} \mathrm{~Pb}$ and 22 levels in ${ }^{208} \mathrm{~Pb}$ were considered. Calculations of the Hauser-Feshbach type were performed to supplement experimental data which were available for the lowest-lying levels. DWBA calculations were made to account for direct-interaction contributions to 20 of these levels. The results were merged to form 35 levels in natural lead.

Section 91. Inelastic Scattering Exciting Continuum Derived by subtracting the level contributions from the total inelastic.

Section 102. Radiative Capture Up to 10 eV a $1 / \mathrm{v}$ depeadence was assumed using 0.178 barns at 0.0253 eV. ${ }^{2}$ A smcoth curve was drawn through experimental data for higher energies.

Section 251 through 253. $\bar{\mu}_{L}, \xi, \gamma$
Derived from elastic angular distributions and kinematics.
File 4. Angular Distribution of Secondary Neutrons
All distributions were given in the Legendre polynomial representations and in the center of mass system.

Section 2. Eiastic Scattering 0.00001 eV to 5 MeV - Legendre coefficients obtained by fitting data.

5 MeV to 20 MeV - optical-model calcualtion. Optical-model parameters were derived from jointly fitting elastic angular distributions at 7 and 14 MeV , and inelastic level excitations. The same set of parameters were used in all relevant calculations.

Section 51 thorugh 85. Inelastic Scattering Excited Levels Calculated and represented in the same way as in file 3 and compared favorably with data.

Section 91. Inelastic Scattering Excited Continuum
Assumed isotope.
File 5. Energy Distribution of Secondary Neutron
Section 16. ($\mathrm{n}, 2 \mathrm{n}$) Reaction
Maxwellian distribution with temperatures derived from
level density and Le Couteur theory for neutron cascade. 8
Section 17. ($n, 3 n$) Reaction
See Section 16.

Section 91. Inelastic Scattering Excited Continuum Evaporation distribution with temperatures derived from level density, compared favorably with sparse data.

File 12. Multiplicities of Gamma Rays Produced by Neutron Reactions
Section 3. Nonelastic Interaction Derived from file 15 , section 3.

File 14. Angular Distribution of Secondary Gamma-Rays
Section 3. Nonelastic Reaction Assumed isotropic.

File 15. Energy Distribution of Secondary Gamma-Rays

Section 3. Nonelastic Interaction
0.00001 eV to 10 eV - thermal-neutron capture spectrum.

1 keV to 573 keV - averaged spectrum derived from resonance capture yields for a small number of resonances. 10 eV to 1 keV -. 1 inear interpolation between above two spectra.

573 keV to 20 MeV - calculated spectra resulting from inelastic scattering, $(n, 2 n)$ and $(n, 3 n)$ reactions, given for neutron energy intervals ranging from 0.25 MeV to 1 MeV , compared favorably with data. See reference 1 for method of calculation.

File 23. Photon Interaction Cross Sections

Taken from the evaluation by W. H. McMaster et al. ${ }^{9}$
It included sections $501,502,504,516$ and 602.

REFERENCES

1. C. Y. Fu and F. G. Perey, "An Evaluation of Neutron and Gamma-RayProduction Cross Sections for Lead," ORNL-4765 (1972).
2. M. D. Goldberg et al., "Neutron Cross Sections, $Z=61$ to 87," BNL-325, 2nd edition, supplement No. 2 (1966).
3. D. J. Hughes and R. B. Schwartz, "Neutron Gross Sections," BNL-325, 2nd edition (1958).
4. W. M. Good, Oak Ridge National Laboratory, private commnications (1971).
5. CSISRS data tape, Brookhaven National Laboratory (1.970); H. W. Newson et al., Ann. Plys. 14, 346 (1961); E. G. Bilpucti et al., Ann. Phys. 14, 387 (1961).
6. R. B. Schwartz, National Bureau of Standards, private communication (1971).
7. S. Pearlstein, Nucl. Sci. Eng. 23, 238 (1965).
8. K. J. Le Couteur, Chapter VII of Nuclear Reacitons, Vol. 1 , Edited by P. M. Endt and M. Demur, North Holland (1959).
9. W. H. McMaster et al., "Compilation of X-Ray Cross Sections," UCRL-50174 (1969).

ENERGY RANGE（D，TAODI TO 10 EV，
TOTAL X／S ACCORDING TO MEMO FROM B．R．LEONARD TO CSEWG ON ALG．
8，1969．A VALUE OF 10,15 b FOR PHE POTENFIAL x / S WAS PROVIC
ED AS THE 日EST FIT TO THE EXPERIMENFALLY MEASURED DATA． THE 22 OB M／SE：CAPTLRE CROSS SECTION WAS 7．40 B，OF WHICH 6.96 A IS DUE TO AEGe ENERGY LEVEL， 0.245 IS DUE TO THE PUSITIYE ENERGY LEVELS，AND 0.195 IS $1 / Y$ CONTRIBUTIONS． elastic scattering x／s derived as the difference between THE TOTAL AND TIAE CAPTURE X／S．
ENERGY RANGE（E．O1 TO EO．D KRV）
BNL－325，2ND ED．PRCVEDED THE RECOMMENDED VALUES FOR ALL RESOLVE！RESONANCES UP PO $3 ; 006$ KEV：THE LAST GROUP OF hesonances up in 3，s31 kev were obtainen from fhe measurement M4DE AY GRAG，ET AL；＇PHYS，REV，134，895（1964），ALL RESOLVED RESONANCES WEDE TAKEN AS SoWAVE，
THE RANGE FROM 3,031 TO 58 KEV IS COVERED BY THE UNRESOLVED RESONANCE REGION ANC THE PARAMETERS ARE DESRISED IN EAWF317． A gACKGROUND CRSSS SECTION IS GIVEN IN FILE 3 FOR THE CAPTUPE X／S TI ACCOLNT FOR MISSED P－WAVE RESONANCES IN THE RESOLVEO RESGNANCE REGION，
ENERGY RaNGE \｛V， 95 TO 15 MEV）
TIIE TOTAL X／S WAS TAKEN FROM THE DATA GIVEN IN GNL－325， 2NO E！，THE ELASTIC X／S WAS OBTAINED AS THE DIFFERENCE EETWEFN THE TOTAL AAO ALL NON－ELASTIC CROSS SECTIONS tye radiative captufe x／S was taken from the mata given in BNL－325，CND EU，THE FISSION X／S WAS TAKEN FROM AN EVALUATIOA MIDE．AY DAVEY，N，S．E．，26，149（1966）UP TO 10 MEV AND FROM

THE NJMBER OF NEUTRCNS PER FISSION IS IN AGREEMENT WITH H． CJNDE AHD M．HOLMBEFG，IAEA CONF．（1965）VOLO．P．P61： FITH SECONOARY ENERGY OISTRIBUTION OF FISSION NEUPRONS，THE TEMPERATURE IS IN AGREEMENT WITH THË WORK SY E，BARNARD ET AL． NJC，PHYS，71，22811565）．
INELASTIC THRESHOLD SET AT 50 KEV AS FROM A．B；SMITH PHYS．REV，126．718（1962）：ALL OTHER DISCRETE LEVELS HERE OBTAI：JED FROM WORK CF N；P，GLASKOV，AT，ENERGY，14：400〔1963！，
㫙L－8．18（1963）．
THE（ $\because 2 \mathrm{ZN}$ ）X／S WAS CBTAINED AS AN UNHEIGHTED AVERAGE THROUGF SEVERAL EXPERIMENTAL DATA SETS PUBLISHED BETWEEN 1964 AND ¿956 THE（N，3N）X／S WAS CETINED FROM THE WORK OF M．H，TAGGART AND H：g

```
PA-233 SAPL E\forallAL=JAN7O P,C,YOUNG,BAPL,W,MIFFLIN,PA,12122
DIST-OCT7D REV-OCT70 2,00000- S 2,50000+7
```

OATA MODIFIED OCTOBER 70 TO CONFORM TO ENDF/BEVERSION IL FORMATS MFEI,MT=451 COMMENTS AMD DICTIONARY
MF $=1,19=4$? ? NU(E) $=61+C \hat{E} * E$, WHERE C1 AND C2 WERE OBTAINED FROM A HERIVES EMPIRICAL RELATION DEPENDENT ON Z ANO A
MF=1-11T=453 UECAY DATA 91PA233-BETA-92U233~ALPHA-9ØTH229
MF 22 , 1 TEIE1 HESON PADANETERS FROM REF, 1 (28 RESON, UP TO 17,5EV), PEF, é(12 RESON,17.5=37.5EV), RESOLYED RESON ENERGY RANGET $0,8 \cap 1$ TO 36. 5 EV. AVE RESOA PARAMETERS DEDUCED FROM THE 27 POSITIVE RESON GIVEN IN REF,1; UNRESOLVED RESON ENERGY RANGE 38,5 EV TC 10 KEV. THE 12 GNG FFOM REF 2 ADJUSTED TO YIELO SAME RESON INT COITRIB INPLIEM BY THE AVE RESON PARAMETERS. THE RESULTING GNO FOR THE $4 \mathbb{E}$ RESDLVED FESON AND THE AVE GNA FOR THE UNRESOLVED RESON ADJUSTED TO YIFLD A CAPT RESON INT(O.SEV-10MEV) $2859.90 E A($ INCLUDIMG THE CONTRIE OF THE MFE3,MT=102 DATA). THE GND FOR THE NEG RESON THEN ADJUSTED TO YIELD A O., D253EV CAPT XSECTE 39,79EI,
FILE 3 CONTAINS SMDOTH DATA IN THE ENERGY RANGE 10 KEV TO 15 MEV MFa3.ittai TOTAL CRDSE SECTION - REQUIRED TO EE CONSISTENT IN goth magnitude and energy variation hith the total xasection OF NEIGHBORING NUCLICES, E,G, TH232, U233,U235.U238, AND PU239. MFa3. पTE2 ELASTIC SCATIERING CROSS SECTION E TOTAL XESECTION MINUS NONELASTIC X-SECTION. IN ADOITION, REOUIRED PO EE CONSIS. TENT IN ENERGY VARIATION WITH ELASTIC SCATTERING X-SECTION OF NE!GHBDRING NUELIOES (TH232, U235,U233) AND TO JOIN SMOOTHLY AT 10 KEV HITH A VALUF. AEARLY EOUAL TO THE POTENTIAG SCATTERING $x-$ SECTION $(39,095$ RAFNS, REF,2).
MFEJ.MTEJ NONELASTIC CROSS SECTION = SUM OF PHE (N,F), ($\mathrm{A}, \mathrm{NPR}(\mathrm{ME}),(\mathrm{N}, \mathrm{?N}),(\mathrm{N}, 3 \mathrm{~N})$ AND (N,GAMMA) CROSS SECTIONS. MF =3, MTE4 INELISTIC SCAT XSECT - TAKEN FROM REF; 3 g O-VALUE E - $18: 7$ KEV (ENERGY CF THE F!RSP EXC ITED STATE IN 9IPA233) MF =3,MTEIO AND 27 (N,2N) ANO (N,3N) XSECF - TAKEN FROM REF, 3 3-VAlUE: CALCULATED UEING ATOMIC MASSES FROM REF,
MFE3.MTEGA FISSION CRESS SECTION - COMPOSITE CURVE AS FOLLONS -
 1. $\mathrm{DE}=1.5$ OMEV LOG(233FA(N;F)) LINEAR IN LOG(E) 1, 50.5 , PRMEY 233PA $(N ; F)=(C 1 / C 2)=23 B U(N, F)$ FROM REF,5.
 C230.511 = AVE. YALUE OF 238U(N,F) (REF.5),2.6-5,6 MEV 5. 38 -g. BOMEV $233 P A(N, F)$ HAS ENERGY VARIATION SIMILAR TO THAT FOR (NiF) OF L234, U236 AND NP237 FROM REF, 5 ,
 C1=1;56 = DEHIVED VALUE OF 233PA(N,F) FOR THE SECOND PI,ATEAU NEAR 9,2 MEV.
 22.5015, AMEV 233PA(N;F) HAS SAME ENERGY VARIATION AS THAT FOF 236U(N,F)(REF.7) o-Value e calcuiated energy release per fission MF =3, 1 T $=51,52,53,94,55,9 \mathrm{I}$ PARYIAL INELASTIC SCAT XSECTGFROM REF. 3 MFa3,MTEIN2 CAPTURE CRCSS SECTION - COMPOSITE CURVE AS FOLLOWS -
 iN, gamala calclilated from average resonance parameters 0.08-15, AMEV 233PA(NiGAMMA) $=2.233 U(N, G A M M A)$ FROM REF, $8 ;$ NORMALEEATIGA FACTOR(E2) CHOSEN SO PHAT 233PA(N,GAMMA) a 23 GU(N,GAMMA)(REF, A) AF Z.9 MEY

MF＝3，MT＝2C1 MU＝BAR（AVE，COSINE OF THE SCATTERING ANGLE IN PHE LAE SYSYEM FOR EGASTIC S（ATTERING），CALCULATED FROM THE U（I，M）AAD LEGENDFE．COSFFICIEHTS GIVEN IN FILE 4
MFI $3, M T=252$ XI（AVG，LOGARITHMIC ENERGY DECREMENT）：
MF $\leq 3, M T=253$ GAMMA \｛SLCHING DOWN PARAMEFER\}, THE ENERGY DEPENDENCE CF THE TWO ABOVE QUANTITIES IS DETERMINED gY THE LEGENDRE DOEFFICIENTS GIVEN IN FILE 4．COMPLETELY GENERAL EXPRESSIONS IN POWERS OF AWR＊＊WI HAVE BEEN DERIVED FCR THE COMSTANTS WHICH EETERMINE THE CONTRIGUTION OF EACH OF THE LEGENDRE COEFFICIENTS，
MFa4，MT＝2 TRANSFER MATRIX U（FRGM C，M，TO LAB），A GENERALEXE PRESSION FQR U（LtM）IN POWERS OF AWR＊＊世1 HAS EEEN DERIVED，THE LEGENDRE COEFFICIENTS WERE TAKEN DIRECTLY FROM REF，J，AND ARE BASED 9N THE DATA FCA TH232，
MF＝4，MT＝51，52，55，54，55 ANG DIST OF NEUTRONS SCAT INELASTICALLY FROM 5 DISCRETE LEVELS ASSUMED ISOTROPIC IN THE CM SYSTEM
MF $35.14 T=16,17.91$ ENEREY DEPENDENCE OF SECONOARY NEUTRONS DEFINED BY AN FVAPORATYON SPECTRUM ENERGY DEPENDENCE OF PHETA EALCL－ LATED ISING THE FORMLLATION IN REF． 9
MFEE，MTEIA SIMPLE FISSION SPECTRUM THETA（CONSTANT）CALCULATEE IISING THE FORMULATION GIVEN IN REF．1月．
MFE7：MYx4 THERAAL SCATTERING LAW－FREE ATOM XGSECTIONEIDBARNS． REFERENCES
1．SIMPSON ANIJ COMOING，NUCL SC！AND ENG，28，133（1967）
2．HARPIS O，R，WAPD－TM＝814（1969）
3．DRAKE AND NICHOLSS，GA＝7462（19667）
4．MATTAUCH，ET AI．NUCLEAR PHYSICS，37． 1 （1965）
b，DAVEY P NUCL SCI Anid ENG，32， 35 （1968）
－LALDVIC ，LECTIRES ON NUCL INTERACTIONS，VOL II．207（1962）
7．HART．AHSB（S）R 169 （1969）
8．STEHN，E甲 AL，BNL＝325；2ND ED，SUPPL 2 ，VOL 1I】（1965）
9．SMTTH AND GRIMESEY，IN－1182（1969）
10．TEPRELL，PHYS AND CHEM OF FISS，VOL II． 3 （1965）

ENDF/B MATERIAL NO $=1110$
U-23S EVALUATED DATA $-7 / 69$ sREV $3 / 71$ - N.M.STEEN BAPL

FISSIOIY CRMSS SECTIONS ARE BASED ON THE FOLLOWING DATA

1) $4,4 E V$-1.5KEV **** DATA OF WESTON ET,AL: ORNL-TN-2140 (ADLER FIT TO 6QEV),1968
2) $1,5 K E V=15, M E V$ *** HART\{U,Kil OATA 2 AHSBPS) R124, 1967

6
3) THERMAL - REVISED ORNLERPI EXPERIMENT (PRIV. CCM: FROM L: WESTON:1968).
CAHTURE CROSS SECTIONS ARE BASED ON THE FOLGOWING DATA ?
 ORNL-YN=2140 (ADLER FIT TO 60EV) O
2) 1,5KFV = 1"OMEV **** FIF TO ALPHA(E) DATA OF E DIVEA AND THE ABOVE FISSION DATA
(2)
3) 1, 2MEV = 15.MEV ****** A SIMPLE ANALYTIC \& EXPRFSSION OF THE FORM A/(1 * B*SQRTEJ*SQRTE O
4) THERMAL - REVISED ORNL-RPI EXPERIMENTSPRIV: CDY . AND FISSION CROSS SECTIONS IN FKIS FILE.
 FROM THE EVALUATION BY DRAKE ET AG;GA-7076;1967) PELOW $1,50 E V$ THE VALUES ARE CONSISTENT WITH A $2200 \mathrm{M} / \mathrm{S}$ VALUE OF 14.39 BN .
NU-GAR DATA PPROHPT - DELAYED IS BASED ON THE DELAYED VALUE CF D;OO7 FROM THE WORK OF KEEPIN: THE PRCMPT NUmBAR EATA ARE BASED ON WEIGHTED LEAST SQUARES FITS TO THE AYAILABLE DATA, IN THE RANGE O.D - 1.3 MEV THE FIT IS LINEAR。 FROM 1:3MEV - $15, M E V$ A SECOND ORDER FIF WAS USED.

SLOW NEUTRON EOUILIGRIUM FISSION SPECTRUM IS BASED ON THE FOLLOWING DATA

1) THE SHAPE FUNCTION, N(E), CONSISTS OF FOUR GONPONENTS, THESE REPRESENT THE FOLLOWING A) DELAYED DISTRIBUTION= TAKEN TO BE A. MAXWELLIAN WITH MEAN ENERGY $=0,45 Q M E V$. F) AN EMISSION SOURCE THAT IS STAPIONARY IN THE LAB COORDINATE SYSYEM, THIS CONPONENT ACCOUNTS FOR 10 PERCENT OF THE NELTRONS: THE FORM OF THE EMISSION TROM THIS SOURCE IS EVAPORAFION WIFH EBAREJ:ODMEV. C) TWO MOVING EMISSION SOURCE COMPONENTS REFRESENTING THE LIGHT ANO HEAVK ERAGMENTS, THF EMISSION FROM THESE COMPONENTS IS ASSUMED TO BE ISOTROPIC IN THE CENTER OF MASS CORRDINATE SYSTEM AND REPRESENTED BY A SINGLE EVAPORATION SPECTRUM FOR EACH FRAGMENT, THE LIGHT TO HEAVY FRAGMENT FRAGMENT YIELID RATIO IS TAKEN TO BE 1,382, (1) THE FUNCTIONAL FORM FOR THE PROMPT SPECTRUM, NP(E), IS GIVEN BY THE EQUATION
 * (1-B) \# NL (E,EL,TL)) WHERE TS =1.5260 3 MEV,ELE1,021MEV,TL=0.680MEV, $E H=0,475 \mathrm{MEV}, \mathrm{THED}, 381159 \mathrm{MEV} \mathrm{B}=\mathrm{B}=4198$
?) MEAN ENERGY FOR THE EQUILIBRIUM SPECTRUM WAS IETERMINED BY CONSIDERATION OF BIAS IN GROUP EXFTL ASSEMBLIES WITH VARY!NG LEAKAGES": DEO DISCUSSED IN WAPD-TMF691(1969). MORE DETAILS AVAILABLE IN WAPD-TM-997(4/71? THE GENERAL EVAPORATION DISTRIBUTION,LFE4, HAS EEEN USED TO REPRESENT THE COMPONENT

THE REMAINING PATA IN THIS MATERIAL UERE TAKEN DIRECTLY FROM TFE PREVIOUS ENDF/B (MAT, NO. 1041) DATA FOR UЕだ33 PROVIDED BY M. DRAKE OF GULF GEN; ATOMICS (GA=7076:1967).

U-233RGFP ENDF/B MATERIAL NOE 1042
BAW-320 (DEC,1966) DISY='JUL68 REV-JUNTO

U-233 LUMPEO FISSION FREDUCT NO; 1 (LFPI): RAPIDLY SAFURATING:: GENERATED DECEMEER 1966\% REFERENCES ARE

1. W A WITTKDPF, GAWE32E, (DEC, 1966), GIVES DEFAILS AND MEFHODS 2. \checkmark D GARRISON AND B W ROOS, NUCL SC! AND ENG 12. 115 (1962). OR GA-2112 (ARRIL 1961), GIVES BASIC NUCLEAR DATA 3. N F WIKNER AND S JAYE, GA=2113 (JUNE 1961), GIVES NUCLEAR DATA IHIS LUMPED FISSIDN PRODUCT IS USED IN A SCHEME WHERE THE TOTAL FISSION PRODUCT POISON FROM A FISSIONABLE NUCLEUS IS REPRESENTEC GY THE FOLLDWING FIVE CHAINS OR FISSION PRODUCT GROUPS
2. THE XE=135 CHAIA

2, THE SM=149 CHA!A
3. LFP1 (CD-113, SM-151, GD-155, GD-157)
4. LFP2 (MOn95, TC-99, RHO103, X6-131, CS-133, ND=143, $N D=145, F Y=147, S M=152, E \cup-153)$
5. LFPS (ALL OTHER FISSION PRODUCTS).

CONVENTIONALLY, ONLY THE NEUFRDN CAPYURE EVENTS ARE CONSIDEREE IMPORTANT FOR THE FISSICN PRODUCT POISONS AND THEY ARE ASSUMED TO BE INFINITELY OILUTE, THUS; DATA IS SUPPLIED ONLY FOR MF=1: $M T=451$ AND MF $=3, M T=27$

```
                            ENDF/B MATERIAL NOE 1066
    U-233SSFP B+W EVAL=DEC66 W,A.WITTKOFF (FOR THERM,REACTOFS)
    RAW-32! (DEC.1966) DISTENUL68 REV-JUN70
    #ATA MODIFIEO UNE, 107% TO CONFORMM TO ENDFIB-II FORMATS
    L,1:70 TO CONFORM TO ENDF/BEIJ FORMATS
    THIS OATA SET FOR THERYAL REACTORS ONLY
```



```
U-233 LUMPED FISSION PREOUCT NO,2(LFPZ), SLOWLY SATURATING,
GENERATED DECFMEER 1966% REFERENCES ARE
1. W A WITTKOPF, BAW=32Q. (DEC, 1966), GIVES DETAILS AND METHODS
2. J O GARRISON AND B W ROOS, NUCL SCI AND ENG 12, 115 (1962):
    CR GA-2112 (APRIL 1961), GIVES BASIC NUCLEAR DATA
3. N F WIKNER ANL S JAYE, GA=2113 (JUNE 1961), GIVES NUCLEAR DATA
    THIS LUMPED FISSION PFODUCT IS USEO IN A SCHEME WHERE THE TOTAL
FISSION PRODUCT POISON FROM A FISSIONABLE NUCLEUS IS REPRESENTEC
GY THE FOLLOWING FIVE CHAINS OR FISSION PRODUCT GROUPS
    1. THE XE=135 CHAIA
    2, THE SM=149 CHAIA
    3. LFF! (CD-113, SM=151, GD-155, GD-157)
    4. LFP% (MO=45, TC.99, RH=1D3, XE=131, CSm133, NDr143,
                        ND=145, PM-147, SM-152, EU-153)
        5, LFFS (ALL OTHER FISSION PRODUCTS),
    CONVENTIONALLY, DNLY THE NEUTRON CAPFURE EVENFS ARE CONSIDERED
IMPORTANT FOR THE FISSICN PROOUCT POISONS AND THEY ARE ASSUMED TO
BF INFINITELY DILITE. THUS; DATA IS SUPPLIED ONLY FOR MF=1&
MTE451 AND MF=3R MT=27
```

ENDF/日 MATERIAL NO= 1067

U-233 LUMPED FISSIQN PRCDUCT NO, 3(LFP3), NON-SATURAFING,
GENEFATED DECEMBER 1966: REFERENCES ARE

1. W A WITTKOPF, GAW-32K, (DEC, 1966), GIVES DEFAILS AND MEPHODS
2. J G GAPRISON AND B W ROOS, NUCL SCI AND ENG 12, 115 (1962).

OR GAO2112 (APRIL 1961), GIVES BASIC NUCLEAR DATA
3. N F WIKNER AND S JAYE, GA-2113 (JUNE 1961), GIVES NUCLEAR DATA

THIS LUMPED FISSION PFOOUCT IS USED IN A SCHEME WHERE THE TOTAL FISSION PRODUCT POISOM FROM A FISSIONABLE NUCLEUS IS REPRESENTEC BY THE FOLLOWING FIVE CHAINS OR FISSION PRODUET GROUPS

1. THE XE=135 CHAIA
2. THE SM-149 CHAIA
3. LFFI. (CD-113, SN=151, GD-155, GD-157)
4. LFP2 (MO-95, TCm99, RHE103, XE-131, CS-133, ND-143, ND=145, $\left.P_{N}=147, S M-152, E U=153\right)$
5. LFF3 (ALL OTHER FISSION PRODUCTS).

CONVEHTIONALLY, ONLY THE NEUTRON CAPTURE EVENTS ARE CONSIDERED IMPORTANT FOR THE FISSIEN PRODUCT POISONS AND THEY ARE ASSUMED TO DE INFINITELY DILUTE, THUS; DATA IS SUPPLIED ONLY FOR MF: 1 I $M T=451$ AND $M F=3, M T=27$

ENDF/B MATERIAL NO: 1255

FISSION FRAGMENT RESIDUAL LUMP FOR U-233
PUT IN ENDF/B2 FCRMAT EY ZIZO LIVOLSI, BABCOCK=WILCOX, AUG 1971 this is a fictitious nlclide that includes into a single lump abl THE FISSION FRAGMENTS FROM U. 233 WITH EXOEPTION OF THE 53 NUCLI. DES EXPLICITELY DESCRIEED IN ENDF/B, WALKER(I) HAS CALCULAFED THE SUM OF THE YIELD X SIGHA AND YIELD X RI. BY NORMALIZING THE SUM. OF YIELDS TO 2
AT 222EM SIGMA-C $=1.265$ BARNS ENDF OATA TOTAL CAPTURE INTEGRAL E 5:,63 BARNS

REFERENCES

1. WH WALKER, PRIV, COM. TO WA WITTKOPF (6/30/71)
2. FE LANE, AECL, $\mathbf{~ 3 0 3 8 (1 1 / 1 9 6 9) ~}$
```
                    ENDF/B MATERIAL NOE 1043
    U-234 GGA EVALEJAN67 DRAKE ANO NICHOLS
    GAO8135 (SET.1967) DISTEJUL6B REV-APR7O
    URANIUM-234 NEUTRON CRESS SECTIONS
    DATA TAKEN FROM REPORT GY DRAKE AND NICHOLS (GA-8135)
OATA MOOIFIED FOP ENDF/B-II FORMATS {APRIL, 1970}
PARAMETERS FOR NFGAYIVE LEVEL CHANGED (APRIL, 1970)
MF=3 MT=1 TOTAL OBTAINED BY ADOING PARTIAL CROSS SEETIONS
MF=3 MT=2 ELASTIC SAME AS U-238 {GA-6887}
MFE3 MTET NONELASTIC. SUM OF (N-2N), (N-SN},{N=G),(NGF},(\NEL}
MF=3 MT=4 INELASTIC FROM PARKER (AWRE (037/64)
MF=3 MT: %.6 (N-2N) FROM PARKER (AWRE D=37/64)
MFE3 MY=17 (NE3N) FROM PARKER (ANRE D=37/64)
MF=3 MTEIB FISSITN (GAm8135)
Q-VALUE REF,A, PRINCE, PRIVATE COMMUNICATION 16 APR68
    MF=3 MT#1Q2 (NSGAMMA) (GA=8135) ALSO MT=27 ABSORPTION
    MF=S MTE251,252,253 CALCULATED BY CHAD
MF=4 MTE2 DIFF ELASTIP(GA*8135) SAME AS THORIUM (GA-64O4)
MF=5 MT=16 (GA-8135)
MF=5 HT=17 (GA-8135)
MF=5 MTE18 (GA=8135)
```


ENDF/B-III SUMMARY DOCUMENTATION FOR U^{235}

Contributors:

J. R. Smith, R. C. Young: Aerojet Nuclear (1)
H. Alter: Atomics International (2)
B. R. Leonard: Battelle Northwest Laboratory
T. A. Pitterle, N. C. Paik, C. Durston: Westinghouse-ARD ${ }^{(4)}$
(1) ANCIK 1044
(2) AI-AEC-12916; AI-AEC-13013
(3) BNWL-1586
(4) WA.RD-4210T4-1

Thermal Data

The crose section shapes in this evaluation were derived, in general, by perturbing the results of an existing evaluation in order to reproduce the desired a values. The results of existing precision experimental differential measurements were used as a guide to the nature of the perturbations.

An objective of the evaluation was to provide cross-section shapes which were smooth in the thermal region and would not produce irregularities in the behavior of thermally averaged quantities as a function, say, of neutron temperature.

Point representation of the data intended to be in the ENDF/B-I filies were received from C. R. Lubitz. These files covered the energy range 10^{-3} to 5 eV . It was determined that these files contained apparently unintended irregularities as large as one percent in the entrics below 4 meV . These entries were smoothed and the data files extended to $10^{-4} \mathrm{eV}$. Calculation of " H " factors showerl that the value of H_{f} was about 0.2 percent greater than the desired value. The original evaluation of the low-energy fission cross section was reported to have been made by fitting o_{f} data of LRL and Hanford. Accordingly, a new ifit was made including these data and also the fission data of Safford and Melkonian. A amsoth fit was obtained, the main difference from the original fit being the reduction of the rise in cross section at energies below about 0.02 eV . The fission cross section was fitted simultaneously with the capture cross eection using an alpha variation deduced by Westcott. In order to achieve a smooth fit to the fission data the file was modified slightly for energies up to 0.18 eV . The capture cross section file was modified for energies up to 0.1 eV .

The cross-section shapes derived for sub-thermal neutron energies are based in large part on precision total cross section measurements of Safford, et al. and the $1+a$ measurement of Safford and Melkonian. The total cross section data of Safford, et al. obtained with liquid samples is shown below compared with the ENDF/B values.

$$
\sigma_{T} \sqrt{E}
$$

Neutron Energy	Safford, et al.	ENDF/B
0.000818 eV	115.71 ± 0.35	115.56
0.00128 eV	115.79 ± 0.29	115.49

The ENDF/B scattering cross sections at these energies is 16 b and $\mathrm{a} \pm 3 \mathrm{~b}$ uncertainty in this cross section contributes about $\pm 0.1 \mathrm{~b}-\mathrm{eV}^{1 / 2}$ to calculated $\sigma_{T} \sqrt{E}$ values.

A summary of the $2200 \mathrm{~m} / \mathrm{s}$ cross section parameters is given below.

σ_{T}	694.276
σ_{S}	15.776
σ_{f}	580.2
$\sigma_{\mathbf{C}}$	98.3
ν	2.423 (Delayed + Prompt)
σ	0.1694
η	2.07196

Resolved Resonance Region

The resolved resonance region for ${ }^{235} U$ in ENDF/B-Wl extends from 1 to 82 eV . The description uses single level parameters plus a smooth file. Parameters were derived from a simultaneous fit to the following sets of data:

1) Simultaneous capture and fission measurements by deSaussure, et al. The strength of this experiment is that it measured the two most important partial cross sections of U^{235} simultaneously, under the ame conditions of resolution and background. Moreover, care was taken to correct for such effects as backgrounds, resonance self-shielding, and scattering in the fission chamber. These data were used principally to indicate the ratio of capture to fission for the resonances.
2) Total cross section measurements of Michaudon. These data were obtained at liquid nitrogen temperatures and fairly high resolution. They turned out to give in most cases the best indication of the total widths of the resonances. The data were available only as cross section vs. energy, with reaults from several samples mixed together. Total crosa sections are measured from transmission of samples, and the analysis should really be performed on the transmission data for each sample.
3) Fission cross sections measured by Blons, et al. on the Saclay linear accelerator. These data were obtained at liquid nitrogen temperature, with resolution similar to that of Michaudon's total cross section measurement. The Blons data are the best resolution fission data, but below about 35 eV the normalization gets progressively more erratic because of difficulty in interpreting the backgrounds in the presence of a B-10 filter used to eliminate low energy overlap neutrons.
4) Fission cross sections measured by Cav, et al. on the linear accelerator at C.B.N. M. (Geel). These data are the highest resolution room temperature measurements of σ_{f} for U^{235}. They are useful for comparing with the Blons data to confirm the effectiveness of the Doppler corrections in the analysis code. They go to a lower energy than the Blons data, 6 eV vs. 17 eV . However, the Cao data are troubled by erratic background corrections in the vicinity of resonances in filters used to determine backgrounds.

Cross Section Normalization

Since this analysis covered only the resonance region above 1.0 eV , it was necessary to normalize all data to the existing ENDF/B-II low energy file. Of the principal data sets, only the deSaussure measurements extends to this low energy. His fission data were raised by 1.5% to bring their integral from 0.45 eV to 1.0 eV into better agreement with that from the ENDF/B low energy file. The difference in the capture integrals was 2.4%. Nevertheless, the capture was raised only 1.5% in order that deSaussure's α ratios might be preserved.

The Cao data were raised 7% to bring them into agreement with the renormalized deSaussure data. The Blons data, which already agreed well with the renormalized deSaussure data above 40 eV , were given an energy-dependent renormalization. The ratios to deSaussure values of a series of incremental resonance integrals were fit with a fourth degree polynomial. This polynomial was then used to normalize the Blons data. The resulting correction ranged from about 19% at 18 eV to zero at 40 eV .

Single level parameters were derived by fitting the experimental data by means of the automatic iterative fitting features of the Automated Cross Section Analysis Program (ACSAP). A value of 11.5 b was used for the potential scattering cross section.

ACSAP will upon request print and plot the differences between experimental points and the cross sections calculated from parameters. Such difference outputs werc used in constructing the smooth files, In order to maintain proper a values, the deSaussure data were used as much as possible in constructing these different files. However, this ideal had to be abandoned above about 35 eV , as degraded resolution spread the intrinsic difference well away from the resonances to which they apply.

The scattering smooth file represents the difference between the singlelevel prediction and a multilevel calculation adjusted to minimize the effects of interference imbalance at the two ends of the resolved resonance region.

The parameters plus smooth file yield resonance integrals between 1 and 82 eV of 170.6 and 104.5 b for fission and capture, respectively. The average alpha is 0.613 in this region, compared to a value of 0.617 calculated directly from deSaussure's data.

The root mean square fractional difference between the fit and the individual data sets averages about 3.5%. This figure comes from an analysis of partial resonance integrals from the fit and from the data. Resonance energies are probably good to 0.050 eV and resonance widths to 10%. Overall error in cross sections is about 5\%.

For further details see the full report, ANCR-1044.

Unresolved Resonance Region

The ENDF/B-III evaluation in the unresolved energy range is based primarily on the experimental data of deSaussure. At the time of this evaluation, detailed resolution cross sections were not available from the recent measurements of Perez, Blons or Lemley. For this evaluation, a continuous curve of the fission cross section was constructed so as to reproduce the decimal interval averages of the experimental data.

Differences between the present and ENDF 'B-II evaluations are due to inclusion of new experimental data, renormalization of the experimental data to recent ${ }^{10} B(n, \alpha)$ cross sections and to differences in methods of constructing a smooth curve. The ENDF/B-III evaluation was obtained by averaging the data of deSaussure over lethargy intervals and by passing a continuous curve through the intervals.

The unresolved resonance parameters in the ${ }^{235} U$ ENDF/B-III file were modified to yield the evaluated fission cross section and to reproduce the ENDF/B-II alpha value as closely as possible. The parameters were obtained by adjusting the parameters to yield the desired fission and alpha values.

The cross sections which were fitted and the s-wave strength function and fission widths resulting from the fitting procedure are given in WARD-4210T4-1. In this evaluation, the upper energy range for the unresolved resonance parameters was cut off at 25 keV and pointwise data was used above this energy.

Data Above 25 keV

a. Fission Cross Section

Qualitatively, the experimental data in the energy range $\sim 25 \mathrm{keV}$ to 100 keV falis into two groups: the low fission values of Szabo and Lemley which use ${ }^{6}$ Li as a standard and the higher fission values such as White and DeSaussure which use hydrogen and ${ }^{10} \mathrm{~B}$ as a standard. However the recent data of Gwin using a ${ }^{10} 0_{B}$ standard supports the low fission values. The data of Blons tend to support the lower fission values while the data of Knoll are in good agreement with White's data. The use of ${ }^{6} \mathrm{Li}$ or ${ }^{10} \mathrm{~B}$ as a standard does not appear to be the source of the discrepancy because the ${ }^{10} B$ cross section used for normalization is partially derived from the ${ }^{6}$ Li data consistent with Lemley's normalization.

No clear choice based on the differential data can be made at the present time between the low and high fission values. Integral testing against critical assemblies indicates that use of the lower fission values would require major cross section adjustments - particularly very low capture cross sections for 238

U in order to obtain eigenvalues as close as 1% less than unity. The latter is particularly true for soft spectrum assemblies typical of interest in LMFBR design. For this reason, the choice for the present evaluation is based on the data of Perez, White and Knoll.

The experimental data for the U^{235} fission cross section above 100 keV , as utilized in the present evaluation is based on the mea surements of White, Szabo and Smith as cr~rected by Hansen. The data of Poenitz indicates notably lower fission values than the other measurements in this energy range. The
principal new measurement since the ENDF/B-II evaluation is that of Szabo. The measurements of Kappeler were reported since the present evaluation. The Szabo measurement is the principal source of the differences between the present and ENDF/B evaluations between 0.15 and 1.0 MeV .

Between 1.0 and 10.0 MeV , the only measurements with an accuracy of better than 5% are those of White at 2.25 and 5.4 MeV with relatively poor shape determination in this energy range. In the present evaluation, the U^{235} fission cross section between 1.0 and 10.0 MeV was evaluated within existing uncertainties in order to increase the cross section by 1 to 3% primarily to enhance the U^{238} fission cross section for which the most accurate measurements are relative to U^{235} fission. Above 10 MeV , the present evaluation is evaluated to obtain a 14 MeV cross section of 2.13 barns.

The detailed structure in the U^{235} fission cross section is important as it leads to variations of up to about 3% between groups of multigroup cross sections averaged over quarter lethargy widths typical of many LMFBR calculations and it significantly influences the Pu^{239} fission cross sections derived from ratios of ${ }^{239} \mathrm{Pu} /{ }^{235} \mathrm{U}$ fission. For the present evaluation, a compromise structure was selected based on the measurements of Perez and Lemley. The evaluated structure was normalized to obtain the 10 keV evaluated average cross section. This structure could possibly be improved when pointwise data from the measurements of Perez and Lemley become available.

b. Capture Cross Section

The captire cross section above 25 keV was obtained by folding the newly evaluated fission cross section into the ENDF/B-II alpha values. Results of discussions with deSaussure (ORNL) relative to the two sets of ORNL alpha data (the lower values of Weston et al. and the higher values of deSaussure, et al.) provided no basis of establishing one data set over the other. A weighted average of the two sets was used. The alpha evaluation is summarized as follows: 1540 keV (Schmidt evaluation); 40-60 keV (joining of new and Schmidt evaluation); $60-200 \mathrm{keV}$ ($5-7 \%$ higher than Schmidt evaluation); $200-400 \mathrm{keV}$ (smooth joining of new and Schmidt evaluations); above 400 keV (Schmidt evaluation).

c. Total Cross Section

Above 2 MeV , the data of Glasgow and Foster was used to represent the total cross section. Below 2 MeV the total cross section of MAT 1044 was adopted.
d. Elastic Scattering Croiss Section

The elastic scattering cross section was obtained by subtracting from the total cross section the sum of the remaining partial cross sections.

```
    U-235RSFP B+W
    BAW-320(OEC,1966)
            ENDF/B MATER!AL NO= 1045
                EVAL=DEC66 W,A,WITYKOPF {FOR THERM,REACTORS\
                                D!STEJUL68 REVIOJUN70
```



```
    DAPA MODIFIED JUNE,1O7E TO CONFORM TO ENDF/B-II FORMATS
```



```
    THIS DATA SET IS FOR USE IN BURN-UP CALC, FOR FHERMAL REACTORS
    U-235 LUMPED FISSION PRCDUCT NO.I'LFPI). RAPIDLY SATURAFING:
GENERATED DECEMBER 1966, REFERENCES ARE
1.W A WITTKOPF, BAW=32Q, (DEC, 1966), GIVES DETAILS AND MEPHODS
2. J D GARFISON AND B W ROOS, NUCL SC! AND ENG 12, 115 11962%,
    OR GA-2112 (APRIL 1961), GIVES BASIC NUCLEAR DATA
3. N F WIKNER AND S JAYE, GAOZ1I3 (JUNE 1961), GIVES NUCLEAR DATA
    THIS LUMPED FISSION PFODUCT IS USED IN A SCHEME WHERE THE TOTAL
FISSION PRODUCT POISON FROM A FISSIONABLE NUCLEUS IS REPRESENTED
BY PHE FOLLOWING FIVE CFAINS OR FISSIQN PRODUCF GROUPS
    1. THE XE=135 CHAIA
    2. THE SM=149 CHAIA
    3. LFP1 (CD-113, SN-151, GD-155, GD-157)
    4, LFP2 (MO-95, FCo99, RH-103, XE=131, CS-133, ND=143,
                                ND-145, PN=147, SM-152, E\-153)
            5. LFP3 (ALLL OTHER FISSION PRODUCTS).
    CONVENYIONALLY, ONLY THE NEUTRON CAPTURE EVENTS ARE CONSIDERED
IMPORTANT FOR THE FISSICN PRODUCT POISONS AND THEY ARE ASSUMED TO
BE INFINITELY DILUTE, FHUS; DAPA IS SUPPLIED ONLY FOR MFEI,
MT=451 ANO MF=3, MT=27
```

Un235SSFP B\＆W EVAL二DECG6 W，A，W：TTKOPF（FOR PHERM，REACTOAS）
BAW－32D（DEC．1966）
QTST＝JUL68 REVAJUN70
DATA MODIFIED JUNE，197E TO CONFORM TO ENDF／日NII FORMATS
ThIS data set for fherral reactors only

GENERATED CECEM日ER 1966；REFERENCES ARE
1．W A WITYKOPF，BAWO32R，（DEC，1966），GIVES DETAILS AND MEPHODS
2．J D GARRISON ANO B W ROOS，NUCL SC！AND ENG 12； 115 （1962），
OR GA－2112（APRIL 196！），GIVES BASIC NUCLEAR OATA
3．N F WIKNER AND S JAYE，GAO2113（JUNE 2961），EIVES NUCLEAR DATA
PHIS LUMPED F！SSION PRODUCT IS USED IN A SCHEME WHERE THE TOTAL FISSION PRODUCT POISON FROM A FISSIONABLE NUCLEUS IS REPRESENTED
GY THE FOLLOWING FIVE GHAJNS OR FISSION FRODUCT GROUPS
1．THE XE®I35 CHAIA
2．THE SM＝149 CHA！A
3．LFF1（CD－113，SM＝152，GD－155，GD－157）
4．LFPZ（MO＝95，TC．999，RHEi®3，XE－131，CSm33，ND＝143， ND＝145，$P_{M=147, ~ S M-152, ~ E U-153) ~}^{\text {（15 }}$
5．LFPS（ALLL OTHER FISSION PRODUCTS）．
conventionally，only fhe neutron eapture events are considered IMPORTANT FOR THE FISSICN PRODUCT POISONS AND THEY ARE ASSUMED TO日E INFINITELY DILUTE，THUS；DATA IS SUPPLIED ONLY FOR MFEI， $M T=451$ AND $M F=3, M T=27$

ENQF／B MATERIAL NO』 $\$ 069$
U－235NSFP BWW EVAL二DEC66 W，A，WITTKOPF（FOR THERM，REACTORS） BAW－32D（DECi1966）DIST－UUL68 REVGJUN7D

＊	＊	＊	＊		＊	\cdots
DATA	MODIFIED	JUNE，197\％T0	CONF ORM	TO	ENDF／B－II	FORMATS
＊	＊	－	－		＊	6
THIS	DATA SET	FOR PHERNAL	REACTOAS	ONLY		
＊	＊	＊	＊		\checkmark	＊

U－235 LUMPED FISSION PRCDUCF NO， 3 （LFPS），NONOSATURATING， GENERATED DECEMBER 1966：REFERENCES ARE
1．W A WITFKOPF，BAW－32R，（DEC，1966）：GIVES DEFAILS ANO MEFHODS
2．J D GARRISON AND E W ROOS．NUCL SC！AND ENG 12，115（1962）：
OR GA＝2112（APR！L 1961）．GIVES BASIC NUCLEAR DATA
3．NF WIKNER AND S JAYE，GA－2113（JUNE 1961）．GIVES NUCLEAR DATA
THIS LUMPED FISSION PRODUCT IS USED IN A SCHEME WHERE THE TOTAL FISSION PRODUCT PIISON FROM A FISSIONABLE NUCLEUS IS REPRESENTEC BY THE FOLLOWING FIVE CHAINS OR FISSION PRODUCT GROUPS

1．THE XE＝135 CHAlA
2．THE SM－149 DHAIA
3．LFP1（CD－113，$S M=151, G D=155, G 0-157)$
4．LFP2（MO－95，TCi99，RH－1 03，XE－131，CSm133，NO－143，
$N D=145, ~ P \mu-147, S M-152, E U=153)$
5．LFPS（ALL OTHER F【SSION PRODUCTS）．
CONVENTIONALLY，ONLY PHE NEUTRON CAP PURE EVENTS ARE GONSIEERED IMPORTANT FOR THE FISSICN PRODUCT POISONS AND THEY ARE ASSUMED TO ZE INFINITEGY DILUTE，THUS：DATA IS SUPPLIED ONLY FOR MF＝1： MTEA51 AND MF＝3，NT：27

ENDF/B MATERIAL NOE 1256

FISSION FRAGMENT RESIDNAL LUMP FOR U-235

PUT IN ENDF/B2 FORMAT EY Z:ZO LIVOLSI, BABCOCK=WILCOX, AUG 1971 THIS IS A FICTITIOUS NLCLIDE THAT INCLUDES INTO A SINGLE GUMP ALL THE FISSION FRAGMENTS FROM U-235 WITH EXCEPTION OF THE 53 NUCLIDES EXPLICITELY EESCRIEED IN ENDF/B, WALKER(1) HAS CALCULATED THE SUM OF THE YIELD X SIGra AND YIELD X RI, BY NORMALIZING THE SUM OF YIELUS TO 2
SIGMA-C $=1.156 \quad$ BARNS
AT 22OEM
ENDF DATA TOTAL CAPTURE INTEGRAL $=5.23 \quad$ BARNS

REFERENCES

1. WH WAL.KER, PRIV, GON. TO WA WITTKOPF (6/30/71)
2. FE LANE, AECLM3B38(11/1969)
92-U-236 1163 SRL TO BE PUEL. OCT71 F.J.MC CROSSON

ENDF/B MATERIAL NO: 1163
EVALUATION OF U=230, OCY, 1971 (SAVANNAH RIVER LAB)
ABOVE 1 KEV THE EVALUATION OF NEUTRON GAOSS SECTIONS IS DOCUMENTEE BY ORAKE AND NICHOLS IN REPORT GA=8135. GELOW 1 KEV THE NEUTRON CROSS SECTIONS ARE TAKEA FRDM MEASUREMENTS BY CARLSON EF AL. REPORTED IN GA=9257.

92-U-23日 1158 TO BE PUBL. AUG71 T.A.PITTERIE AND C.DURSTON

Westinghouse Advanced Reactors Division

I. INTRODUCTION

This report describes the $U-238$ neutron cross section for evaluation for the ENDF/B Version III file, material number 1158. Experimental data available to June, 1971, were included in this evaluation. This evaluation is a major revision of the $U-238$ Version $I I$ data ${ }^{[1]}$ and is very similar to the modified Version II evaluation described by Pitterle, Paik, and Durston ${ }^{[2]}$. All cross sections above 5.0 eV have been re-evaluated since the Version II evaluation.

This report is divided into four chapters covering evaluations for the resonance parameter in File 2 of the ENDF/B data, the pointivise data in File 3, the secondary angle and energy distributions of Files 4 and 5, and uncertainty estimates for the cross sections.

II. RESONANCE PARAMETER EVALUATION

A. Method of Evaluation for Resolved Resonance Parameters

Heretofore, evaluations have involved weighted means with little emphasis on systematic differences between measurements. An attempt has been made in this evaluation, especially up to 1.0 keV , to reduce systematic differences before calculating means. The method used here is a form of regression analysis where one of the measurements is taken as a standard and the others plotted against it. The quantity plotted was (Γ_{n} / E) for each resonance, this being a measure of the area of each resonance. Below 1.0 keV, Rohr ${ }^{[5]}$ was taken as the standard and the measurements of Asghar ${ }^{[6]}$, Carraro ${ }^{[4]}$, Rahn ${ }^{[3]}$, and Garg ${ }^{[7]}$ were plotted against this standard.
*Work performed under AEC Contract AT (30-1) 4210, Task 4

A least squares fit of the form $y=m x$ was applied, y being the value of (Γ_{n} / E) from one of the four measurements and x being the standard (Γ_{n} / E) of Rohr. Ideally, these four lines would lie on top of each other with a slope of 45 degrees. Any deviation from 45 degrees shows a systematic difference and the scacter of points around the line is a measure of the consistency of the experiment. Rohr was chosen as the standard below 1.0 keV since the experiment showed the most consistency with the other experiments.

A mean normalization of each measurement to the reference standard can then be obtained by normalizing the least squares fit of each measurement to the 45 degree reference curve. Table 1 shows the scale factors for each measurement as obtained by this procedure using Rohr and Rahn as the reference data. Scale factors greater than unity thus indicate measurements having neutron widths which, on the average, are greater than those of the reference data. Deviations in the scale factor from unity are a measure of systematic differences between experiments. The values of Γ_{n} for each measurement have then been normalized by the scale factor given in the table. Other measurements were initially included in this approach, but were discarded because the scatter of the points was judged to be excessive.

$\Delta E-k e V$	Rohr	Asghar	Garg	Rahn	Carraro
0.0-1.0	1.0*	0.816	0.974	1.097	1.005
1.0-1.5			0.893	1.0*	0.98
1.5-2.0			0.838	1.0*	1.008
2.0-2.5			0.665	1.0*	1.033
2.5-3.0			0.799	1.0*	1.185
3.0-3.5			0.740	1.0*	1.375
$3.5-4.0$			0.769	1.0*	1.323

[^9]The means, variances (σ^{2}) and standard deviation (σ) were calculated from the scaled experimental values and the reference values. This procedure significantly improved the agreement between the scaled values compared to the agreement between the original measurements. However, this analysis does not give the ultimate scaling, only a relative one.
B. Evaluation of Resolved Resonance Neutron Widths

Using the evaluation method described above, good agreement was found below 1.0 keV between the mean value of the scaled measurements and the data of Carraro. Based on this agreement and general consistency considerations, neutron widths of Carraro were selected for this evaluation below 1.0 keV . The fact that the ENDF/B Version II parameters (based mainly on the Garg data) yielded low capture cross sections compared to measurements of Moxon ${ }^{[8]}$ and de Saussure ${ }^{[9]}$ also contributed to the choice of the Carraro neutron widths up to 1.0 keV . In addition, the Carraro data yielded the best agreement near 700 eV with the measured capture cross sections whereas the other measurements yielded notably lower capture values in this energy range.

The above procedure was repeated above 1.0 keV for the three experiments available, and a list of scale factors relative to the data of Rahn are given in Table 1. These values indicate that there is a large measure of disagreement between 1 and 4 keV . Rahn's neutron widths were chosen for the present evaluation values because of known deficiencies in Garg's values, a reluctance to increase the strength function to that required by the Carraro values and the fact that the Rahn data tend to be a mean between the Garg and Carraro data.

Below 66 eV the s-wave neutron widths were taken from the previous ENDF/B evaluation.

The resonance energies are those of the particular experiments chosen. Garg and Rahn agree well over the whole range and Carraro agrees well up to 1 keV and is only 4 eV different at the higher energies.

C. Evaluation of Resolved Resonance Capture Widths

The correlation method described ahove was also attempted for radiative capture widths without much success. . The lack of correlation indicating that the error must be very large in these experiments. If one envisages a constant s-wave radiative capture width, one would expect measured widths to fluctuate more with increasing energy due to raidom overlap of p-wave levels enhancing the s-wave capture area. The Rohr capture widths show such a behavior and as these are consistent with the Carraro Γ_{n} 's, the evaluator has chosen them where available. Elsewhere, values of 23.5 mv (not an average but a lower bound consistent with the overlap argument above) have been used, including some resonances where the value of Rohr is lower than this value. The widths of the resonances in 300 to 400 eV interval were increased slightly from Rohr's values to increase the capture area. Also, two of the larger resonances in the range 700 to EOO eV , not reported by Rohr, have had their widths set at 28.5 MeV for similar reasons.
D. Comparisons of Resolved Data with Pointwise Capture Measurements Using various sets of resolved resonance parameters developed in this evaluation effort, G. de Saussure of Oak Ridge National Laboratory has performed detailed calculations for comparison with high resolution capture cross section measurements [9]. These comparisons have been used in the present evaluation to confirm existence of resonances (mainly p-wave) and relative magnitudes of resonance capture areas. Based on these camparisons, a number of p-wave resonance assignments were modified and some resonance capture areas were increased to improve agreement with the capture measurements.

Using the final evaluated parameters of this evaluation, de Saussure has found that predicted sample size corrections (for multiple scattering and self-shielding) for two sample sizes yleld agreement to within $1 / 2 \%$ for the zero sample size corrected cross section. Previous parameter evaluation were only consistent to within 4% for the corrected cross sections.

E. Average Resolved Resonance Spacings and Strength Functions

Table 2 shows some average spacings and strength functions derived from this evaluation. However, probably the only reliable statistic given here is the s-wave strength function of $1.05 \times 10^{-4} \mathrm{eV}^{-1 / 2}$, which for ${ }^{238} U$, is fairly independent of missing resonances and spin assignments. The s-wave spacing <D> depends very much on the spin assignments of borderline levels and can best be described as 20_{-2}^{+1}. The p-wave value for the strength function, S_{1}, and $\langle D>$ are unreliable because of overlap with other p-waves and with the s-wave sequence of resonances, as well as uncertainties in the spin assignments between s - and p-waves.

F. Average Resoived Resonance Capture Cross Sections

Table 3 shows a comparison of measured ${ }^{238} \mathbf{U}$ capture cross sections in the resolved energy range with the evaluated contribution broken down into its componer.t parts. The evaluated cross section tends to lie between the Moxon ${ }^{[8]}$ and de Saussure ${ }^{[9]}$ values which were available at time of evaluation except for the 700 to 800 eV interval in which difficulty has been experienced in obtaining a cross section as high as the low Moxon value. Moxon's latest values show a large measure of agreement with this evaluation except for the 700 to 800 eV range.

G. Unresolved Resonance Parameter Evaluation

Unresolved resonance parameters for ${ }^{238} \mathrm{U}$ were obtained by selecting an s-wave strength function and radiation width and adjusting the p-wave strength function to yield the evaluated capture cross section described in Section III-A. Parameters held fixed in the adjustment procedure are:

S-Wave
$S_{0}=1.05 \times 10^{-4} \mathrm{eV}^{-1 / 2}-$ Nominal value

> P-Wave

$$
\begin{aligned}
& \mathrm{S}_{1}-\begin{array}{r}
\text { adjusted energy dependent } \\
\text { strength function }
\end{array} \\
& \Gamma \gamma=0.0235 \mathrm{eV} \\
& \mathrm{D}(\ell=1, \mathrm{~J}=1 / 2)=20.0 \mathrm{eV} \\
& \mathrm{D}(\ell=1, \mathrm{~J}=3 / 2)=10.983 \mathrm{eV}
\end{aligned}
$$

The radiation width, s-wave strength function and s-wave level spacing are based on the resolved resonance data.

¢Ev	s-wave			p-wave		
	$\begin{array}{\|c\|} \text { Number } \\ \text { Resonances } \end{array}$	<D>	$\mathrm{S}_{0} \times 10^{4}$	Number Resonances	<D>	$\left\{\begin{array}{l} S_{1} \times 10^{4} \\ R=.84 \end{array}\right.$
0-. 5	25	20.0	. 957	64	7.8	1.652
0-1	50	20.0	1.002	118	8.47	1.511
1-2	48	20.8	1.083	78	7.69	1.009
2-3	53	18.9	1.119	31	*	*
3-4	48	20.8	0.974	31	*	*
0-1.5	74	20.3	. 929	164	9.15	1.410
0-2	98	20.4	1.043	196	10.2	1.260
0-3	151	19.9	1.068	227	*	*
0-4	199	20.1	1.045	258	*	*

*not meaningful from present evaluation

Table 3
Comparison of Evaluated and Measured ${ }^{238}$ U Capture
Cross Sections in the Resolved Energy Range

$\begin{aligned} & \Delta E \\ & \mathrm{keV} \end{aligned}$	Resolved Resonance Contribution			Net σ	Measurements		Revised Moxon	$\begin{aligned} & \text { ENDF/B } \\ & \text { Version II } \end{aligned}$
	s-wave	p-wave	Estimated Background					
0.0-0.1	45.87	. 05	0.0	45.92				45.68
0.1-0.2	17.65	. 07	0.0	17.72				16.39
0.2-0.3	8.61	. 15	0.0	B. 76				8.27
0.3-0.4	3.06	. 07	0.0	3.13				2.61
0.4-0.5	2.49	. 17	0.0	2.66				2.34
0.5-0.6	4.97	. 13	0.0	5.10	4.66	5.38	4.97	4.60
0.6-0.7	3.57	. 15	0.0	3.72	3.53	4.00	3.75	3.22
0.7-0.8	1.71	. 21	0.03	1.97	1.79	2.08	2.11	1.61
0.8-0.9	3.02	. 13	0.05	3.20	3.12	3.30	3.37	2.88
0.9-1.0	4.19	. 13	0.06	4.38	3.91	4.60	3.64	3.92
1.0-2.0	1.60	. 15	0.12	1.87	1.82	2.11	1.97	1.85
2.0-3.0	1.11	. 08	0.21	1.40	1.41	1.58	1.48	1.37
3.0-4.0	. 87	. 11	0.26	1.24	1.19	1.30	1.23	1.23

*Moxon's originally reported measurements with DeSaussure's self-shielding factors.

The nuclear radii for potential scattering is $0.9184 \times 10^{\mathbf{- 1 2}} \mathrm{cm}$ and for penetrability calculations is $0.8401 \times 10^{-12} \mathrm{~cm}$. These values and the spin and energy dependence of the level spacing are the same as the ENDF/B Version II evaluation ${ }^{[1]}$. Similarily, a d-wave background cross section, the same as the Version II evaluation, was included as smooth data in File 3 of the ENDF/B data and considered in adjusting the p-wave strength function to the evaluated data.

Results of the fitting procedure are given in Table 4. Column 5 of Table 4 is the evaluated capture cross section while columns 2 to 4 give the s, p, and d-wave components. Colums 6 and 7 give the sand p-wave strength functions while column 8 is the $J=1 / 2$ level spacing. At a few energies in Table 4, the s-wave strength function was varied about the nominal value of $1.05 \times 10^{-4} \mathrm{ev}^{-1 / 2}$. The 1 ow s-wave strength functions between 4.0 and 5.0 keV are indicated by the resolved resonance data of Rahn ${ }^{[3]}$ and Carraro ${ }^{[4]}$.

Table 4. Unresolved Resonance Parameters and Cross Sections for ${ }^{238}{ }_{U}$

Energy (keV)	${ }^{\sigma}$				$\begin{gathered} \text { Adjusted } \\ \mathrm{s}_{\ell} \times 10^{4}\left(\mathrm{eV}^{-1 / 2}\right) \end{gathered}$		$J=1 / 2$ Level Spacing
	S-Wave	P-Wave	D-Wave	Net	S_{0}	S_{1}	
4.000	0.714	0.296	0.0	1.010	0.90	1.337	20.00
4.500	0.653	0.335	0.0	0.988	0.95	1.496	19.98
5.500	0.567	0.413	0.0	0.980	1.12	1.850	19.95
6.500	0.487	0.426	0.0	0.913	1.10	1.877	19.92
7.500	0.425	0.404	0.0	0.829	1.05	1.718	19.88
8.500	0.376	0.373	0.0	0.749	1.00	1.518	19.84
9.500	0.344	0.319	0.002	0.745	1.05	1.671	19.80
12.000	0.280	0.415	0.005	0.700	1.05	1.807	19.71
15.000	0.229	0.411	0.007	0.647	1.05	1.932	19.61
20.000	0.177	0.373	0.010	0.560	1.05	1.781	19.44
25.000	0.145	0.344	0.014	0.503	1.05	1.809	19.26
30.000	0.124	0.318	0.018	0442	1.05	1.754	19.09
35.000	0.108	0.300	0.023	0.431	1.05 .	1.720	18.92
40.000	0.096	0.282	0.027	0.405	1.05	1.776	18.75
45.000	0.087	0.264	0.032	0.383	1.05	1.806	18.59

A. Capture Cross Section Above 4 keV

Recent capture cross section measurements have been reported by de Saussure ${ }^{[9]}$ below 100 keV and by Fricke ${ }^{[10]}$ between 1 and 700 keV . Since the present evaluation was completed, corrections to the 1969 measurements of Moxon [8] have become available. These data, along with measurements by Menlove ${ }^{[11]}$, Poenitz $[12,13]$, Barry [14], Belanova ${ }^{[15]}$ as corrected by Miller ${ }^{[16]}$, de Saussure ${ }^{[17]}$, and Gibbons ${ }^{[18]}$ are compared with evaluated data in Figure 1.

The present evaluation between 4 and 100 keV is based on an average of the data of de Saussure ${ }^{[9]}$ and Moxon ${ }^{[8]}$. This procedure leads to only a slight change in shape from the ENDF/B Version II data ${ }^{[1] \text {. The } 30 \mathrm{keV}}$ capture cross section of 0.46 barns in the present evaluation is consistent with an average of all experimental data at or near 30 keV . Consequently, the average of the Moxon and de Saussure data can be viewed as using the shape determination of these data and normalizing this shape to the average of the 30 keV measurements.

The available experimental data above 100 keV tend to fall into two groups: high capture cross sections obtained from combining ${ }^{238} \mathbf{U}$ capture $/^{235} \mathrm{U}$ fission ratio measurements by Poenitz ${ }^{[12]}$, and Barry ${ }^{[14]}$ with the ${ }^{235} \mathrm{U}$ ENDF/B Version III fission cross section; and low capture cross sections obtained from absolute measurements of Fricke ${ }^{[10]}$ or the data of Menlove ${ }^{[11]}$. No clear choice can be made between the high or low values based only on an assessment of the measurements. Agreement between calculations and critical experiment measurements tends to be significantly improved ${ }^{[R e f .2]}$ using the low capture data above 100 keV . For this reason, the present evaluation was based primarily on the data of Fricke ${ }^{[10]}$ above 100 keV .

B. Fission Cross Section

Integral testing with the ENDF/B Version II data indicated the ENDF/B ${ }^{238}{ }_{U}$ fission cross section is about 4 to 8 percent too low. The average of the ENDF/B fission cross section over a ${ }^{235} U$ thermal fission spectrum is 0.284 barns compared to measured values between 0.30 and 0.31 barns. [19]

Figure 1. Comparison of Experiment and Evaluation for U-238 Caprure

For the present evaluation, the ${ }^{238}$ U fission cross section was increased by 4 to 5 percent below 7 MeV to obtain a ${ }^{235} \mathrm{U}$ fission spectrum average of 0.298 barns. The present evaluations for the ${ }^{238} \mathrm{U} /{ }^{235} \mathrm{U}$ fission ratio and the ${ }^{238} \mathrm{U}$ fission cross section are compared with experimental data arid the ENDF/B evaluation in Figure 2. The modified ${ }^{238} \mathrm{U} /{ }^{235} \mathrm{U}$ fission ratio is about 2% lower than the data of Lamphere ${ }^{[20]}$ below 2.0 MeV and about 5 percent higher than the measurements of Stein ${ }^{[21]}$ between 2 and 5 MeV . Other data considered in the evaluation are those of Hansen ${ }^{[22]}$, White and Warner ${ }^{[23]}$, Jarvis [24], Nyer ${ }^{[25]}$, Moat ${ }^{[26]}$, Uttley ${ }^{[27]}$, and Adams ${ }^{[28]}$

A subthreshhold measurement by Silbert ${ }^{[29]}$, which indicates an average ${ }^{238}$ has been included in the present evaluation below 400 keV .

C. Inelastic Scattering Cross Section

No major changes were made to the inelastic scattering cross section of ENDF/B Version II ${ }^{[1]}$. Minor changes were made to harden the secondary energy distribution in order to inprove agreement between calculations and integral experiment measurements ${ }^{[2]}$. In the present evaluation, resolved levels were extrapolated to 2.0 MeV or higher and four estimated levels at $1.50,1.60,1.70$, and 1.80 MeV were added to match the 2.0 MeV distribution of Batchelor ${ }^{[30]}$. These levels replace a statistical distribution between 1.55 and 2.0 MeV in the Version II evaluation.

Slight modifications were also made to the resolved level cross sections below 2.0 MeV to produce a somewhat harder secondary spectrum while maintaining essentially the same total inelastic cross section as the ENDF/B data.

The evaluated inelastic scattering cross section is completely resolved up to 2.0 MeV with a statistical distribution beginning at this energy and representing the total inelastic cross section above 3.5 MeV . Above 2.0 MeV, the inelastic cross section is obtained as the difference between the evaluated nonelastic cross section and the sum of the partial reaction cross sections for capture; fission, ($n, 2 \bar{i}$) and ($n, 3 n$).
Figure 2. Comparison of Experiment and Evaluation for U-238 Fission

D. Total Cross Section

Recent measurements of the ${ }^{238}{ }_{U}$ total cross section by Kopsch ${ }^{[31]}$ and Cabe ${ }^{[32]}$ between 0.5 and 6.0 MeV indicate total cross sections a few percent higher than the ENDF/B Version II evaluaton [17]. These measurements were included in the present evaluation leading to an increase of about 2% in the total cross section.
E. $(n, 2 n)$, $(n, 3 n)$ Cross Sections

The $(n, 2 n)$ cross section for this evaluation used the ratio of ${ }^{238} U$ ($n, 2 n$)/fission of the Version II evaluation combined with the present evaluation for ${ }^{238} \mathcal{U}_{U}$ fission to obtain the ($n, 2 n$) cross section. This procedure was used as no new measurements have been reported since the Version II evaluation and the reported experimental data for ($n, 2 n$) were measurements relative to ${ }^{238} U$ fissions.

The ($n, 3 n$) evaluation is based on the 14 MeV value of Mather ${ }^{[33]}$ with an estimated shape for the cross section.

F. Nonelastic Cross Section

The nonelastic cross section up to 2.0 MeV was obtained as a summation of the evaluated capture, fission and inelastic scattering cross sections. A 2.0 MeV value of 3.37 b was obtained based primarily on the evaluated total cross section of 7.211 and Batshelor's ${ }^{[30]}$ measured elastic scattering cross section of 4.07 b which included inelastic scattering (estimaied as 0.2 b in present evaluation) from the first two levels. Above 2.0 MeV , the present evaluation includes only minor shape modifications of the Version II evaluation.
G. Elastic Scattering Cross Section

The cross section for elastic scattering was obtained as the difference between the evaluated total and nonelastic cross sections.

H. Cross Sections Below 5.0 eV

The ENDF/B Version II evaluation for cross sections below 5.0 eV , which is based on an evaluation by Leonard ${ }^{[34]}$, was retained for the present evaluation.
I. \bar{v} - NUMBER OF NEUTRONS PER FISSION

The average number of neutrons per fission was re-evaluated based primarily on the measurements of Soleilhar ${ }^{[35]}$ for the prompt neutrons per fission. Normalization of the data was based on \bar{v} of ${ }^{252} \mathbf{C f}-3.765$ from the IAEA evaluation [36]. The number of delayed neut.rons per fission, v_{d}, used in this evaluation is 0.0444 based on an evaluation by Stewart and Hansen [37] of the data of Keepin ${ }^{[38]}$ and Masters ${ }^{[39]}$. The energy dependence of ν_{d} was obtained by normalizing the energy dependent measurements of Krick and Evans ${ }^{[40]}$ to 0.0444 at 3.0 MeV . A tabulated energy dependence is given for the total number of neutrons per fission in the ENDF/B file.

IV. SECONDARY ANGULAR AND ENERGY DISTRIBUTIONS

A. Angular Distributions for Elastic Scattering

Angular distributions were evaluated at 27 energies between $10^{-5} \mathrm{eV}$ and 15 MeV by fitting Legendre polynomial expansions in the center of mass systems to the experimental data. Below 10 keV , the distributions are evaluated as isotropic scattering in the center of mass system. The present evaluation is based largely on experimental data reported in BNL-400 ${ }^{[41]}$ along with calculations by Prince ${ }^{[42]}$ above 3.0 MeV .

The most significant measurements influencing the present evaluation are: $0.075,0.157$, and 0.25 MeV - Barnard ${ }^{[43]}$ and Lane ${ }^{[44]} ; 0.30 \mathrm{MeV}-\mathrm{Smith}^{[45]}$ and Korgh ${ }^{[46]} ; 0.41 \mathrm{MeV}$ - Barnard ${ }^{[43]}$ and Smith ${ }^{[45]} ; 0.55 \mathrm{MeV}-\operatorname{Smith}{ }^{[45]}$, Barnard ${ }^{[43]}$ and Korzh ${ }^{[46]} ; 0.68 \mathrm{MeV}-\operatorname{Smith}{ }^{[45]} ; 0.83 \mathrm{MeV}-\operatorname{Smith}{ }^{[45]}$, Elwin ${ }^{[47]}$, Korzh ${ }^{[46]}$ and Barnard ${ }^{[43] ;}$, 0 MeV - Smith ${ }^{[45]}$, Allen ${ }^{[48]}$, Walt ${ }^{[49]}$ and Gilboy ${ }^{[50]} ; 1.25,1.50 \mathrm{MeV}$ - Smith ${ }^{[45]} ; 2.0 \mathrm{MeV}$ - Batchelor ${ }^{[30]}$ and Cranberg ${ }^{[51]}$, 2.5 MeV - $\mathrm{Walt}^{[52]} ; 3.0,4.0 \mathrm{MeV}-\operatorname{Batchelor}{ }^{[30]}$ and Prince ${ }^{[42]}$; 5.0 MeV - Prince ${ }^{[42]}$ and Buccino ${ }^{[53]} ; 7.0 \mathrm{MeV}$ - Batchelor ${ }^{[30]}$, Walt ${ }^{[52]}$ and Prince ${ }^{[42]}, 8.0,10.0 \mathrm{MeV}-$ Prince $^{[42]} ; 14.1 \mathrm{MeV}-\mathrm{Coon}{ }^{[54]}$, and Prince ${ }^{[42]} ; 15.0 \mathrm{MeV}$ - Guzhovski ${ }^{[55]}$ and Prince ${ }^{[42]}$.

The angular distributions for 0° scattering were evaluated to be consistent with Wick's limit, $d \sigma / d \Omega\left(\theta=0^{\circ}\right)=k^{2} \sigma_{t}^{2} /(4 \pi)^{2}$, as the lower limit for the cross section. Measured angular distributions below 2.0 MeV were corrected for inelastic scattering (assumed to be isotropic) before fitting the data with Legendre expansions.
B. Statistical Inelastic Scattering Energy Distribution As noted in the Version II report ${ }^{[1]}$, the secondary energy distributions at 2.0 MeV , as measured by Batchelor ${ }^{[30]}$, is not well described by a statistical distribution. An increase in the nuclear temperature for the statistical distribution from the Version II value of 0.291 MeV to 0.35 MeV improves slightly the fit to Batchelor's distributions although the fit still is not particularly good. Comparisons of calculations and integral measurements tend to support a somewhat harder secondary energy distribution for inelastic scattering. For these reasons, a nuclear temperature of 0.35 MeV at 2.0 MeV was chosen for the present evaluation. This temperature was then extrapolated to agree with the ENDF/B value at 8.0 MeV .
C. Secondary Energy Distributions for Fission, ($n, 2 n$) and ($n, 3 n$)

The fission spectrum is specified as an neutron energy dependent simple fission spectrum with nuclear temperatures of $1.31,1.34$, and 1.53 MeV at $1.0,2.5$, and 15.0 MeV , respective.ly. Secondary energy distributions for ($n, 2 n$) and ($n, 3 n$) are Maxwellian distributions retained from the Version II evaluation.

IV. ESTIMATES OF DATA UNCERTAINTIES

Based on differences between reported measurements, the following estimates of uncertainties for the data in the present evaluation are made:

1. Resonance Parameters

Resolved r_{n} after normalization $+ \pm 5 \% 0$ to $1 \mathrm{keV}, \pm 10$ to 1 to $4 \mathrm{keV} /$ $\left\langle\Gamma_{\gamma}\right\rangle=23.5 \pm 2 \mathrm{mv}$
$S_{0}=1.05 \pm 0.1 \times 10^{-4} \mathrm{eV}^{-1 / 2}$
$\left\langle D_{0}\right\rangle=20.0_{-2.0}^{+1.0} \mathrm{eV}$
$S_{1}=1.7 \pm 0.6 \times 10^{-4} \mathrm{eV}^{-1 / 2}$

2. Pointwise Cross Sections

$\sigma_{Y}-\underset{-5 \%}{+8 \%}<4 \mathrm{keV}, \underset{-12 \%}{+8} 4$ to $100 \mathrm{keV}, \begin{aligned} & +10 \% \\ & -5 \%\end{aligned}$ above 100 keV
$\sigma_{f}^{28} / \sigma_{f}^{25}- \pm 6 \%<2 \mathrm{MeV},{ }_{-5 \%}^{+3 \%} 2$ to $5 \mathrm{MeV}, \pm 6 \%$ above 5 MeV .
$\sigma_{f}-5$ to 10% over entire energy range
$\sigma_{\text {in }}{ }_{-}^{+8 \%}$ below $1 \mathrm{MeV}, 5-10 \%$ between 1 and $6 \mathrm{MeV}, 10-15 \%$ between 6 and $12 \mathrm{MeV}, 50 \%$ above 12 MeV
$\sigma_{t}- \pm 3$ to 5% over entire energy range
$\sigma_{\mathrm{n}, 2 \mathrm{n}}- \pm 10 \%$ except near. 14 MeV where accuracy may be $\pm 5 \%$
$\sigma_{n, 3 n}- \pm 10 \%$ over entire energy range
$\sigma_{n e}- \pm .10 \%$ between 2 and $4 \mathrm{MeV}, 5$ to 10% above 4 MeV
$\sigma_{\text {el }}- \pm 5 \%$ below $1.5 \mathrm{MeV}, 5$ to 10% above 1.5 MeV
$\bar{v}-2$ to 3%

These uncertainties in the ${ }^{238}{ }_{U}$ data, particularly for capture and fission cross sections, do not neet the accuracy requirements of a few percent for σ_{γ} and σ_{f} that are required for reliable fast reactor analysis.

REFERENCES

1. T. A. Pitterle, WARD-4181-1 (1971).
2. T. A. Pitterle, N. C. Paik, C. Durston, WARD-4210T4-1. (1971).
3. F. J. Rahn, et. al., CONF-710301, Vol. 2, p. 658 (1971).
4. G. Carraro and W. Kolar, Nuclear Data for Reactors, Vol. 1, p. 403, IAEA (1970).
5. G. Rohr, et. al., Nuclear Data for Reactors, Vol. 1, p. 413, IAEA (1970).
6. M. Asghar, et. al., Nucl. Phys. 85, p. 305 (1966).
7. J. B. Garg, et. al., Phys. Rev. 134, p. B985 (1964).
8. M. C. Moxon, AERE-R-6074 (1969).
9. E. G. Silver, et. ai., CONF-710301, Vo1. 2, p. 728 (1971).
10. M. P. Fricke, et. al., Vol. 2, p. 265, IAEA (1970).
11. H. O. Menlove, W. P. Poenitz, Nucl. Sci. and Eng. 33, p. 24 (1968).
12. W. P. Poenitz, Nucl. Sci. and Eng. 40, p. 383 (1970).
13. W. P. Poenitz- Trans. Am. Nuc1. Soc. 12, p. 279 (1969).
14. J. F. Barry, et. al., J. Nucl. Eng. Parts A/B 18, p. 481 (1964).
15. T. S. Belanova, et. al., J. Nucl. Eng. Parts A/B 20, p. 411 (1966).
16. L. B. Miller, W. P. Poenitz, Nucl. Sci. and Eng. 35, p. 295 (1969).
17. G. de Saussure, et. al., ORNL-3360, p. 51 (1963).
18. J. H. Gibbons, et. al., Phys. Rev. 122, p. 182 (1961).
19. R. B. Leachman and H. W. Schmitt, J. Nucl. Energy 4, p. 38 (1957).
20. R. W. Lamphere, Phys. Rev. 104, p. 1654 (1956).
21. W. E. Stein, et. al., Neutron Cross Sections and Technology, NBS Special Publication 299, Vol. 1, p. 627 (1968).
22. G. Hansen, S. McGuire, R. K. Smith, Private Communications (LASL) (1969).
23. P. H. White, G. P. Warner, J..Nucl. Energy 21, p. 671 (1967).
24. G. A. Jarvis, LA-1571 (1953).
25. W. Nyer, LAMS-938 (1950).
26. K. Parker, AWRE-0-79/63 (1964).
27. C. A. Uttley and J. A. Phililips, AERE-NP/R-1966 (1956).
28. B. Adams, et. al., J. Nucl. Energy, Part A/B, Reactor Sci. Technol. 14, p. 85 (1961).
29. M. G. Silbert, et. al., Private Communications, LASL (1971).
30. R. Batchelor, et. al., Nucl. Phys. 65, p. 236 (1965).
31. D. Kopsch, et. al., Nuclear Data for Reactors, Vol. 2, p. 39, IAEA (1970).
32. J. Cabe, et. al., Nuclear Data for Reactors, Vol. 2, p. 31, IAEA (1970).
33. D. S. Mather, L. F. Pain. AWRE-0-47/49 (1969).
34. B. R. Leonard, BNWL-1586 (1971).
35. M. Soleihac, et. al., J. Nucl. Energy 23, p. 257 (1969).
36. G. C. Hanna, et. al., Atomic Energy Review 1, No. 4, p. 3.
37. L. Stewart, G. Hansen, Private Communications (LASL) (1971).
38. G. R. Keepin, Physics of Nuclear Kinetics, Addison-Wesley (1969).
39. C. F. Masters, et. al., Nucl. Sci. and Eng. 36, p. 202 (1969).
40. M. S. Krick, A. E. Evans, LA-DC-12783 (1971).
41. D. I. Garber, et. al., Angular Distributions in Neutron-Induced Reactions, Volume II, Z=21-94 (1970).
42. A. Prince, Nuclear Data for Reactors, Vol. II, p. 825 (1970).
43. E. Barnard, et. al., Nucl. Phys. 80, p. 46 (1966).
44. R. O. Lane, et. al., Ann. of Phys. 12, p. i35 (1961).
45. A. B. Smith, Nucl. Phys. 47, P. 633 (1963).
46. I. A. Korzh, Soviet Jour. Atomic Energy 20, p. 8 (1966).
47. A. J. Elwin, et. al., Phys. Rev. 142, p. 758 (1956).
48. R. C. Allen, et. al., Phys. Rev. 142, p. 758 (1956)
49. M. Walt, et. al., TID-5157 (1953).
50. W. B. Gilboy, et. al., Nucl. Phys. 42, p. 86 (1963).
51. L. Cranberg, et. al., Phys. Rev. 109, p. 2063 (1958).
52. M. Walt, et. al., LA-2061 (1956).
53. S. G. Buccino, et. al., Z. Physek 196, p. 103 (1966).
54. J. H. Coon, et. al., Phys. Rev. III, p. 250 (1958).
55. B. Y. Suzhovskii, et. al., Soviet Jour. Atomic Energy II, p. 1401 (1961).

A complete reevaluation of the ${ }^{237} \mathrm{~Np}$ cross section to energies of 15 MeV was made. The previous BNWML version was inadequate and the original ENDF/B version ${ }^{(5)}$ contained several bad estimates. The results of the present evaluation of the most importance to the present function are summarized here.

No satisfactory existing evaluation of the thermal cross section could be found. The previous BNWML version prescribed a $1 / v$ behavior of the capture cross section. The ENDF/B version ${ }^{(5)}$ increased faster than $1 / v$ by about five percent. The ENDF/B evaluation stated that the only existing energy dependent total cross section data below 0.1 eV were due to a MTR crystal spectrometer measurment of Smith, et. a1. (6) Actually, a later set of measurenente was made at the MIR by Cline, et al. (7) and these measurements were considered by the Director of that program to supersede the earlier measurenents of Smith, et. al. ${ }^{(8)}$ In addition, total cross section data in the thermal range were presented by a Russian group ${ }^{(9)}$ at the Geneva Conference. Strangely, neither the thermal data of Cline, et. a1. or the Russiar, data have ever appeared in any of the issues of ${ }^{(10)}$ BNL-325 although both are cited in CINDA. (11) The data
of Cline, et. al. show a decrease from $1 / v$ of some 30 percent in the thermal region. The Russian data show a somewhat larger decrease and a cross section value some 60 percent larger than the Cline data. Since the absolute values of the Cline data are more consistent with integral measurements these data were fitted to obtain the thermal cross-section shape in this evaluation. The fit required the addition of two negative-energy resonances and gives a $2200 \mathrm{~m} / \mathrm{s}$ capture cross section of 169 barns. The uncertainty of the value and shape of the thermal cross section is about ± 10 percent which is the accuracy quot=i ${ }^{\text {(}}$ () for the data of Cline, et al.

All of the umeasured partial cross sections for high energy neutrons given in the ENDF/B evaluation were based on an optical-model calculation by Goldman. ${ }^{(12)}$ However, the ENDF/B evaluators intarpreted the total non-elastic cross section calculated by Goldman as the neutron inelastic scattering cross section. Thus an extensive revaluation of the high-energy cross section was required. Of most importance to the present function was the evaluation of the $n_{5} 2 n$ cross section which leads to the highly radio-active contaminant ${ }^{236} \mathrm{Pu}$. The presently evaluated $n, 2 n$ cross section is based on the statistical calculation of Pearlstein ${ }^{(13)}$ which was used in the original ENDF/B evaluation. ${ }^{(5)}$ However, in the present evaluation Pearlstein's values have been adjusted for competition with other partial processes and rescaled to better agree with a single measured value at 14.5 MeV . ${ }^{\text {(14) }}$

Since the present evaluation, more extensive data in the resolved resonance region has become available and this region should be reevaluated.

CROSS SECTION REFERENCES

1. C. H. Westcott, K. Ekberg, G. C. Hanna, N. J. Pattenden, S. Sanatani and P. M. Attree, At. Energy Review, 3, 3 (1965).
2. B. R. Leonard, Jr., Data provided for ENDF/B-Version 2 (1969).
3. A. D. Carlson, Unpublished data.
4. M. J. Cabell, T. A. Eastwood and P. J. Campion, J. Nucl. Energy 7, 81, (1958).
5. J. R. Smith, R. A. Grimesey, IN-1182, ENDF-116 (May 1969).
6. M. S. Smith, R. R. Smith, E. G. Joki and J. E. Evans, Phys. Rev. 107, 525 (1957).
7. J. E. Cline, E. H. Magleby, and W. H. Burgus, Bull. Am. Phys. Soc. 4, 207 (1959).
8. Letter from J. E. Evans, Director, Nuclear Physics Branch, Phillips Petroleum Co., Idaho Falls, Idaho, ref. Ev-103-59A, to M. R. Brussel, BNL, dated Aug. 26, 1969.
9. Y. B. Adamchuk, V. F. Gerasimov, B. V. Yefimos, V. S. Zenkevick, V. I. Mostovoi, M. I. Pezner, A. A. Lnernyshov and A. P. Tśitovich. Peaceful Uses of Átomic Energy, Geneva, Vol. 4, pp 216-223 (1955).
10. J. R. Stehn, M. D. Goldberg, E. Wiener-Chasemen, S. F. Mughaighab, B. A. Magurno, and V. M. May, BNL-325, wnd Ed., Suppl. 2 (Feb. 1965).
11. CINDA (Computer Index of Neutron Data), USAEC Div. of Tech. Inf. Extensio: (May 1969).
12. D. T. Goldman, Trans. Am. Nuc1. Soc. 7, 84 (1964).
13. S. Pearlstein, Nucl. Sci. Engr. 23, 238 (1965).
14. J. L. Perkins and R. F. Coleman, J. Nucl. Energy 14, 69 (1961).
15. J. E. Gindler, J. Gray, Jr, and J. R. Huizenga, Phys. Rev. 115; 1271 (1959).

94-PU-238 1050 AI NAA-SR-12271(1967) MAYG7 H.ALTER AND C.DUNFORD

REFERENCES

1. SHUSTER, S.1 HOLERFON: R., UCRL 7389 (1963)
2. GOLDMAN, D., ROESSER, J., CHARF OF THE NUCLIDES (1966)
3. YOUNG, F, INmiR266 (TO 日E PUBLISHED)

4, STUBBINS, W, ET,AL, UCRL-79033(19.66)
5. HELLSTRAND, E., PRIVATE COMMUNICATION (1966)
6. YOUNG, T., WASH 1068(1966)
7. PEARLSTEIN, S., BNL 897 (1964)

8, HILET, E,: ET,AL., PHYS,REV, 107.1294(1957)
9. HILL, D_{1}, WHEELER, J_{1}, PHYS:REV, 89,1102(1953)
10. BARTON, D., PRIVATE COMMUNICATION (1966)

11, BUPLER, D,' SJOELOM; R,, BULL,AM,PHYS,SOC, 8,359(1963)
12. PARKER, K1, AWRE(O-79/63(1964)
\#3. BARNARD, E., ET,AL,i NUCL,PHYS, 71,228(1965)

RESOLVEO RESONANCE REGION (1, D TO 3 gの:DEV) EVALUATEO BY
J.R,SMITH (AEROJETMIDAHO NUCLEAR CORP)
UNRESOLVED RESONANCE FARAMETERS*EVALUATED BY T,A,P!TTERLE, N,C.PAIK, ANL C, DURSTON (WESTINGHOUSE ADVANCE[REACTOR DIV.
FAST NEUTRON FISSION AND RADIATIVE CAPTURE CROSS SECTION BASED ON DATA SY T,A,PITTERLE AND N, C.PAIK PPROC,CONF,NEUTRON X/S AND TECH, KNOXVILLE, $3 / 71$) 300 EV TO 15 MEV

FISSION PRODUCT YIELO EATA BASED ON EVAL, GY M;'E,MEEK ANO
B.F.RIOER, YIELDS NORMALIZED TO SUM TO 2.DOD

APED=5393:A (REVPSED) CCT. 1968.
FAST NEUTRON CROSS SECYIONS (ABOVE 25 KEV) EVALUATED BY A.PRINOE (RNL.)

THE PUE23" EVALUATION IN THE ENERGY RANGE PF 8.0 KEV FO 20.0 MEV WERE CARRIED OUT AT BNL BY A.PRINGE ANO M'KK, DRAKE,
GENERAL DESCRIPTION
The total, Shape elastic.total reacfion and direct inelastic ckoss SEETICNS WERE CALCULATED USING THE COUPLED CHANNEL CODE JURITOR 1 (ORNL=4152,T,TAMURA)
THE COMPDUND NUCLEUS REACTION CROSS SECTIONS WERE CALCULATED WIFH THE COMNUC CODE (AInAEC-12931,C, L, DUNFORD),FISPRO (CEC(69)24 CNEN, V, benzl ET Ab) ANE CODE THRESH (TO BE PUBGISHED S,PEARLSTEIN BNL)
angular distribution data was analyzed wlth code chao inaazsro 11231, R,F,BERGAND)
THE RESULPS FROM THE CEFORMED NUCLEUS CALCULAFIONS WERE COMBINED IN A CONS!STENT MANNER WITH THE COMPOUND NUCLEUS REACTIONS TO dBTAIN ESTIMATES OF ALL PARTIAL NEUTRON CROSS SECTIONS,
FILE 3
COMPLETE DETAILS OF THE CALCULATIONS FOR MF:1,2,4,18,51 T0 91,192 251. AND 252 ARE GIVEN IN PROC, OF FHIRD CONF, ON NEUTRON CBOSS SECTIONS AND TECHNOLOGY USAEC CONF, 71E301, VOL $1, B Y$ A, PRINCE ANG M, K. ORAKF.
The penetrabilities used in describing the compound ehastic and INELASTIC GRDSS SECTIOAS FOR THE Ag KEV AND 57.0 KEV LEVELS WERE TAKEN FROM THE COUPLED CHANNEL CALCULATIONS, WHILE THE 22 MIGHER LEVELS WERE DESCRIBED EY THE PENETRABILITIES DERIVED FROM A SPHERICAL POTENTIAL MOCEL CALCULATION,
eleven transition states were assumed for fhe calculeation bf the FISSION gROSS SECTIONS IN THE DISCRETE REGION WHICH WERE INTERPRETEO IN TERMS OF THE HILLMHEELER MODEL WITH A CUTOFF ENERGY OF D, 2 MEV FOR THE CONTINUUM, these galculations along with the competitive reactions (INELASTIC, CAPTURE ANC COMPOUND ELASTICS WERE READJUSTED SO AS to Leave the fission and capture cross sectians asfrecommended by
T.A. PITTERLE ET AL PRCC, OF THIRD CONF ON NEUTRON CROSS SEGTIONS ANE TECHNOLOGY USAEC CCNF 710301 VOL 1) UNCHANGED
IN THE HIGH ENERGY REGION, BOTH DIRECF AND SEMIDIRECT
CONTRIBUTIONS TO THE CAPTURE CROSS SECTION WERE OBTAINED FROM
FISPRO
The topal elastic cross section (mi=e) is the sum of fhe shape AND GOMPDUND ELASTIC CCMPONENYS
THE TOTAL INELASTIC (MT=4) IS THE SUM OF THE TOTAL COMPOUND INELASTIC ANO THE DIRECT INEGASTIC SCATTERING CROSS SECTIONS OF
THE 8, OKEV AND 37,0 KEV LEVELS
MTE51,52 AND 91 (D!SCRETE AND CONTINUUM INELASTIC) ALSD
CONTAINS THE DIRECT AS WELL AS THE COMPOUND NUCLEUS COMPONENTS
THE INELASTIC ANGULAR CISTRIBUTIONS ARE ASSUMED TO BE ISOTROPIC MTE16,17,103,104,105 AND 107 ARE BASED ON CALCULATIONS RESULTING FROM PROG, THRESH.
THE BINOING ENERGY ANE THRESHOLDS ARE BASED ON THE RECENT ANALYSIS OF A, H, WAPSTRA AND N, B, GOVE AT ORNL AND TABUGATED IN UCRL 5040 VOL $1,197 \mathbb{R}$ F.J.HOWERTON,

ReSolved resonance paraneters plus file 3 contribution deseribe THE CROSS SECTIDNS BETWEEN 1 AND 3OI EV, PARAMETERS ARE FROM A SIMULTANEDUS FIT TO TOTAL, FISSION AND CAPTURE CROSS SECTIONS, Data fit are those of ghins (1) and derrien and blons (2). PARAMETERS WERE DERIVED BY O, Di SIMPSON AND F:B, SIMPSON AEROJET (IDAHO) NUClEAR CO, AUGUST 1971, A POTENTIAL SCATTERING CROSS SECTION OF 10,2 日ARNS WAS USED, FILE 3, MTE2, CONTAINS THE SCATTERING SMDOTH FILE, THE FOLLOWING EQUATION WAS USED TO COMPENSATE FOR THE TAILS OF DSTANCE RESONANCES)
SIGMA SCATT = - © D1375*(ENERGY) * 2,2 BARNS, IN THE REGION GF 1 TO 5 EV TAERE WAS AN IODITIONAL SCATTERING CROSS SECTION ILESS THAN 1 BARN) ADDED TO BLEND THE THEORETICAL SCATTERING GROSS SECTION ABDVE 1 EV INTO THE SMOOTH FILE GELOW 1 EV, GWINS FISSION AND CAPTURE DATA WERE NCRMALIZED BY HIM TO THE ENDF/B SMOOTH FILE 日ELON 1 EV, THIS MOMALIZATION WAS CHECKED BY US AND FAUND TO BE IN EXCELLENT AGREEMENT, THE FISSION DATA OF BLONS WERE NORMALIZED TO GWINS DATA BY USING A MULTIPLICATION CONSTANT OF 0.9415

REFERENCES

1. R, GHIN ETAL, ORNL 4 4707, JULY (1971):

2, H, DERRIEN ETAL, VOL II, JAEA, VIENNA (1967),
PU-239 WARD MODIFICATICN TO ENDF/B MATERIAL NUMBER 1104-MAR.1971 REFERENCE REPORT - WAFD 4212-1 (PUBLISHED ABOUT MAY 1971) MODIFICATIONS PERFORMED BY TiA, PITTERLE, N, C. PAIK MODIFIED DATA ARE CAPYURE AND FISSION CROSS SECTIONS AND UNRESOLYED RESONANCE PARAMETERS

ENDF／E MATEREAL NOE 1052
PU－239RSFP E＊W EVAL＝DECG6 W，A，WITTKOPF（FOR THERM，REACTORS）日AWO320（DEC．1960） DIST＝JUL6B REV－JUN70 DATA MODIFIED JUNE，1978 TO CONFORM TO ENDF／B－II FORMATS
 ＊
FU－239 LUMPED FISSION PFODUET NO． 1 （LFPPI），RAPIDLY SATURATING， GENERATED DECEMBER 1966，REFERENCES ARE
1，W A WITTKOFF，BAW－32Q，（DEC．1966），GIVES DETAILS AND METHODS 2．J O GARRISON AND 日 W ROOS，NUCL SC！ANO ENG 12， 115 （1962）． OR GA－21．12（APRIL 1961）．GIVES BASIC NUCLEAR DATA
3．N F WIKNER AND $\$$ JAYE，GA＝2113（JUNE 1961），GIVES NULLEAR DATA
FHIS LUMPED FISSION PEODUCT IS USED IN A SGHEME WHERE THE TOTAL FISSION PRODUCT POISON FROM A FISSIONABLE NUCLEUS IS REPRESENTEC EY PHE FOLLOWING FIVE CRAINS OR FISSION PROOUCT GROUPS

1．THE XE＝2E5 CHAIA
2．THF SM＝249 CHAIN
3．LFP1（CO－11．3，SM＝151，GD－155，GD－131）
4．LFP2（MO－95，TC－99，RH－103，XE－131，CS－133，ND＝143，
ND－145，PM－i47．SMo152，EU－153）
5．LIPP（ALL OTHER FISSION PRODUCFS）．
CONVENTIONALLY，ONLY THE NEUTRON Capture EVENTS aRE GONSIDERED IMPORTANT FOR THE FISSICN PRODUCT POISONS AND THEY ARE ASSUMED TO日E INFINITELY QILUTE，THUS，DATA IS SUPPLIED ONLY FOR MF＝Ii MTE45I AND MFE3，MTE27

```
                                    ENOF/B MaTERJAL NOE IQ70
    PU-239SSFP B*W' EVAL=DEC66 W,A,WJFTKOPF {FOR THERM,REACTORSY
    BAW-32D (DEC.1966) DIST=JUL68 REVm.JUN70
```



```
    DATA MODIFIED JUNE,197E TO CONFORM TO ENDF/B-II FORMATS
```



```
    THIS OATA SET FGR THERMAL REACTJRS ONLY
    * * * * *
PU-239 LUMPED FISSION PFODUCT NO,2(LFP2), SLOWLY SATURATING:
GENERATED DECEMBER 1966, REFERENCES ARE
1, W A W!TTKOFF, GAW=322, (DEC, 1966), GIVES DETAILS AND METHODS
2, J D GARRISUN AND B W ROOS, NUCL SC! AND ENG 12, 115 (1962),
    OR GA-2112 (APRIL 1g6I), GIVES BASIC NUCLEAR OATA
3. NF WIKNER AND S JAYE, GA=2113 (JUNE 19G1), GIVES NUCLEAR DATA
    THIS GUMPED FISSION PAODUCT IS USED IN A SCHEME WHERE THE TOTAL
FISSION FRCDUCT POISON FROM A FISSIONABLE NUCLEUS IS REPRESENTED
BY THE FOLLOWING FIVE CHAINS OR FISSION PROOUCT GROUPS
    1. THE XEG135 OHAIA
    2. THE SM=149 CHAIA
    3. LFP1 (CD-113, SN-151,GD-155,GD-157)
        4. LFF2 (MO-95, TC-99, RH=103, XE-131, CS-133, ND=143,
                        ND-145, PM-147, SM-152, EU-153)
    5. LFPS (ALL OTHER FISSION PRODUCTS).
    CONVENTIONALLY, ONLY THE NEUTRON CAPTURE EVENTS ARE CONSIEERED
IMPORTANT FOR THE FISSICN PRODUCT POISONS AND THEY ARE ASSUMED TO
GE INFINITELY DILUTE, THUS, DATA IS SUPPLIED ONLY FOR MFaI;
MT=451 AND MF=3, MT=27
```

ENDF/B MATERIAL NOE 1071

```
    PU-239NSFP B*W EVALEDEC66 W.A.WITTKOFF (FOF THERM,REACTOFS)
    BAW-320 (DEC.1965) DIST=JUL68 REV-JUN70
    ** * * * *
    DATA MOCIFIED JUNE,197% TO CONFOAM TO ENOF/B-II FORMATS
    THIS DATA SET FOF THERNAL REACTORS ONLY
```



```
PU-239 LUMPED FISSION PRODUCT NO.3&LFP3), NONGSATURATING,
GENERATED DECEMBER $966, REFERENEES ARE
1. W A KITTKOPF BAWE32E, {DEC, 1966J, GIYES DETAILS AND MEYHODS
2, JD GARRISON AND B W ROOS, NUCL SCI ANO ENG 12, 115 (1962),
    OR GA-2I12 (APRIL 1961). GIVES GASIC NUCLEAR OATA
    3. N F WIKNER AND S JAYE, GA=2113 (JUNE 1981J, GIVES NUCLEAR DATA
```

 THIS LUMPED FISSION PRODUET IS USED IN A SCHEME WHERE THE TOTAL
 FISSION PRODUCT POISON FROM A FISSIONABLE NUCLEUS IS REPRESENTED
BY THE FOLLOWING FIVE CHAINS OR FISSION PRODUCT GROUPS
1. THE XE=135 CHAIA
2. THE SM-149 CHAIA
3. LFP1 (CD-113, SM=151, GD-155, GD-157)
4, LFP2 SMO-95, TC=99, RH-103, XE-134, CS-133, ND-143,
ND-1.45, PN=147, SM-152, EU-153)
5. LFP3 \{ALL OTHER FISSION PRODUCTS •.
CONVENTIONALLY, ONLY PHE NEUTRON CAPTURE EVENTS ARE CONSIDERED
IMPORTANT FOR THE FISSICN PROOUCT FOISONS AND THEY ARE ASSUMED TO
BE INFINITELY DILUTE, THUS, DATA IS SUPPLIED ONLY FOR MF=1,
MTE451 ANO MF=3, MT=27

ENDF/B MATERIAL NO= 1257

FISSION FRAGMENT RESIDUAL LUMP FOR PU-239 FUT IN EMCF/E2 FERMAT EY ZIZO LIVOLS!, BABCOCK=W!LCOX, AUG 1971 THIS IS A FICTITIOUS NLCLIDE THAT INCLUDES INTO A SINGLE LUMP ALL THE FISSION FRAGMENTS FROM PU-239 WITH EXCEPTION OF THE 53 NUCLIdes explicitely oescrifed in endfib. halkerial has calcubated the SUM OF THE YIELD X SIGMA AHD YIELO x RI. BY NORMALIZING YHE SUN of yielos to 2
AT 220, SM SIGMA=C $=$ d', 657 BARNS
ENDF DATM TOTAL CAFTURE INTEGRAL E 24.59 BARNS
REFEPENCES

1. WH WAI.KER, PRIV, CON, TO WA WITTKOPF (6/30/7'1)
2. FE. LANE, AECL-303R(11/1969)

MT=15.16,91 MAXWELLIAN DISTRIBUTION (REF.12)
MTEIB SIMPLE FISSION EPECTRUM, T(E) $=0,50+0,43 *(N U(E)+1,0) * \pi$ US:NJ FGRMULA OF TERFELL (REF.17)
*
REFERENCES

1. H.DE YROEY ET AL, -NE 20, 191 (1966).
2. H.D.KUZMINOV, SOVIET PROGRESS IN NEUTRON PHYSICS, 1961.
3. 4. T. FOLLDMAN, CHART OF NUCLIDES (9-FH ED. 1966),
1. B.R.LEONARU, JR., PFIVATE COMMUNICATION TO CSEWG (AUG.1969)
2. T.A. PITTERLE AND H, YAMAMOTO, PRIVATE COMMUNICATION TO CSEWG, (A 19G7 APDA EVAL, INCORPORATING THE GEEL DATA, JULY,1969).
3. M.G.CAD,ETAL, WASH,NEUT,CROSS SECT, CONF,11968)
4. KALAS.ET AL, WASH,NEUY,CROSS SECT,CONF, (1968)

8, E.MIGNECO, ET AL, WASH,NEJT,CROSS SECT,CONF, (1968)
9. H.WEIGMAN. ET AL, WASH,NEUY,CROSS SECT, CONF, (1968)
10. M,ASGHAR, ET AL, PARIS CONF, ON NUCLEAR DATA FOR REACT,(1966)

11, W,G,GAVEY, NSE 32, 35 (1968,
12. T.A.PITTERLE AND M, Y\&MAMOTO, APDA-218/ENDF=122 (1968)
13. G.HANNA ET EA, AT, EN. REVIEN 9, NOA 11969:

14, H.ALTER AND C,DUNFCRO, AI-AEC-MEMO-12916 (JAN,197U)
15, O.H,WHITE AND G,P,HARNER, JNE 21, 671 (1967)
16. A.PRINCE, HEL,SINK! CONF, ON NUCL.DATA FCR REACTORS (JUNE,1970)

ENDF/B MATERIAL ND= 1258

FISSION FRAGMENT RESIDUAL LUMF FOR PU-24i
PUT IN ENDF/B2 FORMAT EY Z:IZD LIVOLSI, BABCOCK=WILCOX, AUG 1971 THIS IS A FICTITIOUS NLCLIDE THAT INCLUOES INYO A SINGLE LUMP ALL THE FISSION FRAGMENTS FROM PU-Z4I WITH EXCEPTION OF THE 53 NUCGIOES EXPLICITELY OESCRIEED IN ENDF/B, WALKER(I) HAS CALCULATED THE SUM OF THE YIELD X SIGNA AND YIELD X RI. GY NORMALIZING THE SUN OF YIELDS TO 2
AT 220MM SIGMA~C a 1.640 BARNS ENחF OATA TDTAL CAFTURE INTEGRAL = 16,85 BARNS

REFEPENCES

1. WH WALKER, PGIV, COM, TO WA WITTKOPF (6/30/71)
2. FE LAAFE, AECL-3038\{11/1969)

ENDF/B VEFSION III EVALUATION OF THE RESOLVED RESONANCE AND THERMAL ENERGY CROSS SECTIONS OF ${ }^{242} \mathrm{Pu}$ - MAT 116I
T. E. Young and R. A. Grimesey

Abstract

A new evaluation of the resolved resonance anc thermal cross sections of ${ }^{242} \mathrm{Pu}$ below 390 eV has been made for Version III of ENDF/B based on new measurements. No changes were made to the Version II data above 390 eV .

The total neutron cross section below 1 eV was taken from References 1 and 2. The elastic scattering cross section at 0.0253 eV was calculated to be 8.4 b by using a potential scattering cross section of 10.7 b and the parameters of the 2.68 eV resonance only. A single bound level was selected which, when used in combination with the resolved resonances below 390 eV , also predicted a thermal scattering cross secticl. of 8.4 b .

The total, absorption, and elastic scattering cxras section values in iable I were calculated from the resonance parameters in Table II using the single-level iormula and 10.7 b potential scattering. Parameters for resonances above 20 eV were obtained by averaging values from Rererences 1 - 6, and those of the 2.68 eV resonance were taken from Rererence 1.

Cross section values obtained at 0.0253 eV were $26.9 \pm 1 \mathrm{~b} \mathrm{foz}_{\text {the }}$ total, $18.5 \pm 1 \mathrm{~b}$ for the absorption, and $8.4 \pm 1 \mathrm{~b}$ for the scattering.
[1] T. E. Young, and S. D. Reeder, Nucl. Sci. Engr. 40, 389 (1970).
[2] T. E. Young. et al., Nucl. Sci. Fingr. 43, 431 (1971).
[3] R. E. Cote, et al., Phys. Rev. 114, 505 (1959).
[4] P. A. Egelstaff, et al., J. Nuclear Energy, 6, 303 (1958).
[5] N. Pattenden, EANDC-50-S (1965).
[6] G. Anchampangh, et a.1., Phys. Rev. 146, 840 (1966).

T'uble I
Therment Eirsery Kecion Cioss sectiors; of Pu-242

$\begin{gathered} \text { Energy } \\ (\mathrm{eV}) \\ \hline \end{gathered}$	σ_{12} (b)	$\sigma_{\text {gibs }}$ (b)	$\begin{aligned} & \sigma_{6.2} \\ & (\mathrm{~b}) \\ & \hline \end{aligned}$
0.00001	960.	95\%.6	8.43?
0.0001	29?.	2\%8.8	8.1011
0.0005	139.	130.6	3.20:
0.001	99.77	91.3!	8.30 .1
0.002	73.06	64.66	3. 10 \%
0.001	54.18	4\%.'\%	8.1.0.1
0.007	43.03	34.68	8.30\%
0.010	37.18	29. 818	8.396
0.0 .17	30.61	2\%.	8.390
0.0253	26. 67]8.188	8.385
0.0110	23.23	14.86	8.370
0.060	20.60	12. 31	8.353
0.080	3.9 .15	10.82	8.33)
0.10	38.14	9.821	8.31 .8
0.15	16.6	8.3;	8.27e
0.20	1.5.7\%	7.483	8.225
0.30	1.4.95	6.6%	8.125
0.45	14.10	6.135	7.961
0.60	13.86	6.083	7.776
0.80	1.3.9.1.	6.418	7.189
0.90	14.06	6.735	$7.3{ }^{7}$
1.00	14.30	7.15\%	7.743

Table II

Resonance Paremeters of Pu-2l2

$\begin{gathered} 3_{0} \\ (\mathrm{eV}) \\ \hline \end{gathered}$	$\begin{gathered} r_{\mathrm{n}}^{0} \\ (\mathrm{meV}) \end{gathered}$
-70.000	19.0000
2.680	1.2200
22.540	0.0632
40.930	0.0703
53.700	6.9320
68.000	0.5090
89.100	1.9180
106.000	0.0580
107.500	1.7260
131.800	0.5490
156.000	1.3880
166.000	0.0776
205.000	4.5750
227.000	0.3290
235.000	0.5150
276.000	0.8750
306.000	0.8750
311.000	0.6240
323.000	12.7420
335.000	5.1630
386.000	2.4070

25.600
25.000
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600
25.600

ก5.600
95-AM-241 1056 ANC PRI.COMM.:NOV.66) NOVG6 J.R.SMITH AND R.A.GRIMESEY

MF:2 MT=151 BELOW 16 EV THE DATA APPEARED TO BE ADEQUATELY REPRESENTED BY A FIT BY S,PEARLSTEIN,CROSS SEETIONS FOR TRANS-UFANIUM ELEMENT PRODUCTION,BNL 982.1966, USING THE RECOMMENDED PARAMETERS FROM BNL 325 SUPPZ. GE,5 POTENTIAL SCATTERING= 10 BARNS. SMOOTH CAPYURE CS IN RESOLYED AND UNRESOLVED RANGE IS 1/V AND IS 417 BARNS AT . 0253 EV, SMOOTH FISSION CS IN RESOLVED RANGE ONLY IS INV AND IS 2,05 BARNS AT, DZ253 EV POINTWISE BCMB SHOF FISSION DATA USED THROUGHOUT UNRESOLVED FANGE TO , IMEV AND CONSEQUENTLY NO FISSION WIDTHS SPECIFIED IN UNRESOLVED RANGE, UNRESOLVED CALCULATION IS FOR CAPTURE ONLY, AVERAGE NEUTRON WIDTH CALCULAFED FOR ONE DEGREE OF FREEDOM IN PORTER THOMAS DISTRIBUTIOA.
Mf:3 mte 1 No total cs measurements avallable above 16 eV, the TOYAL CS WAS NOT ADDED DUE TO COMPLICATIONS WITH BOMB SHOT FISSIOA DATA, TOTAL ES IS SUM OF REACTION ES,
$M T=2$ BELOW, MMEV ELASTIC CS IS 10 BARNS, ABOVE 1 MEV ELASTIC CS IS THAT FOR PU 239.J.J.SCHMIDT EVALUATION KFK 120 KARISRUHE, EXTRAPOLATED 9015 MEV.
His a NO OATA AVAILABLE, SINCE LEVEL STRUCTURE OF AM241 IS SOHEWHAT SIMILAR TO U238,WE USED UZ38 POTAL INELASTIC CS TAKEN FREN J, J, SCHMIDT EVALUATION,KFK 120 KARLSRUHE
ifte 18 IN THE THERMAL RANGE TO , 2EV A SMOOTH CURVE WAS DRAWN THROUEH THE EXPERIMENTAL POINTS IN BNL 325 SUPP2 FROM 26 TO 20 EV DATA WAS TAKEN FROM G, O.BOWMAN (LRL,PVT, CON.), FROM 20 EV TO 0.4 MEV PETREL NUCLEAF EXPLOSION DATA ARE USED (Pm3 AND WaB STAFF: LASL 3586) FFOM 20 EV FO AD EV PETREL POINTWISE DATA ARE USED, FROM 40 EV YO 0.4 MEV 10 PERCENT AVERAGE DATA PP, A, 2 SEEGER,PVT, COM.) ARE USED. ABOVE E, A MEV DATA ARE FFOM SMOOTH CURYE DRAWN THROUGH PETREL DATA (TO 2 MEV) AND DATA OF NOBLES ET AL (PHYS,REV,99,616A (1955) I, NORM. at plafeal (2-4 mev) To 1,75B, Which is WTD, aVE, of VALUES FROM SEEGER (PETREL); NOBLES, BOWMAN (IAEA CCNF PAR!S CN=23/18 1966), KAZARINOVA (AF,ENERG, USSR 8130

```
1966) 15 MEV VALUE IS AVE, BETWEEN KAZARINOVA AND PROTOPOPOV (AT.ENERG.USSR 667 1959).
U-VALUE REF, A, PRINCE,PRIVATE COMMUNICATION 23APR68
MT=102 POINTS FROM D, OQIEV TO D. 2 EV ARE FROM SMOO:H CURVE DRAWN THROUGH DATA OF ADAMCHUK ET AL IPROCIINT CONF ON PUAE (P/645 1955), WITH 10 B, POT, SCAT, SURTRAGTED TE OBTAIN ABS, CS. THE FISSION CS WAS THEN SUBTRACFED TOE OBTAIA CAPTLRE CS. BETWEEN , 2 AND i 3 EV THE SMOOTH CAPTURE FILE REPRESENTS THE DIFFERENCE BETWEEN FHE PEARLSTEIN FIT (NBL 982) AND A SMOOTH CURVE THROUGH THE EXPERIMENTAL POANTS OF SLAUGHTER (ORNL 3@85: AND AJUMCWUK , SEV TO, IMEV THE SMOOTH CAPTURE CS IS 1/U WITH A VALUE DF 417 BARNE AT, D253-V. AN UNRESOLVED CALC, USING THE PARAMETERS IN FILE 2 YIELDED A VAGUE OF 43 EARNS AT -IMEV. THIS ADDED TO PHE RESIDUAL \(1 / \mathrm{V}\) SMOOTH CAPTURE CS GAVE A VALUE OF 64 BARNS CAPTURE AT , IMEV. STRAIGHT LIAE WAS CRAWN FROM 64 BARNS AT IMEV TO THE OFTICAL MODEL VALUE OF D,T,GOLDMAN, FRANS, AMTNUCL, SOC, 7841764, AT 6 MEV FOR NP237. THE CAPTURE CS VALUE USED FROM HERE TO 10 MEV IS BASED ON AN EXTRAPOLATICN OF THE GOLOMAN CURVE FOR NP2S7.
\(M T=25.2252,253 \mathrm{MU}-\mathrm{BAR}(L \mathrm{LSYSTEM}), X I, G A M M A\) CALCULATED BY CHAD MFェ4 MTE ? ANGULAR DISTRIBUTIONS SUFPLIED BY HIALTER OF AII COMPOSED OF A MIXTURE OF MEASURED DATA FOR U235, U238, AND PU239. VALUES OF GAMMA SLOWING DOWN PARAMETER ABOVE IU KEV ARE SUSPECT AND ARE NOT TO BE USED WITHOUT FUTHER STUDY.
MF \(=5\) MTE 4 EVAPORATION MODEL SPECIFIED FOR INELASTIC CS. TEMP CALCULATED FROM 3230 SQUARR RT(E/Al. NO LEVEL DATA AVAILABLE
MTE18 FISSION SPECTRUM HAS MAXWELLIAN DENSITY WITH THE TEMP BASED UN FERRELLS PRESCRIPTION (TERRELLOJ. PHYSICS AND CHEMISTRY DF FISSION,VOL 2, IAEA,1965I, THE THERM VALUE OF NL WAS USED TO DETERMIN FHE TEMPERATURE.
```

95-AM-243 1057 ANC PRI.COMM.(NOV.66) NOVG6 J.R.SMITH AND R.A.GRIMESEY

ENDF/B VERSION III EVALUATION OF THE RESOLVED RESONANCE
 AND THERMAI ENERGY CROSS SECTIONS OF ${ }^{244} \mathrm{~cm}$ - MAT 1162

J. R. Berreth and R. A. Grimesey

A new evaluation of the resonance and thermal cross sections of 244 m below 500 eV has been made for Version III of ENDF/B based on new measurements[1,2,3] both at low energies and in the resolved resonance region.

These measurements bring up to date the low energy evaluation of ${ }^{244} \mathrm{Cm}$ based on direct low energy measurements and new and additional determinations of resonance parameters. New resonance parameters are presented up to 500 eV (see Table I). Low energy resonances up to and including 85.8 eV are a composite of three sets of data, Coté et al.[I], M. S. Moore et al. [2], and J. R. Berreth and F. B. Simpson[3]. The data of Berreth and Cote are total neturon cross sections. The Moore data are capture and fission cross section measurements. The fission component for the 16.8 eV resonance is an indirect determination by Moore based on comparing their capture and fission measurements. The energy of this resonance is at the lower energy range of their measurements and, therefore, subject to some error in the fission parameters. Since no fission measurement was available, a fission component for the 7.66 eV resonance was used based on the average fission parameters of several large low energy resonances. Because the resonance parameters do not account for all of the low energy cross section as measured, a negative energy resonance is postulated to make up the difference between the theoretical curve as determined from the resonance parameters and the measured data below $l \mathrm{eV}$. Conditions for postulating the negative energy resonance were as follows: all of the measured resonances to 500 eV were reflected as bound states around the 7.66 eV resonance in order to arrive at a scattering cross section. Parameters for an assumed negative energy resonance at -1.48 eV were then adjusted until a fit to the total cross section data between 0.01 and 1.0 eV was achieved. The revised cross sections determined from the above information at 0.0253 eV are citot $=$ 23.56 barns, $\sigma_{s c}=8.40$ barns, $\sigma_{n \gamma}=14.26$ barns, and $\sigma_{\text {piss }}=0.88$ barrs. These total neutron cross sections data have been determined using the single-level Breit-Wigner formula.

In addition to these modifications, the average fission width $\langle\mathrm{F}\rangle$ for the unresolved range was re-determined by averaging the resolved range fission widths based on M. S. Moore[2] data. This was the only adjustment made to the unresolved range data.

Below 3.0 eV the File 3 data gave the complete cross sections. The elastic cross section is based on the contribution of postulated bound levels obtained by reflecting all of the positive energy resonances to the negative axis to approximate bound levels in addition to the resonances given in File 2. At 3 eV , the difference between the elastic cross section involving these bound levels and the cross section obtained from the resonances in File 2 is 1.334 barns. Above 3 eV , File 3 contains this cross section at 3 eV extrapolated linearly to zero at 1.50 eV as an approximation to bound levels not present in File 2. The difference between the capture and fission cross section, lit as described above, is a $1 / \mathrm{v}$ cross section above 3.0 eV given in File 3.

In these calculations the potential scattering cross section was taicen to be 10.32 barns.
[1] R. E. Cote, R. B. Barnes and H. Diamond, "Total Neutron Cross Section of ${ }^{24}{ }^{4} \mathrm{Cm}$ ", Phys. Rev. Vol. 134, No. 6B, pp. 1281-1284 (June 22, 1964).
[2] M. S. Moore and G. A. Keyworth, "Analysis of the Fission and Capture Cross Sections of the Curium Isotopes", Phys. Rev. C, Vol. 3, No. 4 pp. 1656-1667 (April 1971).
[3] J. R. Berreth and F. B. Simpson, "Total Neutron Cross Sections of the Cm Isotopes from 0.01 to $30 \mathrm{eV}^{\prime \prime}$ (to be published).

244Cm RESONANCE PARAMETERS USED FOR EINDF/B REVISION

Enerey eV		$\begin{aligned} & \Gamma_{\gamma} \\ & \mathrm{mV} \end{aligned}$	Γ_{f} mV
-1.480	0.0685	37.000	2.100
7.660	3.5700	37.000	2.100
16.800	0.4000	37.000	1.400
22.864	0.1840	37.000	3.700
34.900	0.5900	37.000	2.500
52.670	0.0780	37.000	1.700
69.900	0.0720	37.000	3.000
85.800	0.3900	37.000	0.650
96.120	0.7450	37.000	1.540
132.800	1.3500	37.000	1.170
139.100	0.2120	37.000	2.800
171.200	0.2360	37.000	1.300
181.600	0.7240	37.000	2.100
197.000	3.0600	37.000	1.000
209.800	2.9000	37.000	0.520
220.100	3.6400	37.000	1.250
230.500	1.9800	37.000	0.400
234.900	0.2500	37.000	0.900
242.700	0.0830	37.000	2.200
264.900	0.6150	37.000	0.900
274.100	0.9670	37.000	0.800
316.800	0.3090	37.000	0.300
329.500	0.3630	37.000	0.290
. 343.600	1.4000	37.000	1.160
353.100	5.3800	37.000	1.280
361.700	1.7900	37.000	1.030
364.400	0.5240	37.000	2.100
386.200	1.3200	37.000	1.110
397.600	1.2500	37.000	0.660
415.000	0.9300	37.000	0.270
420.600	4.5400	37.000	0.890
426.900	0.6200	37.000	0.350
443.400	4.8000	37.000	0.820
470.900	7.0900	37.000	1.840
488.900	0.6780	37.000	0.500
491.900	2.4300	37.000	0.470

[^0]: *Work done under the auspices of the United States Atomic Energy Commission

[^1]: * Work done under the auspices of the United States Atomic Energy Comuission

[^2]: *Work done under the auspices of the Jnited States Atomic fnergy Comission

[^3]: * Work done under the auspices of the United States Atomic Bnergy Commission

[^4]: *

 Work supported by the Defense Nuclear Agency under Subtask PCIO2

[^5]: *

 Work supported by the Defense Nuclear Agency under Subtask PC102

[^6]: *Work supported by the Defense Nuclear Agency under Subtask PCl02

[^7]: *This summary is a condensed version of the report in Reference 1.

[^8]: *Work performed under U.S. Atomic Energy Commission Contract No. At(40-1)-2847
 **The capture cross section of Re-187 includes that leading to the 18.6 minute
 excited state.

[^9]: *The values indicated by an asterisk are the reference values used for normalization. The scale factors are the slopes of a least squares straight line passing through the origin and fitting a plot of $\left(\Gamma_{\mathbf{n}} / E\right)$ reference.

