ORNL-TM-4223 ENDF 189

SDT 12. THE ORNL BENCHMARK EXPERIMENT FOR NEUTRON TRANSPORT THROUGH SODIUM

-NDF distribution

_ #i

R. E. Maerker

OAK RIDGE NATIONAL LABORATORY OPERATED BY UNION CARBIDE CORPORATION . FOR THE U.S. ATOMIC ENERGY COMMISSION

DISTRIBUTION OF THIS DOGUMENT IS INLUSITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

ORNL-TM-4223 ENDF 189

Contract No. W-7405-eng-26

Neutron Physics Division

SDT 12. The ORNL BENCHMARK EXPERIMENT FOR NEUTRON TRANSPORT THROUGH SODIUM

R. E. Maerker

SEPTEMBER 1974

Reference: R. E. Maerker, F. J. Muckenthaler, R. L. Childs, and M. L. Gritzner, "Final Report of the ORNL Benchmark Experiment for Neutron Transport Through Thick Sodium," ORNL-4880 (1974).

> OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by Union Carbide Corporation for the U. S. ATOMIC ENERGY COMMISSION

MAST

THIS PAGE WAS INTENTIONALLY

LEFT BLANK

Table of Contents

																												Pa	age
List of Figure	es .	•	•	•	•	•		•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	v
List of Table	s	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	vii
Abstract	••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ix
Description .	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Data Obtained	Beh	in	d 1	the	e S	Soc	liı	ım	Ta	ank	ς.	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.•	7
Methods of Ca	lcu]	at	io	ns									÷	÷	÷	•	•	•	•	•	•	•	•	•	•			•	42

THIS PAGE WAS INTENTIONALLY

LEFT BLANK

List of Figures

Figure 1. Experimental Configuration of the Reactor, the 15 1/4-in Collimator, and the Sodium Tank Geometry	2
Figure 2. Photograph of the Cylindrical Sodium Tanks Surrounded by the Concrete Collars	3

THIS PAGE WAS INTENTIONALLY

LEFT BLANK

List of Tables

• •

	Pa	age
Table 1.	Thickness of the Sodium Tanks	4
Table 2. Surrounding the	Composition of the Sodium and Concrete Collar e Sodium Tanks	4 .
Table 3.	Source Spectrum at the End of the Collimator	5
Table 4.	Energy Resolution of the NE-213 Spectrometer System	8
Table 5.	Bonner Ball Description	9
Table 6.	Response for 2.06 Inch Diameter Bonner Sphere	10
Table 7.	Response for 3.00 Inch Diameter Bonner Sphere	12
Table 8.	Response for 4.03 Inch Diameter Bonner Sphere	14
Table 9.	Response for 5.02 Inch Diameter Bonner Sphere	16
Table 10.	Response for 6.00 Inch Diameter Bonner Sphere	18
Table 11.	Response for 7.86 Inch Diameter Bonner Sphere	20
Table 12.	Response for 9.86 Inch Diameter Bonner Sphere	22
Table 13.	Response for 11.84 Inch Diameter Bonner Sphere	24
Table 14.	Response Function for the Modified 3-in. Bonner Sphere.	26
Table 15.	Experimental Configurations	27
Table 16. (cts/min/watt)	Bonner Ball Counting Rates Behind 2.5 ft of Sodium	28
Table 17. (cts/min/watt)	Bonner Ball Counting Rates Behind 5 ft of Sodium	28
Table 18. (cts/min/watt)	Bonner Ball Counting Rates Behind 10 ft of Sodium	29
Table 19. Sodium (cts/mi	Cadmium Ball Counting Rates 2 in. Behind 10 ft of n/watt)	29
Table 20. of Sodium (cou	3-in. Bonner Ball Counting Rates 2 in. Behind 10 ft nts/min/watt)	30
Table 21.	Bonner Ball Counting Rates Behind 12.5 ft of Sodium	30

	Page
Table 22. Bonner Ball Counting Rates Behind 15 ft of Sodium (cts/min/watt)	30
Table 23.3-in. Bonner Ball Counting Rates 24 in. Behind 15 ftof Sodium.	31
Table 24.12-in.Bonner Ball Counting Rates 23 in.Behind 15 ftof Sodium	32
Table 25. Benjamin Counter Spectrum Behind 5 ft of Sodium	. 33
Table 26. Benjamin Counter Spectrum on the Centerline 24 in. Behind 10 ft of Sodium	36
Table 27. Benjamin Counter Spectrum on the Centerline 24 in.Behind 12.5 ft of Sodium.	37
Table 28.NE-213 Spectrum on the Centerline 359 in. Behind5 ft of Sodium	38 • .
Table 29. NE-213 Spectrum 96 in. off the Centerline 359 in.Behind 5 ft of Sodium	40
Table 30. NE-213 Spectrum on the Centerline 24 in. Behind 10 ft of Sodium	41 •
Table 31. Composition of the Concrete and Polyethylene LinerSourrounding the Collimator	42
Table 32. Approximate Increase in the Total Fluxes Above Thermal Transmitted Thru the Sodium Due to Multiple Reflection Between the Collimator Materials and Sodium Tanks	42
Table 33. Comparisons of Surface Leakages Calculated by ANISN (neutrons/source neutron)	46 • .
	·

Abstract

An experiment concerning deep neutron penetration in sodium is described, and experimental results in a format for CSEWG shielding integral data testing are presented. These results provide a basis for verification of the accuracy of sodium cross sections used in transport calculations. The experiment was performed at the Tower Shielding Facility of ORNL and included measurements of both the neutron fluence and neutron spectra behind tanks of sodium up to 15 ft thick.

ix

Description

The sodium coolant which surrounds a fast reactor core constitutes a major portion of the neutron shield. It is therefore essential that accurate experimental results be available to verify the accuracy of transport calculations for deep penetration of neutrons through sodium. Since the thickness of sodium above the fuel elements in the FTR design is approximately 15 ft and the diameter of the pool is approximately 20 ft, an experiment providing confirmation of the transport calculation to a comparable depth with negligible side leakage is necessary.

Consequently, a series of transmission measurements of neutrons above thermal energies through various thicknesses of sodium cylinders have been performed at the Tower Shielding Facility using a collimated beam of reactor neutrons as a source. These measurements were made behind various combinations of four 11-ft-diam cylindrical aluminum tanks filled with solid sodium; measurements were obtained behind sodium thicknesses of approximately 2.5, 5, 10, 12.5, and 15 ft. Concrete at least 1.5 ft thick surrounded the tanks to reduce the effects of transverse leakage from the thicker slabs. Figure 1 shows a schematic of the experimental geometry for the 15-ft case. Figure 2 is a photograph of the cylindrical sodium tanks with some of the concrete collars attached.

The thickness and average sodium density of each of the sodium tanks were determined at eight locations in each tank. The sodium density was determined by placing the tank between a 3-in. sodium iodide detector and a ²⁴Na source and accurately determining the counting rate in the uncollided gamma-ray peak at 2.76 MeV. From the ratio of this counting rate to the counting rate in the peak with no slab present and the previously measured thickness of the sodium, the sodium density could be determined. The average thicknesses of the four tanks (including 1/2 in. of aluminum on each side) are shown in Table 1. The average sodium density was sensibly constant over each tank and from tank to tank as well, and the averaged value of 0.945 grams/cm³ should be accurate to better than 1%.

Ν

ω

Tank Number	Nominal Thickness (including 1 in. of Al)	Average Thickness (including 1 in. of Al)	Average Sodium Thickness	Maximum Sodium Thickness Deviation from Average
1	30 in.	29.91 in.	28.91 in.	0.22 in.
2	60 in.	60.08 in.	59.08 in.	0.52 in.
3	60 in.	59.86 in.	58.86 in.	0.42 in.
4	30 in.	29.59 in.	28.59 in.	0.53 in.

Table 1. Thickness of the Sodium Tanks

The composition of the sodium can be assumed to be the following (Table 2) based on maximum allowable impurities in reactor grade sodium. The composition of the concrete collar surrounding the sodium tanks is also shown in Table 2.

	Sodium		Concrete	e Collars
Element	Atomic Density (atoms/barn cm)	Partial Density (grams/cm ³)	Atomic Density (atoms/barn cm)	Partial Density (grams/cm ³)
Silicon			3.76×10^{-3}	0,175
Hydrogen	3.39×10^{-5}	5.67×10^{-5}	8.66×10^{-3}	0.015
Oxygen	7.11×10^{-6}	1.89×10^{-4}	4.13×10^{-2}	1.096
Sodium	2.4737×10^{-2}	0.9442		
Carbon			7.83×10^{-3}	0.156
Potassium	2.19×10^{-6}	1.42×10^{-4}	2.32×10^{-3}	0.159
Calcium	5.68×10^{-6}	3.79×10^{-4}	9.86 x 10^{-3}	0.655
Magnesium			1.31×10^{-3}	0.053

Table 2. Composition of the Sodium and Concrete Collar Surrounding the Sodium Tanks

Sufficient measurements of the incident neutron beam were made that an absolute energy spectrum from thermal to 15 MeV could be obtained for use in calculations. This incident spectrum is presented in Table 3 in

Group	Energy Interval	Intensity (n/cm ² /min/watt)	Group	Energy Interval	Intensity (n/cm ² /min/watt)
1	13.5-14.9 MeV	14	51	67.4-86.5	1790
2	12.2-13.5	32	52	52.5-67.4	1730
3	11.05-12.2	73	53	40.9-52.5	1650
4	10.0-11.05	199	54	31.8-40.9	1590
5	9.04-10.0	312	55	24.8-31.8	1530
6	8.19-9.04	545	56	19.3-24.8	1490
7	7.41-8.19	846	57	15.0-19.3	1440
8	6.70-7.41	1375	58·	11.7-15.0	1370
9	6.07-6.70	2070	59	9.12-11.7	1340
10	5.49-6.07	2585	60	7.10-9.12	1310
11	4.97-5.49	3180	61	5.53-7.10	1260
12	4.49-4.97	3665	62	4.31-5.53	1220
13	4.07-4.49	4420	63	3.35-4.31	. 1200
14	3.68-4.07	4880	64	2.61-3.35	1180
15	3.33-3.68	4825	65	2.03-2.61	1150
16	3.01-3.33	5315	66	1.58-2.03	1120
17	2.73-3.01	6570	67	1.23-1.58	1100
18	2.47-2.73	7075	68	961-1230 eV	1030
19	2.23-2.47	6955	69	749-961	1020
20	2.02-2.23	6190	70	583-749	1010
21	1.83-2.02	5570	71	454-583	990
22	1.65-1.83	5175	72	354-454	970
23	1.50-1.65	4200	73	275-354	960
24	1.35-1.50	4000	74	214-275	940
25	1.22-1.35	3170	75	167-214	920
26	1.11-1.22	2485	/6	130-16/	900
27	1.00-1.11	2350	//	101-130	900
28	0.90/-1.00	2135	/8	/8.9-101	900
29	0.821-0.90/	2215	/9	61.4-78.9	900
30	0./43-0.821	2.545	80	4/.9-61.4	900
51	0.6/2-0./43	2320	81	37.3-47.9	900
52	0.608-0.6/2	1990	82	29.0-37.3	900
55		1/00	83	22.0-29.0	900
34 75	0.497 - 0.550	1445	84 0 m	17 7 17 6	900
35	0.450-0.497	1210	00	13.7 - 17.0	900
30 77		1170	00 07	10.7 - 13.7 0.72 - 10.7	930
3/ 70	0.309-0.400	1170	07	6 10 0 72	900
20	0.334-0.309	1173	00 20	0.40-0.32 5 01-6 19	1035
39	0.302 - 0.334 0.273 - 0.302	1055	09	3.04-0.40	1035
40	0.275-0.502 0.247-0.273	1033	90 01	3.93-3.04	1035
41	0.247 - 0.273 0.224 - 0.277	933	91	2 79 7 06	1035
42	0.224 - 0.247	777	92	1 96-2 79	1055
4-5 A A	0.202 - 0.224 0.183-0.202	026	9.5 Q/	1 11-1 26	1100
44	0.165-0.202	240 QAC	94 05	1 17_1 //	1100
45	0.100-0.103	040 977	53 06	1,13-1,44 0 976-1 17	1250
40	0.130-0.100 0.136-0.100	02/ 70r	90 07	0.0/0-1.13	1250
4/ /V	0.130-0.130	/ 83 700	9/ 00	0.003-0.0/0	1020
40	0.143 - 0.130 0 111_0 127	700	00 70	0.332-0.003	1000
49 50	86 5-111 Vol	1870	100	0.414-0.334	
		10/0	100	0.000-0.414	3.30 X 10

Table 3. Source Spectrum at the End of the Collimator

2

.

Totals 1-100 0.000-14.9 MeV 2.702 x 10⁵

•

a 100-group GAM-2 structure. The intensities in Table 3 are for any point on the exit plane of the collimator located within the 15 1/4 in. diameter opening. Mapping of the incident beam along the axial direction established the fact that the collimated source can be represented as a virtual point anisotropic source located 59.5 in. inside the collimator from the exit plane with the beam intensity uniform over the 15 1/4 in. diameter mouth of the collimator and zero elsewhere. The accuracy of the incident absolute spectrum in Table 3 is estimated to be \pm 10% down to 200 keV and \pm 20% below 200 keV. The ratio of surface-integrated current over the collimator to centerline current is 1200 cm².

Neutron spectral measurements beyond the sodium samples were taken using two types of spectrometers. These were: (1) an NE-213 liquid scintillator, which determines spectra in the energy range 0.8-15 MeV with the aid of the unfolding code FERDOR, and (2) a Benjamin proton recoil spectrometer which determines spectra in the energy range ~50 keV -1.5 MeV with the aid of the unfolding code SPEC4. Table 4 gives the resolution of the NE-213 as a function of energy. The resolution of the Benjamin spectrometer is 10% FWHM, independent of energy. In addition, a set of spherical BF_7 detectors surrounded by various thicknesses of polyethylene (0-5 in.) and an outside shell of cadmium were used to obtain integral flux measurements. These Bonner ball detectors have response functions which peak in different regions of the spectrum. A modified Bonner ball was also used which consisted of a 3-in. shell of ¹⁰B surrounding a 0.5 in. shell of polyethylene, both of which surrounded a BF_{z} detector. The composition of each Bonner ball and the location of the center of detection is listed in Table 5. The response functions for the Bonner balls are presented in Tables 6-14. They are expressed in units of counts/sec per unit flux uniformly incident over an outside hemispherical surface of the ball, (the approximate geometry for these measurements) and were obtained by adjoint ANISN calculations normalized to calibration experiments performed at the Tower Shielding Facility. The estimated accuracy of the response functions is also indicated in each of the tables.

6

Data Obtained Behind the Sodium Tanks

All of the measurements made behind the sodium tanks are summarized in Table 15. The data obtained from these measurements are presented in Tables 16-32. All the data tabulated are with background subtracted except the profile data appearing in Tables 23 and 24, where it is cstimated to be less than 10% of foreground. Counting times and operating reactor powers for the Bonner ball measurements were sufficiently large that statistical errors in the Bonner ball counting rates may be assumed to be negligible. The reproducibility of all measurements lies within 5-10% and is due primarily to uncertainties in the power calibration procedure.

The unfolded Benjamin proton recoil spectrometer data are presented in Tables 25-27, where the percent standard error is due to counting statistics only. The absolute energy calibration is accurate to within an estimated \pm 5%.

The NE-213 liquid scintillator spectral data are presented in Tables 28-30, where the upper and lower limits indicate the standard error of each unfolded spectrum and are due to combined statistical and unfolding errors.

E (MeV)	a(E) FWHM (%)	E (MeV)	a(E) FWHM (%)	E (MeV)	a(E) FWHM (%)
0.5	47.5	3.5	18.2	7.0	12.6
0.6	44	3.6	18.0	7.2	12.4
0.7	41	3.7	17.7	7.4	12.2
0.8	38.5	3.8	17.4	7.6	12.1
0.9	36	3.9	17.1	7.8	11.9
1.0	33.5	1.0	16.9	8.0	11.8
1.1	32.5	4.1	16.7	8.2	11.6
1.2	31	4.2	16.5	8.4	11.5
1.3	30	4.3	16.3	8.0	11.4
1.4	29	4.4	16.1	8.8	11.3
1.5	27.5	4.5	15.9	9.0	11.2
1.6	26.5	4.6	15.7	9.2	11.1
1.7	26	4.7	15.5	9.4	10,9
1.8	25	4.8	15.3	9.6	10.8
1.9	24.5	4.9	15.2	9.8	10.7
2.0	24	5.0	15.1	10.0	10.5
2.1	23.5	5.1	14.9	10.2	10.3
2.2	23	5.2	14.7	10.4	10.2
2.3	22.5	5.3	14.5	10.6	10.1
2.1	22	5.4	14.4	10.8	10.0
2.5	21.5	5.5	14.3	11.0	9.8
2.6	21.2	5.6	14.2	11.4	9.7
2.7	20.8	5.7	14.1	11.8	9.6
2.8	20.4	5.8	13.9	12.2	9.6
2.9	20.1	5.9	13.8		
3.0	19.7	6.0	13.7		
3.1	19.4	6.2	13.5		
3.2	19.1	6.4	13.2		
3.3	18.8	6.6	13.0		
3.4	18.5	6.8	12.8	• .*	

Table 4. Energy Resolution of the NE-213 Spectrometer System*

*Interpolation in this table should follow the formula

$$a(E) = \frac{E_2 - E}{E_2 - E_1} a(E_1) + \frac{E - E_1}{E_2 - E_1} a(E_2)$$

where

 $E_1 \leq E \leq E_2$.

Spherical, 2-indiam ¹⁰ BF ₃ Proportional Counter Surrounded by Polyethylene and 0.030-in. Cd							
Standard Bonner Ball Designation	Polyethylene Thickness (in.)	Diameter of Ball	Location of Center of Detection from Center of Ball (in.)*				
Cd	0	2.06	0.6				
3	0.47	3.00	0.9				
4	0.985	4.03	1.2				
5	1.48	5.02	1.5				
6	1.97	6.00	1.8				
8	2.90	7.86	2.4				
10	3.90	9.86	3.0				
12	4.89	11.84	3.5				

Table 5. Bonner Ball Description

Note: Modified 3-in. Bonner ball is 2-in.-diam proportional counter surrounded by 0.47 in. polyethylene followed by 2.91 in. ¹⁰B. The center of detection is 2.6 in. from the center of the ball.

* The center of detection is displaced in a direction toward the center of gravity of the hemispherical surface upon which the neutrons are incident.

Group	Midpoint Energy (eV)	Response (Counts/Incident Neut/cm ²)
1	Thermal	Negligible
2	4.73E-01	1.70E-01
3	6.07E-01	2.40E-01
4	7.79E-01	2.56E-01
5	1.00E-00	2.49E-01
6	1.29E-00	2.30E-01
7	1.65E-00	2.08E-01
8	2.12E-00	1.85E-01
9	2.72E-00	1.65E-01
10	3.49E-00	1.46E-01
11	4.49E-00	1,29E-01
12	5.76E-00	1.14 E-01
13	7.40E-00	1.01E-01
14	9.50E-00	8.93E-02
15	1.22E+01	7.89E-02
16	1.57E+01	6.97E-02
17	2.01E+01	6.15E-02
18	2.58E+01	5.16E-02
19	3.31E+01	4.79E-02
20	4.26E+01	4.24E-02
21	5.46E+01	3.74E-02
22	7,0 <u>2E</u> +01	3.22E-02
23	9.01E+01	2.61E-02
24	1.16E+02	2.42E-02
25	1.49E+02	2.26E-02
26	1.91E+02	1.99E-02
27	2.45E+02	1.75E-02
28	3.14E+02	1.,55E-02
29	4.04E+02	1.37E-02
30	5.18E+02	1.20E-02
51	6.66E+U2	1.05E-02
34	8.55E+U2	9.38E-03
33 [.]	1.106+02	8.28E-03
54 75	1.41E+03	/.30E-0.5
35 76		0.43E-U3
30 77	2.32E+U3	5.02E-U3
3/ 70	2.98E+03	5.01E-03
30 70	3.63E+U3 4.02E+03	4.43E-03
39	4.92E+0.5	3.91E-US 7.4FE-07
40	0.326+03	3.45E-US 7.0FE-07
41	0.11C+03 1 04C+04	3.05E-03 2.70E 07
42 17	1 3/E±04	2.705-03 2.305-07
4J 11	1 72P±04	2.J9E-UJ 2 11E 07
44 // 5	2 20F±04	2.11E-UJ 1 86E-03
45	2.201+04 2.83F±04	1.60E-03 1.6EE 07
40	2.001+04 3 63F±01	1.05E-03 1.46E-03
18	A 675±04	1 208 AZ
40	4.071704	1.490-03

Table 6. Response for 2.06 Inch Diameter Bonner Sphere*

* Cadmium covered sphere - no polyethylene shell. Estimated accuracy is ± 10% throughout energy range.

Table 6. contd.

40	5 005 04	1 145 07
49	5.99£+04	1.14E-03
50	7.69E+04	1.02E-03
51	9.88E+04	9.11E-04
52	1.17E+05	8.48E-04
53	1.29E+05	8.14E-04
54	1.43E+05	7.82E-04
55	1.58E+05	7.50E-04
56	1.74E+05	7.20E-04
57	1.93E+05	6.91E-04
58	2.13E+05	6.61E-04
59	2.35E+05	6.26E-04
60	2.60E+05	5.82E-04
61	2.88E+05	5.17E-04
62	3.18E+05	4.47E-04
63	3.51E+05	4.05E-04
64	3.88E+05	3.92E-04
65	4.29E+05	3.87E-04
66	4 74E+05	3 81E-04
67	5 24F+05	3.51E 04
68	5.79E+05	2.00E - 04
60	6 40E+05	2.991-04
70	7 075+05	2.30E-04
70	7.07E.03	
/ L 7 2		1.898-04
72	8.045	1.64E-04
13	9.545+05	1.49E-04
74		1.422-04
/5	1.1/E+06	1.35E-04
/0	1.29E+06	1.3/E-04
77	1.42E+06	1.51E-04
78	1.5/E+06	1.91E-04
79	1.74E+06	2.34E-04
80	1.92E+06	2.50E-04
81	2.13E+06	2.16E-04
82	2.35E+06	1.74E-04
83	2.60E+06	1.68E-04
84	2.87E+06	1.64E-04
85	3.17E+06	1.53E-04
86	3.50E+06	1.54E-04
87	3.87E+06	1.62E-04
88	4.28E+06	1.77E-04
89	4.73E+06	1.84E-04
90	5.23E+06	1.94E-04
91	5.78E+06	1.95E-04
92	6.38E+06	1.69E-04
93	7.06E+06	1.46E-04
94	7.80E+06	1.31E-04
95	8.62E+06	1.20E - 04
96	9.52E+06	1.10F - 04
97	1 05E+07	1 01F = 01
92	1 16F+07	
00	1 20E + 07	9.210-03 9.675 OF
33 100	1 428+07	0.0/E-US 3 /OF_OF
100	1.425-0/	3.49E-02

Group	Midpoint Energy (eV)	Response (Counts/Incident Neut/cm ²)
1	Thermal	Negligible
2	4.73E-01	4,99E-01
3	6.07E-01	8.26E-01
4	7.79E-01	1.02E-00
5	1.00E-00	1.13E-00
6	1.29E-00	1.18E-00
7	1.65E-00	1.19E-00
8	2.12E-00	1.18E-00
9	2.72E-00	1.16E-00
10	3, 198-00	1.14E 00
11	4.49E-00	1.11E-00
12	5.76E-00	1.08E-00
13	7.40E-00	1.05E-00
14	9.50E-00	1.01E-00
15	1.22E+01	9.76E-01
16	1.57E+01	9.41E-01
17	2.01E+01	9.04E-01
18	2.58E+01	8.23E-01
19	3.31E+01	8.32E-01
20	4.26E+01	8.01E-01
21	5.46E+01	7.68E-01
22	7.02E+01	7.15E-01
23	9.01E+01	6.25E-01
24	1.16E+02	7.67E-01
25	1.49E+02	7.95E-01
26	1.91E+02	7.67E-01
27	2.45E+02	7.28E-01
28	3,14E+02	6.98E-01
29	4.04E+02	6.69E-01
30	5.18E+02	6.29E-01
31	6.66E+02	6.10E-01
32	8.55E+02	5.83E-01
33	1.10E+03	5.55E-01
34	1.41E+03	5.30E-01
35	1.81E+03	5.05E-01
36	2.32E+03	4.81E-01
37	_λ 2.98E+03	4.59E-01
38	3.83E+03	4.37E-01
39	4.92E+03	4.17E-01
40	6.32E+03	3.98E-01
41	8.11E+03	3.80E-01
42	1.04E+04	3.616-01
43	1.34E+04	3.43E-01
44	1.72E+04	3.26E-01
45	2.20E+04	3.10E-01
46	2.83E+04	2.93E-01
47	3.63E+04	2.77E-01
48	4.67E+04	2.60E-01

Table 7. Response for 3.00 Inch Diameter Bonner Sphere*

* Radial thickness of polyethylene = 0.470 inches; Density of polyethylene = 0.951 gram/cc; Estimated accuracy is ± 10% for groups 33-100 and ± 15% for groups 1-32.

.

Table 7. contd.

40	5 00E+04	2.44E-01
49	5.99E+04 7 60E+04	2.440-01 2.27E_01
50	7.09E'04	$2.27L^{-}01$
51	9.005-04	
52	1.1/2+05	1.99E-01
53	1.29E+05	1.92E-01
54	1.43E+05	1.84E-01
55	1.48E+05	1.7/E-01
56	1.74E+05	1.70E-01
57	1.73E+05	1.63E-01
58	2.13E+05	1.55E-01
59	2.35E+05	1.48E-01
60	2.60E+05	1.41E-01
61	2.88E+05	1.34E-01
62	3.18E+05	1.27E-01
63	3.51E+05	1.20E-01
64	3.88E+05	1.13E-01
65	4.29E+05	1.06E-01
66	4.74E+05	9.91E-02
67	5 24F+05	9,26E-02
60	5.241.05	8 62E-02
60	6 40E+05	8 01E-02
09	7.078+05	7.43E - 02
70	7.075+05	7.43E-02 6.97E 02
/1	7.82E+05	0.8/E-U2
72	8.04E+U5	0.33E-02
73	9.54E+05	5.82E-02
74	1.06E+06	5.34E-02
75	1.17E+06	4.89E-02
76	1.29E+06	4.46E-02
7 7	1.42E+06	4.07E-02
78	1.57E+06	3.70E-02
79	1.74E+06	3.36E-02
80	1.92E+06	3.04E-02
81	2.13E+06	2.75E-02
82	2.35E+06	2.47E-02
83	2,60E+06	2.22E-02
84	2.87E+06	2.00E-02
85	3.17E+06	1.79E-02
86	3 50E+06	1.60E-02
87	3.87E+06	1.43E - 02
00	1 28E+06	1 27E-02
00	4.201.00	1.275 02 1.125-02
09	4./JE+00	1.020-02
90	5.235+00	1.00E-02 0.90E-07
91	5./8E+00	9.80E-03
92	6.38E+06	8.098-03
93	7.06E+06	/.16E-U3
94	7.80E+06	6.57 <u>B</u> -03
95	8.62E+06	5.80E-03
96	9.52E+06	5.21E-03
97	1.05E+07	4,65E-03
98	1.16E+07	4.09E-03
99	1.29E+07	3.66E-03
100	1.42E+07	3.23E-03

Group	Midpoint Energy (eV)	Response (Counts/Incident Neut/cm ²)
1	Thermal	Negligible
2	$4.73E_{-01}$	3 82F-01
2	$6.07E_{-}01$	6 70E-01
3	7 705 01	0.70E-01
4	7.79E-01	
5	1.002-00	
6	1.29E-00	1.11E-00
7	1.65E-00	1.1/E-00
8	2.12E-00	1.22E-00
9	2.72E-00	1,268-00
10	3.49E-00	1.29E-00
11	4.49E-00	1.31E=00
12	5.76E-00	1.32E-00
13	7.40E-00	1.33E-00
14	9.50E-00	1.34E-00
15	1.22E+01	1.34E-00
16	1.57E+01	1.34E-00
17	2.01E+01	1.34E-00
18	2.58E+01	1.27E-00
19	3.31E+01	1.32E-00
20	4 26E+01	1.32E-00
21	5 46E+01	1 31F-00
21	7 02E+01	1.265-00
22	0.01E+01	1.200000
23	9.011.01 1 16Em02	1.142-00
24	1.100+02	1.260-00
25	1.496+02	1.57E-00
20	1.912+02	1.5/E-00
27	2.45E+U2	1.34E-00
28	3.14E+02	1.32E-00
29	4.04E+02	1.31E-00
30	5.18E+02	1.27E-00
31	6.66E+02	1.27E-00
32	8.55E+02	1.25E-00
33	1.10E+03	1.22E-00
34	1.41E+03	1.20E-00
35	1.81E+03	1.18E-00
30	2.32E+U3	1.16E-00
37	2.98E+03	1.13E-00
38	3.83E+03	1.11E-00
3ÿ	4.92L+03	1.09E-00
40	6.32E+03	1.07E-00
41	8.11E+03	1.05E 00
42	1.04E+04	1.03E-00
43	1.34E+04	1.01E-00
44	1.72E+04	9,93E-01
45	2 20E + 04	9 74F-01
45	2.201.04	0 55F_01
40	2.0JE·04 7 67E±01	0 76°-01
4/	3.03ETU4 4.67E±04	5.JUE-UI 0 17E 01
40	4.0/8-04	9.1/E-U1

Table 8. Response for 4.03 Inch Diameter Bonner Sphere*

* Radial Thickness of Polyethylene = 0.985 Inches; Density of polyethylene = 0.951 gram/cc; Estimated accuracy is ± 10% for groups 33-100 and ± 15% for groups 1-32.

Table 8. contd.

		0.077.01
49	5.99E+04	8.9/E-01
50	7.69E+04	8.//E-01
51	9.88E+04	8.54E-UI
52	1.1/E+05	8.38E-01
53	1.29E+05	8.2/E-UI
54	1.436+05	8.10E-UI
55	1.58E+05	8.04 <u>E</u> -01
50	1.748+05	7.92E-01
5/	1.93E+05	7.79E-01
58	2.131+05	7.05E-U1
59	2.35E+U5	7.50E-01
60	2.602+05	7.34E-UI
61	2.88E+05	7.18E-01
62	3.18E+U5	7.00E-01
03	3.51L+05	0.81E-UI
64	3.88E+U5	0.63E-01
65	4.29E+05	6.42E-01
66	4./4E+U5	6.21E-01
6/	5.242+05	5.99E-01
68	5.795+05	5./6E-01
. 69	6.40E+05	5.52E-01
70	7.07E+05	5.29E-01
/1	7.82E+05	5.04E-01
12	8.645+05	4.80E-01
73	9.54E+05	4.55E-01
74	1.065+06	4.30E-01
75	1.1/E+06	4.06E-01
/6	1.29E+06	3.81E-01
//	1.42E+06	3.5/E-01
/8	1.5/E+00	3.34E-UI
79	1.745+00	3.11E-UI
80	1.92E+06)	2.88E-01
81	2.13E+06	2.06E-01
82	2.355+06	2.46E-01
83	2.60E+06	2.258-01
84	2.8/E+06	2.05E-01
85	3.1/E+06	1.88E-01
80	3.50ETUO 7.071.406	
8/	3.8/E 'U0	1.50E-01
88	4.28E+U0	1.418-01
89	4.73E+06	1.2/E-01
90	5.232+00	1.20E-01
91	5./8E+UO	1.11E-01
92	0.38E+00	1.02E-01
95	7.00E+00	0.50E-U2 7.07E-02
94 05		/.93E-02
95		0.91E-02
90	9.52ETUD	0.15E-U2
97	1.140.07	5,40E-U2 4,74E-02
98	1.100+07	4.746-02
99	1.296+07	4.20E-02
100	1.42E+0/	3./1E-02

.

1

Group	Midpoint Energy (eV)	Response (Counts/Incident Neut/cm ²)
1	Thermal	Negligible
2	4.73E-01	2.78E-01
3.	6.07E-01	4.95E-01
4	7.79E-01	6.50E-01
5	1.00E-00	7.68E-01
6	1.29E-00	8.54E-01
7	1.65E-00	9.18E-01
8	2.12E-00	9.70E-01
9	2,72E-00	1.01E-00
10	3.49E 00	1.05E-00
11	4.49E=00	1.09E-00
12	5.76E-00	1.12E-00
13	7.40E-00	1.14E-00
14	9.50E-00	1.17E-00
15	1.22E+01	1.19E-00
16	1.57E+01	1.21E-00
17	2.01E+01	1.23E-00
18	2.58E+01	1.18E-00
19	3.31E+01	1.25E-00
20	4.26E+01	1.27E-00
21	5.46E+01	1.28E-00
22	7.02E+01	1.25E-00
23	9.01E+01	1.15E-00
24	1.16E+02	1.19E-00
25	1.49E+02	1.29E-00
<u>26</u>	1.91E+02	1.30E-00
27	2.45E+02	1.30E-00
28	3.14E+02	1.30E-00
29	4.04E+02	1.31E 00
30	5.18E+02	1.29E-00
31	6.66E+02	1.31E-00
32	8.55E+02	1.31E-00
33	1.10E+03	1.30E-00
34	1.41E+03	1.30E-00
35	1.81E+03	1.29E-00
36	2.32E+03	1.29E-00
37	2.98E+03	1.28E-00
38	3.83E+03	1.27E-00
39	4.92E+03	1.27E-00
40	6.32E+03	1.27E-00
41	8.11E+03	1.26E-00
42	1.04E+04	1.26E-00
43	1.34E+04	1.25E-00
44	1.72E+04	1.25E-00
45	2.20E+04	1.24E-00
46	2.83E+04	1.24E-00
47	3.63E+04	1.24E-00
48	4,67 <u>E</u> +04	1.24E-00

Table 9. Response for 5.02 Inch Diameter Bonner Sphere*

* Radial thickness of polyethylene = 1.480 inches; Density of polyethylene = 0.951 gram/cc; Estimated accuracy is ± 10% for groups 33-100 and ± 15% for groups 1-32.

49 5.99E+04 1.24E-00 50 7.69E+04 1.24E-00 51 9.88E+04 1.24E-00 52 53 1.17E+05 1.24E-00 1.29E+05 1.24E-00 54 1.24E-00 1.43E+05 55 1.24E-00 1.58E+05 56 1.74E+05 1.24E-00 57 1.24E-00 1.93E+05 58 2.13E+05 1.23E-00 59 2.35E+05 1.23E-00 60 2.60E+05 1.22E-00 61 2.88E+05 1.21E-00 62 1.20E-00 3.18E+05 63 3.51E+03 1.19E 00 64 3.88E+05 1.18E-00 65 4.29E+05 1.17E-00 66 4.74E+05 1.15E-00 67 5.24E+05 1.13E-00 5.79E+05 68 1.11E-00 69 6.40E+05 1.09E-00 70 7.07E+05 1.06E-00 71 7.82E+05 1.03E-00 72 8.64E+05 1.00E-00 73 9.54E+05 9.72E-01 74 1.06E+06 9.38E-01 75 1.17E+06 9.03E-01 76 1.29E+06 8.66E-01 77 1.42E+06 8.28E-01 78 7.88E-01 1.57E+06 79 1.74E+06 7.48E-01 80 7.07E-01 1.92E+06 81 2.13E+06 6.63E-01 82 6.25E-01 2.35E+06 83 2.60E+06 5.82E-01 84 2.87E+06 5.37E-01 5.02E-01 85 3.17E+06 4.59E-01 86 3.50E+06 87 3.87E+06 4.27E-01 88 4.28E+06 3.96E-01 89 4.73E+06 3.62E-01 90 3.40E-01 5.23E+06 91 5.78E+06 3.20E-01 92 6.38E+06 2.98E-01 93 7.06E+06 2.57E-01 94 7.80E+06 2.39E-01 95 8.62E+06 2.10E-01 96 9.52E+06 1.87E-01 97 1.05E+07 1.67E-01 98 1.16E+07 1.44E-01 99 1.29E+07 1.28E-01 100 1.42E+07 1.13E-01

Table 9. contd.

Group	Midpoint Energy (eV)	Response (Counts/Incident/Neut/cm ²)
Group 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	Midpoint Energy (eV) Thermal 4.73E-01 6.07E-01 7.79E-01 1.00E-00 1.29E-00 2.12E-00 2.12E-00 2.72E-00 3.49E-00 4.49E 00 5.76E-00 7.40E-00 9.50E-00 1.22E+01 1.57E+01 2.01E+01 2.58E+01 3.31E+01	Response (Counts/Incident/Neut/cm ²) Negligible 1.78E-01 3.18E-01 4.19E-01 4.97E-01 5.55E-01 5.99E-01 6.36E-01 6.69E-01 6.69E-01 7.51E-01 7.51E-01 7.51E-01 7.97E-01 8.19E-01 8.39E-01 8.30E-01 8.30E-01 8.90E-01
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36	3.31E+01 4.26E+01 5.46E+01 7.02E+01 9.01E+01 1.16E+02 1.49E+02 2.45E+02 3.14E+02 4.04E+02 5.18E+02 6.66E+02 8.55E+02 1.10E+03 1.41E+03 1.81E+03 2.32E+03	8.90E-01 9.10E-01 9.25E-01 9.14E-01 8.48E-01 8.80E-01 9.66E-01 9.86E-01 9.90E-01 1.00E=00 1.02E-00 1.04E-00 1.05E-00 1.05E-00 1.07E-00
37 38 39 40 41 42 43 44 45 46 47 48	2. 92E+03 2. 98E+03 3. 83E+03 4. 92E+03 6. 32E+03 8. 11E+03 1. 04E+04 1. 34E+04 1. 72E+94 2. 20E+04 2. 83E+04 3. 63E+04 4. 67E+04	1.07E-00 1.08E-00 1.09E-00 1.10E-00 1.11E-00 1.11E-00 1.12E-00 1.12E-00 1.14E-00 1.15E-00 1.17E-00 1.18E-00

Table 10. Response for 6.00 Inch Diameter Bonner Sphere*

* Radial thickness of polyethylene = 1.970 inches; Density of polyethylene = 0.951 gram/cc; Estimated accuracy is ± 10% for groups 33-100 and ± 15% for groups 1-32.

Table 10. contd.

	5 005 04	1 000 00
49	5.99E+04	1.20E-00
50	7.692+04	1.23E-00
51	9.88E+04	1.26E-00
52	1.1/E+US	1.2/E-00
55	1.29E+05	1.29E-00
54	1.43E+05	1.30E-00
55	1.58E+05	1.31E-00
50	1.74E+05	1.32E-00
57	1.93E+05	1.346-00
58	2.13E+05	1.35E-00
59	2.35E+05	1.36E-00
60	2.60E+05	1.37E-00
61	2.88E+05	1.38E-00
62	3.18E+05	1.39E-00
63	3.51E=05	1.396-00
64	3.88E+05	1.40E-00
65	4.29E+05	1.40E-00
66	4.74E+05	1.40E-00
67	5.24E+05	1.40E-00
68	5.79E+05	1.40E-00
69	6.40E+05	1.39E-00
70	7.07E+05	1.38E-00
71	7.82E+05	1.37E-00
72	8.64E+05	1.35E-00
73	9.54E+05	1.33E-00
74	1.06E+06	1.31E-00
75	1.17E+06	1.28E-00
76	1.29E+06	1.25E-00
77	1.42E+06	1.21E-00
78	1.57E+06	1,17E-00
79	1.74E+06	1.13E-00
80	1.92E+06	1.09E-00
81	2.13E+06	1.03E-00
82	2.35E+06	9.91E-01
83	2.60E+06	9.37E-01
84	2.87E+06	8.70E-01
85	3.17E+06	8.30E-01
86	3.50E+06	7.62E-01
87	3.87E+06	7.22E=01
88	4.28E+06	6.84E-01
89	4.73E+06	6.34E-01
90	5.23E+06	5.99E-01
91	5.78E+06	5.67E-01
92	6.38E+06	5.35E-01
93	7.06E+06	4.71E-01
94	7.80E+06	4.39E-01
95	8.62E+06	3.91E-01
96	9.52E+06	3.51E-01
97	1.05E+07	3.14E-01
98	1.16E+07	2.73E-01
99	1.29E+07	2.43E-01
100	1.42E+07	2.16E-01

1ThermalNegligible2 $4,73E-01$ $7.04E-02$ 3 $6.07E-01$ $1.26E-01$ 4 $7.79E-01$ $1.66E-01$ 5 $1.00E-00$ $1.98E-01$ 6 $1.29E-00$ $2.21E-01$ 7 $1.65E-00$ $2.39E-01$ 9 $2.72E-00$ $2.68E$ 9 $2.72E-00$ $2.68E$ 10 $3.49R+00$ $2.93E-01$ 11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.44E=00$ $3.35E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 14 $9.50E-00$ $3.45E-01$ 15 $1.22E+01$ $3.55E-01$ 16 $2.58E+01$ $3.46E-01$ 17 $2.01E+01$ $3.73E-01$ 20 $4.26E+01$ $3.94E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.06E-01$ 28 $3.14E+02$ $4.51E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.88E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.29E-01$ 37 $2.98E+03$ $5.29E-01$ 38 $3.35E$	Group	Midpoint Energy (eV)	Response (Counts/Incident Neut/cm ²)
24.73E-01 $7.04\overline{E}-02$ 36.07E-011.26E-0147.79E-011.66E-0151.00E-002.39E-0161.29E-002.39E-0171.65E-002.55E-0192.72E-002.68E 01103.49E-002.81E-01114.49E-002.93E-01125.76E-003.04E-01137.40E-003.15E-01149.50E-003.25E-01151.22E+013.36E-01111.57E+013.46E-01172.01E+013.55E-01182.58E+013.45E-01204.26E+013.91E-01215.46E+013.91E-01227.02E+013.91E-01239.01E+013.65E-01241.16E+024.35E-01251.49E+024.22E-01261.91E+024.35E-01272.45E+024.40E-01283.14E+024.51E-01316.66E+024.78E-01328.55E+024.62E-01331.01E+035.05E-01341.41E+035.05E-01351.81E+035.37E-01362.32E+035.21E-01372.98E+035.21E-01383.83E+035.37E-01394.92E+035.24E-01383.83E+035.37E-01418.11E+035.67E-01421.04E+045.88E-01383.83E+035.37E	1	Thermal	Negligible
3 $6.07E-01$ $1.26E-01$ 4 $7.79E-01$ $1.66E-01$ 5 $1.00E-00$ $1.98E-01$ 6 $1.29E-00$ $2.21E-01$ 7 $1.65E-00$ $2.39E-01$ 8 $2.12E-00$ $2.55E-01$ 9 $2.72E-00$ $2.68E 01$ 10 $3.49P=00$ $2.93E-01$ 11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.40E-00$ $3.04E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.56E-01$ 16 $2.58E+01$ $3.46E-01$ 17 $2.01E+01$ $3.45E-01$ 18 $2.58E+01$ $3.73E-01$ 20 $4.26E+01$ $3.93E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.28E-01$ 26 $1.91E+02$ $4.56E-01$ 28 $3.14E+02$ $4.58E-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.37E-01$ 34 $1.40E+04$ $5.78E-01$ 35 $1.81E+03$ $5.37E-01$ 36 <td>2</td> <td>4.73E-01</td> <td>7.04E-02</td>	2	4.73E-01	7.04E-02
47.79E-011.66E-0151.00E-001.98E-0161.29E-002.21E-0171.65E-002.39E-0182.12E-002.68E 0192.72E-002.68E 01103.49F-002.81E-01114.49E-002.93E-01125.76E-003.04E-01137.40E-003.25E-01149.50E-003.25E-01151.22E+013.36E-01172.01E+013.45E-01182.58E+013.45E-01204.26E+013.93E-01215.46E+013.93E-01227.02E+013.91E-01239.01E+013.65E-01241.16E+023.82E-01251.49E+024.22F-01261.91E+024.35E-01272.45E+024.40E-01305.18E+024.61E-01305.18E+024.61E-01316.66E+024.78E-01328.55E+024.88E-01331.10E+035.05E-01341.41E+035.05E-01351.81E+035.12E-01362.32E+035.46E-01372.98E+035.46E-01383.83E+035.37E-01394.92E+035.67E-01418.11E+035.67E-01421.04E+045.89E-01441.72E+046.33E-01452.20E+046.19E-01462.83E+046.36E-01<	3	6.07E-01	1.26E-01
S $1.00E-00$ $1.98E-01$ 6 $1.29E-00$ $2.21E-01$ 7 $1.65E-00$ $2.39E-01$ 8 $2.12E-00$ $2.53E-01$ 9 $2.72E-00$ $2.68E$ 10 $3.49P-00$ $2.93E-01$ 11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.40E-00$ $3.25E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.6E-01$ 17 $2.01E+01$ $3.46E-01$ 17 $2.01E+01$ $3.45E-01$ 18 $2.58E+01$ $3.45E-01$ 20 $4.26E+01$ $3.93E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.65E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $4.22F-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.51E-01$ 27 $2.45E+02$ $4.62E-01$ 28 $3.14E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.46E-01$ 37 $2.98E+03$ $5.46E-01$ 38 $3.83E+03$ $5.77E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.07E-01$ 39 $4.92E+03$ $5.46E-01$ 41<	4	7.79E-01	1.66E-01
61.29E-002.21E-0171.65E-002.39E-0102.12E-002.68E92.72E-002.68E10 $3.49E+00$ 2.93E-0111 $4.49E-00$ 2.93E-0112 $5.76E+00$ $3.04E+01$ 13 $7.40E+00$ $3.15E+01$ 14 $9.50E+00$ $3.25E+01$ 15 $1.22E+01$ $3.36E+01$ 17 $2.01E+01$ $5.55E+01$ 18 $2.58E+01$ $3.45E+01$ 19 $3.31E+01$ $3.73E+01$ 20 $4.26E+01$ $3.93E+01$ 21 $5.46E+01$ $3.93E+01$ 22 $7.02E+01$ $3.91E+01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.6E+02$ $4.22E+01$ 25 $1.49E+02$ $4.22E+01$ 26 $1.91E+02$ $4.22E-01$ 27 $2.45E+02$ $4.04E-01$ 28 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.58E-01$ 32 $8.5E+02$ $4.62E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.46E-01$ 37 $2.98E+03$ $5.21E-01$ 38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 44 $1.72E+04$ $6.36E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$	5	1.00E-00	1.98E-01
7 $1.65E-00$ $2.39E-01$ 8 $2.12E-00$ $2.55E-01$ 9 $2.72E-00$ $2.68E 01$ 10 $3.49P-00$ $2.81E-01$ 11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.40E-00$ $3.25E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.46E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.94E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.22E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.7E-01$ 38 $3.83E+03$ $5.7E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 </td <td>6</td> <td>1.29E-00</td> <td>2.21E-01</td>	6	1.29E-00	2.21E-01
0 $2.12E-00$ $2.55E-01$ 9 $2.72E-00$ $2.68E$ 01 10 $3.49P-00$ $2.81E-01$ 11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.40E-00$ $3.25E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.94E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.62E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.51E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.22E-01$ 36 $2.32E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 41 $8.11E+03$ $5.67E-01$ 34 $1.40E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.85E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	7	1.65E-00	2.39E-01
9 $2.72E-00$ $2.68E 01$ 10 $3.49F=00$ $2.81E-01$ 11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.40E=00$ $3.04E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 19 $3.31E+01$ $3.75E-01$ 20 $4.26E+01$ $3.93E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.35E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.52E-01$ 31 $6.66E+02$ $4.62E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.21E-01$ 38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.57E-01$ 41 $8.11E+03$ $5.67E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.36E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.79E-01$	8	2.12E-00	2.55E-01
10 $3.49P=00$ $2.81E-01$ 11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.40E=00$ $3.15E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 1 $1.57E+01$ $3.46E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.93E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.22E-01$ 28 $5.14E+02$ $4.62E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.62E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+05$ $5.12E-01$ 36 $2.32E+03$ $5.29E-01$ 37 $2.98E+03$ $5.29E-01$ 38 $3.83E+03$ $5.77E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+04$ $5.89E-01$ 42 $1.04E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$	9	2.72E-00	2.68E 01
11 $4.49E-00$ $2.93E-01$ 12 $5.76E-00$ $3.04E-01$ 13 $7.40E+00$ $3.15E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.66E-01$ 1 $1.57E+01$ $3.46E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 20 $4.26E+01$ $3.84E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.51F-01$ 29 $4.04E+02$ $4.51F-01$ 29 $4.04E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.21E-01$ 38 $5.87E+01$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+04$ $5.89E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.36E-01$ 44 $1.72E+04$ $6.36E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	10	3,49E=00	2.81E-01
12 $5.76E-00$ $3.04E-01$ 13 $7.40E=00$ $3.15E-01$ 14 $9.50E-00$ $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.93E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $4.22E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.51E-01$ 27 $2.45E+02$ $4.60E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+05$ $5.05E-01$ 35 $1.81E+03$ $5.22E-01$ 36 $2.32E+03$ $5.7E-01$ 39 $4.92E+03$ $5.7E-01$ 39 $4.92E+03$ $5.7E-01$ 41 $8.11E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	11	4.49E-00	2.93E-01
13 $7.40E = 00$ $3.15E - 01$ 14 $9.50E - 00$ $3.25E - 01$ 15 $1.22E + 01$ $3.36E - 01$ 1 $1.57E + 01$ $3.46E - 01$ 17 $2.01E + 01$ $3.55E - 01$ 18 $2.58E + 01$ $3.45E - 01$ 19 $3.31E + 01$ $3.73E - 01$ 20 $4.26E + 01$ $3.93E - 01$ 21 $5.46E + 01$ $3.93E - 01$ 22 $7.02E + 01$ $3.91E - 01$ 23 $9.01E + 01$ $3.65E - 01$ 24 $1.16E + 02$ $3.82E - 01$ 25 $1.49E + 02$ $4.22F - 01$ 26 $1.91E + 02$ $4.35E - 01$ 27 $2.45E + 02$ $4.61E - 01$ 29 $4.04E + 02$ $4.51F - 01$ 29 $4.04E + 02$ $4.61E - 01$ 31 $6.66E + 02$ $4.78E - 01$ 32 $8.55E + 02$ $4.88E - 01$ 33 $1.10E + 03$ $5.05E - 01$ 34 $1.41E + 03$ $5.05E - 01$ 35 $1.81E + 05$ $5.12E - 01$ 36 $2.32E + 03$ $5.46E - 01$ 37 $2.98E + 03$ $5.46E - 01$ 38 $3.83E + 05$ $5.37E - 01$ 41 $8.11E + 04$ $5.89E - 01$ 44 $1.72E + 04$ $6.03E - 01$ 45 $2.20E + 04$ $6.19E - 01$ 46 $2.83E + 04$ $6.56E - 01$ 48 $4.67E + 04$ $6.79E - 01$	12	5.76E-00	3.04E-01
149.50E-00 $3.25E-01$ 15 $1.22E+01$ $3.36E-01$ 1 $1.57E+01$ $3.46E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.84E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.94E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.22E-01$ 36 $2.32E+03$ $5.22E-01$ 37 $2.98E+03$ $5.29E-01$ 38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.57E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.36E-01$ 45 $2.20E+04$ $6.36E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	13	7.40E=00	3.15E-01
15 $1.22E+01$ $3.36E-01$ 1 $1.57E+01$ $3.46E-01$ 17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.84E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.55E-01$ 27 $2.45E+02$ $4.61E-01$ 28 $3.14E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.46E-01$ 40 $6.32E+03$ $5.77E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	14	9.50E-00	3.25E-01
11.57E+01 $3.46E-01$ 172.01E+01 $3.55E-01$ 182.58E+01 $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.93E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.62E-01$ 31 $6.66E+02$ $4.88E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.27E-01$ 40 $6.32E+03$ $5.77E-01$ 41 $8.11E+03$ $5.67E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 48 $4.67E+04$ $6.79E-01$	15	1.22E+01	3.36E-01
17 $2.01E+01$ $3.55E-01$ 18 $2.58E+01$ $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.84E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51F-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $5.05E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.22E-01$ 36 $2.32E+03$ $5.46E-01$ 39 $4.92E+03$ $5.46E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.36E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 48 $4.67E+04$ $6.79E-01$	1	1.57E+01	3.46E-01
182.58E+01 $3.45E-01$ 19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.84E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.00E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.46E-01$ 40 $6.32E+03$ $5.57E-01$ 41 $8.11E+03$ $5.57E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	17	2.01E+01	3.55E-01
19 $3.31E+01$ $3.73E-01$ 20 $4.26E+01$ $3.84E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.02E-01$ 35 $1.81E+05$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.93E-01$ 44 $1.72E+04$ $6.19E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	18	2.58E+01	3.45E-01
20 $4.26E+01$ $3.84E-01$ 21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.61E-01$ 29 $4.04E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	19	3.31E+01	3.73E-01
21 $5.46E+01$ $3.93E-01$ 22 $7.02E+01$ $3.91E-01$ 23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.79E-01$	20	4.26E+01	3.84E-01
227.02E+013.91E-01 23 9.01E+013.65E-01 24 1.16E+023.82E-01 25 1.49E+024.22F-01 26 1.91E+024.35E-01 27 2.45E+024.40E-01 28 3.14E+024.51F-01 29 4.04E+024.61E-01 30 5.18E+024.62E-01 31 6.66E+024.78E-01 32 8.55E+024.88E-01 33 1.10E+034.96E-01 34 1.41E+035.05E-01 35 1.81E+035.12E-01 36 2.32E+035.21E-01 37 2.98E+035.46E-01 40 6.32E+035.57E-01 41 8.11E+035.67E-01 42 1.04E+045.78E-01 44 1.72E+046.03E-01 45 2.20E+046.19E-01 46 2.83E+046.36E-01 47 3.63E+046.56E-01 48 4.67E+046.79E-01	21	5.46E+01	3.93E-01
23 $9.01E+01$ $3.65E-01$ 24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51F-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 38 $3.83E+03$ $5.77E-01$ 40 $6.32E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.79E-01$	22	7.02E+01	3.91E-01
24 $1.16E+02$ $3.82E-01$ 25 $1.49E+02$ $4.22F-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51F-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 41 $8.11E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	23	9.01E+01	3.65E-01
25 $1.49E+02$ $4.22E-01$ 26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.03E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	24	1.16E+02	3.82E-01
26 $1.91E+02$ $4.35E-01$ 27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.03E-01$ 44 $1.72E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	25	1.49E+02	4.22E-01
27 $2.45E+02$ $4.40E-01$ 28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	26	1.91E+02	4.35E-01
28 $3.14E+02$ $4.51E-01$ 29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 41 $8.11E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	27	2.45E+02	4.40E-01
29 $4.04E+02$ $4.61E-01$ 30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.21E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 41 $8.11E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	28	3.14E+02	4.51E-01
30 $5.18E+02$ $4.62E-01$ 31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.03E-01$ 44 $1.72E+04$ $6.19E-01$ 46 $2.83E+04$ $6.36E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	29	4.04E+02	4.61E-01
31 $6.66E+02$ $4.78E-01$ 32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.57E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.03E-01$ 44 $1.72E+04$ $6.19E-01$ 45 $2.20E+04$ $6.36E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.79E-01$	30	5.18E+02	4.62E-01
32 $8.55E+02$ $4.88E-01$ 33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.29E-01$ 38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.67E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.03E-01$ 44 $1.72E+04$ $6.19E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	31	6.66E+02	4.78E-01
33 $1.10E+03$ $4.96E-01$ 34 $1.41E+03$ $5.05E-01$ 35 $1.81E+03$ $5.12E-01$ 36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.29E-01$ 38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.57E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $6.03E-01$ 44 $1.72E+04$ $6.19E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	32	8.55E+02	4.88E-01
341.41E+035.05E-01 35 1.81E+035.12E-01 36 2.32E+035.21E-01 37 2.98E+035.29E-01 38 3.83E+035.37E-01 39 4.92E+035.46E-01 40 6.32E+035.57E-01 41 8.11E+035.67E-01 42 1.04E+045.78E-01 43 1.34E+045.89E-01 44 1.72E+046.03E-01 45 2.20E+046.19E-01 46 2.83E+046.36E-01 47 3.63E+046.56E-01 48 4.67E+046.79E-01	33	1.10E+03	4.96E-01
351.81E+035.12E-01 36 2.32E+035.21E-01 37 2.98E+035.29E-01 38 3.83E+035.37E-01 39 4.92E+035.46E-01 40 6.32E+035.57E-01 41 8.11E+035.67E-01 42 1.04E+045.78E-01 43 1.34E+045.89E-01 44 1.72E+046.03E-01 45 2.20E+046.19E-01 46 2.83E+046.36E-01 47 3.63E+046.56E-01 48 4.67E+046.79E-01	34	1.41E+03	5.05E-01
36 $2.32E+03$ $5.21E-01$ 37 $2.98E+03$ $5.29E-01$ 38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.57E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	35	1.81E+03	5.12E-01
37 $2.98E+03$ $5.29E-01$ 38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.57E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	36	2.32E+03	5.21E-01
38 $3.83E+03$ $5.37E-01$ 39 $4.92E+03$ $5.46E-01$ 40 $6.32E+03$ $5.57E-01$ 41 $8.11E+03$ $5.67E-01$ 42 $1.04E+04$ $5.78E-01$ 43 $1.34E+04$ $5.89E-01$ 44 $1.72E+04$ $6.03E-01$ 45 $2.20E+04$ $6.19E-01$ 46 $2.83E+04$ $6.56E-01$ 47 $3.63E+04$ $6.56E-01$ 48 $4.67E+04$ $6.79E-01$	37	2.98E+03	5,29E-01
39 4.92E+03 5.46E-01 40 6.32E+03 5.57E-01 41 8.11E+03 5.67E-01 42 1.04E+04 5.78E-01 43 1.34E+04 5.89E-01 44 1.72E+04 6.03E-01 45 2.20E+04 6.19E-01 46 2.83E+04 6.56E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	38	3.83E+03	5.37E-01
40 6.32E+03 5.57E-01 41 8.11E+03 5.67E-01 42 1.04E+04 5.78E-01 43 1.34E+04 5.89E-01 44 1.72E+04 6.03E-01 45 2.20E+04 6.19E-01 46 2.83E+04 6.56E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	39	4.92E+03	5.46E-01
41 8.11E+03 5.67E-01 42 1.04E+04 5.78E-01 43 1.34E+04 5.89E-01 44 1.72E+04 6.03E-01 45 2.20E+04 6.19E-01 46 2.83E+04 6.36E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	40	6.32E+03	5.57E-01
42 1.04E+04 5.78E-01 43 1.34E+04 5.89E-01 44 1.72E+04 6.03E-01 45 2.20E+04 6.19E-01 46 2.83E+04 6.36E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	40	8.11E+03	5.67E-01
43 1.34E+04 5.89E-01 44 1.72E+04 6.03E-01 45 2.20E+04 6.19E-01 46 2.83E+04 6.36E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	42	1.04E+04	5.78E-01
44 1.72E+04 6.03E-01 45 2.20E+04 6.19E-01 46 2.83E+04 6.36E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	43	1.34E+04	5.89E-01
45 2.20E+04 6.19E-01 46 2.83E+04 6.36E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	44	1.72F+04	6.03E-01
46 2.83E+04 6.36E-01 47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	45	2.20E+04	6.19E-01
47 3.63E+04 6.56E-01 48 4.67E+04 6.79E-01	46	2.83E+04	6.36E-01
48 4.67E+04 6.79E 01	47	3.63E+04	6.56E-01
	48	4.67E+04	6.79E 01

2

Table 11. Response for 7.86 Inch Diameter Bonner Sphere*

* Radial thickness of polyethylene = 2.900 inches; Density of polyethylene = 0.951 gram/cc; Estimated accuracy is + 10% for groups 33-100 and + 20% for groups 1-32.

	F 005 104	7 0(5 01
49	5.995+04	7.002-01
50	7.695+04	· 7.40E-01
51	9.88E+04	/./9E-01
52	1.1/E+U5	8.09E-01
53	1.29E+05	8.29E-01
54	1.43E+05	8.50E-01
55	1.58E+05	8.73E-01
56	1.74E+05	8.96E-01
57	1.93E+05	9.22E-01
58	2.13E+05	9.48E-01
59	2.35E+05	9.75E-01
60	2.60E+05	1.00E-00
61	2.88E+05	1.04E-00
62	3.18E+05	1.06E-00
63	3.51E +05	1.09E-00
64	3.88E+05	1.13E-00
65	4.29E+05	1.16E-00
66	4.74E+05	1.19E-00
67	5.24E+05	1.22E-00
68	5.79E+05	1.25E-00
69	6.40E+05	1.28E-00
70	7.07E+05	1.31E-00
71	7.82E+05	1.34E-00
72	8.64E+05	1.36E-00
73	9.54E+05	1.38E-00
74	1.06E+06	1.39E-00
75	1.17E+06	1.40E-00
76	1,29E+06	1.41E-00
77	1,42E+06	1.41E-00
78	1 57E+06	1 41E-00
79	1.74E+06	1.40E-00
80	1.92E+06	1.38E-00
81	2 13E+06	1 34F-00
82	2 35E+06	1 33E-00
83	2.60E+06	1.35E 00
84	2.87E+06	1.25E 00
85	3 17E+06	1 19F-00
86	3 50E+06	1.19£ 00
87	3.87E+06	1.10E 00
88	4 28E+06	1.06E-00
80	4.23E+06	1.000-00
09	5 23E+06	
90	5.235+00	9.096-01
91	5.700	9.202-01
92	7 065+06	8.0/E-UI 9.14E 01
95	7 905+06	0.14E-UL 7 FOR A1
94 05	/.OUETUO 0 67E±04	7.59E-UI
95	8.04 <u>0</u> +00	0,996-01 6 755 01
90	9.525+00	0.35E-UL
97	1.055+07	5./4E-01
98	1.105+0/	5.05E-01
99	1.29E+07	4.55E-01
100	1.42E+07	4.09E-01

Table 11. Contd.

ţ

ł

Group	Midpoint Energy (eV)	Response (Counts/Incident Neut/cm ²)
1	Thermal	Negligible
2	4.73E-01	2.43E-02
3	6.07E-01	4.36E-02
4	7 79E-01	5.76E-02
5	1.00E - 00	6.85E-02
6	1.29E-00	7.66E-02
7	1.65E-00	8,28E-02
8	2.12E-00	8-81E-02
9	2.72E-00	9.29E-02
10	3.49E-00	9,72E-02
11	4.49E-00	1.01E-01
12	5.76E-00	1.05E-01
13	7.40E-00	1.U9E-U1
14	9.50E-00	1.13E-01
15	1.22E+01	1.16E-01
16	1.57E+01	1.20E-01
17	2.01E+01	1.23E-01
18	2.58E+01	1.20E-01
19	3.31E+01	1.30E-01
20	4.26E+01	1.34E-01
21	5.46E+01	1.37E-01
22	7.02E+01	1.37E-01
23	9.01E+01	1.28E-01
24	1.16E+02	1.39E-01
25	1.49E+02	1.59E-01
26	1.91E+02	1.53E-01
27	2.45E+02	1.56E-01
28	3.14E+02	1.60E-01
29	1.01E+02	1.64E-01
30	5.18E+02	1.65E-01
31	6.66E+02	1.71E-01
32	8.55E+02	1.75E-01
33	1.10E+03	1.79E-01
34	1.41E+03	1.83E-01
35	1.81E+03	1.868-01
36	2.32E+03	1.901-01
37	2.981103	1.94E-01
38	3.83E+03	1.98E-01
39	4.92E+03	2.02E-01
40	6.32E+U3	2.0/E-01
41	8.IIE+U3	2.10F 01
42 47	1.04E704	
45 44	1.345TU4	2.238-01
44 4		2.30E-01
45 16	2.20ETU4 2.97E±04	2.30E-UL 2.47E 01
40 47	2.03ETU4 7.67E±04	2.4/E-UI 2.E7E 01
4/ 10	3.03ETU4 4.67E±04	2.5/E-UL 2.60E-01
4ð	4.0/8704	2.096-01

Table 12. Response for 9.86 Inch Diameter Bonner Sphere*

* Radial thickness of polyethylene = 3.890 inches; Density of polyethylene = 0.951 gram/cc; Estimated accuracy is ± 10% for groups 33-100 and ± 25% for groups 1-32.

ŧ

Table 12. Contd.

49	5 99F+04	2 84F-01
50	7 69E+04	3 03E-01
51	9 88F+04	3 26E-01
52	1.17E+05	3.202-01
52	1.1/1+05	J.44E-U1 7 575 01
55	1.295+05	3.5/E-UI 7.71E 01
54	1.436+05	3./IE-UI
55	1.586+05	3.86E-01
50	1.746+05	4.02E-01
57	1.936+05	4.20E-01
58	2.13E+05	4.39E-01
59	2.35E+05	4.61E-01
60	2.60E+05	4.84E-01
61	2.88E+05	5.10E-01
62	3.18E+05	5.35E-01
63	3.51E+05	5.63E-01
64	3.88E+05	5.97E-01
65	4.29E+05	6.29E-01
66	4.74E+05	6.65E-01
67	5.24E+05	7.03E-01
68	5.79E+05	7.42E-01
69	6.40E+05	7.82E-01
70	7.07E+05	8.25E-01
71	7.82E+05	8.68E-01
72	8,64E+05	9.12E-01
73	9.54E+05	9.56E-01
74	1.06E+06	9 985-01
75	1 17F+06	1 04E-00
76	1 29F+06	1.04E.00
77	1 425+06	1.000-00
78	1 576+06	1.12L-00 1.15E-00
70	1.37E+06	1.155-00
80	1.02E+06	1.100-00
01	2 175+06	1.20E-00
01	2.130+00	1.20E-00
02	2.3500	1.22E-00
0.0	2.000-00	1.22E-00
84	2.8/ETU0	1.16E-00
85	3.1/E+U0	1.19E-00
80	3.50E+06	1.10E-00
8/	3.8/E+06	1.11E-00
88	4.28E+06	1.14E-00
89	4.73E+06	1.12E-00
90	5.23E+06	1.10E-00
91	5.78E+06	1.06E-00
92	6.38E+06	1.03E-00
93	7.06E+06	9.81E-01
94	7.80E+06	9.13E-01
95	8.62E+06	8.74E=01
96	9.52E+06	8.05E-01
97	1.05E+07	7.40E-01
98	1.16E+07	6.61E-01
99	1.29E+07	6.05E-01
100	1.42E+07	5.52E-01

,		
Group	Midpoint Energy (eV)	Response (Counts/Incident Neut/cm ²)
1	Thermal	Negligible
2	4.73E-01	8.12E-03
3	6.07E-01	1.46E-02
4	7.79E-01	1.93E-02
5	1.00E-00	2.30E-02
6	1.29E-00	2.57E-02
7	1.65E-00	2.78E-02
8	2.12E-00	2.96E-02
9	2.72E-00	3.12E-02
10	3.49E-00	3.26E+02
11	4.498-00	3.40E 02
12	5.76E-00	3.53E-U2
15	7.40E-00	5.00E-02
14	9.50E-00	3./9E-02 7.01E-02
15		5.91E-02 4.03E-02
10	2 015+01	4.03E-02 4.15E-02
10	2.012.01	4.151-02 A 0/E-02
10	3 31E+01	4.04E 02 4.37E-02
20	5.26E+01	4.50E-02
21	5.46E+01	4.62E-02
22	7.02E+01	4.60E-02
23	9.01E+01	4.30E-02
24	1.16E+02	4.51E-02
25	1.49E+02	5.01E-02
26	1.91E+02	5.17E-02
27	2.45E+02	5.25E-02
28	3.14E+02	5.40E-02
29	4.04E+02	5.54E 02
30	5.18E+02	5.57E-02
31	6.66E+02	5.79E-02
32	8.55E+02	5.93E-02
33	1.10E+03	6.U6E-U2
54	1.41E+03	0.20E-02
25	2 225+02	0.33E-02 6.46E-02
30	2.32E-03	6.60E-02
38	3 836+03	6.75E-02
30	4.92E+03	6.91E-02
40	6.32E+03	7.09E-02
41	8.11E+03	7.28E-02
42	1.04E+04	7.47E-02
43	1.34E+04	7.68E-02
44	1.72E+04	7.94E-02
45	2,20E+04	8.24E-02
46	2.83E+04	8.57E-02
47	3.63E+04	8.97E-02
48	1.67E+04	9.45 E-02

Table 13. Response for 11.84 Inch Diameter Bonner Sphere*

2

* Radial thickness of polyethylene = 3.900 inches; Density of polyethylene = 0.951 gram/cc; Estimated accuracy is ± 10% for groups 33-100 and ± 30% for groups 1-32.

Table 13. Contd.

	5 005 04	
49	5.99E+04	1.00E-01
50	7.69E+04	1.08E-01
51	9.88E+04	1.17E-01
52	1.17E+05	1.25E-01
53	1.29E+05	1.31E-01
54 [.]	1.43E+05	1.37E-01
55	1.58E+05	1.44E-01
56	1.74E+05	1.51E-01
57	1.93E+05	1.60E-01
58	2.13E+05	1.69E-01
59	2.35E+05	1.80E-01
60	2.60E+05	1.92E-01
61	2.88E+05	2.06E-01
62	3 18E+05	2,20E-01
63	3 51F+05	2 37E-01
64	7 995+05	$2.57E_{-01}$
04 4 F	4 205.05	2.371-01 2.77E-01
05	4.295+05	
00	4.748+05	3.01E-01 7.27E 01
67	5.24E+05	5.2/E-UI
68	5.79E+05	3.55E-U1
69	6.40E+05	3.8/E-01
70	7.07E+05	4.21E-01
71	7.82E+05	4.57E-01
72	8.64 E+ 05	4.97E-01
73	9.54E+05	5.39E-01
74	1.06E+06	5.83E-01
75	1.17E+06	6.29E-01
76	1.29E+06	6.76E-01
77	1.42E+06	7.24E-01
78	1.57E+06	7.71E-01
79	1.74E+06	8.18E-01
80	1 92E+06	8.61E-01
81	2 13E+06	8 81F-01
01 02	2.155,000	9 33E-01
02	2.550.00	0 525.01
83	2.000+00	9.52E-01
84		9.23E-01
85	5.1/2+00	9.77E-01
86	3.50E+06	9.1/E-UI
87	3.87E+06	9.51E-01
88	4.28E+06	1.01E-00
89	4.73E+06	1.03E-00
90	5.23E+06	1.03E-00
91	5.78E+06	1.02E-00
92	6.38E+06	9.94E-01
93	7.06E+06	9.85E-01
94	7.80E+06	9.13E-01
95	8.62E+06	9.11E-01
96	9.52E+06	8.49E-01
97	1,05E+07	7.96E-01
08	1,16F+07	7.24F-01
00	1 20E+07	6 74F-01
100	1 425+07	6 258-01
100	1.445'0/	0.231-01

_	Energy	Ē	Response Counts/	Energy	Ē	Response	Energy	E	Response
	Group	eV	Neut/cm ²)	Group	eV	Neut/cm ²)	Group	eV	Neut/cm ²)
	1-27	<2.449+2	negligible						
	28	3.145+2	3.506-8	53	1.292+5	5.231-2	78	1.574+6	4.068-2
	29	4.038+2	2.381-7	54	1.428+5	5.025-2	79	1.740+6	3.525-2
	30	5.185+2	1.248-6	55	1.578+5	5.012-2	80	1.923+6	3.189-2
	31	6.657+2	5.259-6	56	1.744+5	5.154-2	81	2.125+6	2.968-2
	32	8.548+2	1.845-5	57	1.928+5	5.135-2	82	2.349+6	2.762-2
	33	1.098+3	5.529-5	58	2.131+5	5.073-2	83	2.596+6	2.471-2
	34	1.409+3	1.443-4	59	2.355+5	5.086-2	84	2.869+6	2.268-2
	35	1.810+3	3.347-4	60	2.602+5	5.125-2	85	5.170+6	2.127-2
	36	2.324+3	7.002-4	61	2.876+5	5.175-2	86	3.504+6	1.944-2
	37	2,984+3	1.340-3	62	3.179+5	5.372-2	87	3.87 <u>2</u> +6	1.735-2
	38	3.831+3	2.368-3	63	3.513+5	5.493-2	88	4.280+6	1.522-2
	39	4.919+3	3.888-3	64	3.882+5	5.501-2	89	4.730+6	1.394-2
	40	6.316+3	5.883-3	65	4.291+5	5.341-2	90	5.227+6	1.300-2
	41	8.110+3	8.866-3	66	4.742+5	5.426-2	91	5.777+6	1.201-2
	42	1.041+4	1.236-2	67	5.241+5	5.500-2	92	6.384+6	1.129-2
	43	1.337+4	1.648-2	68	5.792+5	5.641-2	93	7.056+6	1.021-2
	44	1.717+4	2.119-2	69	6.401+5	5.801-2	94	7,798+6	9.611-3
	45	2.205+4	2.629-2	70	7.074+5	5.953-2	95	8.618+6	8.794-3
	46	2.831+4	3.132-2	71	7.818+5	6.025-2	96	9.524+6	8.164-3
	47	3.635+4	3.277-2	72	8.640:5	6.079-2	97	1.05317	7.881 3
	48	4.667+4	4.108-2	73	9.544+5	6.006-2	98	1.163+7	7.188-3
	49	5,993+4	4.566-2	74	1.055+6	5.759-2	99	1.286+7	6,831-3
	50	7.695+4	4.768-2	75	1.166+6	5.429-2	100	1.421+7	6.908-3
	51	9.880+4	4.909-2	76	1.289+6	5.013-2			
	52	1.169+5	5.124-2	77	1.425+6	4.604-2			

Table 14. Response Function for the Modified 3-in. Bonner Sphere*

*Radial thickness of polyethylene = 0.47 inches; radial thickness of ${}^{10}B$ = 2.91 inches. Estimated accuracy is <u>+</u> 10% for groups 1-100.

.

		Detector Lo	ocations (in.)*	
Nominal Sodium Thickness (in.)	Tank Numbers	Centerline Distance Behind Slab	Radial Distance From Centerline	Detector Type
30	1	24 24 166	0 24 0	Bonner Balls Bonner Balls Bonner Balls
60	3	24	0	Bonner Balls, Benjamin Spectrometer
		.24	30	Bonner Balls
		359	0	Bonner Balls, Benjamin Spectrometer, NE-213 Spectrometer
		359	96	Benjamin Spectrometer, NE-213 Spectrometer
120	2+3	6→72	0	Bonner Balls
		2	0→84	Cadmium and 3-in. Bonner Balls
		2 [†]	0→84	Cadmium and 3-in. Bonner Balls
		24	0	Benjamin Spectrometer, NE-213 Spectrometer
150	1+2+3	24	0	Bonner Balls Benjamin Spectrometer
180 1	+2+3+4	6→72	0	Bonner Balls
		∿24	0→84 (hor.)	3-in. and 12-in. Bonner Balls
		24	0→90 (vert.) 3-in. Bonner Ball

Table 15. Experimental Configurations

*Distance measured from the geometric center of the detector.

⁺These radial traverses were made with a 5-ft sodium tank immediately behind the detectors.

Bonner Ball	Cd	3-in.	4-in.	5-in.	6-in.	8-in.	10-in.	12-in.
24 in. behind, on CL	58.5	840	2068	2678	2821	2163	1379	878
24 in. behind, 24 in. off CL	41.0	611	1428	1824	1801	1306	754	422
166 in. behind, on CL	4.07	55.7	129	174	187	159	113	77.5

Table 16. Bonner Ball Counting Rates Behind 2.5 ft of Sodium (cts/min/watt)

Table 17. Bonner Ball Counting Rates Behind 5 ft of Sodium (cts/min/watt)

Bonner Ball	Çd	3-in.	4-in.	5-in.	б-in.	8-in.	10-in.	12-in.	Mod 3-in.
24 in. behind, on CL	21.4	295	590	639	551	318	149	71.8	6.94
24 in. behind, 30 in. off CL	17.2	228	435	462	389	224	102	46.6	
359 in. behind, on CL	0.372	4.89	9.05	9.32	8.02	4.88	2.37	1.24	0.103

Bonner Ball	Cd	3-in.	4-in.	5-in.	6-in.	8-in.	10-in.	12-in.	Mod 3-in.
6 in. behind, on CL	3.08	27.5	39.9	35.4	26.7	12.1	4.90	1.78	
12 in. behind, on CL	2.66	23.5	34.5	30.5	22.8	102	4.17	1.51	 ,
24 in. behind, on CL	1.96	17.3	25.3	22.3	16.7	7.61	3.01	1.09	0.0308
36 in. behind, on CL	1.50	13.0	18.9	16.8	12.6	5.67	2.26	0.818	
48 in. behind, on CL	1.14	10.1	14.7	12.8	9.52	4.31	1.71	0.616	
60 in. behind, on CL	0.888	7.78	11.3	9.85	7.41	3.32	1.33	0.471	
72.4 in. behind, on CL	0.707	6.07	8.82	7.74	5.78	2.61	1.03	0.368	0.0103

Table 18. Bonner Ball Counting Rates Behind 10 ft of Sodium (cts/min/watt)

Table 19. Cadmium Ball Counting Rates 2 in. Behind 10 ft of Sodium (cts/min/watt)

	Air Backing the Detector	Sodium Backing the Detector
on CL	3.55	9.88
12 in. off CL	3.36	9.54
24 in. off CL	2.95	8.57
36 in. off CL	2.39	6.97
48 in. off CL	1.69	5.12
60 in. off CL	0.909	3.13

[†]These measurements were made with one of the 5 ft thick sodium tanks immediately behind the detector, so that the geometry approximated an "in situ" measurement. The effects of reflection from the sodium tank are thus seen to enhance the counting rates by about a factor of three.

	Air Backing the Detector	Sodium Backing [†] the Detector
on CL	30.6	80.2
12 in. off CL	28.8	77.3
24 in. off CL	25.3	68.8
36 in. off CL	20.3	56.2
48 in. off CL	14.0	40.1
60 in. off CL	7,34	23.9

Table 20. 3-in. Bonner Ball Counting Rates 2 in. Behind 10 ft of Sodium (counts/min/watt)

[†]See note following Table 19.

Table 21. Bonner Ball Counting Rates Behind 12.5 ft of Sodium (cts/min/watt)

Bonner Ball	Cd	3-in.	4-in.	5-in.	6-in.	8-in.	10-in.	12-in.	Mod 3-in.
24 in. behind, on CL	0.349	2.51	3.40	2.91	2.11	0.950	0.359	0.141	0.00177

Table 22. Bonner Ball Counting Rates Behind 15 ft of Sodium (cts/min/watt)

Bonno	r Ball	Cđ	3-in.	4-in.	5-in.	6-in.	8-in.	10-in.	12-in.	Mod 3-in.
6 in. b on CL	ehind,	0.0920	0.585	0.773	0.626	0.453	0.1 99	0.0771	0.0304	
12 in. on CL	behind,	0.0765	0,507	0.661	0.543	0.392	0.174	0.0664	0.0255	• = -
24 in. on CL	behind,	0.0570	0.394	0.496	0.405	0.289	0.127	0.0497	0.0189	0.000121*
48 in. on CL	behind,	0.0330	0.220	0.287	0.232	0.166	0.0745	0.0286	0.0108	
72 in. on CL	behind,	0.0202	0.135	0.176	0.143	0.103	0.0466	0.0176	0.0070	

*23 in. behind

Horizont	al Traverse	·	Vertical	Traverse	•
Distance from CL (in.)	Counts/min/watt	Distance from CL (in.)	Counts/min/watt	Distance from CL (in.)	Counts/min/watt
81 South	0.0714	65 Down	0.161	17 Up	0.102
72	0.113	64 3/4	0.165	23	0.378
60	0.171	64 1/2	0.170	29	0.353
48	0.235	64 1/4	0.168	35	0.327
36	0.306	64	0.165	41	0.301
24	0.361	63 1/2	0.155	47	0.272
12	0.399	63	0.153	53	0.241
4	0.414	61	0.159	55	0.227
0	0.419	55	0.189	59	0.208
6 North	0.417	49	0.222	63	0.194
12	0.407	43	0.258	65	0.194
24	0.366	37	0.293	66	0.205
36	0.309	31	0.323	66 1/2	0.220
48	0.235	25	0.350	67	0.232
60	0.173	19	0.373	67 1/2	0.231
72	0.113	13	0.395	68	0.227
76	0.0926	7	0.411	69	0.199
		1	0.424	71	0.159
		5 Up	0.424	77	0.118
				83	0.00912
		11	0.416	89	0.00643

2

Table 23. 3-in. Bonner Ball Counting Rates 24 in. Behind 15 ft of Sodium

.

.

•

Horizontal Traverse									
Distance	from CL (in.)	Counts/min/watt							
84	South	4.04×10^{-3}							
72		5.75 x 10^{-3}							
60		8.69×10^{-3}							
18		1.36 x 10^{-2}							
36		1.69×10^{-2}							
. 24		1.82×10^{-2}							
12		2.05×10^{-2}							
0		2.16×10^{-2}							
12	North	2.34×10^{-2}							
24		1.87×10^{-2}							
36		1.57×10^{-2}							
48		1.24×10^{-2}							
60		8.61 x 10^{-3}							
72		5.64 x 10^{-3}							
84		3.87×10^{-3}							

Table 24. 12-in. Bonner Ball Counting Rates 23 in. Behind 15 ft Sodium

Counter	Upper Limit Energy Interval (keV)	2 ^{Flux} (Neuts/cm ² /MeV/Min/Watt	Standard Error %
Meas	surements on Cente	rline 24 in. Behind Slab	
10 Atmosphere	1350.0	12.3	6.7
- 1	1186.1	11.8	7.4
	1039.5	9.9	10.2
: •	918.7	12.6	7.9
	806.5	9.8	11.0
	711.7	13.7	7.8
	625.4	26.9	4.1
	547.8	·	
3 Atmosphere	700.0	16.9	9.4
	613.9	25.8	7.0
	541.4	52.9	3.4
	473.5	52.8	4.3
	419.1	59.5	3.9
	369.3	85.0	2.9
•	323.9	131	2.0
	283.2	138	2.4
	251.5	116	2.7
· .	219.7		
1 Atmosphere	300.0	. 148	3.6
4	263.5	134	4.7
	232.5	119	5.2
	203.3	157	4.7
	179.6	181	4.2
	157.8	240	3.6
	139.5	330	2.8
	123.1	360	2.4
,	106.7	355	3.0
	93.9	.446	2.7
	83.0	645	2.1
	73.9		

Table 25. Benjamin Counter Spectrum Behind 5 ft of Sodium

Table 25 contd.

	Measur	rements on Centerlin	ne 359 in. Behind Slab	
10 Atm	nosphere	$1350.0 \\ 1180.7 \\ 1038.1 \\ 913.4 \\ 806.4 \\ 708.4 \\ 628.2 \\ 548.0 \\ 10000000000000000000000000000000000$	0.200 0.180 0.201 0.176 0.195 0.200 0.402	11.5 14.3 13.5 16.7 14.7 16.1 7.1
3 Atm	nosphere	700.0 613.9 541.4 473.5 419.1 369.3 323.9 283.2 251.5 219.7	0.257 0.278 0.857 0.617 0.742 1.21 2.02 1.99 1.66	22.8 23.6 7.8 13.3 11.3 7.2 4.6 6.0 6.7
1 Atm	nosphere	300.0 263.3 232.1 204.6 178.9 158.7 138.5 122.0 107.3 94.5 83.5 72.5	2.32 2.21 1.58 1.88 2.56 3.47 4.68 5.36 4.86 5.67 9.19 	11.1 14.0 21.1 17.5 16.0 10.7 9.5 9.0 10.7 10.1 5.9

•

Table 25 contd.

Measure	ements 96 in.	off the Centerline 359 in.	
	F	Behind Slab	
10 Atmosphere	1350.0	0.182	10.6
	1186.1	0.141	14.2
	1039.5	0.175	15.5
	918./	0.1/5	15.0
	000.5 711 7	0.104	15.2
`	625 1	0.137	15.0
	547 8		
	517.0		
3 Atmosphere	700.0	0.214	26.5
L	413.9	0.282	22.7
	541.4	0.654	9.9
·.	473.5	0.528	15.2
• :	419.1	0.744	11.1
1	369.3	1.00	8.6
	323.9	1.76	5.3
	283.2	. 1.72	6.9
	251.5	1.49	7.4
	219.7	. 	
1 Atmosphere	300.0	2.08	13.3
	263.5	1.58	20.6
	232.5	1.43	22.5
	203.3	2.00	19.1
	179.6	2.08	18.5
	157.8	3.77	11.9
	139.5	4.27	11.2
	123.1	4.60	9.7
	100.7	5.09	10.9
	93.9	5.80	10.5
	83.U 73.0	8.02	8.3

•

	Counter	Upper Limit Energy Interval (keV)	2 ^{Flux} (Neuts/cm ² /MeV/Min/Watt)	Standard Error %
10	Atmosphere	e 1500.0 1313.1 1154.2 1023.4 892.5 789.7	$2.88 \times 10^{-2} \\ 2.77 \times 10^{-2} \\ 2.50 \times 10^{-2} \\ 3.46 \times 10^{-2} \\ 2.87 \times 10^{-2} \\ 3.10 \times 10^{-2} \\ 3.10$	13.2 15.6 20.0 12.9 18.7 17.2
		696.3 612.1 537.4	5.01x10 ⁻² 9.17x10 ⁻²	10.8 6.3
3	Atmosphere	e 541.4 473.5 419.1 369.3 323.9 283.2 251.5 219.7	0.140 0.143 0.160 0.261 0.468 0.436 0.385	10.6 13.1 12.2 8.0 4.9 6.9 7.3
1	Atmosphere	e 300.0 263.1 231.7 204.0 180.0 157.8 139.4 122.8 108.1 95.1 84.0 72.9	0.45 0.490 0.275 0.489 0.609 0.921 1.33 1.38 1.29 1.86 3.00	12.7 14.4 27.6 17.0 13.9 10.8 8.1 8.7 10.1 7.9 4.7

Table 26.	Benjamin Counter Spectrum on the Centerline 24 in	۱.
	Behind 10 ft of Sodium	

• • •

	Counter	Upper Limit Energy Interval (keV)	2 ^{Flux} (Neuts/cm ² /MeV/Min/Watt)	Standard Error %
•	10 Atmosphere	1500.0 1313.1 1154.2 1023.4	1.97×10^{-3} 1.69 \times 10^{-3} 1.31 \times 10^{-3} 8.92 \times 10^{-4} 7	16.0 22.1 33.2 42.8
•		392.5 789.7 696.3 612.1 537.4	1.11x10 ⁻³ 1.43x10 ⁻³ 2.00x10 ⁻³ 4.28x10	40.6 31.0 21.5 11.1
•	3 Atmosphere	538.6 477.6 416.5 368.5 324.9 285.7 250.8 220.2 194.1	5.16x10 ⁻³ 6.98x10 ⁻³ 6.65x10 ⁻³ 1.13x10 ⁻² 1.91x10 ⁻² 2.35x10 ⁻² 1.78x10 ⁻² 1.97x10 ⁻²	28.3 19.5 25.9 16.0 10.4 9.5 13.8 13.8
	1 Atmosphere	$300.0 \\ 263.7 \\ 231.1 \\ 203.9 \\ 178.5 \\ 158.6 \\ 138.7 \\ 122.4 \\ 107.9 \\ 95.2 \\ 82.5 $	$1.93x10^{-2}$ $2.45x10^{-2}$ $1.92x10^{-2}$ $2.15x10^{-2}$ $2.42x10^{-2}$ $3.92x10^{-2}$ $6.04x10^{-2}$ $8.24x10^{-2}$ $8.24x10^{-2}$ $7.18x10^{-1}$	26.3 22.9 34.8 31.0 34.3 19.6 15.5 12.6 17.9 14.9 9.6
		82.5 73.4	1.56×10^{-1}	9.6

Table 27. Benjamin Counter Spectrum on the Centerline 24 in. Behind 12.5 ft of Sodium

-37

Table 28.	NE-213 Spectrum on the Centerline 359 in. Behind	
	5 ft of Sodium	

Energy (MeV)	Flux (Neuts/Cm ² / Upper Limit	MeV/Min/Watt) Lower Limit	Energy (MeV)	Flux (Neuts/Cm Upper Limit	² /MeV/Min/Watt) Lower Limit
1.0	2.35x10 ⁻¹	1.95x10 ⁻¹	3.Û	1.32×10^{-1}	1.22×10^{-1}
1.1	2.38x10 ⁻¹	2.05×10^{-1}	3.2	$1.01 \mathrm{x} 10^{-1}$	9.0×10^{-2}
1.2	2.30x10 ⁻¹	2.08×10^{-1}	3.4	7.7x10 ⁻²	6.4×10^{-2}
1.3	2.20×10^{-1}	1.95×10^{-1}	3.6	6.4×10^{-2}	5.2×10^{-2}
1.4	2.25x10 ⁻¹	$2.00 \mathrm{x10}^{-1}$	3.8	7.1×10^{-2}	5.7×10^{-2}
1.5	2.25×10^{-1}	2.05×10^{-1}	4.0	8.4×10^{-2}	7.3×10^{-2}
1.6	2.00×10^{-1}	$1.78 \mathrm{x10}^{-1}$	4.2	9.2×10^{-2}	8.0×10^{-2}
1.7	1.73×10^{-1}	1.53×10^{-1}	4.4	9.0×10^{-2}	7.8×10^{-2}
1.8	1.70×10^{-1}	1.40×10^{-1}	4.6	8.5×10^{-2}	7.4×10^{-2}
1.9	1.50×10^{-1}	1.35×10^{-1}	4.8	7.2×10^{-2}	6.2×10^{-2}
2.0	1.24×10^{-1}	1.10×10^{-1}	5.0	6.5×10^{-2}	5.5×10^{-2}
2.1	1.02×10^{-1}	8.7×10^{-2}	5.2	6.2×10^{-2}	5.2×10^{-2}
2.2	8.1×10^{-2}	6.5×10^{-2}	5.4	5.6×10^{-2}	4.7×10^{-2}
2.3	8.3×10^{-2}	6.8×10^{-2}	5.6	5.1×10^{-2}	4.1×10^{-2}
2.4	9.2×10^{-2}	7.8×10^{-2}	5.8	5.3×10^{-2}	4.4×10^{-2}
2.5	9.6×10^{-2}	8.4×10^{-2}	б.О	5.6x10 ⁻⁷	4.7×10^{-2}
2.6	1.03×10^{-1}	9.1×10^{-2}	6.2	5.8×10^{-2}	4.9×10^{-2}
2.7	1.19×10^{-1}	1.06×10^{-1}	6.4	5.4×10^{-2}	4.5×10^{-2}
2.8	1.33×10^{-1}	$1.20 \mathrm{x10}^{-1}$	6.6	5.2×10^{-2}	4.4×10^{-2}
2.9	1.37×10^{-1}	1.27×10^{-1}	6.8	4.9×10^{-2}	4.1×10^{-2}

Table 28. Contd.

7.0	4.1x10 ⁻²	3.3×10^{-2}	9.2	1.9×10^{-2}	1.47×10^{-2}
7.2	3.6×10^{-2}	2.9x10 ⁻²	9.4	1.44×10^{-2}	1.08×10^{-2}
7.4	3.7×10^{-2}	3.0×10^{-2}	9.6	1.22×10^{-2}	9.9×10^{-3}
7.5	3.5×10^{-2}	2.9×10^{-2}	9.8	1.17×10^{-2}	9.1×10^{-3}
7.8	3.0×10^{-2}	2.4×10^{-2}	10.0	1.04×10^{-2}	8.0×10^{-3}
8.0	2.55×10^{-2}	1.95x10 ⁻²	10.2	9.0×10^{-3}	5.9×10^{-3}
8.2	2.2×10^{-2}	1.65×10^{-2}	10.4	7.7×10^{-3}	4.7×10^{-3}
8.4	2.15×10^{-2}	1.65×10^{-2}	10.6	6.4×10^{-3}	3.4×10^{-3}
8.6	2.25×10^{-2}	1.8×10^{-2}	10.8	$5.7 \mathrm{x10}^{-3}$	2.85×10^{-3}
8.8	2.4×10^{-2}	1.95×10^{-2}	11.0	5.8×10^{-3}	2.9×10^{-3}
9.0	2.3×10^{-2}	1.9×10^{-2}	11.2	5.4×10^{-3}	2.7×10^{-3}

Energy (MeV)	Flux (Neuts/Cm ² Upper Limit	/MeV/Min/Watt) Lower Limit	Energy (MeV)	Flux (Neuts/C Upper Limit	m ² /MeV/Min/Watt) Lower Limit
1.0	1.95x10 ⁻¹	1.65x10 ⁻¹	5.2	2.15x10 ⁻²	1.85x10 ⁻²
1.1	1.85×10^{-1}	1.6×10^{-1}	5.4	1.9×10^{-2}	1.5×10^{-2}
1.2	2.0×10^{-1}	1.8×10^{-1}	5.6	1.7×10^{-2}	1.4×10^{-2}
1.3	2.0×10^{-1}	1.85×10^{-1}	5.8	1.75×10^{-2}	1.4×10^{-2}
1.4	1.8x10 ⁻¹	1.7x10 ⁻¹	6.0	1.65x10 ⁻²	1.4×10^{-2}
1.5	1.65x10 ¹	1.4x10 ¹	6.2	1.6×10^{-2}	1.25×10^{-2}
1.6	1.4×10^{-1}	1.25x10 ⁻¹	6.4	1.55×10^{-2}	1.2×10^{-2}
1.7	1.35×10^{-1}	1.2×10^{-1}	6.6	1.4×10^{-2}	1.08×10^{-2}
1.8	1.3×10^{-1}	1.15×10^{-1}	6.8	1.2×10^{-2}	9.5×10^{-3}
1.9	1.07x10 ⁻¹	9.9×10^{-2}	7.0	9.5×10^{-3}	7.8×10^{-3}
2.0	9.2×10^{-2}	8.4×10^{-2}	7.2	8.8×10^{-3}	6.4×10^{-3}
2.1	8.1×10^{-2}	7.4×10^{-2}	7.4	8.1×10^{-3}	5.9×10^{-3}
2.2	7.0×10^{-2}	6.3×10^{-2}	7.6	8.0×10^{-3}	5.9×10^{-3}
2.3	6.6x10 ⁻²	5.9×10^{-2}	7.8	7.9×10^{-3}	5.8×10^{-3}
2.4	6.7×10^{-2}	6.0×10^{-2}	8.0	7.5×10^{-3}	5.5×10^{-3}
2.5	6.9x10 ⁻²	6.2×10^{-2}	8.2	7.0×10^{-3}	5.1×10^{-3}
2.6	6.9x10 ⁻²	6.3×10^{-2}	8.4	6.7×10^{-3}	4.9×10^{-3}
2.7	6.6x10 ⁻²	6.0×10^{-2}	8.6	6.2×10^{-3}	4.6×10^{-3}
2.8	6.2×10^{-2}	5.7×10^{-2}	8.8	5.8×10^{-3}	4.0×10^{-3}
2.9	5.9×10^{-2}	5.4×10^{-2}	9.0	5.1×10^{-3}	3.8×10^{-3}
3.0	5.6x10 ⁻²	5.2×10^{-2}	9.2	4.2×10^{-3}	2.8×10^{-3}
3.2	4.9×10^{-2}	4.4×10^{-2}	9.4	2.9×10^{-3}	1.35×10^{-3}
3.4	3.7×10^{-2}	3.2×10^{-2}	9.6	2.3×10^{-3}	6.7×10^{-4}
3.6	3.6×10^{-2}	3.1×10^{-2}	9.8	2.1×10^{-3}	8.5×10^{-4}
3.8	3.8×10^{-2}	3.2×10^{-2}	10.0	2.5×10^{-3}	1.1×10^{-3}
4.0	4.1×10^{-2}	3.6×10^{-2}	10.2	2.4×10^{-3}	1.07×10^{-3}
4.2	4.0×10^{-2}	3.5×10^{-2}	10.4	1.95×10^{-3}	7.8×10^{-4}
4.4	3.4×10^{-2}	2.9×10^{-2}	10.6	1.75×10^{-3}	7.0×10^{-4}
4.6	2.7×10^{-2}	2.3×10^{-2}	10.8	1.85×10^{-3}	9.0×10^{-4}
4.8	2.3×10^{-2}	1.95×10^{-2}	11.0	2.1×10^{-3}	1.05×10^{-3}
5.0	2.25×10^{-2}	-1.9×10^{-2}	11.2	2.1×10^{-3}	1.0×10^{-3}

Table 29. NE-213 Spectrum 96 in. off the Centerline 359 in Behind 5 ft of Sodium

Energy (MeV)	Flux (Neuts/Cm ² / Upper Limit	'MeV/Min/Watt) Lower Limit	Energy (MeV)	Flux (Neuts/(Upper Limit	m ² /MeV/Min/Watt) Lower Limit
1.1	4.0x10 ⁻²	3.4×10^{-2}	4.8	4.3×10^{-3}	2.8×10^{-3}
1.2	4.2×10^{-2}	3.7×10^{-2}	5.0	4.7×10^{-3}	3.2×10^{-3}
1.3	4.55×10^{-2}	4.1×10^{-2}	5.2	3.65×10^{-3}	2.15×10^{-3}
1.4	4.4×10^{-2}	4.0×10^{-2}	5.4	2.15×10^{-3}	7.4×10^{-4}
1.5	3.7×10^{-2}	3.3×10^{-2}	5.6	2.35×10^{-3}	1.0×10^{-3}
1.6	3.2×10^{-2}	2.75×10^{-2}	5.8	3.4×10^{-3}	2.05×10^{-3}
1.7	2.8×10^{-2}	2.45×10^{-2}	6.0	3.3×10^{-3}	2.05×10^{-3}
1.8	2.45×10^{-2}	2.0×10^{-2}	6.2	2.0×10^{-3}	7.4×10^{-4}
1.9	2.3×10^{-2}	1.9×10^{-2}	6.4	1.0×10^{-3}	<1.0x10 ⁻⁴
2.0	2.05×10^{-2}	1.7×10^{-2}	6.6	1.65×10^{-3}	4.5×10^{-4}
2.1	1.55×10^{-2}	1.23×10^{-2}	6.8	2.5×10^{-3}	1.35×10^{-3}
2.2	1.28×10^{-2}	9.6×10^{-3}	7.0	2.5×10^{-3}	1.45×10^{-3}
2.3	1.37×10^{-2}	1.08×10^{-2}	7.2	2.3×10^{-3}	1.25×10^{-3}
2.4	1.44×10^{-2}	1.17×10^{-2}	7.4	2.3×10^{-3}	1.33×10^{-3}
2.5	1.42×10^{-2}	1.17×10^{-2}	7.6	1.87×10^{-3}	9.5×10^{-4}
2.6	1.27×10^{-2}	1.04×10^{-2}	7.8	1.04×10^{-3}	1.65×10^{-4}
2.7	1.04×10^{-2}	8.3×10^{-3}	8.0	6.25×10^{-4}	$<1.0 \times 10^{-4}$
2.8	9.4×10^{-3}	7.2×10^{-3}	8.2	7.2×10^{-4}	$<1.0 \times 10^{-4}$
2.9 .	1.0×10^{-2}	8.0×10^{-3}	8.4	9.8×10^{-4}	1.83×10^{-4}
3.0	1.1×10^{-2}	9.0×10^{-3}	8.6	1.25×10^{-3}	4.7×10^{-4}
3.2	9.2×10^{-3}	7.3×10^{-3}	8.8	1.31×10^{-3}	5.9×10^{-4}
3.4	7.4×10^{-3}	5.4×10^{-3}	9.0	1.22×10^{-3}	5.4×10^{-4}
3.6	6.0×10^{-3}	4.0×10^{-3}	9.2	1.13×10^{-3}	4.4×10^{-4}
3.8	7.2×10^{-3}	5.2×10^{-3}	9.4	1.07×10^{-3}	4.0×10^{-4}
4.0	7.0×10^{-3}	5.0×10^{-3}	9.6	9.6×10^{-4}	3.66×10^{-4}
4.2	4.8×10^{-3}	3.1×10^{-3}	9.8	8.25×10^{-4}	2.1×10^{-4}
4.4	4.3×10^{-3}	2.6×10^{-3}			
4.6	4.3×10^{-3}	2.75×10^{-3}			

Table 30. NE-213 Spectrum on the Centerline 24 in. Behind 10 ft of Sodium

.

Methods of Calculation

For sodium thicknesses of 2.5, 5, and 10 ft, the effect of multiple reflection between the sodium tanks and the materials that surround the collimator on the transmitted fluxes through the sodium below \sim 1 MeV should be considered in the calculation. Thus, for these smaller thicknesses, the collimator geometry should be included in the problem, particularly the concrete surrounding the collimator (see Fig. 1). The composition of the concrete surrounding the collimator and of the borated polyethylenc lining the collimator are shown in Table 31.

Table 31.	Composition of the Concrete and Polyethylene I	Liner
	Surrounding the Collimator	

	Conc	rete	Liner	
Element	Atomic Density (atoms/barn cm)	Partial Density (grams/cm ³)	Atomic Density (atoms/barn cm)	Partial Density (grams/cm ³)
Carbon Ilydrogen Natural Boron Oxygen Calcium Silicon	1.20×10^{-2} 5.80×10^{-3} 4.25×10^{-2} 1.32×10^{-2} 1.13×10^{-3}	0.238 0.010 1.128 0.875 0.049	3.85×10^{-2} 7.71×10^{-2} 3.1×10^{-3}	0.766 0.128 0.056

The approximate increase in the transmitted flux due to inclusion of this multiple reflection effect is shown in Table 32.

Table 32. Approximate Increase in the Total Fluxes Above Thermal Transmitted Thru the Sodium Due to Multiple Reflection Between the Collimator Materials and Sodium Tanks

Flux with Mult. Refl/Flux without		
1.20 1.15 1.10 1.05 1.03		

The importance of the concrete collar surrounding the sodium tanks can be gauged by noting that for the most critical case (i.e., behind 15 ft of sodium) only about 1/4 of the calculated neutrons that leak the rear face of the sodium and remain above thermal energies have suffered a collision in the collar. Thus, most of the non-thermalized neutrons that succeed in leaking 15 ft of sodium are those that do not migrate more than 5.5 ft from the centerline. However, for accurate calculations, the two-dimensional cylindrical geometry depicted in Fig. 1, including 18 in. of concrete collar, the aluminum, and at least a rudimentary collimator geometry, is recommended.

This experiment has been calculated by ORNL in two separate ways by discrete ordinates and by Monte Carlo. Either way is recommended, but there are problem areas in each method which should be mentioned.

In using Monte Carlo, biasing is necessary for sodium penetrations of 10 ft and greater. The ORNL calculations employed path length stretching and source energy biasing with the biasing parameters being obtained from adjoint ANISN calculations. The biasing parameters are in general functions of the sodium thickness to be penetrated and energy region of the transmitted spectrum to be calculated. The concrete collar can be replaced by a reflecting medium having the more important differential albedo properties of concrete, in order to save computing time. Since the effect of the concrete collar on the sodium transmitted fluxes in the vicinity of the centerline is relatively small, one is permitted to treat the collar in a somewhat cavalier fashion. If fluxes immediately behind the concrete collar are to be calculated, however, these calculations must use the cross-section data of the concrete as well. For Monte Carlo calculations, the source on the exit plane described in Table 3 multiplied by 1200 ${\rm cm}^2$ may be used, spatially sampled over the open end of the collimator by first choosing an incident direction randomly over the interval, $1 > \cos \theta > 0.99188$, $0 \le \varphi \le 2\pi$ from the virtual point source and then calculating the intersection of this ray with the exit plane of the collimator. Uncollided contributions to detectors located along the centerline should be calculated

43

analytically where they are important (i.e., for sodium thickness of 2.5 and 5 ft) using the entries directly from Table 3 as the ϕ_0 (E_g) and calculating

$$\phi_{\text{unc}}(Z, E_g) = \phi_0(E_g) \times \left(\frac{59.5}{59.5+Z}\right)^2 \times \exp \left(-\int_0^T \Sigma_T(E_g, Z') dZ'\right)$$

where the detector is located a distance of Z inches from the exit plane of the collimator, T is the thickness of the sodium tank in inches, and $\Sigma_{\rm T}$ (Z') is expressed in in.⁻¹. Calculated fluxes in the NE=213 region (0.5-12 MeV) should be smoothed with the resolution function appearing in Table 4 before comparing with experiment. Calculated fluxes in the Benjamin counter region (50 keV-1.5 MeV) should be smoothed with a constant 10% FWHM resolution before comparing with experiment. Calculated spectral fluxes at the center of detection of each Bonner ball (see Table 5) must be integrated over the response functions (Tables 6-14) before comparing with experiment. Calculations of the Bonner ball counting rates involve evaluation of the following expression:

Counts/min/watt(r) =
$$\sum_{g} \phi(E, r-\Delta)R(Eg)$$
,

where r is the distance of the geometric center of the ball from the center of the exit face of the tanks,

 Δ is the center of detection correction given in Table 5, r- Δ is the location of the detector for the calculated fluxes,

and R(E) is the response function of the Bonner ball for group E .

Note that the numbering of the groups in the response function tabulations in Tables 6-14 has been reversed, so that R(Eg) in the above equation appears as $R(E_{101-g})$ in the tables. Errors of the order of 1-10% are incurred if calculated fluxes at the geometric center of the Bonner ball are used and are such that the Bonner ball counting rates are under-estimated. The errors increase with increasing size of the Bonner ball and decreasing distance between the ball and the rear face of the tanks. For discrete ordinate calculations, a two-dimensional code such as DOT-III is recommended. Use of a first-collision source routine in the code is necessary when the uncollided contribution is important (2.5 and 5 ft of sodium), otherwise, a spurious and unknown uncollided contribution is calculated in the mockup of the point anisotropic source which is strongly dependent on the order of angular quadrature used. The source used by ORNL for the collimated source beam was represented as a point anisotropic source located 59.5 in. along the axis inside the collimator from the exit plane emitting neutrons isotropically over the polar angle

 $\tan^{-1} \frac{15.25}{2x59.5} = 7.30^{\circ}$, measured from the centerline, of total intensity $4\pi(59.5x2.54)^2 (2.702x10^5) = 7.76x10^{10}$ neutrons/min/watt, and of zero intensity for polar angles greater than 7.30°. The group source intensities were taken from the entries in Table 3 multipled by the factor 4π (59.5x2.54)² = 2.87x10⁵. The uncollided contribution was analytically calculated in a manner identical to that employed in the Monte Carlo calculation previously described. Since the detectors all lie beyond the sodium, an additional calculation was necessary to translate the discrete ordinate angular fluxes calculated in the sodium tank to total group fluxes at the detector locations by integrating over the collisions in the sodium tank with a last flight calculation to the detector. This calculation involved use of the routine FALSTF, and is simpler and more accurate than incorporating air around the sodium tanks and using the detector as a space point directly in the discrete ordinates calculation.

For either method of calculation, thermal group calculations may be omitted since the measurements reported herein involve zero sensitivity to thermal neutrons.

The recommended choice for either method of calculation for the group structure is 100 groups (GAM-II) expanded through P_3 in the angular distribution of scatter. Table 33 shows a comparison of ANISN calculations using various combinations of group structure and P_n expansion of the neutrons leaking a 5-meter radius sphere of sodium from a point fission source at the center.

Group				50-Group	50-Group	100-Group	100-Group
100	50	<u> </u>		P1	P ₃	P ₁	P ₃
1,2 3,4 5,6 7,8 9,10	1 2 3 4 5	$12.2-14.9 \\ 10.0-12.2 \\ 8.19-10.0 \\ 6.70-8.10 \\ 5.49-6.70$	MeV	1.14-11 4.31-11 1.37-10 4.22-10 4.89-10	4.27-11 1.27-10 3.69-10 1.11-9 1.20-9	1.17-114.39-111.36-104.08-105.05-10	4.44-11 1.30-10 3.67-10 1.08-9 1.14-9
11,12	6	4.49-5.49		8.77-10	1.93-9	8.46-10	1.88-9
13,14	7	3.68-4.49		8.88-10	1.74-9	9.34-10	1.84-9
15,16	8	3.01-3.68		1.70-9	3.11-9	1.66-9	3.11-9
17,18	9	2.47-3.01		1.95-9	3.40-9	1.98-9	3.47-9
19,20	10	2.02-2.47		1.97-9	3.32-9	2.05-9	3.49-9
21,22	11	1.65-2.02		4.16 9	6.64 9	4.23-9	6.84-9
23,24	12	1.35-1.65		6.31-9	9.63-9	6.01-9	9.34-9
25,26	13	1.11-1.35		5.15-9	7.73-9	5.26-9	7.97-9
27,28	14	0.907-1.11		3.98-9	5.91-9	3.91-9	5.88-9
29,30	15	0.743-0.907		3.77-9	5.56-9	3.86-9	5.75-9
31,32	16	0.608-0.743		2.62-9	3.85-9	2.64-9	3.92-9
33,34	17	0.497-0.608		7.59-9	1.09-8	8.02-9	1.16-8
35,36	18	0.408-0.497		9.48-9	1.33-8	9.44-9	1.34-8
37,38	19	0.334-0.408		1.14-8	1.57-8	1.15-8	1.61-8
39,40	20	0.273-0.334		2.03.8	2.73-8	2.00-8	2.73-8
41,42	21	0.224-0.273	3	1.31-8	1.75-8	1.35-8	1.81-8
43,44	22	0.183-0.224		1.59-8	2.10-8	1.66-8	2.22-8
45,46	23	0.150-0.183		2.84-8	3.68-8	2.81-8	3.67-8
47,48	24	0.123-0.150		3.25-8	4.15-8	3.20-8	4.13-8
49,50	25	0.0865-0.123		8.08-8	1.00-7	7.52-8	9.44-8

Table 33. Comparisons of Surface Leakages Calculated by ANISN (neutrons/source neutron)

Table 33. Contd.

51,52	26	52.5-86.5	keV	7.51-8	9.18-8	8.19-8	1.01-7
53	27	40.9-52.5		6.45-8	7.79-8	6.59-8	8.01-8
54	28	31.8-40.9		8.97-8	1.07-7	9.12-8	1.09-7
55	29	24.8-31.8		1.04-7	1.22-7	1.06-7	1.25-7
56	30	19.3-24.8		1.17-7	1.37-7	1.20-7	1.40-7
57 58-60 61-62 63 64	31 32 33 34 35	$15.0-19.3 \\ 7.10-15.0 \\ 4.31-7.10 \\ 3.35-4.31 \\ 2.61-3.35$		1.26-7 3.77-7 8.75-8 5.12-9 1.26-9	1.45-7 4.27-7 9.90-8 5.81-9 1.68-9	1.29-7 3.43-7 8.86-8 4.83-9 1.30-9	1.49-7 3.94-7 1.01-7 5.52-9 1.61-9
65 66 67 68 69-71	36 37 38 39 40	$\begin{array}{r} 2.03 & -2.61 \\ 1.58 - 2.03 \\ 1.23 - 1.58 \\ 0.961 - 1.23 \\ 454 - 961 \end{array}$	eV	7.95-9 6.17-8 1.76-7 3.15-7 3.57-6	9.33-9 6.95-8 1.97-7 3.48-7 3.78-6	7.69-9 6.03-8 1.73-7 3.12-7 2.16-6	8.91-9 6.85-8 1.95-7 3.47-7 2.35-6
72-74	41	214-454		1.03-5	1.06-5	5.46-6	5.74-6
75-77	42	101-214		2.39-5	2.43-5	1.24-5	1.28-5
78-80	43	47.9-101		4.69-5	4.75-5	2.53-5	2.58-5
81-83	44	22.6-47.9		8.15-5	8.21-5	4.68-5	4.75-5
84-86	45	10.7-22.6		1.27-4	1.28-4	7.89-5	7.96-5
87-89	46	5.04-10.7	-	1.79-4	1.80-4	1.20-4	1.20-4
90-92	47	2.38-5.04		2.26-4	2.26-4	1.62-4	1.63-4
93-95	48	1.13-2.38		2.56-4	2.56-4	1.97-4	1.98-4
96-99	49	0.414-1.113		3.47-4	3.48-4	2.78-4	2.78-4

47

THIS PAGE WAS INTENTIONALLY LEFT BLANK

INTERNAL DISTRIBUTION

1-20.	L. S. Abbott
21.	C. E. Clifford
22.	W. O. Harms
23.	R. E. Maerker
24.	F. C. Maienschein
25.	F. R. Mynatt
26.	E. M. Oblow
27.	D. B. Trauger
28.	D. K. Trubey
29.	G. E. Whitesides
30.	H. Feshbach (consultant)
31.	P. F. Fox (consultant)
32.	W. W. Havens (consultant)
33.	A. F. Henry (consultant)

34-35.	Central	Research	Library
--------	---------	----------	---------

- 36-37. ORNL Y-12 Technical Library Document Reference Section
- 38-43. Laboratory Records
 - - 44. Laboratory Records ORNL RC
 - 45. ORNL Patent Office
- 46-96. Radiation Shielding Information Center

EXTERNAL DISTRIBUTION

97-146. Technical Information Center for ENDF distribution 147-148. Technical Information Center 149. Research and Technical Support Division