ETOG-1, A FORTRAN IV Program to Process Data from the ENDF/B File to the MUFT, GAM and ANISN Formats

Westinghouse Atomic Power Divisions

WCAP-3845-1 ENDF 114

ETOG-1, A FORTRAN IV Program to Process Data from the ENDF/B File to the MUFT, GAM and ANISN Formats

Program Written by:

Report Written by:

D. E. Kusner R. A. Dannels D. E. Kusner S. Kellman

December 1969

This work was supported in part by the U.S. Atomic Energy Commission under Contract AT(30-1)-3845

le tout U. a APPROVED:

Robert A. Dannels, Manager Programming Development

> Westinghouse Electric Corporation Nuclear Energy Systems P. O. Box 355 Pittsburgh, Pennsylvania 15230

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employe or contractor of the Commission, or employe of such contractor, to the extent that such employe or contractor of the Commission, or employe of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

WESTINGHOUSE DISTRIBUTION

NUCLEAR ENERGY SYSTEMS

F.	Barber M. Barry	A. F. McFarlane
K.	M. Darly	D. L. MILLER
R.	F. Barry	G. H. Minton
Ρ.	S. Bland	J. E. Olhoeft
R.	A. Dannels (10)	W. L. Orr
Μ.	W. Dyos	T. A. Pitterle
W.	J. Eich	W. Rockenhauser
W.	Henderson	G. H. Scharpf
S.	M. Hendley	G. Schoen
s.	Kellman (10)	L. E. Strawbridge
D.	E. Kusner (10)	J. J. Taylor
F.	L. Langford	P. A. Zaphyr
₩.	D. Leggett	T.I.C. (2)

Programming Development (30)

.

BETTIS ATOMIC POWER LABORATORY

W. Baer T. A. Benz E. M. Gelbard J. Hardy D. Klein

ASTRONUCLEAR LABORATORY

D. W. Drawbaugh (2)

.

STANDARD EXTERNAL DISTRIBUTION

U. S. Atomic Energy Commission, Division of Technical Information Extension for Distribution in Accordance with UC-34 (Physics), TID-4500

SPECIAL EXTERNAL DISTRIBUTION

U.S. A.E.C. Division of Reactor Development and Technology Chief, Reactor Physics Branch (3) P. B. Hemmig (3)

Argonne National Laboratory

B. J. ToppelE. M. Pennington

Argonne National Laboratory - Argonne Code Center

M. K. Butler L. Ranzini

Argonne National Laboratory - Idaho Division

W. G. Davey

Atomic Power Development Associates

D. Wehymeyer

Atomics International

- H. A. Alter C. L. Dunford
- P. Rose

Babcock and Wilcox Company

W. A. Wittkopf A. Z. Livolsi

Battelle-Northwest

K. B. Stewart B. R. Leonard R. C. Liikala

SPECIAL EXTERNAL DISTRIBUTION (Continued)

Brookhaven National Laboratory

M. R. Bhat
J. Chernick
Helen Connell
D. Cullen
M. K. Drake
H. J. C. Kouts
B. A. Magurno
O. Ozer
S. Pearlstein
A. Prince
T. E. Stephenson

-

Combustion Engineering

L. C. Norderer R. Harding R. L. Hellens

General Electric - Atomic Power Equipment Department P. G. Aline

General Electric - Advanced Products Operation

B. A. Hutchins

Gulf General Atomic

D. R. Mathews

Idaho Nuclear Corporation

- R. A. Grimesey M. S. Moore
- J. R. Smith

Knolls Atomic Power Laboratory

C. R. Lubitz

Lawrence Radiation Laboratory

R. Doyas

R. J. Howerton

SPECIAL EXTERNAL DISTRIBUTION (Continued)

Los Alamos Scientific Laboratory

M. E. Battat D. J. Dudziak

- D. R. Harris
- R. J. LaBauve
- R. B. Lazarus
- L. Stewart

National Bureau of Standards

D. T. Goldman

Oak Ridge National Laboratory

- C. W. Craven, Jr.
- D. C. Irving
- S. K. Penny
- D. K. Trubey

Savannah River Laboratory

- H. C. Honeck
- F. J. McCrosson
- D. R. Finch

ACKNOWLEDGMENTS

The authors gratefully express their thanks to R. A. Grimesey (Idaho Nuclear Corporation) for his assistance in the formulation of the special elastic scattering treatment, and to K. B. Stewart (Pacific-Northwest Laboratory) for his assistance in coding the ANISN edit portion of the program.

TABLE OF CONTENTS

Chapter	Title				
	ABSTR	ACT		ix	
1	INTRO	DUCTION	ſ	1-1	
2	PROGRAM DESCRIPTION				
	2.1 General Information				
	2.2	Treatme	ent of Smooth Data	2-1	
		2.2.1	Elastic Scattering Cross Section	2-2	
		2.2.2	Capture Cross Section	2-2	
		2.2.3	Inelastic Cross Section	2-3	
		2.2.4	(n,2n) Cross Section	2-3	
		2.2.5	Fission Cross Section	2-4	
		2.2.6	Neutrons Per Fission	2-5	
		2.2.7	Additional Parameters Generated for		
			MUFT Library	2-6	
	2.3	Resonan	ace Treatment	2-7	
		2.3.1	MUFT Requirements	2-7	
		2.3.2	GAM Requirements	2-11	
		2.3.3	ANISN Requirements	2-12	
		2.3.4	Pointwise Resolved Resonance Cross Sections	2-13	
	2.4	Transfe	er Matrices	2-14	
		2.4.1	Inelastic Scattering	2-14	
		2.4.2	Elastic Scattering	2-18	
		2.4.3	(n,2n) Reaction	2-23	
	2.5	Source	Spectrum	2 - 24	
3	EXECUTION INFORMATION AND PROCEDURES				
	3.1	Summary	7 Description	3-1	
	3.2	Limitat	cions	3–1	
		3.2.1	Restrictions Placed on Multigroups by ETOG-1	3-1	
		3.2.2	Restrictions Placed on ENDF/B Data by		
			ETOG-1	3-1	
		3.2.3	Input Option Restrictions	3-3	

Chapter	Title			
	3.3 Input Format			
	3.3.1 Input Description for GAM-I, GAM-II,			
	and ANISN	3-3		
	3.3.2 Available Options for GAM and ANISN	3-7		
	3.3.3 Input Description for MUFT-4 and MUFT-5	3-8		
	3.3.4 Available Options for MUFT	3-12		
	3.3.5 Problem Stacking Procedure	3-16		
	3.3.6 Sample Problem Input	3-17		
	3.4 Output Format	3-18		
	3.4.1 Printed Output	3-18		
	3.4.2 Punched Card Output	3-20		
	3.4.3 Sample Problem Output	3-43		
4	PROGRAMMER'S INFORMATION			
	4.1 General Program Design Philosophy	4-1		
	4.2 Labeled Common Variables	4-2		
	4.3 Overlay Structure and Routine List	4-13		
	4.4 Error Stops	4-16		
5	5 ENVIRONMENT INFORMATION6 COMMENTS AND CONCLUSIONS			
6				
7	REFERENCES	7-1		

ABSTRACT

ETOG-1, an extension of the ETOM-1 program, processes basic nuclear data in the ENDF/B format and produces the data required for the generation of MUFT, GAM-I, GAM-II, and ANISN libraries. ETOG-1 is written entirely in ASA standard FORTRAN, and is designed to be computer independent. In addition to printed results, the output includes punched cards in the format appropriate for the generation of the desired library.

CHAPTER 1

INTRODUCTION

In order to permit users of the GAM-I^[1], GAM-II^[2], and ANISN^[3] programs to generate library data from the Evaluated Nuclear Data File, the ETOM-1^[4] program has been extended. An improved treatment of the resolved resonance region has been incorporated, and routines have been added to calculate, edit, and punch in the appropriate format the multigroup transfer matrices required by these codes.

For completeness, sections of the ETOM-1 report, Reference 4, are reproduced here.

CHAPTER 2

PROGRAM DESCRIPTION

2.1 GENERAL INFORMATION

Detailed descriptions of the codes for which libraries may be generated are given in References 1-4. Here, a limited knowledge of the structure of these programs, in addition to the ENDF/B system, is assumed.

As in Reference 4, the following notation is used in this report. A quantity with an argument, e.g., $\sigma_{nn}(E)$, represents the magnitude of that quantity at a particular energy E, while the quantity without an argument, e.g., $\sigma_{n,n}$, denotes a group-averaged value.

Average cross sections are calculated as

$$\sigma = \frac{\int \sigma(E) W(E) dE}{\int W(E) dE},$$
(2.1)

where the integral extends over the appropriate energy interval. W(E), the weighting function, may vary as 1/E, may be constant, may be entered as input, or may be expressed as a combination of 1/E joined to a fission spectrum. In combining the cross sections and weighting function and performing the integration, the program makes use of the specified interpolation schemes.

Data in ENDF/B Files 1, 2, 3, 4 and 5 are employed in generating the multigroup cross sections, slowing down and fission parameters, transfer matrices, and spectra required by MUFT, GAM and ANISN*.

2.2 TREATMENT OF SMOOTH DATA

^{*} The version of ANISN for which ETOG-1 prepares library data is that used at Battelle-Northwest. The authors are indebted to K. Stewart of Batelle-Northwest for providing them with the routines which punch and edit the library data for ANISN.

2.2.1 Elastic Scattering Cross Section

The group-averaged symmetric scattering cross section, σ_{nn} , is computed by use of Equation (2.1), where σ_{nn} (E) is obtained from ENDF/B File 3, reaction type MT = 2. If necessary, σ_{nn} is modified to account for resonance scattering. In the production of data for the MUFT library, the only library treated that explicitly requires the elastic scattering cross section, the handling of resonance scattering is determined by one of three available options. (See Section 3.3.4.13). For GAM and ANISN library data, σ_{nn} (E) is required only in order to establish the elastic scatter transfer matrix; resonance scattering cross sections are calculated by use of the single level Breit-Wigner formula, as discussed in Section 2.3, and added to σ_{nn} (E).

In the generation of a MUFT library, the option also exists for the addition of the in-group inelastic scattering cross section to σ_{nn} .

The composite σ (E) is written on a scratch tape for later use by the program, e.g., in the calculation of the transfer matrix.

2.2.2 Capture Cross Section

The smooth capture cross section is calculated as the sum,

$$\sigma_{nc} = \sigma_{n\gamma} + \sigma_{np} + \sigma_{nd} + \sigma_{nt} + \sigma_{nHe}^{2} + \sigma_{n\alpha} + \sigma_{n2\alpha}^{2}.$$
(2.2)

Each of the averaged quantities, σ_{nx} , is calculated as

$$\sigma_{nx} = \frac{\int \sigma_{nx}(E) W(E) dE}{\int W(E) dE}$$
(2.3)

where $\sigma_{nx}(E)$ is obtained from the ENDF/B File 3 tabulation. For $x = \gamma$, p, d, t, He³, α , and 2α , respectively, the tabulation is that for reaction type MT = 102, 103, 104, 105, 106, 107, and 108.

If required, a resonance contribution is added to the smooth capture cross

sections. When resonance cross sections are calculated from parameters given in ENDF/B File 2, corrections must be made to $\sigma_{\rm nc}$ depending upon the code for which the data is being produced, and the particular options chosen. For MUFT and GAM-I libraries, contributions are added to $\sigma_{\rm nc}$ to account for the asymmetric tails which are not calculated by the codes from the resonance parameters supplied to them; in the groups below the lower bound of the resonance region as defined in ENDF/B File 2, the contributions to $\sigma_{\rm nc}$ due to the symmetric resolved resonances are subtracted from the smooth values given in ENDF/B File 3. For GAM-II, the entire contribution to $\sigma_{\rm nc}$ from the resolved resonances are subtracted from the smooth values in File 3 in the groups below the ENDF/B-defined resonance region. Finally, for ANISN resonance cross sections are converted to equivalent smooth data.

It should be noted here that for the GAM-II program, the components of the parasitic capture cross section, i.e., reaction types MT = 102 to 108, are required for use in editing results and are punched as part of ETOG output.

2.2.3 Inelastic Scattering Cross Section

The inelastic scattering cross section is calculated as

$$\sigma_{nn}, = \frac{\int \sigma_{nn}, (E) W(E) dE}{\int W(E) dE}$$
(2.4)

where $\sigma_{nn'}(E)$ is obtained from ENDF/B File 3, reaction type MT = 4. The cross section $\sigma_{nn'}$ is required for the generation of a MUFT library, but does not appear explicitly in GAM or ANISN. The energy-dependent $\sigma_{nn'}(E)$ is saved on tape for further use in the construction of the inelastic scattering transfer matrix.

In the case of MUFT, options exist whereby σ_{nn} , is modified to account for the treatment of the in-group inelastic scattering, inelastic scattering out of the range of the defined matrix, or the n,2n reaction.

2.2.4 (n,2n) Cross Section

The (n,2n) cross section is calculated as

$$\sigma_{n,2n} = \frac{\int \sigma_{n,2n}(E) W(E) dE}{\int W(E) dE}$$
(2.5)

where $\sigma_{n,2n}(E)$ is obtained from ENDF/B File 3, MT = 16.

The (n,2n) reaction is not treated explicitly in MUFT or ANISN. In the generation of MUFT data, three input options are provided for the user. The reaction may be treated as all fission, as all inelastic scattering, or as half fission and half inelastic scattering. In all cases, appropriate adjustments are made to the smooth cross sections and v values. (See Section 3.3.4.10 for further detail).

For GAM, the (n,2n) transfer matrix is established explicitly, as described in Section 2.4.3. In the generation of ANISN data, elements of the matrix are added to the appropriate elements of the composite isotropic transfer matrix; $\sigma_{n,2n}$ is subtracted groupwise from the absorption cross section to preserve the neutron balance.*

2.2.5 Fission Cross Section

The smooth fission cross section is calculated as

$$\sigma_{nf} = \frac{\int \sigma_{nf}(E) W(E) dE}{\int W(E) dE}$$
(2.6)

where $\sigma_{nf}(E)$ is obtained from ENDF/B, File 3, reaction type MT=18. If required, a resonance contribution is added to the smooth fission cross section. When explicit resonance parameters are given in ENDF/B File 2, corrections similar to those discussed in Section 2.2.2 under smooth capture, are made to σ_{nf} .

Also, an option exists for the addition of the (n,2n) cross section to $\sigma_{\rm nf}$ in the generation of MUFT library data.

^{*} K. B. Stewart, Pacific Northwest Laboratory, personal communication, July, 1969.

2.2.6 Neutrons Per Fission

Outside the resonance region, the average number of neutrons per fission is calculated as

$$v = \frac{(v\sigma_{nf})}{\sigma_{nf}}$$

where

$$(v\sigma_{nf}) = \frac{\int (v(E) \sigma_{nf}(E)) W(E) dE}{\int W(E) dE}$$
(2.7)

and v(E) is obtained from ENDF/B File 1, MT = 452. If v(E) is expressed as a polynomial, the product in the integrand is formed after calculating v at each energy point in the $\sigma_{nf}(E)$ mesh. If a tabulation of v(E) is given, the two functions, v(E) and $\sigma_{nf}(E)$ are combined by use of the ENDF service routines.

In the resonance region, v is calculated as

$$v = \frac{\int v(E) W(E) dE}{\int W(E) dE}$$
(2.8)

This is a valid approximation since v is nearly constant over the resonance region, and the detailed numerical integration of Equation (2.7) is not justified.

Note that in the generation of MUFT library data, v may be modified to account for the (n,2n) reaction.

2.2.7 Additional Parameters Generated for MUFT Library

Three additional multigroup quantities are required for the creation of a MUFT library tape, i.e., the anisotropic scattering cross section, isotropic Greuling-Goertzel parameter, and isotropic slowing down power.

The anisotropic elastic scattering cross section is calculated as

$$\mu \sigma_{nn} = \frac{\int (\mu(E) \sigma_{nn}(E)) W(E) dE}{\int W(E) dE}$$
(2.9)

where $\mu(E)$ is obtained from ENDF/B File 3, MT = 251, and $\sigma_{nn}(E)$ is retrieved from the tape on which it was stored. If no $\mu(E)$ data is given on the ENDF/B tape, then

$$\mu \sigma_{nn} = \frac{2}{3A} \sigma_{nn}$$
(2.10)

where A is the atomic mass ratio, AWR, obtained from the tape.

The isotropic Greuling-Goertzel parameter, or age number as it is called in MUFT, may be calculated as

$$\gamma = \frac{\int \gamma(E) W(E) dE}{\int W(E) dE}$$
(2.11)

where $\gamma(E)$ is obtained from ENDF/B File 3, MT = 253. If no such data is present, or if an input option is selected, the age number is calculated as^[5]

$$\gamma = \frac{\Delta u}{2} \tag{2.12}$$

where Δu is the group lethargy width.

The isotropic slowing down power is calculated as

$$\xi \sigma_{nn} = \frac{\int (\xi(E) \sigma_{nn}(E)) W(E) dE}{\int W(E) dE}$$
(2.13)

where $\xi(E)$ is obtained from ENDF/B File 3, MT = 252, and $\sigma_{nn}(E)$ is retrieved from the tape on which it was stored. If there is no $\xi(E)$ data on the ENDF/B tape, then

$$\xi \sigma_{nn} = \frac{2}{A + \frac{2}{3}} \sigma_{nn}$$
(2.14)

where A is the atomic mass ratio, AWR, obtained from the tape.

2.3 RESONANCE TREATMENT

While ANISN requires only composite multigroup cross sections, MUFT and GAM have explicit resonance treatments.

2.3.1 MUFT Requirements

2.3.1.1 Resolved Resonance Region

For each resolved resonance treated, the MUFT library requires

$$r = \frac{\sigma_{o} (\Gamma_{\gamma} + \Gamma_{f})}{\Gamma}$$

$$m = \frac{\sigma_{o} (\Gamma_{\gamma} + \Gamma_{f})}{E_{o}}$$
(2.15)

 $\alpha = \frac{\Gamma_{f}}{\Gamma_{\gamma} + \Gamma_{f}}$

ETOG-1 calculates these factors, and determines the proper group for each resolved resonance.

The MUFT treatment implicitly assumes that the entire effect of a resonance is felt in the multigroup in which its peak occurs. Therefore, the contributions of each resonance to all groups below the lower bound of the resonance region, as defined in ENDF/B File 2, must be subtracted from the smooth capture and fission cross sections which already include the contributions. Since only the symmetric resonance is treated, it is necessary to subtract only the symmetric tail. Similarly, in each group in the resolved resonance range, where r, m and α factors have been generated, the asymmetric tail due to each resonance must be added to smooth capture and fission cross sections. If the cross sections have been computed on the fine mesh discussed in Section 2.3.4, the asymmetric tails are calculated in each group affected using that mesh, and are properly weighted, before being averaged over the group. If the fine mesh has not been established, the contributions are calculated at 100 points, equally spaced in lethargy, in each group affected before being averaged. The symmetric tails are always calculated at 100 points equally spaced in lethargy in the group affected before being averaged.

Resonances below the resolved region as defined in ENDF/B (i.e., at thermal and negative energies) are not handled as explicit resonances by MUFT, and ETOG treats them separately. Pointwise capture, fission and optionally, scattering, cross sections due to these resonances are calculated at 100 points, equally spaced in lethargy, in each group containing resolved resonances. Then these values, properly weighted, are averaged over the group to obtain the contributions which are added to the smooth cross sections.

The s-wave cross sections are calculated by use of the Breit-Wigner single level formula:

$$\sigma_{n} = 4\pi R^{2} + \frac{1}{1+x^{2}} \quad \frac{\sigma_{o}\Gamma_{n}}{\Gamma} + \frac{2x}{1+x^{2}} \quad \sqrt{\frac{(4\pi R^{2})\sigma_{o}g\Gamma_{n}}{\Gamma}} \quad (2.16)$$

where R is designated as AP in ENDF/B and

$$\sigma_{\gamma} = \frac{\sigma_{o}\Gamma_{\gamma}}{\Gamma} + \frac{1}{1+x^{2}} \sqrt{\frac{|E_{o}|}{E}}$$
$$\sigma_{f} = \frac{\sigma_{o}\Gamma_{f}}{\Gamma} + \frac{1}{1+x^{2}} \sqrt{\frac{|E_{o}|}{E}} \cdot$$

2-8

The quantities σ_{\circ} and x are defined as

$$\sigma_{o} = \frac{(2.6037 * 10^{\circ}) \Gamma_{n}g}{|E_{o}| \Gamma} * (\frac{A+1.008665}{A})^{2}$$
$$x = \frac{(E-E_{o})}{\Gamma/2}$$

P-wave cross sections, converted to equivalent smooth data, are computed by use of the Breit-Wigner formulae given in Appendix C of Reference 7.

A number of options exist for the treatment of resolved resonances during the generation of MUFT library data. For example, since the number of resonances in any one group is restricted to eight in MUFT, options are provided for treatment of any "extra" resonances if more than eight occur.

In addition, ETOG permits a number of options for treatment of resolved resonance scattering which is not handled explicitly in MUFT. Scattering is present only in the MUFT smooth cross section file. Although no general statement can be made about the correct way to represent resonance scattering in the MUFT library, two limiting cases can be cited.* For materials that are primarily resonance absorbers, the resonance scattering should be ignored. For materials that are primarily resonance scatterers, the resonance scattering should be included as part of the MUFT "smooth" scattering cross section file. Mathematically in the ENDF/B format structure, there is a smooth part (ENDF/B file 3) and a resonance part (ENDF/B file 2). However the mathematical representation may not be the physical one. For example, the constraint of Breit-Wigner representation of resonances may require the mathematical smooth cross section to be negative! So if one wants to ignore the resonance scattering, there is a problem. The use of only ENDF/B file 3 may produce erroneous

^{*} D. R. Harris, Bettis Atomic Laboratory and C. Lubitz, Knolls Atomic Power Laboratory, personal communication.

results. Likewise, if the total ENDF/B description is used, the resonance part may not be ignored. Hence three options are provided in which the resonance scattering cross section may be computed from the ENDF/B representation, may be taken as the potential scattering cross section, or may be taken as the value in the first group above the resonance region.

2.3.1.2 Unresolved Resonance Region

There is no special treatment of unresolved resonance information in MUFT. Since unresolved data may be given in ENDF/B, ETOG-1 constructs effective smooth cross sections over the unresolved range. The method employed is the same as that used by the Argonne* program MC^2 (Reference 11) where effective resonance cross sections are evaluated at discrete energy points, E*, in the unresolved region.

In MC^2 , the effective unresolved resonance capture cross section at energy E* is calculated as

$$\sigma_{c}(E^{*}) = \sum_{\substack{\sigma_{c} \cap \Gamma \\ \overline{D} \circ \sigma}} \int_{0}^{\infty} P_{n}(r) \int_{0}^{\infty} P_{k}(s) \int_{0}^{\infty} \frac{\Psi}{\Psi + \beta} dx ds dr$$

$$\frac{1 - \frac{1}{\overline{D}} \int_{0}^{\infty} P_{n}(r) \int_{0}^{\infty} P_{k}(s) \Gamma \int_{0}^{\infty} \frac{\Psi}{\Psi + \beta} dx ds dr$$
(2.17)

where the sum is taken over all J states for all ℓ states. This equation is for fissile isotopes; for fertile isotopes the $P_k(s)$ integral does not appear. A similar equation is used to calculate the fission cross section.

Since ETOG-1 does not permit a temperature dependence, a zero temperature is assumed. Thus,

$$\int_{0}^{\infty} \frac{\Psi}{\Psi + \beta} d\mathbf{x} = \frac{\pi/2}{\sqrt{\beta (1+\beta)}}.$$
(2.18)

^{*} The authors are grateful to Dr. Bert Toppel of ANL for graciously providing them with the MC² subroutine UNRES for reference during the programming of ETOM-1 and ETOG-1.

β is defined as σ_p/σ_o where σ_o is the resonance peak cross section and σ_p is the macroscopic potential scattering cross section for the mixture per absorber atom. Since ETOG-1 is not primarily a mixture dependent program, there is no way for ETOG-1 to calculate σ_p internally. Hence, the quantity (σ_p-4πR²) is designated as an input item. (ETOG-1 adds 4πR² to the input value to obtain the σ_p used in the calculation). This provides the user with the flexibility of selecting a value of σ_p which is typical for his applications. Note that this σ_p only affects the unresolved resonance treatment.

ETOG-1 calculates the capture, fission and scattering cross sections at 100 equally spaced lethargy points for each multigroup in the unresolved region. These values are then averaged with the weighting function to provide the unresolved resonance contributions which are added to the smooth cross sections.

2.3.2 GAM Requirements

2.3.2.1 GAM-I

In the resolved energy range, the GAM-I library requires for each resonance the parameters E_0 , Γ_n , Γ_γ , Γ_f , and an index, L, indicating whether the narrow resonance or narrow resonance-infinite mass approximation is to be used. The latter parameter is established by a test on the practical width of the resonance.^[6] ETOG-1 outputs s-wave resonance parameters only and converts all higher wave resonances to equivalent smooth capture and fission cross section data. In the unresolved range, single values of parameters <D>, $<\Gamma_n^o>$, $<\Gamma_\gamma>$, $<\Gamma_f>$, in addition to the lower bound of the range, E_1 , are required. Tables of these quantities are established directly from the ENDF/B data, File 2.

The particular set of values of unresolved resonance parameters punched depends upon input quantity, XAJIN, which is the spin of the compound nucleus for a given & state in the unresolved region. This input quantity must correspond to a value of J given in File 2, reaction type 151. If XAJIN does not correspond to a value of J in the ENDF/B file, all unresolved resonance parameters are converted to equivalent smooth capture, fission, and scattering cross sections.

Tables of smooth absorption and fission cross sections are set up by use of ENDF/B File 3 data. Corrections to account for the treatments of symmetric

and asymmetric tails, and of resonances at negative and thermal energies are made in the same manner as for the MUFT library.

Also required for the library is the number of neutrons produced per fission, which is read from File 1 data.

2.3.2.2 GAM-II

In the resolved resonance range GAM-II requires for each resonance, parameters E_{o} , Γ_{n} , Γ_{γ} , Γ_{f} , and g. Factors r, used to determine the mesh spacing for the numerical integration yielding the collision density, and S used to determine the upper limit for the integration yielding the absorption resonance integral, are also necessary, as is the potential scattering cross section, σ . sets r equal to 0.0, S equal to 5.0, and σ_{po} equal to $4\pi R^2$, where R is the resolved range scattering length given in ENDF/B File 2. In the unresolved range, parameters <D>, < Γ_n^o >, < $\Gamma_\gamma^>$, < $\Gamma_f^>$ and \overline{g} are required together with a table of energies at which the unresolved resonance function J (See Reference 2) should be calculated. The first entry in the latter table is the cut-off energy, E₀, and the following entries coincide with the fine group boundaries. The last entry in the table is the upper bound of the specified unresolved resonance range. Again, as in GAM-I, the particular set of (five) unresolved resonance parameters punched depends upon input quantity, XAJIN. If the value of XAJIN does not correspond to a value of J in ENDF/B File 2, all unresolved resonance parameters are converted to equivalent smooth data.

GAM-II utilizes the asymmetric Breit-Wigner formula; therefore the contributions of the resolved resonances to any group below the lower bound of the resonance region must be subtracted from the smooth capture and fission cross sections of ENDF/B File 3. Thermal and negative energy resonances are treated as they are in MUFT and GAM-I, that is, by adding their contributions, properly weighted and averaged, to the smooth contribution in each group.

2.3.3 ANISN Requirements

As required by ANISN, the ETOG-1 program prepares group-averaged total, absorption, and fission (times v) cross sections, in addition to a composite (cross section) transfer matrix. Tables of σ_{nc} , σ_{nf} , $\sigma_{n\gamma}$ and $\sigma_{n\alpha}$ are transmitted as activity cross sections.

Cross sections must be generated from the resonance parameters if they exist in File 2 of ENDF/B, i.e., input option IRES = 3 must be selected. (See Section 3.3.1) As in GAM-II, the cross sections are generated in the specified resonance region by use of the asymmetric Breit-Wigner formula, with tail contributions in the appropriate energy group. Therefore, no corrections are necessary. Negative and thermal energy resonance contributions are calculated, properly weighted, and averaged over each group in the resonance region. The group-averaged values obtained from the resonance calculation are added to the appropriate group-averaged smooth values obtained from ENDF/B File 3. The pointwise (weighted) scattering cross-sections are stored on tape for later use in generating the transfer matrix.

2.3.4 Pointwise Resolved Resonance Cross Sections

In a number of cases, pointwise cross sections must be calculated in the resolved range, e.g., when resonance cross sections are to be added to the smooth contribution for the generation of a MUFT library, and when GAM or ANISN transfer matrices are to be generated (See Section 2.4). In these cases, de-tailed descriptions of the energy variation of the cross sections are necessary in order to compute accurately group-averaged cross sections, or components of the transfer matrices. For this reason the cross sections are calculated on a variable fine mesh which depends upon the resonance structure within each group and employs a maximum of 1000 points per group.

Presently the fine mesh is constructed by considering all resonances within the group and placing a large number of points around each peak in order to describe adequately the rapidly changing cross section. For each group, a special attempt is made to describe the cross-section over a sufficiently fine mesh from E_b , the lowest energy of the group, to $E_b(\frac{A-1}{A+1})$; then full advantage may be taken of techniques developed to calculate the elements of the transfer matrix at energies at which the angular distribution of elastic scattering is isotropic in the center of mass system. Where necessary the cross sections, properly weighted,

2-13

are averaged over the group, and the (weighted) scattering cross section is written on tape for later use in generating the elastic transfer matrix.

2.4 TRANSFER MATRICES

The libraries handled by ETOG-1 require a number of transfer matrices. For MUFT, an inelastic scattering probability matrix must be generated; for GAM, separate elastic scattering, inelastic scattering, and (n,2n) cross section matrices must be created; and for ANISN only a composite cross section transfer matrix is needed.

2.4.1 Inelastic Scattering

2.4.1.1 MUFT Treatment

MUFT requires an inelastic scattering probability matrix as MUFT 4 File 5 (MUFT 5, File 6). Since the requirement is for a probability (rather than a cross section)matrix, all of the necessary information is contained in ENDF/B, File 5. There are 10 ENDF/B defined representations of secondary energy distributions. Although it was suggested (Reference 7, page 12.4) that inelastic data be given as discrete levels (LF = 3) plus a Maxwellian distribution (LF = 8 or 9), ETOG-1 will handle LF = 3, 6, 7, 8, 9, and 10. The other distributions (LF = 1, 2, 3, and 5) are ignored by the current version of the program.

During execution, MUFT forms the inelastic scattering cross section matrix as the product of the inelastic scattering cross section and the inelastic scattering probability matrix. The elements, $\sigma_{in}^{i \rightarrow j}$, of this cross section matrix are used in the MUFT calculation. These (averaged value) matrix elements should be formed as

$$\sigma_{in}^{i \rightarrow j} = \frac{\int \sigma_{in}^{i \rightarrow j} (E) W(E) dE}{\int W(E) dE}$$

$$= \frac{\int P_{in}^{i \rightarrow j} (E) \sigma_{in}(E) W(E) dE}{\int W(E) dE}.$$
(2.19)

2-14

But $\sigma_{\text{in}}^{\text{i} \rightarrow \text{j}}$ is calculated in MUFT as

$$\sigma_{in}^{i \rightarrow j} = \sigma_{in}^{i} * P_{in}^{i \rightarrow j}$$
(2.20)

and σ_{in}^{i} is calculated by ETOG-1 as

$$\sigma_{in} = \frac{\int \sigma_{in} (E) W(E) dE}{\int W(E) dE} . \qquad (2.21)$$

Hence $\mathtt{P}_{\text{in}}^{i \rightarrow j}$ is calculated by ETOG-1 as

$$P_{in}^{i \rightarrow j} = \frac{\int P_{in}^{i \rightarrow j} (E) \sigma_{in} (E) W(E) dE}{\int \sigma_{in} (E) W(E) dE}$$
(2.22)

Thus the product is the desired result; namely,

$$\sigma_{in}^{i} * P_{in}^{i \rightarrow j} = \frac{\int \sigma_{in}(E) W(E) dE}{\int W(E) dE} * \frac{\int P_{in}^{i \rightarrow j}(E) \sigma_{in}(E) W(E) dE}{\int \sigma_{in}(E) W(E) dE}$$

$$= \frac{\int P_{in}^{i \rightarrow j}(E) \sigma_{in}(E) W(E) dE}{\int W(E) dE}$$
(2.23)

Slightly different procedures are needed for the different (LF) representations in the ENDF/B File 5 data.

For LF = 3, an average probability of inelastic scattering from the source group is calculated. A linear mapping is made to take P(E) to P(E'), and then the fractional amount in each sink group is computed.

Consider the following figure:

In the figure note that P(E') is obtained from P(E) by a linear mapping using the relationship $E' = E - \theta$. The contribution to the probability matrix element, $P_{in}^{i \rightarrow j}$, is then calculated as:

$$P_{in}^{i \rightarrow j} = \frac{ \begin{array}{c} E_{i+1} \\ \int [P(E) \sigma_{in}(E)] W(E) dE \\ E_{i} \end{array}}{ \begin{array}{c} E_{i+1} \\ \int E_{i+1} \\ \int [\sigma_{in}(E) W(E)] dE \end{array}} & \times \begin{array}{c} E_{j+1} \\ f \\ E_{i+1} \end{array}$$
(2.24)

For LF = 6, 8, or 10, an E' mesh is constructed to cover the entire energy range; the appropriate (LF) function, f(E), is calculated over this range, and the fractional amount in each sink group computed. The contribution to the probability matrix element, $P_{in}^{i \rightarrow j}$, is then calculated as

$$P_{in}^{i \rightarrow j} = \frac{ \begin{array}{c} E_{i+1} \\ f \\ P(E) \\ E_{i} \end{array} \left[\sigma_{in}(E) \\ W(E) \right] dE \\ \vdots \\ \begin{array}{c} E_{j+1} \\ f \\ E_{j} \\ f \\ F(E) \\ F($$

For LF = 7 or 9, a value of θ averaged over the source group is used in the functional calculation. The rest of the calculation is the same as for LF = 6, 8, or 10. Thus,

$$\theta = \frac{\int \theta(E) \frac{dE}{E}}{\int \frac{dE}{E}}$$
(2.26)

and the contribution to the probability matrix element, $P_{in}^{i \rightarrow j}$, is then calculated as:

$$P_{in}^{i \rightarrow j} = \frac{ \begin{array}{c} E_{i+1} \\ f \\ E_{i} \end{array} \left[\sigma_{in}(E) \\ F_{in}^{i \rightarrow j} \right] dE \\ E_{i} \end{array} \left[\begin{array}{c} E_{j+1} \\ f \\ F_{in} \end{array} \right] \left[\begin{array}{c} E_{j+1} \\ f \\ F_{in} \end{array} \right] \left[\begin{array}{c} E_{j+1} \\ F_{in} \\ F_{in} \end{array} \right] \left[\begin{array}{c} E_{j+1} \\ F_{in} \\ F_{in} \end{array} \right] \left[\begin{array}{c} E_{j} \\ F_{in} \\ F_{in} \end{array} \right] \left[\begin{array}{c} E_{i} \\ F_{in} \end{array} \right] \left[\begin{array}{c} E_{in} \end{array} \right] \left[\begin{array}{c} E_{in} \\ F_{in} \end{array} \right] \left[\begin{array}{c} E_{in} \end{array} \right] \left[\begin{array}[\begin{array}{c} E_{in} \\ F_{in} \end{array} \right] \left[\begin{array}[\begin{array}{c} E_{in} \\ F_{in} \end{array} \right] \left[\begin{array}[\begin{array}{c} E_{in} \\ F_{in} \end{array} \right] \left[\begin{array}[\begin{array}{c} E_{in} \end{array} \right] \left[\begin{array}[\begin{array}{c} E_{in} \\ F_{in} \end{array} \right] \left[\begin{array}[\begin{array}{c} E_{in} \\ F_{in} \end{array} \right] \left[\begin{array}[\begin{array}{c} E_{$$

All LF subsections describing the secondary energy distribution of inelastically scattered neutrons form the probability matrix. Thus, each element of the matrix is the sum of contributions from one or more LF subsections. It is a MUFT requirement that the final inelastic probability matrix be exactly normalized to unity. Hence after the matrix is completed, it is renormalized to satisfy this requirement. In principle, this renormalization is not necessary since the ENDF/B distributions are normalized to unity. However due to calculational round-off errors, and treatment of ingroup scattering and out of matrix scattering, the renormalization is essential.

2.4.1.2 GAM and ANISN Requirements

The treatment is the same as that described in the preceding section, with the additional feature that the product

$$\sigma_{in}^{i \to j} = \sigma_{in}^{i} * P_{in}^{i \to j}$$
(2.28)

is formed by ETOG-1. In the generation of ANISN data, the inelastic transfer cross sections are added to the isotropic (P_{o}) elastic transfer cross sections.

2.4.2 Elastic Scattering

The calculation of the elastic scattering matrix is based loosely on program TRANSFER^[8], which has been re-written extensively.

The differential cross section for scattering events in dE and $d\Omega$ which result in neutrons in dE' and $d\Omega$ ', per unit solid angle, is expressed in terms of a Legendre polynomial expansion,

$$\sigma_{s}(E', \underline{\Omega}'; E, \underline{\Omega}) = \frac{1}{4\pi} \sum_{\ell=0}^{N} S_{\ell}(E', E) P_{\ell}(\mu) \left| \frac{d\mu}{d\underline{\Omega}} \right|$$
(2.29)

where $\mu = \underline{\Omega} \cdot \underline{\Omega}'$ is the cosine of the angle of scatter in the lab system. If the equation is multiplied by $P_k(\mu)$ and integrated over μ , the resulting expression for the energy transfer coefficient $S_{\rho}(E_{1}'E)$ is:

$$S_{\ell}(E',E) = 4\pi \left| \frac{d\Omega}{d\mu} \right| \frac{2\ell+1}{2} \int_{-1}^{1} d\mu P_{\ell}(\mu) \sigma_{s}(E',\underline{\Omega}'; E,\underline{\Omega})$$
(2.30)

If now the energy condition for elastic scattering is introduced into the cross section as a delta function, and the cross section is expressed, as generally reported, in terms of a Legendre expansion in the center of mass system, then

$$\sigma_{\mathbf{s}}(\mathbf{E}',\underline{\Omega}'; \mathbf{E},\underline{\Omega}) = \frac{\sigma_{\mathbf{s}}(\mathbf{E})}{4\pi} \sum_{k=0}^{\mathbf{J}} (2k+1)f_{k}(\mathbf{E})P_{k}(n) \left|\frac{\mathrm{d}n}{\mathrm{d}\underline{\Omega}}\right| \delta[\mathbf{E}'-\mathbf{E}+\frac{(1-\alpha)}{2})\mathbf{E}-\frac{(1-\alpha)}{2}\mathbf{E}n]$$

where

$$\eta = \frac{(A^2 - 1 + \mu^2)^{1/2} \mu - 1 + \mu^2}{A}, \text{ the cosine of the angle of scatter in}$$

the center of mass system.

$$\alpha = \left(\frac{A-1}{A+1}\right)^2$$
, and

 $f_k(E) =$ the Legendre expansion coefficients of the angular distribution of scattering in the center of the mass system.

Substitution of Equation (2.31) into (2.30), followed by integration, leads to [9]

$$S_{\ell}(E',E) = \frac{2\ell+1}{(1-\alpha)E} \sigma_{s}(E) P_{\ell}(\mu) \sum_{k=0}^{J} (2k+1)f_{k}(E) P_{k}(\eta). \qquad (2.32)$$

The elements of the transfer matrix, of order l, for scatter from group i to j are defined as

$$\sigma_{j,i}^{\ell} = \frac{\int dE' \int dE W(E) S_{\ell}(E',E)}{\int dE W(E)}$$

$$= \frac{2\ell+1}{1-\alpha} \frac{\lambda}{\gamma} \frac{\gamma}{\gamma} \frac{\delta}{\delta} S_{\ell}(E',E) W(E) P_{\ell}(\mu) \sum_{k=0}^{J} (2k+1) f_{k}(E) P_{k}(\eta)}{\delta}$$

$$(2.33)$$

where $\gamma,\delta~$ are the limits of group i and $\lambda,\beta~$ are the limits of group j.

The cross section is retrieved from tape, and after transformation to lethargy the integration is performed numerically by use of Simpson's rule. The limits of the integrals in Equation (2.33), depend on the relative position of the group limits and the atomic mass of the scatterer. Since scattering to energy E' can occur from energies $E = E'/\alpha$ to E = E' only, the limits of integration may be determined by inspection of Figure 2 in which the line $E' = E/\alpha$ is drawn in the six possible ways it can cross the rectangle.

Figure 2

For out-of-group scattering (j = i) the limits in the six possible cases are listed in the following table.

						TABLE 1		
For	i∕≠j	,						
(1)	^{αE} i	>	Ej	αE i	2	^E j-1	Integral is zero	
	αE i-1	>	E j	^{αE} i-1	>	E _{j-1}		
(2)	αE i	>	E j	αE i	<	^E j-1	$ \begin{pmatrix} \beta = E \\ j-1 \end{pmatrix} $	$\delta = E/\alpha$
	^{αE} i-1	>	E j	^{αE} i-1	≥	E _{j-1}	$\lambda = \alpha E_{i}$	$\gamma = E_{i}$
(3)	αE i	Ś	E j	αE i	<	E _{j-1}	$ \int_{\beta}^{\beta} = E_{j-1} $	$\delta = E/\alpha$
	αE i-1	>	Ej	^{αE} i-1	2	E _{j-1}	$\begin{cases} \lambda = \mathbf{E}_{\mathbf{j}} \end{cases}$	$\gamma = E_{i}$
(4)	αE	3	Ej	αE_{i}	<	^E j-1 }	/ Integral is the sum	of two
	αE i-l	>	E j	αE i-l	\$	E _{j-1}	double integrals	
							$\int^{\beta} 1 = E_{j-1}$	$\delta_1 = E_{i-1}$
							$\lambda_1 = \alpha E_{i-1}$	$\gamma_1 = E_i$
							$\beta_2 = \alpha E_{i-1}$	$\delta_2 = E/\alpha$
							$\left(\lambda_2 = \alpha E_{i}\right)$	$\gamma_2 = E_i$
(5)	αE _i	\$	Ej	αE _i	<	E _{j-1}	(Integral is the sum	of two
	αE i-1	>	E j	αE i-1	\$	Ej-1	double integrals	
							$\int \beta_1 = \alpha E_{i-1}$	$\delta_1 = E/\alpha$
							$\lambda_1 = E_j$	$\gamma_1 = E_i$
							$\beta_2 = E_{j-1}$	$\delta_2 = E_{i-1}$
							$\left(\lambda_2 = \alpha E_{i-1} \right)$	$\gamma_2 = E_i$

TABLE 1 (continued)

(6)
$$\alpha \mathbf{E}_{\mathbf{i}} < \mathbf{E}_{\mathbf{j}} \qquad \alpha \mathbf{E}_{\mathbf{i}} < \mathbf{E}_{\mathbf{j}-1}$$

 $\alpha \mathbf{E}_{\mathbf{i}-1} \leqslant \mathbf{E}_{\mathbf{j}} \qquad \alpha \mathbf{E}_{\mathbf{i}-1} < \mathbf{E}_{\mathbf{j}-1}$
 $\beta = \mathbf{E}_{\mathbf{j}-1} \qquad \delta = \mathbf{E}_{\mathbf{i}-1}$
 $\lambda = \mathbf{E}_{\mathbf{j}} \qquad \gamma = \mathbf{E}_{\mathbf{i}}$

There are two possible cases for in-group (j = i) scattering in which the limits of the integration are listed in Table 2 below.

For i = j(7) $\alpha E_{j-1} \leq E_j$ $\lambda = E_j$ $\gamma = E$

(8)
$$\alpha E_{j-1} > E_j$$

Integral is the sum of two double integrals

$$\beta_{1} = \alpha E_{j-1} \qquad \qquad \delta_{1} = E/\alpha$$

$$\lambda_{1} = E_{j} \qquad \qquad \gamma_{1} = E$$

$$\beta_{2} = E_{j-1} \qquad \qquad \delta_{2} = E_{j-1}$$

$$\lambda_{2} = \alpha E_{j-1} \qquad \qquad \gamma_{2} = E$$

An investigation of the rate of convergence of the integrals as a function of the number of intervals in the integration indicated that 60 intervals in both the inner and outer integrations were adequate. It must be noted, however, that the scheme is not quite adequate for the calculation of matrix elements of order greater than 1 at low energies at which the scattering is isotropic in the center of mass system; these elements are small, generally less than 10^{-3} , and are the results of subtractions of terms of the same order of magnitude. For this reason, when scattering to only one group below the source group occurs, a technique suggested by R. Grimesey is adopted.

For energies at which the scattering is isotropic in the center of mass system the integrals in Equation (2.33), when summed over all sink groups, may be evaluated analytically^[10], that is,

$$\sum_{\sigma_{j,i}^{0}} = \bar{\sigma}_{i}, \text{ the average scattering cross section in group i.}$$

$$\sum_{\sigma_{j,i}^{1}} = \bar{\mu}\bar{\sigma}_{i} = \frac{2}{3A}\bar{\sigma}_{i}$$

$$\sum_{\sigma_{j,i}^{2}} = \frac{\bar{\sigma}_{i}}{8} \quad [5-3A^{2} - \frac{3(A^{2}-1)}{4A} \ln\alpha]$$
(2.34)
$$\sum_{\sigma_{j,i}^{3}} \sigma_{j,i}^{3} = 0$$

The philosophy of the calculation for this special case is to divide the integration over the source group into 2 parts, one extending from E_{i-1} to E_i/α and the other from E_i/α to E_i . The latter bounds correspond to the generally small range which contributes to out-of-group scattering. Then the out-of-group term is calculated quite accurately as described above, and the in-group term is computed by use of relationships (2.34).

2.4.3 (n,2n) Reaction

For the GAM and ANISN libraries, the treatment of the (n,2n) reaction is the same as that of inelastic scattering, that is, $P_{n,2n}^{i \rightarrow j}$ is computed and the product

2-23

$$\sigma_{n,2n}^{\mathbf{i} \rightarrow \mathbf{j}} = \sigma_{n,2n}^{\mathbf{i}} * P_{n,2n}^{\mathbf{i} \rightarrow \mathbf{j}}$$

is formed. In the generation of ANISN data, the (n,2n) transfer cross section elements are added to the corresponding isotropic transfer cross sections.

2.5 SOURCE SPECTRUM

A source spectrum is required as part of a MUFT library and is present as MUFT 4 File 6 or as MUFT 5 File 7. The source is usually taken to be the secondary energy distribution of fission neutrons. Hence it is obtained from ENDF/B File 5, MT = 18. The current version, ETOG-1, will only process an energy distribution represented simply by, or as a combination of, a simple fission spectrum (LF = 6), a Maxwellian distribution (LF = 8), or a Watt spectrum (LF = 10). The other defined distributions, LF = 1, 2, 3, 4, 5, 7 and 9 are not accepted and an error message is printed by the program.

Using the representation specified in the ENDF/B library, ETOG-1 calculates the source at each point of a mesh covering an energy range from 20 Mev to the lowest energy in the multigroup structure. The mesh spacing is 1/64 lethargy unit from the lowest lethargy to 10.0 and 1/32 lethargy unit above 10.0. Thus the curve is represented by nearly 1000 points. The integral of this curve over each group is then computed and the results normalized to a unit source. For the source calculation, the top energy of the first group is taken as 20 Mev, hence the "upper tail" of the spectrum is included in group 1. Finally the source in each group is divided by the lethargy width of the group since MUFT requires the source to be in neutrons per lethargy unit. (For group 1 the correct lethargy width is used, not the width to 20 Mev.)
CHAPTER 3

EXECUTION INFORMATION AND PROCEDURES

This section is written so as to be reasonably self-contained in order to provide sufficient information to run problems with the program. The intent is that this section will provide the program user with a code running prescription. The other sections of the report should be consulted where further details are required.

3.1 SUMMARY DESCRIPTION

ETOG-1 is a program which processes information from the ENDF/B file and produces data decks required for the generation of libraries for the MUFT-4, MUFT-5, GAM-I, GAM-II and ANISN codes. The output of ETOG-1 consists of printed tabulations of the data in addition to cards punched in the proper format.

3.2 LIMITATIONS

Due to the finite storage capacity of the computer, certain limitations are necessary. It is felt that these restrictions are not presently confining. The program is constructed such that these limitations can be easily relaxed to accomodate future needs.

3.2.1 Restrictions Placed on Multigroups by ETOG-1

- 1) Maximum number of multigroups 99
- 2) Maximum number of resolved resonances 250
- 3) Maximum number of sets of Legendre coefficients per group 100
- 4) Maximum number of points allowed in the inner and outer integrals of the equation used to calculate the elements of the transfer matrix, $\sigma_{j,i}^{\ell}$ 100 (The code presently uses 60 intervals in both the inner and outer integrals.)

The following is a MUFT restriction and not an ETOG-1 limitation:

5) Maximum number of resonances per group - 8

3.2.2 Restrictions Placed on ENDF/B Data by ETOG-1

3.2.2.1 File 1 - General Information

- v representation by a polynomial: Maximum number of coefficients - 10.
- 2) v representation by a tabulation: Maximum number of tabulated points - 4000 Maximum number of interpolation ranges - 100

3.2.2.2 File 2 - Resonance Parameters

- 1) Maximum number of isotopes 6
- 2) Maximum number of & states 3
- 3) Maximum number of J states per l state 4
- Maximum number of points in the fission width tabulation 1000 / total number of states.

3.2.2.3 File 3 - Smooth Cross Sections

- 1) Maximum number of points in all File 3 tabulations 4000
- 2) Maximum number of interpolation ranges in all File 3 tabulations 100

3.2.2.4 File 4 - Secondary Angular Distributions

- 1) Maximum number of Legendre coefficients per energy value 24
- 2) Maximum number of points in the transformation matrix 1000
- 3) Maximum number of points in angular distribution tabulation 4000
- Maximum number of interpolation ranges for angular distribution tabulation - 100

3.2.2.5 File 5 - Secondary Energy Distribution

- Maximum number of points in the P(E) tabulation 1000 for LF = 1, 4, 5;
 2000 for LF = 7, 9; 3000 for LF = 2, 3, 6, 8, 10
- 2) Maximum number of interpolation ranges for P(E) 10 for LF = 1, 4, 5; 20 for LF = 7, 9; 30 for LF = 2, 3, 6, 8, 10

- 3) Maximum number of points in $g(E' \leftarrow E)$ tabulation 2000
- 4) Maximum number of interpolation ranges for E in obtaining $g(E' \leftarrow E) 10$
- 5) Maximum number of interpolation ranges for E' in obtaining $g(E' \leftarrow E) 10$
- 6) Maximum number of points in g(x) tabulation 2000 for LF = 4; 1000 for LF = 5
- 7) Maximum number of interpolation ranges for g(x) 20 for LF = 4; 10 for LF = 5
- 8) Maximum number of points in $\theta(E)$ tabulation 1000
- 9) Maximum number of interpolation ranges for $\theta(E) = 10$
- 3.2.3 Input Option Restrictions
- 1) Maximum number of points in input weighting function tabulation 4000
- Maximum number of interpolation ranges for the input weighting function tabulation - 100

3.3 INPUT FORMAT

For reasons of clarity, the discussion of the input format for GAM and ANISN is separated from that for MUFT. Duplicate descriptions appear where necessary.

In the following input lists the various items are described and the columns to be used for each item are designated. Standard FORTRAN input is used. For added convenience, the actual program formats and symbols are also listed. The various options are more fully described in the section following the input description.

3.3.1 Input Description for GAM-I, GAM-II, and ANISN

Item	Columns	Name	Description
1	1-5	INALL	0 = only card 1 is read
			1 = all input cards are read
2	6-10	MATNO	ENDF/B tape material number
3	11-15	MATID	Multigroup material identification number

Card No. 1 (515, 5X, 4E10.0)

Item	Columns	Name	Description
4	16-20	IREW	0 = ENDF/B tape is not rewound by the program
			1 = ENDF/B tape is rewound by the program
5	21-25	NAGDS	0 = ANISN transfer cross sections for all possible
			sink groups are punched for each source group
			$\neq 0$ = ANISN transfer cross sections for NAGDS sink
			groups are punched for each source group; i.e.,
			downscatter is truncated after NAGDS groups
			below the given group
6	31-40	XAJIN	The J (spin) value for which unresolved resonance
			parameter cards are desired (if possible)
7	41-50	EPSMIN	Minimum value of epsilon for combining two TAB1 functions
8	51-60	EPSMAX	Maximum value of epsilon for combining two TAB1 functions
9	61-70	SIGP	Potential scattering cross section (per absorber atom),
			of non-resonance isotopes for use in unresolved reson-
			ance treatment, i.e.,

$$SIGP = \left(\frac{\Sigma_p}{N} - 4\pi R^2\right)$$

where Σ_p is the macroscopic potential scattering cross section of the mixture, and N is the number density and $4\pi R^2$ is the potential scattering cross section of the resonance isotope.

Card	No. 2 (915	, 20X, I5)	
Item	Columns	Name	Description
1	1-5	IDTAP	ENDF/B tape identification number
2	6-10	MODE	1 = ENDF/B tape is binary mode (standard arrangement)
			3 = ENDF/B tape is BCD mode (standard arrangement)
3	11-15	MCODE	1 = multigroup code is GAM-I
			2 = multigroup code is GAM-II
4	16-20	MAXG	Number of multigroups
5	21-25	IEU	1 = standard GAM-I group structure
			2 = standard GAM-II group structure
			6 = input energy group structure
			7 = input lethargy group structure
6	26-30	IW	1 = weighting function is 1/E

Item	Columns	Name	Description
			2 = weighting function is constant
			3 = weighting function is input
			4 = weighting function is $1/E$ joined to a fission
			spectrum
7	31-35	ISPEC	0 = no spectrum calculation
			1 = spectrum calculation
8	36-40	IRES	0 = construct resonance parameter cards if possible
			3 = calculate equivalent smooth data for all
			resonance parameters.
9	41-45	IPUN	0 = no punched output
			1 = punched output
			2 = punched output in ANISN format
10	66-70	NDFB	Logical unit on which the ENDF/B library tape is
			mounted (if = 0, NDFB is set = 11)

Card No. 3 (optional)

This is actually a card set and is necessary only if IW = 3. The set consists of the desired weighting function as tabulated points plus the tables defining the interpolation schemes to be used with those points. The weighting function must be given in order of increasing energy. The format of the card set is a standard ENDF/B TAB1 record.

Card 3.1 (44X, 2111)

Item	Columns	Name	Description
1	45-55	Nl	Number of interpolation ranges
2	56-66	N2	Number of weighting function points
Card 3	.2	(6I11)	
Item	Columns	Name	Description
1	1-11	NBT(1)	Last point number in 1st interpolation range
2	12-22	JNT(1)	Interpolation scheme for 1st range
3	23-33	NBT(2)	Last point number in 2nd interpolation range

Item	Columns	Name	Description
4	34-44	JNT(2)	Interpolation scheme for 2nd range
•			
2*N1-1		NBT(N1)	Last point number in Nlth interpolation range
2*N1		JNT(N1)	Interpolation scheme for the Nlth range
Card 3	.3	(6E11.4)	
Item	Columns	Name	Description
1	1-11	X(1)	First energy point (< lowest energy in group structure)
2	12-22	Y(1)	Weight at this energy
• ,			
2*N2-1		X(N2)	Last energy point (> highest energy in group structure)
2*N2		Y(N2)	Weight at this energy

```
Card No. 4 (optional)
```

This is actually a card set and is necessary only if IEU = 6 or 7. The set defines the desired group structure. If IEU = 6, the set contains the multigroup energy breakpoints given in order of increasing energy. If IEU = 7, the set contains the multigroup lethargy breakpoints given in order of decreasing lethargy.

```
Card 4.1 - ... (6E11.4)
```

Item	Columns	Name	Descript	ion		
1	1-11	XX(1)	Energy o	r lethargy	of breakpoint	number 1
2	12-22	XX(2)	Energy o	r lethargy	of breakpoint	number 2
•						
MAXG	•	XX(MAXG)	Energy o	r lethargy	of breakpoint	number MAXG
MAXG+1		XX(MAXG+1)	Energy o	r lethargy	of breakpoint	number MAXG+1
NOTE:	If IEU :	= 6, XX is (denoted a	s EGR P; if	IEU = 7, XX is	s denoted as UGRP

3.3.2 Available Options for GAM and ANISN

3.3.2.1 Input (INALL)

This option is designed to facilitate stacked cases where several materials are to be processed in the same way. Complete input is necessary only for the first case (INALL = 1) and subsequent cases need only the first card (INALL = 0).

3.3.2.2 Tape Rewind (IREW)

This option provides running efficiency by permitting a single pass over the ENDF/B tape during the processing of a stack of cases. The first case should request a tape rewind (IREW = 1) but subsequent cases should not (IREW = 0).

3.3.2.3 Unresolved Resonance Parameter (XAJIN)

This option allows a particular set of unresolved resonance parameters to be output explicitly. All other sets of unresolved resonance parameters are converted to equivalent smooth data. The J (spin) value entered as input must correspond to a J state existing in the ENDF/B file. In some cases a J state equal to 0 exists; therefore caution must be used in setting J = 0.

3.3.2.4 Tape Mode (MODE)

The ENDF/B tape may be either in the binary (MODE = 1) or BCD (MODE = 3) mode. For compactness and running efficiency it is recommended that the binary mode be used where possible.

3.3.2.5 Multigroup Structure (IEU)

This option allows the standard 68 group GAM-I or 99 group GAM-II structure to be internally generated. Different structures may be entered as input in either energy or lethargy units.

3.3.2.6 Weighting Function (IW)

This option permits the weighting functions to be 1/E, constant, pointwise

input or a combination of 1/E joined to a U-235 fission spectrum. Other built-in functions can be added easily in the future.

3.3.2.7 Spectrum Calculation (ISPEC)

ETOG-1 will do either a general cross section deck calculation or a spectrum deck calculation. Both cannot be done simultaneously. Hence this option selects which calculation is to be done. If both are desired, two cases must be run (and the tape rewound before the second case).

3.3.2.8 Resolved Resonance Parameters (IRES)

This option allows resolved resonance parameters to be output explicitly for the GAM codes or permits equivalent smooth data to be generated from the resonance parameters.* In certain cases this option will be overridden internally (See Section 2.3).

3.3.2.9 Punched Cards (IPUN)

This option allows cards to be punched in the proper format if desired. If cards in the ANISN format are desired rather than the GAM-II format, IPUN is set equal to 2.*

3.3.3 Input Description for MUFT-4 and MUFT-5

Card No. 1 (415, 20X, 3E10.0)

Item	Columns	Name	Description
1	1-5	INALL	0 = only card number 1 is read
			1 = all input cards are read
2	6-10	MATNO	ENDF/B tape material number
3	11-15	MATID	Multigroup material identification number
4	16-20	IREW	0 = ENDF/B tape is not rewound by ETOG-1
			1 = ENDF/B tape is rewound by ETOG-1

^{*} In order to obtain library data for ANISN, ETOG-1 should be run to produce GAM-II library data; however, the IPUN option should be set to output ANISN data and the IRES option should be set to convert all resonance parameters to equivalent smooth capture and fission data.

Item	Columns	Name
Item	Columns	Name

Description

5	41-50	EPSMIN
6	51-60	EPSMAX
7	61-70	SIGP

Minimum value of epsilon for combining two TAB1 functions Maximum value of epsilon for combining two TAB1 functions Potential scattering cross section (per abosrber atom) of non-resonance isotopes for use in unresolved resonance treatment, i.e.,

$$SIGP = \left(\frac{\Sigma_p}{N} - 4\pi R^2\right)$$

where Σ_{p} is the macroscopic potential cross section of the mixture, and N is the number density and $4\pi R^{2}$ is the potential scattering cross section of the resonance isotope.

Card	No. 2 (915	, 20X, I5)	
Item	Columns	Name	Description
1	1-5	IDTAP	ENDF/B tape identification number
2	6-10	MODE	1 = ENDF/B tape is binary mode (standard arrangement)
			3 = ENDF/B tape is BCD mode (standard arrangement)
3	11-15	MCODE	4 = multigroup code is MUFT 4
			5 = multigroup code is MUFT 5
4	16-20	MAXG	Number of multigroups
5	21-25	IEU	4 = standard MUFT 54 group structure
			6 = input energy group structure
			7 = input lethargy group structure
6	26-30	IW	1 = weighting function is 1/E
			2 = weighting function is constant
			3 = weighting function is input
			4 = weighting function is 1/E joined to a fission
			spectrum
7	31-35	ISPEC	0 = no spectrum calculation
			1 = spectrum calculation
8	36-40	IRES	1 = add extra resonances to smooth cross section
			2 = use extra resonances to form a pseudo-resonance
9	41-45	IPUN	0 = no punched output
			1 = punched output

Item	Columns	Name	Description
10	66-70	NDFB	Logical unit on which the ENDF/B library tape is
			mounted (if = 0, NDFB is set = 11).
Card N	lo. 3 (715))	
Item	Columns	Name	Description
1	1-5	MINR	Lowest group number in resonance region
2	6-10	MAXI	Highest group number in inelastic region
3	11-15	ISGG	Greuling-Goertzel parameter
			l = calculated from ENDF/B tape
			3 = taken equal to 0.5* ∆u
4	16-20	IN2N	n-2n cross section
			1 = added to fission
			2 = half added to fission; half to inelastic
			3 = added to inelastic
5	21-25	INTO	Ingroup inelastic scattering
			<pre>1 = distributed over all inelastic groups</pre>
			2 = lumped into adjacent (lowest) group
			3 = added to smooth scattering
6	26-30	IEXT	Inelastic scattering out of defined matrix
			<pre>1 = distributed over all inelastic groups</pre>
			2 = lumped into adjacent (lowest) group
			3 = lumped into last (highest) group
7	31-35	IXSR	Resonance scattering
			0 = calculated from ENDF/B tape and added to smooth
			1 = taken as $4\pi R^2$ over ENDF/B defined resonance region
			2 = taken to be equal to the value in the first group
			above the resonance region

Card No. 4

This is actually a card set and is necessary only if IW = 3. The set consists of the desired weighting function as tabulated points plus the tables defining the interpolation shcemes to be used with those points. The weighting function

must be given in order of increasing energy. The format of the card set is a standard ENDF/B TAB1 record.

,

Card 4.1 (44X, 2111)

3
:5

Card 4.2 ... (6I11)

Item	Columns	Name	Description
1	1-11	NBT(1)	Last point number in 1st interpolation range
2	12-22	JNT(1)	Interpolation scheme for 1st range
3	23-33	NBT(2)	Last point number in 2nd interpolation range
4	34-44	JNT(2)	Interpolation scheme for 2nd range
•			
2*N1-1		NBT(N1)	Last point number in Nlth interpolation range
2*N1		JNT(N1)	Interpolation scheme for the Nlth range

Card 4.3 (6E11.4)

Item	Columns	Name	Description
1 2	1 - 11 12-22	X(1) Y(Ì)	First energy point (\leq lowest energy in group structure) Weight at this energy
•			
2*N2-1		X(N2)	Last energy point (> highest energy in group structure)
2*N2		Y(N2)	Weight at this energy

Card No. 5

This is actually a card set and is necessary only if IEU = 6 or 7. The set defines the desired group structure. If IEU = 6, the set contains the multigroup energy breakpoints given in order of increasing energy. If IEU = 7, the set contains the multigroup lethargy breakpoints given in order of decreasing lethargy.

Card 5.1 (6E11.4)

Item	Columns	Name	Description	
1	1-11	XX(1)	Inergy or lethar	gy of breakpoint number l
2	12-22	XX(2)	Energy or lethar	gy of breakpoint number 2
•				
MAXG		XX(MAXG)	Energy or lethar	gy of breakpoint number MAXG
MAXG+1		XX(MAXG+1)	Energy or lethar	gy breakpoint number MAXG+1

NOTE: If IEU = 6, XX is denoted as EGRP; if IEU = 7, XX is denoted as UGRP.

3.3.4 Available Options for MUFT

3.3.4.1 Input (INALL)

This option is designed to facilitate stacked cases where several materials are to be processed in the same way. Complete input is necessary only for the first case (INALL = 1) and subsequent cases need only the first card (INALL = 0).

3.3.4.2 Tape Rewind (IREW)

This option provides running efficiency by permitting a single pass over the ENDF/B tape during the processing of a stack of cases. The first case should request a tape rewind (IREW = 1) but subsequent cases should not (IREW = 0).

3.3.4.3 Tape Mode (MODE)

The ENDF/B tape may be either in the binary (MODE = 1) or BCD (MODE = 3) mode. For compactness and running efficiency it is recommended that the binary mode be used where possible.

3.3.4.4 Multigroup Structure (IEU)

This option permits the standard 54 group MUFT structure to be internally generated or allows the structure to be input in either energy or lethargy units.

3.3.4.5 Weighting Function (IW)

This option permits the weighting functions to be 1/E, constant, pointwise input or a combination of 1/E joined to a U-235 fission spectrum. Other built-in functions can be added easily in the future.

3.3.4.6 Spectrum Calculation (ISPEC)

ETOG-1 will do either a general cross section deck calculation or a spectrum deck calculation. Both cannot be done simultaneously. Hence this option selects which calculation is to be done. If both are desired, two cases must be run (and the tape rewound before the second case).

3.3.4.7 Resolved Resonance Treatment (IRES)

Since MUFT permits only eight resolved resonances per group, some provision must be made for those groups which have more than eight resolved resonances. Two choices are provided:

For IRES = 1: All m values are calculated. The eight resonances with the largest m values are kept and included in the MUFT resonance file. The other resonances are treated as effective smooth cross sections and added to the MUFT smooth cross section file according to the relationships

$$\Delta u * \sigma_{nc} = \frac{\pi}{2} m \left(\frac{\Gamma_{\gamma}}{\Gamma_{\gamma} + \Gamma_{f}} \right)$$

$$\Delta u * \sigma_{nf} = \frac{\pi}{2} m(\frac{\Gamma_{f}}{\Gamma_{\gamma} + \Gamma_{f}})$$

where $\Delta u = \text{group lethargy width and}$

 σ_{nc} = effective smooth capture cross section σ_{nf} = effective smooth fission cross section

Note: These relationships preserve the infinite dilute resonance integral values.

For IRES = 2: All m values are calculated. The seven resonances with the

largest m values are kept and included in the MUFT resonance file. A pseudo-resonance is constructed as the eighth and included in the MUFT resonance file. The m, r, and α factors for this pseudo-resonance are calculated as

$$m_8 = \sum m$$

$$r_8 = \left[\frac{m_8}{\sum(\frac{m}{\sqrt{r}})}\right]^2$$

$$\alpha_8^{m_8} = \sum m \left(\frac{\Gamma_f}{\Gamma_{\gamma} + \Gamma_f} \right)$$

where the sums are over all non-kept resonances.

3.3.4.8 Output Punch (IPUN)

This option permits the punching of the results on cards, if deisred. The output cards are in the correct format for direct use in constructing a MUFT-4 or MUFT-5 library.

3.3.4.9 Greuling-Goertzel Parameter (ISGG)

This option permits the Greuling-Goertzel parameter to be calculated directly from the ENDF/B tape or to be taken equal to half the group lethargy width.

3.3.4.10 (n,2n) Cross Section (IN2N)

Three choices are provided for the treatment of the (n,2n) reaction.

For IN2N = 1: The (n,2n) cross section is treated as fission (with a v value of 2) and added to the smooth fission; v is adjusted accordingly.

$$\sigma_{f} = \sigma_{f} + \sigma_{n,2n}$$

$$\nu = \frac{\nu * \sigma_{f} + 2.0 * \sigma_{n,2n}}{\sigma_{f} + \sigma_{n,2n}}$$

For IN2N = 2: The (n, 2n) reaction is treated as half fission (with a v value of 1) and half inelastic scattering.

$$\sigma_{f} = \sigma_{f} + 0.5 * \sigma_{n,2n}$$

$$\sigma_{in} = \sigma_{in} + 0.5 * \sigma_{n,2n}$$

$$v = \frac{v \star \sigma_{f} + 1.0 * 0.5 * \sigma_{n,2n}}{\sigma_{f} + 0.5 * \sigma_{n,2n}}$$

For IN2N = 3: The (n,2n) reaction is treated as inelastic scattering and added to the smooth inelastic value.

$$\sigma_{in} = \sigma_{in} + \sigma_{n,2n}$$

3.3.4.11 Ingroup Inelastic Scattering Cross Section (INTO)

Since MUFT does not permit ingroup inelastic scattering, three options are provided for its treatment.

For INTO = 1: The ingroup scatter is distributed over all defined sink groups in proportion to the inelastic scattering probabilities.

For INTO = 2: The ingroup scatter is lumped into the adjacent group (i.e., the first off-diagonal element).

For INTO = 3: The ingroup scatter is treated as elastic scattering by adding the ingroup scatter to the smooth elastic cross section and reducing the inelastic cross section accordingly.

3.3.4.12 Inelastic Scattering Out of Defined Matrix (IEXT)

The limits of the inelastic matrix are defined by MAXI. Since there may be some inelastic scatter to group numbers greater than MAXI, three options are provided for treating this case.

For IEXT = 1: The excess scatter is distributed over all defined sink groups

in proportion to the inelastic scattering probabilities.

For IEXT = 2: The excess scatter is lumped into the lowest group (i.e., the first off diagonal element).

For IEXT = 3: The excess scatter is lumped into the highest group (MAXI).

3.3.4.13 Resonance Scattering Option (IXSR)

MUFT has no explicit treatment of resonance scattering. Hence three options are provided:

- For IXSR = 0: The scattering cross section is used completely according to the ENDF/B representation.
- For IXSR = 1: For all groups within the ENDF/B-defined resonance region (both resolved and unresolved), the scattering cross section is taken as the potential scattering cross section $(4\pi R^2)$.
- For IXSR = 2: For all groups within the ENDF/B-defined resonance region (both resolved and unresolved), the scattering cross section is taken to be equal to the value in the first group above the resonance region.

3.3.5 Problem Stacking Procedure

ETOG-1 is designed to process sequentially any number of materials during one run. Normally the first material request (via Card No. 1) will be accompanied by all input data (set INALL = 1) and the ENDF/B tape will be rewound by the program (set IREW = 1). Subsequent material requests will only require Card No. 1 (set INALL = 0) and the ENDF/B tape will not be rewound by the program (set IREW = 0). Since the ENDF/B tape is not rewound, the material requests should be in ascending order according to ENDF/B material number (MATNO on Card No. 1). On subsequent material

requests additional input is necessary only if it differs from the initial material request. Likewise the tape should only be rewound if the same material is to be processed twice. (For example, if both a cross section deck and spectrum deck is required).

For maximum efficiency, however, the tape should not be rewound and two separate runs may be more efficient than a single run with frequent rewinds.

3.3.6 Sample Problem Input

The sample problem processes the information for ENDF/B material number 1051 (Reference 15) and produces a data deck for generation of a GAM-II library.

The 1051 data is that present on ENDF/B tape (identification number) 115 with several exceptions. Slight changes were made to File 3 and File 4 data to assure that $\mu(E)$ and the secondary elastic scattering angular distribution were isotropic at energies below 10 Kev. Card Nos. 681, 682, 683, 808, and 809 were corrected. One card was inserted after Card No. 682, and two were inserted after Card No. 811. Images of the corrected data cards appear in the table below.

0.0 0.0 0 0 1 40 1051 3 251 681 40 2 1051 3 251 682 1.0-5 2.81294-3 1.0-3 2.81294-3 1.0+3 2.81294-3 1051 3 251 682A 1.0+42.81294-3 5.0+4 3.73177-2 1.0+5 7.89562-2 1051 3 251 683 0.0 0.0 0 0 1 38 1051 4 2 808 38 2 1051 4 809 2 0.0 1.0E+40 0 1 0 1051 4 2 811A 0.0 0.0 0 0 0 0 1051 4 2 811B

Material 1051 is Pu-239 and was chosen because its resonance representation

shows several of the features of ETOG-1. The sample input sheet is given on the next page.

3.4 OUTPUT FORMAT

3.4.1 Printed Output

The output edit lists the material being processed, the ENDF/B tape being read, and the input options selected. Tables of groupwise energy and lethargy bounds are given, as well as File 1 data read from ENDF/B. If resonance parameters (resolved and unresolved) are listed in ENDF/B File 2, these quantities are printed; groupwise corrections to resonance cross sections, which depend on the library to be generated, follow. File 3 data for each reaction type processed is edited as groupwise cross sections. Before composite group cross sections are tabulated (excluding the contributions calculated from resonance parameters by the codes for which the library data are intended) infinitely dilute resonance integrals for parasitic capture and fission reactions are printed. Headings are self-explanatory.

If elastic scattering matrices are established, the results are printed next. In the energy range in which the scattering is isotropic in the center of mass system the sum of contributions to $\sigma_{j,i}^{\ell}$ from all sink groups j is compared with the expected values given by Equation (2.34), and a percentage error is computed. The results are normalized to these expected values. Note that these equations alone are used to determine the values of matrix elements for two-group scatter. These tables are followed by the inelastic scattering and (n,2n) matrices, if they exist. Both probability and cross section matrices, before and after renormalization, are

					- .		······				
										╄╋┯┯	
						· · · · ·		·····		11	
										╉╂╼──	
		—,								++-	
										<u></u>	
						······.				┼┼──	
							· · · ·			╁┼──	
										+	
			· · · · · · · · · · · · · · · · · · ·								•
	·····		······································		··					++	
·										\downarrow	
· · · · · · · · · · · · · · · · · · ·											
						·				+ $+$ $-$	
							<u> </u>			╋╋	.
11		1	0	0	•	2	00	E	E	51	1
	0700.0	1000	• •	<u>.</u>	0	· · · · · · · · · · · · · · · · · · ·		17	1001	+ + -	
1 0 + 3 0 · 1	0.0026	1000	· · ·	<u> </u>	V			10			
2/ 1/ 0/ 69 89 /9 99 99 99 79 19 79	8 48 20 21 25 23 24 22 28 24 23 9	43 44 42 46 42 4	21 17 07 68 88 1	33 34 32 36 3	58 50 30 31 35	53 54 52 52 51 5	18 16 50 51 55	11 91 51 41 81	ZL 11 OL 6 8 /	9 5 7	3
										╉╍╉╼╍╼	
											_
			- °ом °s п				bez - hd	1501	TERIAL	VW .	٥Ņ
							-			-	
DATE JAN 1970	<u> </u>		TZYJANA		1-5	485- dV1	FOR WC	ROBLEM	A JIAN	'S	Ξ
	WIND LONIZOS		73V 14144		NUT ANU	יאור בטארי	ביי ויי	00001107		910	EE
	CODING FORM	ЕОВТВАИ (NOIT 490	נפור רחפים	ra ia avii	OHOMIT23	n.	3SU0H	IONIJ

edited. Finally, images of cards punched for use by the library generators are printed.

3.4.2 Punched Card Output

3.4.2.1 Punched Card Format for MUFT-4

ETOG-1 produces punched cards for use in generating library data for MUFT-4 Files 3, 4, 5 and 6, as described in Reference 12. All floating point numbers are punched in excess-50 format; both fixed and floating point numbers have their signs in the column preceding the exponent. Only columns 1-72 of any card are used for data. Consequently, the ENDF/B material number is punched in columns 74-77 of each card. Cards for each material are sequenced in columns 78-80.

Column 2 of each card designates the file into which the information given is to be placed. Output cards for MUFT-4 File 3 contain microscopic cross sections, slowing down parameters, and fission product parameters in the following format:

Card No. 1

Columns	Variable Name	Information
4-5	MATID	Element number
7-8	NGR	Group number
9-16	XS	Total scattering cross section
17-24	XC	Smooth capture cross section
25-32	XIN	Total inelastic scattering cross
		section
33-40	XF	Smooth fission cross section

Columns	Variable Name(s)	Information
41-48	AGN	Isotropic Greuling-Goertzel parameter (age
		number)
49-56	XSMU	Anisotropic scattering cross section
57-64	GNU	Number of neutrons per fission
65-72	XSXI	Isotropic slowing down power

Card No. 1 is punched for each output energy group.

Card for M	JFT-4 File 4 contain	resonance parameters in the following format:
Card No. 2		
Columns	Variable Name(s)	Information
4-5	MATID	Element number
7-8	JRS	Number (\leq 8) of r-factors* on card, for
		group n
9-16	R	r _{n.1}
17-24	R	r n,2
•		
65-72	R	r _{n,JRS}
Card No. 3		
Columns	Variable Name(s)	Information
4 - 5	MATID	Element number
7-8	JRS	Number (\leq 8) of m-factors* on card, for
		group n (same as number of r-factors)
9-16	EM	n n.1
17-24	ЕМ	^m n,2
•		•
65-72	EM	^m _ TPC

^mn,JRS

* Defined in Section 2.3.1

Card Nos. 2 and 3 are repeated for each energy group n as specified in the input deck, i.e., for n = MINR to n = MAXG.

Card No. 4

Columns	Variable Name(s)	Information
4-5	MATID	Element number
7-8	JRS	Number (< 8) of α -factors* on card, for
		group n
9–16	ALFA	$\alpha_{n,1}$
17-24	ALFA	^α n,2
•		•
65-72	ALFA	^α n.JRS

If fission-to-absorption ratios exist, one Card No. 4 is punched for each group n as specified in the input deck, i.e., for n = MINR to n = MAXG.

Cards for MUFT-4 File 5 contain the inelastic scattering cross sections, σ_{in}^{i} , and the inelastic scattering probability matrix elements $P_{in}^{i \rightarrow j}$ in the following formats:

Card No. 5

Columns	Variable Name(s)	Information
4-5	MATID	Element number
7-8		Group number, i, of first σ_{in} on card
9-16	XIN(1)	σ ⁱ in
17-24	XIN(i+1)	σ ⁱ⁺¹ in
•		•
65-72	XIN(1+7)	σ ⁱ⁺⁷ in

Card (set) No. 5 is repeated until all output groups are specified.

* Defined in Section 2.3.1

where $P_{in}^{i \rightarrow j}$ is the probability of inelastic scattering from the ith group to the jth group.

Card (set) No. 6 is repeated for each of the specified groups, i.e., for j = 2 to j = MAXI.

Output cards for MUFT-4 File 6 contain source spectra in the following format: Card No. 7

Columns	Variable Name(s)	Information
4-5	MATID	Source spectrum number
9-16	TRUM(1)	x ₁
17-24	TRUM(2)	\bar{x}_2
•	•	•
65-72	TRUM(8)	x ₈
•		•

Card No. 7 is repeated until the fractional source, \bar{x}_{i} , in each output energy group i has been specified.

3.4.2.2 Punched Card Format for MUFT-5

ETOG-1 produces punched cards for use in generating library data for MUFT-5

Files 3, 4, 5, 6 and 7, as described in Reference 13. All data is punched in excess-0 format. The sign of the fraction appears only when it is negative and, in this case, the number of significant digits in the fraction is reduced by one. There is a maximum of eight data fields, 7 columns in length, per card; data fields are separated by commas. Only columns 9-80 are used for data. Consequently the ENDF/B material number is punched in columns 1-4 and the cards for each material are sequenced in columns 5-7.

Column 9 of each card designates the file into which the information given is to be placed. Output cards for MUFT-5 File 3 contain microscopic cross sections, slowing down parameters, and fission product parameters in the following formats:

Card No. 1

Columns	Variable Name(s)	Information
10-12	MATID	Element number
13-14	NGR	Group number
16	NSEQ	Sequence number (=1)
18-24	XS	Total scattering cross section
26-32	XC	Smooth capture cross section
34-40	XIN	Total inelastic scattering cross section
42-48	XF	Smooth fission cross section
50-56	XSMU	Anisotropic scattering cross section

Card No. 2	•	
Columns	Variable Name(s)	Information
10-12	MATID	Element number
13-14	NGR	Group number
16	NSEQ	Sequence number (=2)
18-24	GNU	Number of neutrons per fission
26-32	AGN	Isotropic Greuling-Goertzel parameter
		(age number)
34-40	XSXI	Isotropic slowing down power
42-48		Anisotropic Greuling-Goertzel parameter
		(not produced by ETOG-1)

Columns	Variable Name(s)	Information
50-56		Anisotropic slowing down power (not pro-
		duced by ETOG-1)

Card Nos. 1 and 2 are repeated for each output energy group.

Cards for MUFT-5 File 4 contain resonance absorption parameters in the following formats: Card No. 3 Columns Variable Name(s) Information 10-12 MATID Element number 13-14 NGR Group number Sequence number (=1) 16 NSEQ 18-24 R rn,1 26-32 R ^rn,2 ^rn,8 74-80 R

Card No. 4		
Columns	Variable Name(s)	Information
10-12	MATID	Element number
13-14	NGR	Group number
16	NSEQ	Sequence number (=2)
18-24	EM	^m n.1
26-32	EM	^m n,2
•		•
74-80	EM	^m n.8

Card Nos. 3 and 4 are repeated for each specified group n, i.e., for n = MINR to n = MAXG.

Cards for MUFT-5 File 5 contain fission-to-absorption ratios in the following format:

Card No. 5		
Columns	Variable Name(s)	Information
10-12	MATID	Element number
13-14	NGR	Group number
16	NSEQ	Sequence number (=0)
18-24	ALFA	$\alpha_{n,1}$
26-32	ALFA	^α n,2
•		•
74-80	ALFA	^α n.8

If fission-to-absorption ratios exist, one Card No. 5 is punched for each group n as specified in the input deck, i.e., for n = MINR to n = MAXG.

Cards for MUFT-5 File 6 contain the inelastic scattering cross sections σ_{in}^{i} and the inelastic scattering probability matrix elements, $P_{\text{in}}^{i \rightarrow j}$, in the following formats:

Card No. 6

Columns	Variable Name(s)	Information
10-12	MATID	Element number
13-14		Group number, i, of first σ_{in} on card
16	NSEQ	Sequence number (=0)
18-24	XIN(i)	σ^{i}_{in}
26-32	XIN(i+1)	σ ⁱ⁺¹ in
74-80	XIN(i+7)	σ ⁱ⁺⁷ in

Card (set) No. 6 is repeated until all output groups are specified.

Information
Element number
Group number, j, to which inelastic scat-
tering is occurring
Sequence number

Columns Information 18-24 $P_{in}^{1 \rightarrow j}$ 26-32 $P_{in}^{2 \rightarrow j}$ 74-80 $P_{in}^{8 \rightarrow j}$ where $P_{in}^{i \rightarrow j}$ is the probability of inelastic scattering from the ith group to the jth group.

The sequence numbers, starting with 1, increase by 1 on each succeeding card until all the elements of the j^{th} row of the matrix are punched. The sequence number starts at 1 again for the next row as Card (set) No. 7 is repeated for the next group specified, i.e., for j = 2 to j = MAXI.

Output cards for MUFT-5 File 7 contain source spectra in the following format: Card No. 8

Columns	Variable Name(s)	Information
10-12	MATID	Spectrum number
13-14		Group number, i of first $\overline{\mathbf{X}}$ on card
16	NSEQ	Sequence number (=0)
18-24	TRUM(1)	Ϋ́ι
26-32	TRUM(1+1)	x _{i+1}
•	•	
74-80	TRUM(1+7)	$\bar{\mathbf{x}}_{i+7}$

Card No. 8 is repeated until the fractional source, \bar{X}_{i} , in each output energy group i has been specified.

3.4.2.3 Punched Card Format for GAM-I* The cards produced by ETOG-1 for use in generating library information for

^{*} The format discussed above was derived from a private communication with G. Joanou and J. Dudek.

GAM-I contain data in columns 1-72 only. Consequently, the ENDF/B material number is punched in columns 73-76, and the cards for each material are sequenced in columns 77-80.

It should be noted that ETOG-1 does not produce Card Nos. 1, 2, 3, 4, 5 and 8 which are required by the GAM-I library updating (or generating) program. These cards are reserved for descriptive information which must be specified by the user when a particular library is generated. The remaining cards are punched in the following formats:

Card Nos. 6 and 7 are punched only when a fission spectrum calculation is performed by ETOG-1; in this case, the only cards in the output deck are Card Nos. 6 and 7.

Information

Card No. 6

Columns

1-72

Alphanumeric information giving ENDF/B material number and tape number from which microscopic data was taken.

Card No. 7			
Columns	Variable Name(s)	Information	
1-12	TRUM(1)	x ₁	
13-24	TRUM(2)	\bar{x}_2^-	
		•	
61-72	TRUM(6)	x ₆	
•		•	
Card No. 7	is repeated until	the fractional so	c

Card No. 7 is repeated until the fractional source \bar{X}_i in each output energy group i has been specified.

Card No. 9InformationColumnsVariable NameInformation1-12MATIDElement number13-24NAOC1 = an addition will be made to the GAM-I

Columns		Information
		library (ETOG-1 always punches 1)
		2 = a change will be made to the GAM-I
		library
		·
Card No. 10		
Columns	Variable Name	Information
1-24	ANID	Alphanumeric information giving ENDF/B
		material number and tape number from which
		microscopic data was taken
Card No. 11		
Columns	Variable Name	Information
1-12	MATID	Element number
13-24	LTOT	Total number of entries in P_0 , P_1 , inelas-
		tic and (n,2n) matrices, and in the σ_{f} , σ_{a} ,
		and v tables
25-36	IWA	0 = no absorption cross sections appear
		1 = absorption cross sections appear
37-48	IWF	0 = no fission cross sections appear
		1 = fission cross sections appear
49-60	IWR	0 = no resonance parameters appear
		1 = only absorption resonance parameters
		appear
	•	2 = absorption and fission resonance para-
		meters appear
Card No. 12		
Columns	Variable Name	Information
1-12	LOLIN	Total number of elements in inelastic matrix
13-24	LAIN	Number of source groups from which inelastic
		scattering occurs
25-36	LDIN	Maximum number of sink groups into which
		inelastic downscattering occurs.

Card No. 13		
Columns	Variable Name	Information
1-12	LOL2N	Total number of elements in (n,2n) matrix
13-24	LA2N	Number of source groups from which (n,2n)
		transfer occurs
25-36	LD2N	Maximum number of sink groups into which
		(n,2n) transfer occurs
Card No. 14		
Columns	Variable Name	Information
1-12	LOLPO	Total number of elements in P matrix
13-24	LAPO	Number of source groups from which P
		elastic scattering occurs
25-36	LDPO	Maximum number of sink groups into which P
		downscattering occurs
Card No. 15		
Columns	Variable Name	Information
1-12	LOLP1	Total number of elements in P ₁ matrix
13-24	LAP1	Number of source groups from which P
		elastic scattering occurs
25-36	LDP1	Maximum number of sink groups in which P ₁
		downscattering occurs
Card No. 16	(Exists in output	t deck only if IWA = 1)
Columns	Variable Name	Information
1-12	XABS(1)	$\sigma_{\mathbf{a}}^{\mathbf{L}}$
13-24	XABS(2)	σ^2
•		•
•		
61-72	XABS(6)	σ a
•		•
• Come M 14	4	· i
Card No. 16	is repeated until	the absorption cross section, σ_a , is specified
ior all grou	ups 1.	

Card No. 17 (Exists in output deck only if IWF = 1) Information Columns Variable Name $^{\sigma}_{\rm f}$ 1-12 XFIS(1) σ_{f}^{2} 13-24 XFIS(2) $_{\sigma}^{6}_{f}$ 61-72 XFIS(6) Card No. 17 is repeated until the fission cross section σ_{f}^{i} is specified for all groups i. Card No. 18 (Exists in output deck only if IWF = 1) Variable Name Information Columns 1-12 XNU(1) ν_1 XNU(2)13 - 24^ν2 ^ν6 61-72 XNU(6)Card No. 18 is repeated until the average number of neutrons per fission, $\boldsymbol{\nu}_{i},$ is specified for all groups i. Card No. 19 (Exists in output deck only if LOLIN > 0) Information Columns σ^{1→1} in 1-12 _σ1→2 13-24 in 1→6 61-72 in where $\sigma_{\text{in}}^{\textbf{i} \rightarrow \textbf{j}}$ represents the cross section for inelastic scattering from group i to group j. Card (set) No. 19 is repeated until the ingroup cross section and LDIN sink group cross sections are specified for each of the LAIN source groups.*

Card No. 20 (Exists in output deck only if LOL2N > 0) Columns Information 1-12 $\sigma_{n,2n}^{1 \rightarrow 1}$ 13-24 $\sigma_{n,2n}^{1 \rightarrow 2}$ \vdots 61-72 $\sigma_{n,2n}^{1 \rightarrow 6}$ \vdots

where $\sigma_{n,2n}^{i \rightarrow j}$ represents the (n,2n) cross section for transfer from group i to group j. Card (set) No. 20 is repeated until the ingroup cross section and LD2N sink group cross sections are specified for each of the LA2N source groups.

Card (Set) No. 21 (Exists in output deck only if LOLPO - LOLP1 > 0)

Card No. 21.1 Columns Information 13-24 $\sigma_{1,1}^0$ 25-36 $\sigma_{1,1}^1$: :

^{*} In the case of k macroscopic output energy groups, note that transfer in the inelastic, (n,2n), and P elastic matrices is terminated at sink group k+l for every source group for which i+j > k+l.

Card No. 21.2 Information Columns σ⁰2,1 13-24 σ¹ 2,1 25-36 Card No. 21.N Information Columns 0 σ⁰N,1 13-24 σ¹ N,1 25-36 where N \leq K+l and K is the number of macroscopic energy groups. Card No. 21.N+1 Information Columns $\sigma_{2,2}^{0}$ 13-24 $\sigma^{1}_{2,2}$ 25-36 where $\sigma_{j,i}^{k}$ represents the element of the elastic scattering matrix, of order l, for transfer from group i to group j. Card (Set) No. 21 is repeated until the ingroup elements and LDPO(=LDP1) sink group elements are specified for each of the LAPO(=LAP1) source groups. Card No. 22 (Exists in output deck only if IWR > 0) Columns Variable Name(s) Information Number of resolved resonances 1-12 NRES Atomic mass number 13-24 IAMAS Cut-off energy separating resolved and 25-36 ECUT unresolved regions 37-48 DLEV Unresolved energy level spacing

Columns	Variable Name(s)	Information
49-60	GNOBAR	$< \Gamma_n^0$, average unresolved neutron width
61-72	GGBAR	$<\Gamma_{\gamma}>$, average unresolved capture width

Card No. 23 (Exists in output deck only if IWR > 0)

Columns	Variable Name(s)	Information
1-12	ER	Energy, E_o , of I th resolved resonance
13-24	GAMN	Γ_n , neutron width of this resonance
25-36	GAMF	Γ_{γ} , capture width of this resonance
37-48	NROIM	1 = this resonance is treated by narrow
		resonance approximation
		2 = this resonance is treated by infinite

mass approximation

Card No. 23 is repeated for each resolved resonance.

If fission parameters exist, Card No. 22 and (Set) No. 23 are repeated for fission, i.e.,

Card No. 24 (Exists in output deck only if IWR = 2)

Columns	Variable Name(s)	Information
1-12	NRES	Number of resolved resonances
13-24	IAMAS	Atomic mass number
25-36	ECUT	Cut-off energy separating resolved and
		unresolved regions
37-48	DLEV	Unresolved energy level spacing
49–60	GNOBAR	$\langle \Gamma_n^0 \rangle$, average unresolved scattering width
61-72	GAFBAR	${}^{<\Gamma}f^{>}$, average unresolved fission width

Card No. 25 (Exists in output deck only if IWR = 2)ColumnsVariable Name(s)Information1-12EREnergy, E_o , of Ith resolved resonance13-24GAMN Γ_n , neutron width of this resonance25-36GAMF Γ_f , fission width of this resonance

Columns Variable Name(s) Information 37-48 NROIM 1 = this resonance is treated by narrow resonance approximation 2 = this resonance is treated by infinite mass approximation

Card No. 25 is repeated for each resolved resonance.

3.4.2.4 Punched Card Format for GAM-II

ETOG-1 produces punched cards for use in generating library data for GAM-II as described in Reference 2. Only columns 1-72 of any card are used for data. Consequently, the ENDF/B material number is punched in columns 73-76, and the cards for each material are sequenced in columns 77-80.

It must be noted that ETOG-1 does not produce the first eight cards required by the GAM-II library updating (or generating) program. The remaining cards are punched in the following formats.

Card No. 9

Columns	Variable Name(s)	Information
1-72	ANID	Alphanumeric information giving ENDF/B
		material number and tape number from which
		microscopic data was taken.

Card No. 10

Columns	Variable Name(s)	Information
1-12	MATID	Element number
13-24	NRES	Number of resolved resonances
25-36	NUNR	Number of unresolved resonances (NUNR must
		equal the number of energies at which the
		unresolved resonance functions $\overline{\mathbf{J}}$ are to be
		calculated (See Card No. 14)

If NRES = 0, cards 11-14 do not appear in the output deck.

Card No. 11		
Columns	Variable Name(s)	Information
1-12	AMAS	Atomic mass number
13-24	XPOTR	Potential scattering cross section (per
		absorber atom) of the absorber
25-36	GBAR	<g>, average statistical spin factor in</g>
		unresolved range
37-48	NRES	Number of resolved resonances
49-60	SFACT	S-factor to determine upper limit of inte-
		gration yielding absorption resonance integral
		(ETOG-1 arbitrarily sets SFACT = 5.0)
61-72	DLEV	$\ensuremath{<\!\text{D}\!\!>}$, average energy level spacing in unresolved
		range

Card No. 12		
Columns	Variable Name(s)	Information
1-12	GOBAR	$< \Gamma_n^0 >$, average unresolved neutron width
13-24	GGBAR	$<\Gamma_{\gamma}>$, average unresolved capture width
25-36	GAFBAR	< $\Gamma_{f}^{'}$, average unresolved fission width

Card No. 13	
Columns Variable Na	me(s) Information
1–12 ER	Energy, E_{o} , of I th resolved resonance
13-24 GAMN	Γ_n , neutron width for this resonance
25-36 GAMG	Γ_{γ} , capture width for this resonance
37-48 GAMF	$\Gamma_{f}^{'}$, fission width for this resonance
49–60 RFACT	r-factor to determine mesh size for numerical
	integration yielding collision density (ETOG-1
	arbitrarily sets RFACT = 0.0)
61-72 WEAG	g, statistical spin factor for this resonance
Card No. 13 is repeated	for each resolved resonance.

If NUNR = 0, Card No. 14 does not appear in the output deck.

.
Card No. 14		
Columns	Variable Name(s)	Information
1-12	EFORJ	Energies at which the unresolved resonance
13-24	EFORJ	functions \overline{J} are to be calculated. The
•	•	first and last energies are the lowest and
•	•	highest energies, respectively, in the
		unresolved range as defined in $ENDF/B$ File 2
		for the isotope. The intermediate energies
		are the GAM-II fine group boundaries which
		fall between these limits.

Card No. 14 is repeated until all such energies are specified.

Card (Set) Nos. 15, 16, 17, 18, and 19 are not produced by ETOG-1. These cards are needed only when the tape being generated is updated from an existing library tape and consequently, must be supplied by the user.

Card Nos. 20 and 21 are punched only when a fission spectrum calculation is performed by ETOG-1. In this case the only cards in the output deck are Card Nos. 20 and 21.

Card No. 20 Columns 1-72

Information Alphanumeric information giving ENDF/B material number and tape number from which microscopic data was taken.

Card No.	21	
Columns	Variable Name(s)	Information
1-12	TRUM(1)	$\overline{\mathbf{x}}_{1}$
13-24	TRUM(2)	\bar{x}_2^-
•		•
61-72	TRUM(6)	x,

Card No. 21 is repeated until the fractional source, \bar{X}_{i} , for each output energy group i has been specified.

Card No. 22		
Columns	Variable Name(s)	Information
1-72	ANID	Alphanumeric information giving ENDF/B
		material number and tape number from
		which microscopic data was taken.
Card No. 23		
Columns	Variable Name(s)	Information
1-12	MATID	Element number
13-24	NRES	Number of resolved resonances
25-36	NUNR	Number of unresolved resonances
37-48	LOLP	Total number of elements in P_{ℓ} matrix
		(All P _l matrices are of equal size)
49-60	LAP	Number of source groups from which P_{ℓ}
		elastic scattering occurs.
61-72	LDP	Maximum number of groups (including in-
		group) to which ${\tt P}_{\mbox{$\ell$}}$ downscattering occurs.

Card No. 24

Columns	Variable Name(s)	Information
1-12	LOLIN	Total number of elements in inelastic matrix
13-24	LAIN	Number of source groups from which inelas-
		tic scattering occurs
25-36	LDIN	Maximum number of groups (including in-
	· · · · · · · · · · · · · · · · · · ·	group) to which inelastic downscattering
		occurs
37-48	LOL2N	Total number of elements in (n,2n) matrix
49-60	LA2N	Number of source groups from which (n,2n)
		transfer occurs
61 - 72	LD2N	Maximum number of groups (including in-group)
		to which (n,2n) transfer occurs.

Card No. 25									
Columns	Variable Name(s)	Ir	nfo	ormat:	ion				
1-12	IWF	0	=	this	nuclide	is	not	fissionable	е
		1	=	this	nuclide	is	fise	sionable	

Columns	Variable Name(s)	Information
13-24	NUM1D	The number of one-dimensional arrays
		present for the nuclide (e.g., the
		parasitic absorption, fission, (n,γ) ,
		(n,p) cross section and v arrays)
25-36	LOL	Total number of elements in transfer
		matrix, i.e., total number of elements
		in the composite matrix formed from the
		sum of the P $_{\varrho}$, inelastic, and (n,2n)
		matrices
37-48	LA	Maximum number of source groups from
		which transfer can occur, i.e., maximum
		of LAP, LAIN, and LA2N
49-60	LD	Maximum number of groups (including
		in-group) to which transfer can occur,
		i.e., maximum of LDP, LDIN, and LD2N
61-72	LTOT	Number of records for this nuclide*
Card No. 26		
Column	Variable Name(s)	Information
1-12	AMAS	Atomic mass number
Card No. 27		
Columns		Information
1-22		Identification for the one-dimensional
	٢	array which is punched on Card No. 28.
Card No. 28		
Columns		Information
1-12		lst element of the one-dimensional array

^{*} Number of records = 1+1 (if any one-dimensional array exists) +6 (if P matrices exist) +1 (if inelastic matrix exists) +1 (if (n,2n) matrix exists) +1 (if any of the P , inelastic or (n,2n) matrices exist).

Information Columns 2nd element of the one-dimensional array 13-24 : Card No. 28 is repeated until all elements of the one-dimensional array are specified. Card No. 27 and Card (Set) No. 28 are repeated for each of the one-dimensional arrays which is to be punched (NUM1D). If LOLP \neq 0, Card (Set) Nos. 29-32 are punched for the P₀, P₁, P₂ and P₃ matrices. Card (Set) No. 29 Card 29.1 Information Columns σ⁰1,1 1-12 σ⁰2,1 13 - 24: σ⁰6,1 61-72 : Card 29.N Information Columns 1-12 13 - 24σ⁰N,1 where N \leq K + 1 and K is the number of macroscopic energy groups.

Card 29.N+1 Information Columns σ⁰1,2 1-12 $\sigma^{0}_{2,2}$ 13 - 24where $\sigma_{i,i}^{\lambda}$ represents the element of the elastic scattering matrix of order ℓ for transfer from group i to group j. Card (Set) No. 29 is repeated until LDP sink group elements are specified for each of the LAP source groups.* The format of Card (Set) Nos. 30, 31 and 32 is the same as that of Card (Set) No. 29, where $\sigma_{j,i}^0$ is replaced by $\sigma_{j,i}^1$, $\sigma_{j,i}^2$, and $\sigma_{j,i}^3$ respectively. Card (Set) No. 33 (Exists in the output deck only if LOLIN > 0) Information Columns __1→1 1-12 in 1→2 13 - 24in 1→6 61-72 in where $\sigma_{in}^{i \rightarrow j}$ represents the cross section for inelastic scattering from group i to group j. Card (Set) No. 33 is repeated until LDIN sink group cross sections are specified for each of the LAIN source groups. Card No. 34 (Exists in the output deck only if LOL2N > 0) Information Columns σ^{1→1} σn,2n 1 - 12

^{*} In the case of k macroscopic output energy groups note that transfer in the inelastic, (n,2n) and P_g elastic matrices is terminated at sink group k + 1 for every source group for which i + j > k + 1.

ColumnsInformation13-24 $\sigma_{n,2n}^{1 \rightarrow 2}$ \vdots \vdots 61-72 $\sigma_{n,2n}^{1 \rightarrow 6}$ \vdots \vdots

where $\sigma_{n,2n}^{i \rightarrow j}$ represents the (n,2n) cross section for transfer from group i to group j. Card (Set) No. 34 is repeated until LD2N sink group cross sections are specified for each of the LA2N source groups.

3.4.2.5 Punched Card Format for ANISN

Punched cards containing multigroup cross sections as required by ANISN (described in Reference 3) are produced by ETOG-1. Only columns 1-72 of any card are used for data; consequently, the ENDF/B material number is punched in columns 73-76 and the cards for each material are sequenced in columns 77-80.

ANISN expects a table of cross sections for each input energy group. Each output data card consists of six twelve-column data fields where each data field consists of three subfields of two, one, and nine columns respectively. The contents of the first two subfields define the operation to be performed on the data contained in the third subfield. ETOG-1 uses only the repeat option; i.e., the first subfield will contain an R which signifies that the data in the third subfield is to be entered in the next N locations of the cross section table. (ETOG-1 applies the repeat operation only to the number 0.0). Thus the location of a particular cross section on an output data card depends upon the number and location of zeros in the table.

For each energy group, j, the following cross sections are produced in the designated locations.

Location	Variable(s)	Information
1	XNGAM	(n,γ) cross section for group j

Location	Variable(s)	Information
2	XNALP	(n, α) cross section for group j
3	XC	Parasitic capture cross section for group j
4	XFIS	Fission cross section for group j
5	XABS	Absorption cross section for group j
6	XNU	νσ _f for group j
7	XTOT	Total cross section for group j
8		σ ^l j,j
9		$\sigma_{j,j-1}^{\ell}$
10		σ ^ℓ j,j-2
11		
•		
N		σ ^l j,j-NAGDS

where $\sigma_{j,i}^{\ell}$ represents the element of the composite transfer matrix, of order ℓ , for transfer from group i to group j. Cross sections of a given order ℓ , starting with $\ell=0$, are punched for all energy groups j, one group at a time.

The (n,γ) , (n,α) , parasitic capture, fission and absorption cross sections as well as $v\sigma_f$ are set to zero for higher order cross sections, i.e., for $\ell = 1, 2, \text{ and } 3.$

Note that ETOG-1 does not produce any upscatter components and the maximum order of scatter is P₃. As indicated in the concluding section of this report (Chapter 6), work must be done on the present version of subroutine TRANSFER in the code to produce reliable higher order scattering components.

3.4.3 Sample Problem Output

The sample problem, described in Section 3.3.6, was run on a CDC-6600 computer using the SCOPE 3.1 operating system. Selected pages of the printed output appear in the following pages in order to indicate to the user the format of the available output.

*** E106 ***

THE RESUNANCE SCATTERING IS CALCULATED FROM ENDER AND ADDED TO SMOOTH 115 21. HAS BEEN CREATED FROM ENDF/B MATERIAL 1051 ON TAPE THE DECK HAS REEN CREATED USING THE ETUG NPTIONS LISTEN BELOW. THE STANDARD 99 GROUP GAM-2 STRUCTURE IS GENERATED INTERNALLY WEIGHTING FUNCTION IS 1/F JOINED TO A FISSION SPECTRUM RESUNANCE PAHAMETER CARDS ARE CONSTRUCTED IF POSSIBLE GAM 2 FILE

*** 2()13 ***

8.250 8.500 4.400 5.000 7.500 7.750 8.750 9.250 9.750 3.600 **3.800** 3.900 4.300 750 5.250 5.750 6.000 6.250 6.750 7.000 7.250 500 004°E 3.300 3.500 4.000 4.200 5.500 6.500 8.000 9.000 000.0 10.250 3.700 4.100 4.500 RANGE • • LOWEST RESONANCE ETHARGY . 1 1 3.200 007.E 9.250 3,300 4.100 4.750 9.500 4.500 7.000 R.750 9.750 000000 3-400 3.500 3.800 4.000 4.200 5.000 5.750 6.000 6.250 6.500 6.750 7.250 7.500 7.750 R.000 A.250 8.500 9.000 3.600 3.900 4.300 4.400 5.250 5.500 1 1 - - GROUP INFORMATION - -.6573E+05 9.6112F+02 3.01975+05 2.4724E+05 2+2371E+05 2-02425+05 +8316E+05 -4996E+05 1.2277E+05 1.1109E+05 8.6417E+04 3.1A28F+04 2.4788E+04 1.1709E+04 9.1188E+03 7.1017E+03 5.530AE+03 4.3074E+03 3.3546E+03 2+6126E+03 2.0347E+03 1.2341E+03 . 4 4 5 2 E + 0 2 4.5400F+02 4.0762E+05 3.6883E+05 3.3373E+05 2.7324E+05 1.35695+05 6.7379E+04 5.2475E+04 4.0868E+04 1-9305E+04 1 • 5 n 3 4 E + n 4 1.5846E+03 5.8295F+02 HIGHEST INELASTIC ENERGY HANGE ŧ 1 1 ŧ 1 σ 0 3.3373E+05 2.0347E+n3 -5846F+n3 .2341E+n3 5.4295E+02 3.6883E+05 3.n197E+n5 2.7324F+05 2.4724F+n5 2-2371E+05 2.0242E+05 . H316F+05 . 4573E+05 . 4996E+05 . 3569E+05 .2277E+05 ..)109E+05 6.7379E+n4 5.2475E+04 2.4 7AAF+04 40+32060* • F034E+14 9.]laaE+n3 7.1017E+03 5.5308E+03 E++3420E++ 3.3546F+13 2.61266+13 9. ×112E+n2 7.4852E+12 4 . 5400F + 02 3.53586+02 8.4517E+04 4.0868F+04 3.1828E+14 1.17n9E+n4 1 NUMBER ŧ GROUP 44 a 0 ີ ທີ່ ម ។ ម ម 5 ~ 3 ئ 62 6 9 £9 an 99 Ś 14 C 60 49 66 67 69 202 4 Ŧ 44 S 5 2 60 MUI LIGHOUP STRUCTURE -.300 --200 006. . 700 .100 002.6 ×0. 002. .500 . 100 - 900 ۱ LFTHARGY RANGE .100 00c . 00ۥ • 4 1) 0 .500 • 600 . AU0 .900 . 400 001.4 - 100 0.00.00 • 0 0 0 006. • 400 2.000 006 • 2 2.400 005.2 009.2 2.700 2.800 2.900 0 0 0 ° C 3.100 1 AULTIGROUP MATERIAL 2 1 . -400 -400 .600 008-1 -.300 --200 • 20° 006. .000 006-2.100 2.200 2.300 009 .700 800 -200 90E. .700 2.500 .200 -400 .100 -500 2.600 001.0 006.4 -100 000.0 000.0 2.400 2.800 .100 3.000 • 30 £ 3.100 GAM-2 CODE 6.0653E+06 6.7206E+05 9.14845+06 A.1873E+06 7-4082E+06 6.7032F+06 5-4881E+06 4.9659F+06 4.4933E+06 • F 788E+06 3.3287E+06 2.7253E+06 2.4660F+06 1-8269E+06 • F530E+06 •2246E+06 1080€+06 • 0026E+06 9.0718E+05 7-4274E+05 4 . n657E+06 3.0119E+06 2+2313E+06 2.rl90E+06 1+4957E+06 -3534E+06 H-2085E+05 6.0810E+05 5.50236+05 4-9787E+05 1.3499E+07 1.2214F+07 1.1052E+07 1.00005+07 4.5049E+05 1.4918E+07 ENFHGY RANGE MATFRIAL NO 1051 F ŧ F f F 1 8 ŧ 8.1473E+05 1.4082E+06 6.0653E+00 5.4HB1E+06 4.0657E+06 •8268E+06 .6530E+06 .1080E+06 -3499E+07 1.2214E+07 1.1052E+07 1.0000E+07 9.0484E+05 6.7032E+06 4.9659E+06 4.4433F+06 3.6788F+06 3.3287E+06 3.0119E+06 2.1253E+06 2.4660E+06 2.2313F+06 2.0190F+06 .4957E+00 •3534E+(16 •2246E+06 0026E+06 9.0718E+05 8.2085F+05 1+4274E+05 6.7206E+05 6+0H10E+05 .9787E+05 4 . 5 . 49E + 65 4.0762F.+05 5.5r23E+05 - ENDEZA -TAPE NO. 115 r GROUP **N m** 40.01 ασ 2 2 n n n n 4 50 50 α σ 3 3 0 - C C C 44.4

*** ETOr ***

.

*** ETOC ***

,

WEIGHIING FUNCTION IS GENERATED AS FOLLOWS

	× .		WE IGHIING Interpola	FUNCTION TION TABLE			
47.5193F+04 77.4022E+04 12.4077E+05 30.3494E+05 47.4586E+05 74.1917E+05 11.5962E+05	35.5499F+01 45.7904F+01 50.8874E+01 30.3977E+01 12.3968F+01 23.7317E+00 23.7317E+00 13.9397F+01	54.5506E+04 86.1913E+04 17.9575E+05 33.7290E+05 52.7392E+05 82.4427E+05 12.8854E+05	38.6172E+01 47.5882E+01 47.6097E+01 25.9057E+01 90.9844E+00 13.7923E+00 13.7923E+00 56.2615E+02	61.5819E+04 97.1777E+04 20.2106E+05 37.9535E+05 59.3400E+05 92.7564E+05 92.7564E+05 14.4970E+05	41.7521F+01 49.2177F+01 44.8913F+01 20.9181E+01 60.9536F+01 69.0189F-01 17.8487F-02	68.61375+04 11.09115+05 26.94985+05 42.17805+05 65.94075+05 10.30705+05 15.06745+05	43.4923E+01 50.4286E+01 35.2262E+01 16.6815E+01 40.3288E+01 40.3288E+00 34.1111E=01 11.8507E=02
iu Res V		, C	, , , , , ,		1		
12	120	IHN		1 BN	JNT	NBT	UNT
	ር ዋ	4 4	un -	14	m	19	~

٠

3-47

.

```
THE (TAPE) DESCRIPTION OF MATERIAL 1051 TS -
 PLUTONIUM 239. FNDF/H. UCTOAFR. 1966.
                        DESCRIPTION OF EVALUATION AND SOURCES
PLUTONIUM-239
               ENDEZH
    FOUND IN GEAP-5272, EVALUATION AND COMPILATION OF PU-234
    CRUSS SECTION DATA FOR ENDERB FILES. BY P. GREERLER, P. ALINE.
    B. A. HUTCHINS, DECEMBER, 1966
               GENERAL INFORMATION
MF=1
    ATOMIC MASS = 237.00 RASED ON NEUTRON MASS OF 1.008665 AMD-
      HEF 1
  MT=452, NU = 2.87 + 0.135E(MEV) - THERMAL VALUE FROM REF 2-
    SLUPE HASED ON REF 3.4.
  MT=453. RADIOACTIVE DECAY DATA FROM REF 1
               RESONANCE PARAMETERS
MF=2
  NT=151. RESOLVED PARAMETERS TO 300 EV FOR 89 LEVELS -MODIFIED
    FROM COMPILATION IN REF 5 USING DATA FROM REF 6.7.
    UNRESOLVED S-WAVE RESONANCE PARAMETERS WITH SPIN DEPENDENT
    FISSION WIDTHS FROM 300EV TO 100 KEV. STATISTICAL PARAMETERS
    BASED ON SCHMIDT, REF 5.
     SPIN INDEPENDENT SCATTERING RADIUS GIVES 10.3 B POT SCAT.
     RESONANCE PARAMETERS MUST BE USED FOR FISSION. CAPTURE. TOTAL.
     AND ELASTIC SCATTERING FROM 1EV TO 100 KEV
MF=3
               SMOCTH DATA
   THERMAL NEUTRON DATA -- 0.001 TO 1.0 EV
    MT=1,2,18,27,102 - ENERGY DEPENDENCE HASED ON EVALUATION BY
       LEONARD, REF 8- 2200 M/SEC NORMALIZATION OF WESTCOTT.
       REF 9 - ALL CROSS SECTION CONTRIBUTIONS INCLUDED IN SMOOTH
       DATA.
     MT=4,16.17.251.252.253 - VALUES BELOW 1 EV SET AT ZERO.
   EPI-THERMAL AND FAST NEUTRON PATA -- 1.9 EV TO 15 MEV
     MI=1 TOTAL VALUES EQUAL SUM OF PARTIAL CROSS SECTIONS
     MI=2 FLASITC SCATTERING VALUES FROM AT. REF 10 - RESONANCE
       AND POTENTIAL SCATTERING NOT INCLUDED FROM 1 EV TO 100 KEV
     MITE4 SUM OF 13 DISCRETE LEVEL CROSS SECTIONS UP TO 2 MEV -
       CONTINUUM CROSS SECTIONS ABOVE 2 MEV - DATA FROM REF
       11
     MT=16.17 DATA FROM PEARLSTEIN. REF 12
     MITIB FROM 200 TO 300 EV. SMONTH DATA SUPPLEMENTS RESONANCE
       CROSS SECTIONS TO AGREE WITH PETPEL DATA, REF 13 - FROM
       300 EV TO 3 KEV SMOOTH SUPPLEMENTS RESONANCE CONTRIBUTION
       TO AGREE WITH PETREL, REF 13, AND JAMES. REF 14, FISSION
       DATA AND UTTLEY VARIATIONS IN STOFNGTH FUNCTION, REF 15 -
       FROM 3 TO LOO KEV SMOOTH SUPPLEMENTS RESONANCE DATA TO
       AGREE WITH PAVEY RECOMMENDATION. REF 16. AND WHITE DATA.
       REF 17 - FROM 100 KEV TO 3 MEV SMOOTH FOLLOWS REF 16.
```


RESULVED RESUNANCE CALCULATION RESULTS RESOLVED (THERMAL AND NEGATIVE ENERGY) RESONANCES BELOW GROUP STRUCTURE

-

N O •	E-ZERO	GAMNA-N	GAMMA-G	GAMNA-F	G-FACTOR	NROIM
0-1	2.0000E-01	84.5000E-05	39.0000E-03	20.1000E-02	75.0000E-02	1
0 2	9.6000E-02	53.0000E-05	38.6000F-03	55.4000E-03	25.0000E-02	1

.

444 ETNG 444

RESUL VED

RESUNANCE CALCULATION RESULTS ACCEPTED RESONANCES - GAM PARAMETERS PRODUCED

-

NO.	E-ZERO	GAMNA-N	GAMMA-G	GAMMA-F	G-FACTOR	NROIM
1	78.3000E-01	87.0000E-05	40.6000E=03	41.5000E=03	75.0000E-02	1
2	10.9300E+00	18.2000E-04	31.5000F-03	14.6700E-02	75.0000E=02	1
3	11.9000E+00	10.7000E-04	40.9000E-03	22,0000E=03	75.0000E-02	1
4	14.2800E+00	55-0000E-05	38.7000F-03	52.5000E-03	75.0000E=02	1
5	14+6800E+00	22.0000E-04	38+7000F-03	31.7000E-03	75.0000E=02	i
6	15.5000E+00	23.7000E-04	38.7000F=03	76.0500E-02	25.0000E-02	1
7	17.6000F+00	16.0000F-04	39.1000F=03	46.3000E-03	75.0000E-02	1
8	22.2000E+00	22.3000E-04	31.3000E=03	75.0000E=n3	75.0000E=02	1
9	23-9000E+00	87.0000E-05	38.7000F=03	37.1000E-03	75.0000E-02	1
10	26-2000E+00	17.8000E-04	38-7000E-03	35.7000E=03	75.0000E=02	1
11	27-3000E+00	13.0000E-05	38.7000F-03	28.0000E=04	75.0000E-02	2
12	32.3000E+00	86.0000E-05	38.7000E=03	18.9000E-02	25.0000E-02	1
13	35-3000E+00	31.0000E-05	38.7000E=03	41.0000E=04	75.0000E=02	2
14	41-4000E+00	60.7000E-04	59-2000F-03	10.7000E-03	75-0000E-02	1
15	44.5000E+00	63.4000E-04	27-8000F-03	42.0000E=04	75.0000E=02	1
16	47.6000E+00	54.0000E-04	38.7000E-03	30.1000E-02	25.0000E-02	1
17	49.8500E+00	44.0000E-05	59-8000F-03	75.0000E-02	25.0000E-02	2
18	50+2200E+00	30.4000E=04	41.300nF=n3	11.2000E-03	75.0000E=02	2
19	52+6000E+00	10.0500E-03	39.3000F=03	77.0000E=04	75.0000E-02	1
20	55.7900E+00	14.3000E-04	26.0000E=03	22.0000E-03	75.0000E-02	2
21	57+6000E+00	17.0000E-03	38.7000F-03	54.6000E=02	25.0000E-02	1
22	58.0000E+00	12.0000E-03	38.7000F-03	80,5000E=n2	25.0000E=02	1
23	59.3900E+00	55.9000E-04	48.6000F-03	13.3000E-02	75.0000E=02	l
24	61+1000E+00	22.4000E-03	38.7000F-03	20.000E=01	25.0000E=02	1
25	63.4000E+00	19.4000E-04	38.7000F-03	13.9000E=03	75.0000E=02	2
26	65+9600E+00	12.5000E-03	22-4000E-03	77.000UE-03	75.0000E=02	1
27	74.3100F+00	32.7000F-04	36+6000F=03	29.5000E=03	75.0000E=02	. 2
58	75.2100E+00	22,1000E=03	44.9000F-03	95,0000E-03	75.0000E-02	1
S 9	00+30000E+00	62.0000E-04	38.7000F-03	15.0000E=01	25.0000E=02	1
30	85+3000E+00	86.7000E-04	38.7000F=03	20,0000E=01	25.0000E=02	1
31	85+6000E+00	30.7000E-04	38.7000F-03	21.6700E=02	75.0000E=02	2
35	40.9000E+00	24.7000F-04	38+7000F=03	11.46008-02	75.0000E=02	2
33	95.5049L+00	93.4000F-05	38.7000F=03	23.0000E=02	75.0000E=02	2
34	96.0000E+00	92,0000E=04	38.7000F=0.3	14.0000E=01	25.0000E=02	1
15	97+6000E+00	14.0000F-04	38•7000F=0 4	36.0000E-02	25.0000E=02	2
26	99.0000E+00	93.5000E-04	38.7000F-03	20.0000E=01	25.0000E-02	1
37	10+12-06+01	56.000E-05	38.700nF=n3	31.1000E-05	25.0000E=02	2
38	10+30006+01	17.4000E-04	38.7000F=03	83.7000E=43	75.0000E=02	2
39	10.5403E+01	54.7000E-04	38.7000F-03	10.2500E-02	15.0000E=02	2

*** ET-0 ***

UNRESOLVED RESUMANCE CALCULATION RESULTS GAM PARAMETERS

GAM-F	
۷V	c
AV GAM GAM	38.700F-03
AV GAM-N-0	94.U000E-05
AV D	P7.8000F-01
AV SPIN	25.000E-02
J	0•0
ب	c

.

			Ţ	RESOLVED			
		1.0×1.NG CH055	BFSN ANDE C Shotlows abb	ALCULATIO	M RESULTS THE SMUOTE VA	LUFS TO ACCOU	NT 60P
40-249	1911-1910 1911-1910	VEC (THERMAL) FISSION	AND NFGALLVE SCALTER	FAERGY) R Gaoup	FSUNANCES AFL. CAPTILE	0W 6001P 5101	CTURE Scalter
,	Q.	• •	• 5	ר א ז	• 0	•	• 0
R.	Ū.	•	ي •	с, Т	• 0	• c	• 0 •
er.	•	.	• 0	u U	0.	• C	• •
4	0.	•	• 0	д 4	• 0	•	• 0
۲ .	0.	•	• ເ	ມ ເ	0.	• c	•
Ľ	• ()	• r,	• c	л Г	•0	•	• c
~	• 0	• 4	• C	57	•0	•	• 0
α	.0	• 、	• ~	r r	0.	•	• C
3	0.	•	• c	ว ช	•0	•	•
C I	.0	•	• c	Е ()	•0	•	• ℃
[]	• 0	•	•	۶ I	•0	Ċ	• ; j
n -	• 0	•	• c	27	•0	c.	
(*)	.0.	•	• ~	т Ч	•0	c c	•
4	• 0	• <	•	54	•0	•	• ự
<u>u</u>	• 0	• =	• c	イ い	0.	•	•
4	• 0	•	•	r 1	0.	• c	•
1	• 0 •	•	•	67	.0	•	•
a	• ()	•	• ℃	L L	0.	• ¢	•
6-	• 0	•	• ~	64	• 0	•	•
0	• 0	• 5	• •	40	•0	• <	•
<mark>L</mark> S.	• 0	•	• c	7]	•0	• c	• ب
Λ	• 0	₽ ₹.	•	72	.0	ئ •	• ℃
ľ,	• ()	•	• •	53	41.561 nF-07	10.0322E-06	42-3701E-04
47	.0	• t'.	•	74	19,1525F-06	87.5870F-05	14.6278E-03
ឋ ិ	•	• تر	• 0	75	35.69945-06	16.2383F-r5	14.7635E-03
4	0.	•	• ᠸ	76	66 • 4995F = 0 ¢	3n.61366-cg	24.0453E-03
21	• 0	•	• ८	77	12.3771F-05	らん。 ちさび 4 デョ こ A	30.8441E-03
a v	О	● ₹,	• ~	11	23.0125F-05	10.511×F-04	34.5204E-03
J N	• ()	•	• ८	70	42.7296F=05	10.440F-n4	60-6066E-03
c 7	•	• r	•	ця	79.20645-05	36.0425-04	64.7461E-03
l ·	• ()	•	• ~	١b	14.6509F=04	64.44H1-04	82.7706E-03
n T	.0	•	•	તેવ	27.02735-04	12.2673E-n3	10-5464E-02
(* 1) 71	.0	•	•	ຕ i a_	49.6919F-04	22.45866-03	13.4710E-02
7		•	•	54	90.9834F-04	41.0191F-~3	17.13296-02
ើ	•	•	• ເ	a L	16.57395-03	74.75146-19	21-36121-12
ų T	t)	4 	•	ŗ z	30.0061F-03	13.27336-62	21-39114-12
12	• 0	•	• 5	7α	53.9289F=03	23. 9289F=r2	34.64]6F=02
2		•	• (L T	96.1103F-03	41.94305-02	43.5777E=02
ŗ	• 0	•	• <	0 a	16.96895-02	77.9444F-07	54+4007F=02

*** 1013 ***

\$\$\$\$ €105 \$\$\$

	- 1
	1
	۰.
\Box	ŀ
لى	
>	
_	1
0	¢
S	_
La.	•
\boldsymbol{x}	(

	LVED RANGF	ED BY GAM-2.	FISSION	• 0	• 0	•0	0.	0.	• 0	• C	•0	• 0	•0	• • •	•0	•0	0.	• 0	0.	0.	0.	• 0	• с	• 0	• C	0.	0.	• 0	0.	• 0	• 0	• C	02 83.4317E-02	17-395939E-01	02 20.0944E-01	
	FNDF/R RESO	Y CALCULAT	CAPTURE	•0	• •	•0	•0	0		•0	0.	•0	•0	0.	•0	•0	•0	•0	•0	•0	0.	•0	• 0	• 0	• 0	0.	•0	C C	0.	•0	•0	•0	21.0237E-	44.27]4E-	50.5761E=	E7 83705-
	JELOW THE P	D FXPLICITI	GROUP	67	69	69	70	71	72	13	44	15	76	77	78	19	<u>в</u> 0	В 1	8 Z A	E A	9 4	ъ С	86	R7	88	89	90	16	26	69	40	95	96	16	9 A D	94
ION RESULTS	SMOOTH VALUES F	SMOOTH DATA ANI	FISSION	• 0	• •	•0	• 0	•0	• 0	•0	•0	•0	•0	•0	• 0	•0	•0	0 • .	•0	•0	• 0	• 0	•0	· • C	• 0	•0	•0	• •	• 0	• 0	• 0	•0	0.	• ℃	•0	• 0
NCF CALCULAT	TET FROM THE	F/a (FILE 3)	CAPTURE	•0	•0	•0	•0	•0	•0	•0	0.	•0	•0	•0	•0	•0	• 0	•0	•0	•0	0.	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	0.	• 0	•0	0
RESOND	SUPTRAC	THE FND	GROUP	34		9E	L.E.	38	96	04	41	42	E 4	4	45	45	47	48	40	л 0	ר ני	55	53	ቢ 4	ר הי	56	57	, Г.В.	5 9	1	61	62	64	4 V	ት ት	A A
	OSS SECTIONS ARE	CONTAINED WITHIN	FISSION	• 0	• •	•0	0.	•0	•0	- 0	•0	• 6	• 6	•0	• 0	•0	•••	• 0	• 0	• 0	• ℃	• 0	• •	• 0	• 0	• 0	• ℃	• ℃	• 0	0	• 0	•	۵	• ¢.	•	Ċ
	FOLLOWING CR.	[MPLICITIY	CAPTURE	•0	•0	•0	•0	•0	•0	•0	•0	•0	• 0	•0	•0	•0	•0	•0	•0	•0	•0	•	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0	•0
	T H E	IT IS	GROUP	-	N	m	4	ł	¢	~	æ	σ	10	11	12	E1	+ 1	5	16	17	18	19	20	21	22	62	42	52	2 6	27	8	6 ሪ	00	le	32	<u>.</u>

*** E10G ***

RESOLVED

	U HANGP	BY GAM-2.	FISSION	• с	•0	•0	• 0	•0	• 0	•0	• с	0.	0.	•0	•0	0.	0.	• 0	•0	•0	• c	• c	•0	0.	• c	0	0• 0	• •	•	• c	•0	•0	20-8712E-02	38.8131E-n2	37.8620E-02	37.15285-02
The second s	NUTIN AFOUNDER	Y CALCULATED	CAPTURE	•0	• 0	0.	0.	•0	•0	•0	•0	•0	• •	0.	.	•0	•0	0.	0.	ں	•0	0.	• 0	0.	•0	0.	0.	•0	°.	•0	0	0.	72.1274E-03	13.316ªE=07	12.890PF-02	12.5754E-02
	T E E C E MULA T	VD FXPLICITI	GHOUP	67	6 8	69	10	71	72	73	74	. 15	16	77	78	19	9 () H	ЯÌ	58	E H	74	д С	A6	д 7 Д	8 G	61	06	91	26	69	94	95	96	16	98	66
ION RESULTS	HE RREIT-WIGNI	SMOOTH DATA AN	FISSION	•0	•0	• 0	• 0	• 0	• 0	0.	0.	0.	•0	•0	• 0	• •	0.	• ()	• •	• •	0.	•0	•	• Ç	• 0	• 0	•0	•0	•	• • •	• •	•	•	• •	• •	•
F CALCULAT	PART OF	R (FILE 3)	CAPTURE	• 0	• ()	•0	•0	•0	0.	0.	•0	•0	•0	0.	•	•0	•0	•0	•0	0.	•••	• 0	• 0	•0	• 0	•0	.	• 0	• 0	•0	•0	• 0	• 0	•••	0.	•0
RFSONANC SUCTOR	SUDATION THE	THE ENDEZ	GROUP	34	ŝ	36	16	ЭH	6 E	40	41	42	43	44	4 1	45	47	48	49	0 ប	<u>م</u> ا	2° 5°	л С	۲ ۲	្រាប់	r v	57	58	դ Դ	C V	61	52	£.3	\$ J	ት ጉ	ላይ
	TOUNTING THE	TAINED WITHIN	FISSION	• 0	•	•	• •	• ℃	• 0	• c	•	•	•	•	• •	•	۔ د	.	- -	•	0	•	• c	•	•	•	•	•	•0	•	•	ں	•	•	•0	• د
	JELUTING CAUSS	MPLICITI Y CON	CAPTURE	•0	• 0	•0	0.	•0	•0	•0	0.	0.	•0	• 0	•0	• 0	•0	•0	•0	•0	•0	•0	•0	• 0	•0	•0	•0	•0	•0	•0	•0	•0	• 0	•0	•0	•0
		11 15 1	GROUP	-	N	(* 7	4	ŝ	Ŷ	۲	œ	o	10	11	12	6	41	15	15	17	I B	19	50	21	22	n	4 N	ŝ	S.	27	e R	6a	0 E	L E	でき	Ē

*** 1014 ***

			NII DE SONANCE	AESOLVEN	M RESULTS		
	Tak Fol.	1.0.1 NG (POSS	SETTONS ANE TEAST VENUE	aDDEn TU	THE SMOOTH VA	LUES TO ACCOUNT	MT FOR
าย ชย	C AW [HAR	F 15510N	SCATTER SU		CAPTINE	F155105	SCATTER
	• 0	• 5	• 0	٦ ٦	12.1917F-02	77.014HF-07	10.4745E+00
a	•	• • • •	• <	とと	15.9095F=02	86.7146F-n2	11.0695E+00
(m.	• 0	• c	•	ድ ህ	20.6281F-02	95 . ANGOE-02	11.17395+00
4	•	• K.	• 0	4	26.59495=02	10.5075F-01	11-24975+00
۲.	• 0	۲ ۲	• 0	ሆ ሆ	33.9528F=n2	1].6]4]F-0]	11-4121E+00
r	Û.	• ¢	•	л С	42.6373F=02	12.02756-01	11.5403E+00
2	• 0	•	* ເ	57	53.4230F=02	14.5(445-0)	11.67195+00
ı	• Ū	•	• c	r v	66.1002F-02	14.3589E-01	11.H-55E+00
σ	• •	•	•	ת כ	80.9305F-02	18.58HlE-rl	11.94196+00
с —	•	•	• 0	А ()	98.5489F-02	21.1746F-01	12.0405E+00
[• =	•	• 5	4]	11.93245-01	24.19505-01	12.27116+00
<u>م</u>	0.	• ب	. c	₹ 4	14.3701F-01	27.7057F-01	12.3529E+00
r :	•••	•	•	e S	17.2272F-01	31.76416-61	12-5-54E+00
4 v	• ()	•	• ~	54	20.5854F-01	36.42046-01	12.6500E+00
រ 	• ()	¢	• (1	r L	24.4853F-01	41. a072E-01	12.7027E+00
<u>بر</u> 	• 0	•	• 0	1 1 1	28.980HE-01	48.n640E-n1	12.9310E+00
1 7	• 0	•	• ৮	4 7	34.2010F-01	55.23445-01	13.04796+00
I T	• ()	• K.	• 0	х ч	40.25845-01	63.4]145-01	13-2-31E+00
J T	• ()	•	•	۲. ۲	47.26355-01	72.74 31F-01	13.3355E+00
u Z	• ()	•	۔	7 C	55.347]F-U]	R3.3424F-01	13.464E+00
Ā	• ()	• c	• ~	7	6480F=01	95.5133E-11	13.5¤87E+00
n A	• ()	• r	•	12	75.3285F-01]n.0335F+nn	13.7c79E+00
у Ч	0.	•	• c	7.3	56.]004F-01	80.3012F-01	00.7468E-01
া ম	.0	•	• 0	74	• 0		
<mark>لا</mark> ک	.0	•	•	75	• 0	۔ ر	•
L 1	• 0	•	•	76	• c	•	• c
2.2	• ()	•	• 0	11	• 6	• c	• ~
a N	•	•	• 0 .	4 1	0.	• -	
ፓ ኢ	• •	•	• ᠸ	19	•0	• c	• U
U c	• 0	•	• c	00	• 0	• <	•
1	0.	• 5	• c	۱۵	• 0	•	• 0
<mark>ر</mark>	• ()	•	• с	20	л.	• 0	• <
r	• ()	• ر	•	er) a	0	•	•
74	• ()	•	•	7 T	• U	• c	- ()
۲ ۲	•	•		с С	• U .	•	• •
ч Т	• ()	•	•	С U	.0	•	•
4.5	• ()	•	• 6	L 0	• 0	•	• c
a ,7	• ()	•	• 0	с Но	• 0	• с	•
6 t	• 0	•	• 0	5 3	• 0	• c	•

• • *** Elog ***

ENDEZH FILE 3 SMOOTH ELASTIC

GRP	CROSS SEC	GRP	CROSS SEC	GRP	CRASS SEC	GRP	CROSS SEC	G RP	CROSS SEC	GRP	CROSS SEC
1	3.0216E+00	2	2.9736E+00	3	2.9277E+01	4	2+9264E+00	5	3.0271E+00	6	3.2214E+00
7	3,5332E+0n	8	3.9584E+00	9	4.2450E+00	10	4.4215E+00	11	4.4771E+00	12	4.5000E+00
13	4.5000E+00	14	4.5124E+00	15	4.5466E+00	16	4.5815E+00	17	4.5745E+00	18	4.5194E+00
19	4.4420E+00	20	4.3526E+00	21	4.2861E+00	22	4.2508E+00	23	4.2163F+00	24	4.2374E+00
25	4.3101E+00	26	4.3841E+00	21	4.45936+00	5 8	4.5874E+00	29	4.8n3nF+00	30	5.0302E+00
31	5,1918E+00	32	5.4289E+00	33	5.6937E+0n	34	5+9671E+00	35	6.2814F+00	36	6+6380E+00
37	6,9766E+00	38	7.2499E+00	39	7.5317E+00	40	7.7902E+00	41	8.0099E+00	42	8.2818E+00
43	8,5952E+00	44	8,8605E+00	45	9.n333E+0n	45	9.2087E+00	47	9,3582E+00	48	9.4798E+00
49	9.6036E+0n	50	4.5186E+00	51	-2.3419E-01	52	-1.4808E-01	53	-8.2146E=02	54	-3.0797E-02
55	-1.0703E-03	56	0.	s 1	0.	58	0•	59	Ο.	60	0.
61	0.	62	0.	63	0.	64	0.	65	Ο.	66	0.
67	0.	68	0.	69	0.	70	0.	7]	0.	72	0.
73	0.	74	0.	75	0.	76	0.	77	0.	78	0.
79	0.	HO	0.	P]	0.	82	0.	¤ 3	Ο.	84	1.0622E-01
85	7.522 E-01	85	1.3378E+00	P7	1+6851E+0n	88	1+7000E+00	99	1.7000E+00	90	1.7n00E+00
91	1.7000E+00	42	1.7000E+00	93	1.7000E+00	94	1.7nnnE+n0	95	1.7n0nE+0n	96	7.4156E+00
97	1.3023E+01	48	1.4005E+01	99	1.6086E+01						

.

.

\$\$\$\$ UU]⊥ \$\$\$

ENDEZH FILE 3 SMOUTH N.GAMMA REACTION

C L				201		10	-01	101		-0-	0-	00+	>		-0-	• 0 •	•
CROSS S	1.0000	1-0000	1-0005	2.0693E	6.9582E	1.2552E	1.8261E	2.1360E	1.6669E	1.2936E	-3.1201E	34509-1-			4.5324E	1.00505	1 > > > > > + > + +
989 689	ع	- -	0	, C 4	30	9	4 2	4	1 4	0	46	17	1 C	4	00	, 1	2
CRASSEC		1.0000F-10	1.000F-10	3.1507E-03	6.2362F-02	1.13126-01	1.75355-01	2.11176-01	1.16215-01	1.8955F-01	-2.4281E-01	2.7761E+00			3.2A79F-01	5.03945+00	
с Rp	ŝ	1.	2	Б¢	9¢	ŝ	41	17	بر ال	л 9	¥ ت	71	22	θ	6 8	ŝ	1
CHOSS SFC	1 • 000rE=10	1 • 0000E-10	1.0000E-10	4.3254E-06	5.5421E-02	1.0461E-01	1.6442E=01	2.0628E_01	8.3717E-02	2.1720E-01	-1.7630E-01	-1.78725+00	0.	0.	1.9820E=01	4 • 0 6 0 7 E + 0 0	
98p	4	10	16	22	а 2	4 E	4 0	r 4	57	52	4 1	70	76	с В	88	40	•
CRASS SEC	1-000E-10	1. 1000E-10	1. 1000E-10	5.896AE-1)9	4.5330E-02	9.9624E-02	1.5462E-01	1.99246-01	8.8647E-02	2.3000E-01	-1.1574E-01	-9.3926E-01	1.1165E-01	0	4.R056E-07	2. R042E+00	
GНр	'n	o	5	2 J	27	ຕ າ	6 E	45	51	5,7	Б. Ж	64	75	٩ ا	87	е б	
CR0SS SEC	1-0000E-10	1.000nE-10	1.000E-10	1.0000E-10	3.4904E-02	9.0994E-02	1.4576E-01	1.92456-01	1.6365E=01	2+2584E+01	-3.9221E-02	-2+2255E+0]	4.3865E-01	0.	0.	1.1971E+00	
9RP	N	α	14	20	Ś	32	9 8	44	С С	56	n Y	6 6	74	0 4	ЪС С	56	00
CRUSS SEC	1.0000E-1.	1.0000E-1r	1.0000E-10	1.0000E-1r	2.6875E-02	8.054HE-02	1.37296-01	1.8709E-01	2.1608E-01	2.0650E-01	5.2588E-02	-3.7354E-01	-3.8060E-01	• 0	0.	4.47556-01	a anele e
GRP	l	~	13	19	25	31	37	64	49	55	61	67	73	79	9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	5

•

*** Elog ***

ENDEZH FILF 2 RESONANCE CONTRIBUTION TO N. GAMMA

CR05S SFC	•0	•0	•0	•0	•0	• 0	•0	0.	2.7892E-01	1.0191E+00	2.9798E+00	7.720BE+00	2.3598E+00	2.8956E+01	8.8768E-01	3.6134E+00	
GRP	¢	212	81	4	06	36	42	48	ת 4	60	6 0	12	78	44	06	96	,
CPUSS SEC	0.	.0		0		•0	• 0	•0	2.1728E-01	R. 78145-01	2.5193F+00	6.6289F+00	1.4874F+01	2.77745+01	1.21645+00	5.1729E+00	
990	ហ	11	17	53 S	66	35	4 l	47	5	я 9	۲. ۲	71	77	θ	а 9	с С	
CHOSS SFC	0.	0.	0.	•0	•0	0.	•0	•0	1.6839E-n]	6.8568E-01	2.1197E+00	5.6778E+00	1.7777E+01	3.40455+00	8.3224E+n1	3+0993E+n0	
GRP	4	01	16	22	3	34	40	4 L	5 5	58	£ 4	10	76	58	88	94	
CHUSS SEC	. 0	0.	.	• 0	0.	•0	• 0	•0	1.29716-01	5.55306-01	1+77556+00	4 + a51 nE + 0 0	6.r385E+00	6.2375E+01	5.9914E+00].9678E+0n	
GRD	'n	σ	15	2 T 2	10	e e	6	10 17	5	۲ ۲	ľ ľ	64	15	[]	/ a	69	,
CHOSS SEC	0.	0.	•0	0.	•0	• 0	0. •	0•	5.8029E-02	4 • 4634E=()]	1+4825E+00	4.1342E+00	1.2861E+01	5.29H2E+01	8.7883E+01	1.3339E+00	
9 RP	∿ i	œ	14	0 ~	26	32	ЭŖ	44	с Л	С С	5 2	6 8	74	C X	r J	ح 6	
CRUSS SEC	0.	• 0	0.	•0	0.	• 0	•0	•0	•0	3.5481E+n]	1.2324E+00	3.5143E+0r	1.0015E+01	2,8445E+01	9.6629E+01	9.967HE-01	0
бяр	-	۲	13	19	25	31	37	64	4 9	រ ហ	61	67	13	79	50 80	16	1

*** UO]J *******

TOTAL N.GAMMA

GRP	CRUSS SEC	GRP	CROSS SEC	GRp	CHUSS SEC	бяр	CHOSS SFC	d R D	CRUSS SEC	9 9 9 9 9	CROSS SFC	
٦	1.0000E-10	~	1.000E-10	(* 7)	1 • • • • • • • • • • • • • • • • • • •	4	1-00005-10	ហ	1-0000E-10	x	1 • 0000E-10	
٢	1.00006-10	α	1-0000E-10	σ	1 • 0000E-10	0	1 • 0 0 0 0 E - 1 0	11	1 - 0000F - 10	2		
13	1.000nE-10	14	1.000E-10	5	1.000E-10	16	1-0000F-10	~ *	1.000F-16	ι α - ~		
19	1.0000E-10	20	1.000E-10	21	5. A968E-09	2	4-32546-06	С С	3.1507F=03	240	2.0497F=02	
25	2,68755-02	26	3.4904E-02	27	4.533nE-02	1 C	5.54216-02	0 ¢	6.2362F-02		6-9582E-02	
lε	8,0548E-02	32	9.0994E-02	67 67)	9.9624E-02	9 E	1.0461E-01	а С	1.1312F-01	9 9 7 7	1.2552E-01	
37	1.3729E-01	66	1.4576E=01	5 6	1.5462E-01	4 0	1.6442E-01	4 l	1.75355-01	42	1.82615-01	
4	1.8709E-01	44	1.9245E-01	4 10	1.9924E-01	46	2.0628E-01	47	2 1117F-01	0	2.1360E-01	
49	2.160HE-01	50	2.2168E-01	5]	2.1835E-01	25	2.5211E-01	5	3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1 1	4.4561F=01	
55	5.6131E-01	5	6.721HE-01	57	7.4530E-01	Ω Ω	9.02885-01	5 5	1.0277F+00	- C	1-14855+00	
61	1.2850E+00	6 9	1.4433E+00	Еч	1.4598E+00	4	1-94345+00	с У Ч	2.27655+00	i v	2.6677F+00	
67	3.1407E+0n	68	3.9117E+00	6 ¥	3.9117E+00	10	3.8904E+00	71	9.4049F+00	~ ~	5.7077E+00	
67	9.6341E+0n	74	1.3300E+01	75	6.1501E+00	16	1.77775+01	77	1.48745+01	; œ	2.3598E+00	
79	2.8445E+n1	C I	5.2982E+01	a	6.2375E+01	58	3+4045E+00	Ω	2.7774F+01	- α	2.89566+01	
8 9 9	9.6629E+n1	А. Н	8.7883E+01	7 d	6.n394E+00	88	8.34236+01	9 9	1.54525+00	0	1 - 7409F+00	
91	1.4443E+00	42	2.531nE+00	Eb	4.7727E+00	40	7.1600E+00	۲ C				
76	2.3952E+01	с С	4.7739E+01	66	I • 4 389E + 02	1		ſ		C		

.

.

TNFINITELY UILUTE RESONANCE INTEGRALS

N.GAMMA#	2.1264E+02	PARNS							
N•GAMMA=	2.125HE+02	BARNS	AS CALCULATED	FROM	TOTAL	N . GAMMA	6F01JP	AVERAGED	VALUFS)
FISSION=	3•699E+02	PARNS							
N.PU 0.	НдН	V) Z					·		
N•D= 0.	НДН	U) Z							
N.T. 0.	НАН	U) Z							
N - 15 - 01	• 0	BARNS							
N. ALPHAE	0.	PARNS							
N.2*ALPH	1= 0.	HARN	S						

3-60

ABSORPTIONS C. R262E+02 BARNS

*** ETOG ***

--

MULTI-	CAPTURE	FISSION	ABSORPTION	SCATTERING	ANISOTROPIC	INELASTIC	N-SV:	NEUTRONS
GROUP					SCATTERING	SCATTERING		PER FISSION
1	10.0000E-11	26.5477E-01	26.5477E-01	30.2160E-01	15.3665E-01	17.0512E-02	97.6929E-03	47.7300E-01
2	10.0000F-11	25.8215F-01	25.8215E-01	29.7355F-01	27.0758E-01	28.1615F-02	15.0049F-02	45.9365E-01
3	10.0000F-11	25.1733E-01	25.1733E-01	29.2765F-01	25.4294E-01	41.3413E-02	15.8209F-02	44.3070E=01
4	10.0000F-11	24.5730E-01	24.5730F-01	29.2663F=01	25.2578E-01	57.6238F=02	15.4843F=02	42.8343F=01
5	10.0000F-11	24.2000E-01	24.2000E-01	30.2714E-01	25.5054E-r1	72.3309E-02	14.9286F-02	41.4961E=01
6	10.0000F-11	24+1162E=01	24.1162F-01	32.2146E-01	26.5450E-r1	85.69525-02	13-8351E-05	40.2892F-01
7	10.0000F-11	23.24358-01	23.2435E-01	75.3318F-01	28.5195E-01	10.1477E-01	11.6163F-02	39,2001F-01
8	10.0000F-11	21.1408F-01	21.1408F=01	39.5842F=01	31+3915E=01	12.2064F-01	An.9485F=03	38.2056F-01
9	10.0000F-11	19.54298-01	19.54296-01	42.4505F-01	33.4002E-01	14.2828E-01	35.8719F-03	37.3121F-01
10	10.0000F-11	18.7072E-01	18.7072F=01	44.2147E-01	34-5911E-01	15.4406E-01	30.8718F-04	36.4906E-01
11	10.0000F-11	18.7007E-01	18.7007F-01	44.7712F-01	34.8451E-01	15.1728E-01	0 •	35.7517F-01
12	10.0000F-11	18.8556E-01	18.8556E=n1	45.0000E-01	34,8582E-01	14.6075E-01	0.	35.0908E-01
13	10.0000F-11	19.1237E-01	19.1237E-01	45.0000E=01	34.7041E-01	13.93A7E-01	0 •	34.4869E*01
14	10.000F-11	19.38296-01	19+3829F=01	45.1243F=01	34.0107E-01	13.2659E-01	0•	33.9353F=01
15	10.0000F-11	19•6247E=01	19.6247E=01	45.4669E-01	33.1079E-01	12.6311E-01	0.	33.4610F=01
16	10.0000F-11	19.P686F-01	19.8686F-01	45.8150F=01	32.3039E-01	12.2081E-01	0•	32.9954F-01
17	10.000F-11	50+1598=01	20.1269E-01	45.7446F=01	31.2963E=01	11.9238E-01	0 •	32+5761E=01
18	10.0000F-11	20.3952E-01	20.3952F=01	45.1938F-01	30.0499E-01	11.7577E-01	0•	32.2097E-01
19	10.0000F-11	20.3571E-01	20.3571F-01	44-4180F-01	27.8376F-01	11.4721E-01	0•	31.8789F=01
50	10.0000F-11	20.1338E-01	20.1338F-01	43.5251F-01	25.242/E=01	11.11738-01	0	31.5/086-01
51	58.9678F-10	19.7820E-01	19.7820E-01	42.8600F-01	23.0683E=01	10.6859E-01	0.	31.30565-01
25	43-25435-07	19.2557E-01	19.2557E-01	42.5093F-01	21.30/36-01	10.71576-01	0 •	31.07052-01
23	31.5070F-04	18.7407E-01	18.7722E-01	42.1626E-01	19.7209E-01	10.067/E=01	0.	30.83725-01
24	20.6927F-03	18.3676E=01	18.5746F=01	42.3/34F=01	18.21/01-01	93.49391-02	0•	30.63/21-01
S2	26.8/50F-03	18-11795-01	18.3867E-01	43.1011E-01	18.2073E=01	90.90308-02	0 •	30.47026-01
26	34.9039F=03	17.8730F-01	18.2220F-01	43.8439F=01	18.73/28-01	90.96786-02	0•	30.30402-01
27	45.330]F=03	11.45816-01	18+0814E=01	44.59378=()1	19./204E=01	83 • 0 3 14E - U2	0.•	30+137/E-01
28	55.4210F-03	17.27848=01	17.43266-01	45.87418=01	20.43020-01	79.29905-02	Ω	29.99096-01
29	62.3018F=03]6.93]8+=01	17.55542-01	48+02945-01	19.71036=01	76.63402-02	0•	29.80031-01
30	09.5824F=03	10./252E=01	17.4210F=01	50.3000F=01	20 0040F -1	70.71461-02	0.	29.15121-01
31	00.5485F=03	10.44996=01	17.25546-01	51.91/2F=01	19.9740E=[.]	75 20505-02	0.	27.03412704
32	- 70 - 475/F=(-3	10.24235701	17.07526=01		22+13+0E+C1	73.105025-02	0.	20 48415-01
33	- 77 • 6240F = ('3		11+04505-01		21+31410+01	13.40435-02	0	27.40415-01
.14	10.4011F=02	10.50215-01	10+59425-01	57 6 7 1 3F = () 1	190 10C/E=01	10+62435-02	0.	
35	11-3115F-02	12•55886-01	10+32226-01	62+41478=01	50 • 15106 = 0 f	02+43256-02	() • ()	27+3432+-01

NEUTROMS PFR FISSION	29.2827E-01	29.2266F-01	29.1792E-01	29.1310E-01	29.0896F-01	29.0533F-01	29.0195E-01	28.9895F-01	28.9615F-01	28.9380F-01	28.9146E=01	28.8947E-01	28.8780E=01	28.8611F-01	28.8334E=01	28.8039F-01	28.7809E-01	28.7630E=01	28.749]F-01	28.7382F-01	28.7298E-01	28.7232E-01	28.7181E-01	28.7141E-01	28.7109F-01	28.7085F-01	28.7066E-01	28.7052E=01	28.7040F-01	28.7031F-01	28.7024F-01	28.7019F-01	28.7015F-01	28.7012E-01	28.7009F-01
20-2	• 0	• c	• c	•0	• u	• 0	·	• •	• 0	• 0	• u	• 0	• с	• с	• 0	• ℃	• 0	• 0	• •	• 0	• C	• c	• c	• 0	• 0	• с	·c	• c	•0	• •	•	• •	• c	• c	• c
INELASTIC Scattering	66.0296E-02	62 . 1444F = 02	57.7077E-02	53.47.2E-02	49.6427E=02	47.4n73E-02	45.50×8F-02	43.6040E-02	4].5680F-07	39.3040F-02	37.2643E-02	35.47926-02	34.2012E-02	32.7194F-02	30.3242E-02	27.2020E-02	25.0078E-02	24.0171E-02	23.1799F-02	22 · 1 7 n 9 F - 0 2	21-1407E-02	19.40495-02	15.78735-02	10.2559E+02	15.7548F-03	•0	• u	0	• 0	• 0 •	•0	• 0	• 0	ں	•0
AMISOTROPIC Scaltering	21.2259E+01	21.2202E-01	20.9764E+01	23.3939E-01	24.0744E-61	21.6075E-01	19-3819E-01	17.3532E-01	15.7577E-01	14-3004F-01	12.4508E-n1	11.6650E=n1	10.4452E-01	93.2147F-02	P0.2447E-02	64.4864E-n2	49.4757E-02	37.9481E-n2	28.5592E-02	21.0725E-n2	15.1185F-02	10.4078E-n2	66.8030E-n3	38.9804E+n3	33.9816E+n3	34.3774E=n3	34.7760E-03	35.1771E+n3	35.5838E=03	35.98505-03	36.3742E-n3	34.7591E-n3	37.1395E-03	37+5119E=03	37.8744E=n3
SCATTERING	66.3797F-01	69.7651F-01	72.4485F-01	75.3157F=01	77.9005F-01	An.1002F-01	R2.R162F-01	A5.9500F-01	RR.6036F-01	90.3316F=01	92.0861F-01	93.5815F-01	94.7972F-01	96.0364F=01	10+1944F+00	10.7396F+00	10.91975+00	11.0904F+00	11.25795+00	11.4076F+00	11-5403F+00	11.6719F+00	11-8055F+0U	11.9419F+00	12.0805F+00	12.2211E+00	12.3629F+0U	12.5054F+00	12+4500F+00	12.7927F+0U	12.93105+00	13.0679F+00	13.2031F+00	3.3355F+00	13.4644F+00
AHSORPTION	16.3495F=n1	16.3538F=n1	16-34745-01	16.3873F-01	16.4444F-r1	16.5535F-01	16.4241F=01	16.6709E-01	16.7755F-01	16.9An4F-n1	17.1902E-01	17.3232E-nl	17.3722F-n1	17.4221F-n1	17.7459E-01	17.0172E-01	17.n240E-nl	18.1491E-nl	20.0978F-01	22+2366F+n1	24+3875F=n]	26.6632E-01	29.0786F-n1	31.8309E-01	34+6331F+n1	37.7893E-nl	41.1129E-01	45.7332E-n1	52.1639F-01	59.9755F-n1	68.878]F-0]	79.6206E-01	97.9740E-n1	96.8114F-01	95.n3n4F-n]
FISSION	15.r943F-01	14.9809F-01	14.90976-01	[0-30[43+4]	14.4002E-01	14.80005-01	14.8000F-01	14.000E-01	14.8510E+01	14.9880E-01	15.12746-01	15.2116E-01	15.2362E-01	15.2613E=01	15.5665E-n1	14.9117E-01	14.5959E-01	14.9242E-01	15.7715E-01	16.7763E-01	17.84545-01	19.02096-01	20.2965F-01	21.P424E=01	23.4847F=01	25.3311F-01	27.1350E-01	29.6635E-01	33•3415E-01	37.5184E-01	42.96745-01	49.155]E-0]	59.5411E=01	58.9405E-0]	57.5554F-01
CAPTURE	12.5522F-02	13.72925-02	14.5763F-02	15-4625F=02	16.4422F-02	17.5347F-02	18.26145-02	18.70955-02	19+24495-02	19.9238F-02	20+42845-02	21.1167F-02	21.3602F-02	21-6080F-02	21-79445-02	21 · 1557F-02	24.2812F-02	32+2487F-02	43.2636F-02	54.6U28F=02	65.4213F=02	76.4230F-02	87.82055-02	99.8852F-02	11.1484F-01	12.4583F-01	13.97795-01	16.0696F-01	18.8224F=01	22 + 15 7 1 F - (1]	25+H606F=01	30.4655F-01	38.0329F-01	37.8/095-01	37.4/51F-01
MULTI- GROUP	96	15	9 9 9	6 E	4 U	4]	4 J	43	44	4 N	46	47	4 10	49	c L	.	ល មា	មា ស	ብ 4	ហ	ብ በ	57	e Li	0	6 O	5	5 1 1	(7)	1 1	ъ IJ	С. С	11	a a	4 G	104

*** ETOF ***

UL T I-	CAPTURE	FISSION	ABSORPTION	SCATTERING	ANI SOTROPIC	INELASTIC	20-1	NEUTRONS
ROUP					SCATTERING	SCATTERING		PER FISSION
71	92.4085F-01	13-5335E+00	22.7744F+()0	13-5887F+00	38.2242E-03	• 0	• •	28.7007E-01
72	55.3970F-01	81.2741E-01	13.6671F+00	13.7079E+00	38.5595E-n3	•0	• •	28.7005F-0]
73	52.2950E-01	89.4663E=n1	14.17F1E+00	15+90605+00	44.7426E=n3	0.	• с	28.7004E-0]
74	43.8673F-02	37.9586E-01	42.3453F-n1	16.2117F+00	45.6026E-03	ں	•0	28.7003E-01
75	11.1681E-02	86.5414E-02	97.7095F-02	12.7161F+00	35.7697E-03	•0	• •	28.7003E-01
76	66.4995F-06	30.4196E=05	37. n696F-n5	16.2469F+00	45.7014E-03	•0	• •	28.7002F-01
11	12.3771F=05	56.58246-05	68.9595E-n5	13+0771F+00	36.7851E-n3	0°	•	28.7002E-01
8 20	23.0125F-05]0.51]AE-04	12.8330E-n4	1] • 0673F + 00	3] • 1316E-n3	0.	• 0	28.7001E-01
19	42.7296F-05	19.4980E-04	23.7709E-04	21.9768F+00	61.8194E=03	•0	• •	28.7001F-01
80	79-2064E-05	36 • 1942E-04	44.0]48E-04	18.8542E+00	53+0357E=03	• 0	•	28.7001E-01
8]	14.6509F=04	66+6481E=04	81.2990F-n4	17.1273F+00	48.1780F=n3	0.	• •	28.7001F-01
с Ч	27.0273F-04	12.2673E-03	14.9700E-n3	P3.3022E-01	23.4324E-03	0	• C	28.7000F-0]
e B B	40-4919F-04	22.4886E-03	27.4578E-03	10+7049E+00	30.1123E-03	• •	•	28.7000E-01
8 4	90-9834F-04	41.0191E-03	50.1175E-03	11.5642F+00	32+5295E=n3	0.	• ℃	28.7000F-0]
e B	16.57395-03	74.3514E-03	90.9252F-03	13.7021F+00	38.5430E-n3	0.	•	28.7000E-0]
86	30.0061F-03	13.3733E-02	16.3739F-n2	13.1193F+00	36.4039E-n3	ں	• •	28.7000F-01
ŕ7	10.19855-02	97.5152F=02	10-7714F-01	A1.3879F-01	22+H939E+n3	0.	• •	28.7000F-01
a a	29.4305F-02	34.5882E-01	37.5313E-01	10.0158F+00	28.1739E-03	0	•	28.7000E-01
6 đ	49.8482F-02	54.5266E-01	59.5115F-01	89.7757F-01	25.2534E=03	•0	•	28.7000E-01
06	74.9928F-02	68.8126E-01	76.3119F-n1	95.4988F=01	26.8632E-n3	•0	•	28+7000E=0]
16	96.1578F-02	86.P252E-01	96.4409Fm01	99.3349F=01	27.9423E-n3	۰ د	• 0	28.7000F-01
56	20.Al79F-01	11 • 1 4 4 9 E + 0 0	13.2266E+00	10.2561F+0U	24.8499E-n3	0 •	• •	28.7000F-01
ሮ) ው	43.2499F-01	14 • 4 8 4 3 E + 0 0	18.R093E+00	10+5699F+00	29+7325E+03	0.	• 0	28.7000F=0]
4 6	66.9837F=01	19.0188E+00	25.7171E+00	10.9024E+00	30.6679E=n3	•0	• 0	28.7000E-01
9 5	97.2339F=01	25+4791E+00	35.2025F+00	11.2797E+00	31.7292E-n3	• 0	•	28.7000E-01
96	14.03755+00	35+5663E+00	49.6039F+00	12.0934F+00	34.0181E-03	• 0	• с	28.7000E=0
76	23.3760F+00	56+3048E+00	79.4808E+00	13.0228E+00	36.6322E-03	0. 0	• c	28.7000F-0
98	47.1040F+00]0+£882E+0]	15.3986F+01	14-0049F+00	39.39495-03	•0	• 0	28.7000E-0)
6 6	14.3183F+01	28.5362E+01	42.8545F+01	16.0861F+00	45.2492E-03	•0	• 0	28.7000F-0

*** ETOG ***

*** ETOG ***

ELASTIC SCATIERING MATRICES

***** BEGINNING OF ISOIROPIC ENERGY RANGE *****

SOURCE GROUP 99

	SINK GRPS 99 100	PU CALCULATED 1•5484E+01 6+0193E=01	GRCUP AVG Symm. Scatt. 1.6086E+01 -1	PER CENT ERROR 1.4135F-12	Pn NCRMALIZED 1.5484E+01 6.0193E-01	P1 CALCULATED 7•3211E-01 -5•9636E-01	GROUP AVG 3*MU*SIGS 1.3575F=01	PER CENT ERROR -4.9071E-13	P1 NORMALIZED 7.3211E=01 -5.9636E=01
3-64	SINK GRPS 99 100	P2 CALCULATFD 5•8202E-03 -5•5331E-03	GRCUP AVG ISOTR. VALUE 2.8713E=04 =7	PER CENT Error 7.1745F-12	P2 NORMAL IZED 5.8202E-03 -5.5331E-03	P3 CALCULATED 1•5837E-04 -1•5837E-04	GROUP AVG TSOTR. VALUE 0.	ABSOLUTE ERROR 0+	P3 NORMALIZED 1•5837E=04 -1•5837E=04
					SOURCE GROU	JP 98			
	SINK GRPS 98 99	P0 CALCULATED 1+3510E+n1 4+9500E=n1	GROUP AVG SYMM. SCATT. 1.4005E+01 -8	PER CENT Error 8•1177E=13	Pn NORMAL IZED 1+351nE+01 4+950nE=01	P1 CALCULATE0 6+0968E-01 -4+9150E-01	GROUP AVG 3*MU*SIGS 1•1819E=01	PER CENT ERROR -1.6909E-12	P1 NORMALIZED 6•0968E=n1 -4•9150E=n1
	SINK GRPS 98 99	P2 CALCULATED 3•7254E=n3 =3•4754E=n3	GRCUP AVG ISOTR• VALUE 2•4998E=04 =0	PER CENT ERROR 5+5058E-12	P2 NORMALIZED 3.7254E-03 -3.4754E-03	P3 CALCULATED 1 • 1205E-04 -1 • 1205E-04	GROUP AVG TSOTR. VALUE 0.	ABSOLUTE ERROR	P3 NORMALIZED 1•1205E-04 -1•1205E-04
					SOURCE GRO	UP 97			
	SINK GRPS	PO CALCULATED	GROUP AVG Symn. Scatt.	PER CENT FRROR	Pr NORMAL IZED	P1 CALPULATED	GROUP AVG 3*MU#SIGS	PFR CENT ERROR	P1 NORMALIZED

JTF P3 R NORMALIZFN 9.1733E-05 -9.1733E-05		ENT P1 R NORMALIZED E=12 5.1439E-01 -4.1126E-01	UTE P3 R NORMALIZED 9.0685E=05 -9.0685E=05		ENT PI R NORMALIZED E=12 5.0848E=01 -4.0654E=01	UTE P3 R NORMALIZED R.9643E-N5 -8.9643E-N5	
ARSOLU ERROF P.		PER CI ERRO -2.5836	ABSOLI ERROI		PER CI ERRO	ABSOL ERRO	
GROUP AVG TSOTR. VALUF D.		GROUP AVG 3*MU*SIGS 1.03]3E-0]	GROUP AVG TSOTR. VALUE 0.		GROUP AVG 3*MU*SIGS 1.01955+01	GROUP AVG TSOIR, VALUE 0.	¢ ¢ \$ \$
P3 CALCULATED 9.1733E-05 -9.1733E-05	JP 61	P1 CALCUL ATED 5.14396-01 -4.11266-01	CALCHL ATED CALCHL ATED 9.0685E-05 9.0685E-05	JP 60	P1 CALCULATEU 5.084RE-01 4.0654E-01	P3 CALCHL ATED 8.9643E-05 8.9643E-05	ENERGY RANGE
Р2 N04MAL IZED 2.6153E=U3 -2.3946E=U3	SUURCE GRAD	PA NORMALIZED 1.180RE+U1 4.1365E+U1	P2 NURMAL IZED 2.5856E=U3 -2.3675E=U3	SOURCE GRAI	Po Normal IZED 1.16725+01 4.08895-01	Р2 N0HMAL IZED 2.5561E-03 -2.3405E-03	OF ISOTROPIC Source Grou
РЕН СЕМТ ЕРЕОВ -2.94795-12		PER CENT FRR0R -4.4512E-13	PER CENT ERROR -8.4494E-12		РЕР СЕМТ Е КАОА -9.41085-13	PER CENT ERROR -5.02815-12	L2 4 * * *
GRAUP AVG ISUTR, VALUE 2.2067E-04		GROUP AVG Symme Scatt 1.2221E+01	680UP AV6 ISOTR. VALUE 2.1814E-04		6400P AVG SYMM. SCATT 1.2040E+01	6800P 4V6 IS0TR, VALUE 2.1563E-04	
22 CALCULATFU 2.6153£-13 -2.3946E-13		PU CALCULATED 1.1808E+n1 4.1365E-n1	P2 CALCULATFD 2.5856E-n3 *2.3675E-n3		PU CALCULATED 1.1672E+01 4.0889E-01	2.5561E-n3 -2.3405E-n3	
SIS 685 66 6 7 6 7 6 7 8 7 8 7 8 7 8 7 8 7 8 7		5 1 × K 5 4 5 × K 5 4 5 × K	S 1 X X X X X X X X X X X X X X X X X X		6 1 5 1 5 1 5 1 5 1 5 1 5 1 5 5 1 5	SI 7 K Grds 60 61	

CALCULATED

P3 CALCULATFU 1•1539€+∩1

S1 × K GRPS 59

-4.0]A5F_n]	РЗ CALCULATED =5.2708E-03 -8.8608E-05	SOUMER GROUP 58 P1 CALCULATED 5.9636E-01 -3.9593E-01	P3 CALCULATFD -3.1153E+02 -1.8262E+03	SOURCE GROUP 57 Pl calculaten 7.0174E-01 -3.8893f-01	ра САLCHL ATED -6.48086-02 -5.03736-03	SOURCE GROUP 56 PI CALCULATED
4。()4]35-17]	K P2 S CALCULATFU 1.3748E-n2 -2.3129E-n3	K P0 S CALCULATFO 1.1407E+01 3.9895E-01	К Р2 5 ГАLCULATED 7.20246-02 -1.48836-03	к рU 5 СиL СИL АТЕЙ 1.12796+n1 3.93246-n1	Х Т2 С АLCULAIFD 1.4956E-21 -1.3976E-21	K Pu S CalCulaTFI
90	51 M	SIN 58 59 59	STZ STR SC SC SC	212 212 22 22 22 22 22 22 22 22 22 22 22	5 4 5 5 4 5 7 4 5 7 4 5 7 4 7 4 5 7 4 5 7 4 5 7 4 5 7 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	141 S 141 S

3-66

P1 CALCHLATED 7.4451E+00 3.3229E-02	P3 Calcul Aten 1.27606+01 1.86936-02	GRNIIP 2 P1 CALCULATE() 7.71476+00 3.86516-02	P3 CALCULATED 1.3374E+01 1.4297E-02	GROUP 1 CALCULATED 7.98855+00 4.48855-02	Pa CALCULATED 1.39976+n1 8.69746-n3
	·	SOURCE		SOURCE	
PO CALCULATFD 2.8830E+n0 5.2511E-n2	PZ CALCULATED 1.0626E+n1 2.1454E-n2	P0 CALCULATED 2.93526+00 5.01046-02	PZ CALCULATED 1.1103E+01 2.7167E-02	Р0 САГСИГАТЕ0 2•99%5Е+00 4•6628Е-02	P2 CALCULATFU 1・15456+01 3・39276-02
10 10 10 10 10 10 10 10 10 10 10 10 10 1	817 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	285 287 297 297 297 297 297 297 297 207 207 207 207 207 207 207 207 207 20	212 245 245 245

*** ETOG ***

.

INFLASTIC SCATTERING PROHABILITY MATELX

RENURMAL I LATION	
HEFORE	

							9641E=06	5687E-06 30.0662E-06	1438E-05 13.2543E-05	2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5690E-05 32+3260E-05		2053E-04 71.1270E-05		5741E-04 14.2536E-04	•	6580E-04 26.2498E-04		0337E-04 44.7720E-04		8545E-04 71.2424E-04	5413E-05	7476E-03 10.6453E-03	5735E-04 98.8205E-05	5198E-03 15.0250E-03	7300E-04 29.9447E-04		9257E-03 20.1408E-03	41055-04 50.2343E-04	I I	6945E-03 25.7652E-03	5815E-04 78.7436E-04		4981E-03 31.5946E-03	4716E-03 11.6065E-03	
						10.4243E-06	49.37345-06 20.1	13.4658E-n5 81.	32.78076-05 21.		72.0050E-r5 48.1		14.4099E-04 10.		26.4992F-n4 19.		. 45.1453E-n4 34.		71.7558F-p4 57.	49.5300E=n5	10.7112F-03 87.	15.3837F-n4 6].	15.1048E-ra 12.	28.r670E-r4 21.	20.2305E-03 17.	47.4613F-n4 37.		25. abl2f-n3 22.	74.0569E-r4 61.		1 31.4909F-n3 28.1	11.1225F-r3 93.		- 37 - 37 - 44 - n 34 - 1	1 15.4005F-03 13.	
				7	6 54+1847F=n7	6 29.1462F-06	5 84.27835-06	5 21-642RF-05	5 49.8897F-05		4 10.4301F-04		4 19.9582E-n4		4 35.2424F-04	Ľ	4 57.8722E-04	5 29.8972F-05	3 89.97045-04	4 10.6603F-04	3 12.886nF-n3	4 20.3457F-04	3 17.6817F-03	4 35.8447F-r4	3 23.1029H-03	4 58.7311F-04		3 28.8784F-n3	3 90.12146-04		3 34.6771F-r3	3 13.0297E-n3		3 40+1546E-n3	3 17.850AF-03	4
			7	7 33.3759E+0	K 16.6238E-00	6 51.1573E-06	5 13.8934E-05	5 33.7061E-05	4 73.7948E-0	•	4 14.7238E-04		4 27.0045E-04	ŭ	4 45.8946E-0	5 22.42A3E-0	4 72.7908E-04	4 72.3799E-0	a 10.8439E-0	4]4.4752E-01	3 15.2644E=0'	4 25.6047E-04	20.4115E-0	4 45.304]E-04	3 24.0535E-0'	4 71.4793E-04		3 31-8843E=0	3 11.74n6F-0		3 37.5509E-0	a 15.1406E-0'	4	0-37444E-0	A 21.2723E-0	4 37.9095E-4
		I	7 16.2233F-0	6 97.9945F-0	6 3n.4946E-n	5 87,7563E-0	5 22.4280E-0	5 51.4939E-0	4 10.7248E-0	•	4 20.451HF-0	6	4 34,0056E-0	5 13.0916F-0	4 54,9545F=0	5 48.2152F-0	3 90.4131E-n	4 10.1214F-0	3 13, n64HE-0	4 14.4384F=n	3 17, RH94E-0	4 34.4404F=0	3 23.3316E-n	4 54.7262E-0	3 29.1141F-n	3 87.4466F-n		3 34.9064F-n	3 12.6970F-0	4	3 40.3642E-0	3 17.4612F-0	1 32.630.46 4	3 45.1703F-0	3 22, 4616F-0	4 82.2470E-0
	m	7 77.9101E-0	5 52.0524E-0	5 14.1785E-0	55.3882E-0	5 14.9121E-0	5 3c.8784E-0	4 77.9873E-0	4 15.4567E-0		4 28.1799E-0	5 73.7792E-0	0-3E1E9.14 4	5 31.4347E-0	4 75.1682F-0	5 69.3840E-0	3 11.1485F-0	4 13.9476E-U	3 15.6295E-0	4 25.7536E-0	3 20.8230E-0	44.0341E+0	3 26.4910E-0	4 10.2248E-0	3 32.3219E-0	3 In.5134E-0	÷	3 31.9720E-0	3 14.8671F-0	4 20.]0496-0	3 42. 1044E-0	3 19.9615F-0	4 59.5467F-0	3 47.4414E-0	3 25.5740E-0	3 91.2621E-0
30-2 074-24		29.2347E-01	10.8692E=06	35+0372E-0f	99.2754E-06	25.0241E-05	56.7198E-05	11-67955-14	22 · () 4 / 9E - () 4	53.2549E-06	34.4378E-01	211 • 4979E = UE	62.4047E-04	47.5534E-05	20-32036-46	99.974RE-0E	13.6245E-n;	14.23n1E-04	1×-54n5F-01	34 • 1165E-04	24+0413E+05	56.259]E-n4	29 • 3442E=01	86 • X25XE - 04	35.6133E-03	12.51ARE=0	15.4Ac7E-04	4] • 0059E-05	17 • 3699E • 02	42. JEARF - 04	41112F-05	22.16035-15	67+50R4F-14	44++8535_F=00	ショー コケベン・エア]n•167nf•n
	•	N	m	4	L.	Ŷ	2	80	σ		٦ n		11		2		(")		- 4		ي ۲		1 4		17			α			<u>5</u>			0.2		

,

*** E106 ***

EXIT GROUP	•		TNF ₁ A	SIIC MATHIX				
ĉ	• 0	•						
m	18+5339E-07	• 0	• 0					
4	59 . 7443E-07	51 • 1945E-07	0.	•				
גר י	16.92A1E-06	15.5985E-06	1246073E-06	95.7950E-07	•			
vc	42.6704E-06	41.9956E-06	36.2805E-n4	29.4795E-06	21.08245-06	9] . n477E-n7		
~	96.7168E-06	To.1041E-05	92.7233E=04	80.06125-06	60-9613E-n6	42.7117E-06	20.3607E-06	
æ	19.9156E-05	21.962 ^{9E-05}	21.2889E=n5	19.4232E-05	15.655nF-n5	11, c398E-n5	82.8762E-06	36.7007E-06
0	37.58345-05	43.5294E-05	44.3391E-ng	42.5244E-05	36.0868F-05	29.0921E-05	21.3559E-05	14.1790E-05
	76+06456-06							
10	65 • 5429E = n5	79.3605F-05	d4.5530E-05	84.8462E-05	75-44465-05	61.7072E-05	49.3886E-05	39.4591E-05
	24.2774E-05	11.3922E-05						
[]	10-64146-04	13.4140E-04	14.8857E-n4	15.5626E-04	14.4364F-n4	12.3484E-04	1n.3562E-n4	86.8220E-05
-6	67.92]]E-05	48.5381E-05	19.P6415-ng					
<u>م</u>	16.1923E-14	21.1689E-04	24.3742F-04	26.4468E-04	25.492nF-n4	22.7091E-04	19.8676E-04	17.3988E-04
	14.2798E-U4	10.7135E-04	73.1578E-05	32.76265-05				
E]	23.2354t-n4	31.3966E-04	37.3792E-114	41.9459E-04	41.8609F-n4	38.×883E-p4	35.17055-04	32.0421E-04
	27-46666E-04	21.5364E-04	15.35A1E=04	10.5731E-n4	4] •6668F = n5			
14	31.6147E-n4	44.0160E-04	54.nl34E=04	62.4883E-04	64 . 3557F - 14	61.4928E-n4	57.8749E-04	54 • 6514E-04
	44.7290F-04	39.7658E-04	29.4942F-04	21.1449E-04	14.8569F = n4	65.7072F-r5		4 9
<u>د</u>	40°3944F-04	5P.6420E-04	73.9614F-n4	87.9613E-04	93.2085F-04	91.7917E-04	89.15555-04	84.9629E-04
	80 • 3555E-04	61.9927E-04	52.2578F=04	34.8664E-04	28.3544F - n4	20.40H2E-04	77.79A2E-05	
91	5r + 88945-04	74.6043E-04	94.4588E-n4	11.7622E-03	12-789AF-n3	12.9444E-n3	12-93415-03	12-9943E-n3
	12.40145-03	10.8434E-03	84.0717E-114	64.1819E-04	49.9549F-04	37.2341E-n4	27.25n2E-04	12.0644E-04
17	60.72675-04	91.02515-04	12.03655-03	15.01346-03	16.7111F-n3	17.3370E-n3	17.77H8E-03	18.3405E-03
	18.0236E-n3	14.2344E-n3	13.26845-03	10.51456-03	81.851 AF-n4	62.97.08E-04	47.45R2E-04	36.5600E-04
	18.9361E-04							, , ,
æ	69.9221E-114	10.6937E-03	14.4314F-n3	14.3734E-03	20.8887E-03	22.1624E-r3	23.2646E-n3	24.5852E-03
	24 + HO96E-13	22.9552E-03	10 7654F-n3	15+6896E-03	12-55995-03	99.4349F-04	77.5812E-04	61.3326E-n4
	50.150Hb-04	23.6392E-04						ł
6	71.94545-04	12.1398E-03	16.4876E-03	21-6440E-03	25+0831F-n3	27.1583F-n3	29.11A7E-03	31-4506E-03
	32+50AHE=03	30.82246-03	24.4942F-n3	22-11706-03	14.1591F-n3	14.7553E-n3	11.8332E-03	94.1329E-04
	80+4970E-04	70.0145E-04	36.7843F-n4					- -
C 7	84.380×E-04	13.3605E-n3	18.4746E-na	24-6316E-03	29.0451E-n3	32.13146-03	35.00A1E-03	38.5664E-n3
	40.1402E-03	39.4886E-03	34 . 4835-03	29.6132E-03	24.8778F-n3	20.495HE-03	17.0145E-n3	14.1696E-n3
	12+12326=03	10.73056-03	94.3574E-n4	42+1309E=04		- -	i	- - -

.

EXIT GROUP			BEFORE F	1.2N PROBABIL	ITY MÁTRIX On			
(1)	12.7460E-07	39.5392E-08						
ጣ 4	51.7977E-07 18.0992E-06	28.0134E-07 10.4597E-06	10.1854E-07 60.8605F-07	18.72335-07				
. 6 1)	55+1731E-06	33.8619E-06	20.8995E=06	98.3518E-07	31.7772E-07			
¢	14.8607E-05	96.3189E-06	62.7130E-06	32.05A5E-06	17.91795-06	65.9165E-07		
~	35+7688E-05	24+3581E-05	16.6469E-05	91 - 7245E=06	54.6725F-06	31.9972E-06	13-04295-06	
æ	77.7770E-05	55.3931E-05	39.5575E-05	23.3302E-05	14.74165-05	91.5943E-n6	55.2947E-06	20.2767E-06
đ	15.4200E-04	11.4373E-04	84.9941E-05	53+3141E-05	35+5166E=n5	23.2969E-n5	14.8876E-05	92.6397E=06
	37.31n9E-06					1		
10	28.1213E-04	21-6400E-04	16.6721E-04	11.05A6E+04	77.2868E-05	53+2494E-05	35.8298E-05	23+5339E-05
	14.8501E-05	55.2803E-06						
11	47.5450E-04	37.8274E-04	30.1120E-04	21+0103E-04	15.3356E*04	11.0473E-04	77.8918E-05	53.7310E-05
	35.7521E-05	24.1749E-05	•0				•	
12	75.05n1E-04	61.5417E-04	50.4619E-04	36.8611E-04	27.985nE=04	20.9895E-n4	15.4396E-04	11.1340E-04
	77.7332E-05	55.0153E-05	• • •	•0	•	•	9 1 9	
13	11.13356-03	93.8279E-04	79.0278E-04	60.17×7E=04	47.3448E-04	36. A325E-04	28.1540E-04	21.1366E-04
	15.4140E-04	11.3699E-04	•	•0	•0			- - -
14	15.6115E-03	13.4868E+03	11.6388E-03	92.0236E-04	74.7771E-04	60.1329E-04	47.5910E-04	37.0555E-04
	28.1110E-04	21.5274E-04	•	0.	•0	• •		
15	20.8027E-03	18.3794E-03	16.2141E=03	13.2643E-03	11.0984E+n3	91.9672E=n4	75.1154E-04	60.4506E-04
	47.5289E-04	37.6547E-04	• 0	• 0	•0	- C	• 0	
16	26.4695E-n3	23+8662E-03	21.4784E-03	18.1217E-03	.15.569AF=03	13.2575E-03	11.14175-03	92.3883E-04
	75.0321E-04	61.3009E-04	о. С	•0	•0	•0	• •	•0
17	32.3004E-03	29 .6645E- 03	27.1828E-03	23.5847E-03	20.7555E-n3	18.1134E-n3	15.6212E-n3	13,3091E=03
	11.1307E-03	93.5066E-04	••	• 0	• 0	• c	•.	•0
(•		! !			. 4		
18	37.9518E-03	35.44055-03	33.0108E-03	29.37555-03	26.4196E-n3	23.5762E-n3	20.8140E-03	18.1739E-n3
	15.60A7E-03	13.4477E-03	• 0	•0	•0	•0	•	•0
	• •	•						
19	43.0891E-03	40.8495E-n3	38.6162E-03	35.16n2E-03	32-2506E-n3	29.3663E-n3	26.4811Em03	23.6419E-03
	20.7996E-03	18.3342E-n3	•	• •	• 0	• •	• 0	• 0
	• 0	•0	• с					,
20	47.4271E-03	45.5804E-03	43.6696E-03	40.5950E-03	37.9049E-n3	35.1515E-n3	32.3122E-03	29.4342E+n3
	26.4663E-03	23.8170E-03	0.	•0	•	• •	• •	•
	•0	• 0	• •	•0				

•

ċ

•0

$ \begin{array}{c} 17.0870 \mbox{F} 07 \mbox{$16,095 \mbox{$17,010} 0 \mbox{$17,010} 0 \mbox{$17,010} 0 $11,010 \mbox{$10,000 \mbox{$$	a		• • c c	₩ 2 C	XIRIAM				
$ \begin{array}{c} 34.9446 - 06 & 34.915 - 06 & 34.925 - 06 & 34.925 - 06 & 34.9600 - 7 & 14.9600 - 7 & 14.9200 - 7 & 14.9446 - 05 & 13.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9346 - 05 & 33.9456 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44956 - 06 & 33.44956 - 06 & 33.44956 - 06 & 33.44956 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.44726 - 05 & 33.4456 - 06 & 33.4456 - 06 & 33.4456 - 06 & 33.4456 - 07 & 0.0 & 33.4456 - 07 & 0.0 & 33.4456 - 07 & 0.0 & 33.4456 - 07 & 0.0 & 33.4456 - 07 & 0.0 & 33.4456 - 07 & 0.0 & 0$		17.6820E=07 53.9014E+07 14.51016	15.6945E-07 50.8089E-07	0. 33.0657E-07	0. 	.). 			
$ \begin{array}{c} 75.9485 = 06 \ 93.1160 \ 63.585 \ F = 07 \ 22.007 \ RF = 06 \ 33.0229 \ F = 06 \ 33.0259 \ F = 06 \ 33.055 \ F = 06 \ 53.0279 \ F = 05 \ 53.077 \ F = 05 \ 53.0776 \ F = 05 \ 53.0776 \ F = 05 \ 53.0576 \ F = 05 \ 53.0576 \ F = 05 \ 53.0576 \ F = 05 \ 53.0776 \ F = 05 \ 53.076 \ F = 05 \ 53.0773 \ F = 05 \ 53.076 $		34-9444E-06	14.43245.00 36.54885-06	74.22025-07 26.3375E-06	14.20346=06	81.62095-07	0. 44.7600E-n7	15.1514E-n7	
$ \begin{array}{c} 33.344 \text{ F} \text{ or } 32.4703 \text{ F} \text{ or } 22.374 \text{ F} \text{ or } 17.1240 \text{ F} \text{ or } 32.4254 \text{ F} \text{ or } 14.452 \text{ F} \text{ or } 12.453 \text{ F} \text{ or } 14.179 \text{ F} \text{ or } 52.494 \text{ F} \text{ or } 52.443 \text{ F} \text{ or } 52.705 \text{ F} \text{ or } 43.431 \text{ F} \text{ or } 52.254 \text{ O} \text{ F} \text{ or } 12.453 \text{ F} \text{ or } 14.25497 \text{ F} \text{ or } 14.163 \text{ F} \text{ or } 14.133 \text{ F} \text{ o} 14.163 \text{ F} \text{ o} 14.163 \text{ F} \text{ o} 14.133 \text{ F} \text{ o} 14.143 \text{ F} \text{ o} 14.143 \text{ F} \text{ o} 14.143 \text{ F} \text{ o} 12.233 \text{ F} \text{ o} 14.133 \text{ F} \text{ o} 14.133 \text{ F} \text{ o} 14.133 \text{ F} \text{ o} 14.143 \text{ F} \text{ o} 14.143 \text{ F} \text{ o} 12.173 \text{ F} \text{ O} 10.103 \text{ F} \text{ O} 10.$		75-9843E-06	83.1160E=06	62.5851E-06	36.1264E=06 82 EECOLOC	22 • 0078E - 16	12.4697E-n6	64-2336E-07	16-4140E-07
<pre>57.4772E-05 32.4703F-05 26.3774E-n5 17.1240E-n5 11.5382E-n5 73.4570E-n4 41.6221E-n6 19.0508E-06 65.4401E-n5 56.7591E-05 47.4411E-n5 32.5340E-n5 22.894AE-n5 15.2011E-n5 9n.4837E-n6 43.4954E-06 12.8263E-06 14.034FE05 47.4411E-n7 0. 77.3203E-06 14.9847E-07 0. 77.3203E-06 14.9847E-07 0. 77.3203E-07 0. 77.3203E-06 14.9847E-07 0. 77.3203E-07 0. 77.9364E-06 14.0347E-07 0. 77.9364E-07 11.0327E-04 12.5032E-04 93.1924E-05 70.6813F-n5 50.94432E-n5 32.7053E-n5 90.1303E-06 7.25940E-n4 14.0787E-04 12.5032E-04 93.1924E-05 11.11635F-04 83.1786E-n5 32.7053E-n5 48.9349E-n5 55.9504E-n4 27.2704F-04 12.4077E-04 14.2497E-04 11.1635F-04 87.7213E-n4 87.25846E-n5 29.9965E-05 10.0842E-05 66.4607E-07 0. 15.2517F-n4 27.2304F-04 27.6504E-04 20.5395E-04 14.56088F-n4 12.7213E-n4 87.25846E-n5 29.9965E-05 17.04967E-05 11.9252E-06 0. 70.03232E-04 33.9816E-04 29.0511E-04 23.2442F-04 18.3383E-04 12.9429E-05 17.04967E-05 118.9252E-06 0. 70.02.95845E-04 31.9816F-04 30.9866FE-04 18.3383E-04 12.94297E-04 10.7737E-04 31.5556E-04 44.5109E-04 43.0067E-04 30.9866FE-04 30.99866FE-04 18.3383E-04 12.7737E-04 0. 70.0773FE-04 53.1777E-04 53.0916FE-04 30.44874E-04 30.44874E-04 18.3465E-05 0. 70.7771FE-04 53.1777E-04 53.0771FE-04 54.4449E-04 49.471FE-04 24.1788E-04 10.7737E-04 0. 70.7737E-04 61.0954FE-04 61.0954FE-04 54.4449E-04 48.1471FE-04 24.1788E-04 19.1381E-04 74.6134FE-04 61.0954FE-04 61.0954FE-04 54.4449E-04 48.1471FE-04 24.1788E-04 19.1381E-04 74.6134FE-05 64.607E-04 61.0954FE-04 64.0976FE-04 48.1471FE-04 24.1788E-04 19.1381E-04 74.6134FE-05 64.6077E-04 64.0976FE-04 64.449E-04 48.1471FE-04 24.1788E-04 24.1286FE-04 0. 70.000000000000000000000000000000000</pre>		13-38445-07				4U= 16230 + FC	90 = 3 + C - X - X - X - X - X - X - X - X - X -	11.64445-00	10-30266-41
$ \begin{array}{c} 66.4491 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$		27.4732E-05 53.2713E-07	32.4703F=05	26.37745-05	17.12405-05	11.5382E-05	73.Å570E-nA	41.6221E-n6	19.0508E-06
$ \begin{array}{c} 12 \cdot 92 \cdot 32 \cdot 67 \cdot 6$		46.4491E=05	56.7591E-05	47.6411E-05	32.53405-05	22.89465=05	15.2811E-05	9n.4837E-n6	43.4954E-06
$ \begin{array}{c} 27.986.06 & 16.984.76 - 07 & 0.0 \\ 10.877.866 - 06 & 12.503.26 - 07 & 0.0 \\ 10.877.866 - 06 & 12.503.26 - 04 & 12.503.26 - 07 & 0.0 \\ 15.525.824.66 - 05 & 12.503.26 - 04 & 13.414.64 & 14.224976 - 04 & 11.163576 - 05 & 32.705.36 - 05 & 29.996.56 - 05 \\ 15.625.824.66 - 05 & 0.0 \\ 10.084.276 - 05 & 66.46076 - 07 & 0.0 \\ 10.084.276 - 05 & 14.2746 - 04 & 14.224976 - 04 & 11.163576 - 04 & 33.17866 - 05 & 29.996.56 - 05 \\ 17.049976 - 05 & 11.655076 - 06 & 0.0 \\ 17.049976 - 04 & 27.57746 - 04 & 29.53955 - 04 & 11.163576 - 04 & 37.258576 - 05 & 29.996.55 - 05 \\ 17.049976 - 05 & 11.655076 - 06 & 0.0 \\ 17.049976 - 04 & 27.57746 - 04 & 29.53955 - 04 & 15.528476 - 04 & 18.7338357 - 04 & 18.738576 - 05 \\ 17.049976 - 04 & 27.57746 - 04 & 33.981657 - 04 & 0.0 & 0.0 \\ 25.9495467 - 04 & 27.553576 - 04 & 33.981657 - 04 & 0.0 & 0.0 \\ 25.94076 - 04 & 27.553767 - 04 & 33.981657 - 04 & 0.0 & 0.0 \\ 25.94076 - 04 & 20.553767 - 04 & 30.986677 - 06 & 0.0 & 0.0 \\ 25.94076 - 05 & 10.677376 - 04 & 30.986677 - 04 & 30.986677 - 06 & 0.0 \\ 25.992876 - 04 & 45.10977 - 04 & 36.521457 - 04 & 30.986677 - 0 & 0 & 0.0 \\ 25.992876 - 04 & 45.10977 - 04 & 36.521457 - 04 & 30.986677 - 0 & 0 & 0 \\ 25.992876 - 04 & 45.487457 - 04 & 30.986677 - 0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 & 0 \\ 0.0 & 0.0 & 0.0 & 0 & 0 & 0 & 0 & 0 & 0$		12+8253E=06 7-13253E=06	74.6344E=08 03 34186-06	(). 70 83735-05		1 770.F.	1 3166. oc		
$ \begin{bmatrix} 10.47 \times 8E - 04 & 14.0787 \in -04 & 12.5032 \in -04 & 93.1824 \in -05 & 70.68137 - 05 & 50.9483 \in -05 & 32.7053 \in -05 & 17.1101 E = 05 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $		27.8850E-06	16.9847E-07	14.000000000000000000000000000000000000			50-31555-52	C0-30454+/1	40+1303E-0a
$\begin{array}{c} 55.2940 \text{E-} 0.6 & 35.101 \text{H}\text{E-} 0.7 & 0 & 0 & 0 \\ 15.2517 \text{F-} 0.4 & 35.176 \text{F-} 0.4 & 18.4141 \text{F-} 0.4 & 14.2497 \text{E-} 0.4 & 11.1635 \text{F-} 0.4 & 83.1786 \text{E-} 0.5 & 55.2846 \text{E-} 0.5 & 29.9965 \text{E-} 0.5 \\ 17.0842 \text{E-} 0.7 & 0 & 0 & 0 & 0 \\ 26.3232 \text{E-} 0.4 & 27.577 \text{d}\text{E-} 0.4 & 27.577 \text{d}\text{E-} 0.4 & 24.978 \text{E-} 0.5 & 12.0738 \text{E-} 0.5 & 48.93498 \text{E-} 0.5 \\ 17.010842 \text{E-} 0.5 & 51.577 \text{d}\text{E-} 0.4 & 27.577 \text{d}\text{E-} 0.4 & 27.5785 \text{E-} 0.5 & 48.93498 \text{E-} 0.5 \\ 17.010942 \text{E-} 0.5 & 27.577 \text{d}\text{E-} 0.4 & 27.577 \text{d}\text{E-} 0.4 & 27.5785 \text{E-} 0.5 & 48.93498 \text{E-} 0.5 \\ 17.010942 \text{E-} 0.5 & 11.6250 \text{E-} 0.6 & 0 & 0 & 0 & 0 \\ 26.9156 \text{E-} 0.6 & 11.6250 \text{E-} 0.6 & 0 & 0 & 0 & 0 \\ 25.9166 \text{E-} 0.4 & 33.9816 \text{E-} 0.4 & 24.06118 \text{E-} 0.4 & 23.24457 \text{E-} 0.4 & 12.94298 \text{E-} 0.4 & 10.7737 \text{E-} 0.4 \\ 0 & 0 & 0 & 0 & 0 \\ 25.9166 \text{E-} 0.6 & 0 & 0 & 0 & 0 \\ 39.92898 \text{E-} 0.5 & 28.86808 \text{E-} 0.6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 37.07718 \text{E-} 0.4 & 53.17778 \text{E-} 0.4 & 45.48748 \text{E-} 0.4 & 39.442676 \text{E-} 0.4 & 32.41178 \text{E-} 0.4 & 14.7118 \text{E-} 0.4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 &$		10.8768E-04	14.07876-04	12.50325-04	93.1824E-05	70+6813E-05	50.9483E-n5	32.70535-05	17.1101E-05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		55.2940E-n6	35.1018E-07	• 0	• ()	•0			
$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $		15.2517F=04	20.2366F=04	18.4141E-04	14.2497E=04	11.1635F=04	83.1786E-05	55.2846E=n5	29.9965E=05
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		10.08425-04 20.32325-04	27.5778F-04	0. 25.4528F=04	9. 20.5395F-04	0. 16.5688f-ná	0. 12.7213F-04	87.25855-05	48.9349F=05
25.8594F-n4 35.810/FE-04 33.9816F-n4 29.0611E-04 23.2442F-n4 18.383E-n4 12.9429F-n4 74.7885E-05 26.9166-n5 18.9252E-06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		17.04996-05	11.6250E-06	.0	• 0	0.			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		25.8594F-n4	35.A107E-04	33.9816E=04	29.0611E-04	23.2442F=n4	18.3383E-04	12.9429E-04	74.7885E-05
31.5559E-04 44.5109E-04 43.0067E-04 36.5204E-04 30.9860E-04 25.0553E-04 18.1465E-04 10.7737E-04 39.9289E-05 28.8680E-06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		24.9160E-05	18.9252E=06	.	• 0	•0	• •	¢	•0
37.0771E-04 52.2273E-04 45.4874E-04 39.4420E-04 32.4117E-04 24.1788E-04 14.7118E-04 37.0771E-04 52.2273E-04 45.4874E-04 39.4420E-04 32.4117E-04 24.1788E-04 14.7118E-04 55.9928E-05 0 0 0 0 0 0 0 70.071E-04 52.2273E-04 45.4874E-04 32.4117E-04 24.1788E-04 14.7118E-04 55.9928E-05 0 0 0 0 0 0 0 74.6138E-04 61.0958E-06 0 0 0 0 0 0 14.61381E-04 0 0 0 0 0 0 0 12.61381E-04 0 0 0 0 0 0 0 14.61381E-04 0 0 0 0 0 0 0 12.61381E-04 0 0 0 0 0 0 0 0 13.651381E-05 0 0 0 0 0 0 0 0 14.651381E-04 0 0 </td <td></td> <td>31.5559E+04</td> <td>44.5109E=04</td> <td>43.0067E-04</td> <td>36.52n4E-04</td> <td>30+986nE=n4</td> <td>25. n553E=n4</td> <td>18.1465E-04</td> <td>10.7737E-04</td>		31.5559E+04	44.5109E=04	43.0067E-04	36.52n4E-04	30+986nE=n4	25. n553E=n4	18.1465E-04	10.7737E-04
37.0771E-04 52.2273F-04 45.4874E-04 39.442nE-04 32.4117E-04 14.7118E-04 55.9928E-05 0 0 0 0 0 0 0 6 55.9928E-04 0 0 0 0 0 0 0 7.955928E-04 0 0 0 0 0 0 0 0 7.956928E-04 61.2938E-04 61.0958F-04 54.4449E-04 48.1471F-04 40.4209E-04 19.1381E-04 74.6134F-05 56.6025E-06 0 0 0 0 0 0 14.6134F-05 56.5884F-04 56.5884F-04 48.48.48.48.48.48.48.48.48.48.48.48.48.4		0			•	•0	•	•	•0
55.9928E-05 41.5147E-06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		37-0771E-04	53.1777E-04	52.22735-04	45°4874E-04	39.442 nF - n4	32.61175-04	24.1788F-04	14-71185-04
C. D. D. A. 2038E-04 61.0958E-04 54.4449E-04 48.1471E-04 40.4209E-04 30.7621E-04 19.1381E-04 74.6134E-05 56.6025E-06 D.		55+9928F-05	41.5147E-06	•	•	0			
42.096/0E-/4 61.2938E-04 61.0958F+04 54.4449E-04 48.1471F-/4 40.4209E-/4 30.7621E-/4 19.1381E-/4 74.6134F-/5 56.6025E-06 /. // // // // // // // // // // // //		• C	• c.			9		•	
74.613HF-U5 56.6025E-06 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		42.094nE-n4	61.2938E-04	61.0958F-04	54.4449E=04	48.1471F-04	40.4209E-04	30.76216-04	19.1381E-04
0. 0. 0. 0. 0. 0. 40.3339E-n4 66.3923E-04 69.n909E-n4 62.8006E-04 56.5884F-n4 48.K232E-n4 37.535AE-n4 23.8270E-n4 94.9416F-05 73.5295E-n6 0. 0. 0. 0. 0. 0. 0.		74.613HF-05	54.6025E-06	• u	•	• •	• •	• •	•0
46.3339E-n4 66.3923E-n4 69.n9n9E-n4 62.86n6E-n4 56.5884F-n4 48.x232E-n4 37.5358E-n4 23.8270E-n4 94.9416F-n5 73.5295E-n4 n. n. n. n. n. n. n.		• 0	•	• •		,			
		40-3339E-04	66.3923E-04	69.0909E-04	62.86n6E=04	56+5884F=n4	48.4232E-04	37.5358E-04	23+8270E-04
		94 • 94 161 = 05	73.5295E-06	•0	•	•	.	• ℃	•••

*** 0013 ***

THE FOLLOWING CARUS HAVE BEFN PUNC

		HE FULLOWING CARDS HAVE		
ENDE/8 LAPE NO.# 115	MATERIAL NO.	= 1051	1051	-
2.10000E+01 8.70000E+01	L 2.50000E+n1		1021	n:
2.36999E+02 1.00000E+01	7 2.50000E-01	8.7n00nE+n1 5.00000E+00	8.78000E+001051	(***
9.4000UE-04 3.8700NE-02	P 0.		1051	4
7.83000E+00 8.70000E-04	4 4.06000E-n2	4.1500/E-12 0.	7.50000E-011051	ſ
1.09300E+01 1.82000E+03	3 3.15000E-n2	1.4470nE=01 0.	7.5000E-01051	¢
1.19000E+01 1.07000E-03	3 4.09000E-n2	2.2000nE-02 0.	7.50006-01051	2
1.42800E+01 5.50000E-04	\$ 3.87000E=n2	5.2500nE-02 0.	7.50000E-011051	æ
1.46800E+01 2.20000E+03	3 3.87000E-02	3.1700nE+02 0.	7.50000E-011051	σ
1.55000E+01 2.37000E-03	3 3.87000E-02	7.6050nE-01 0.	2.50000E-011051	c
1.76000E+01 1.60000E+03	3 3.41000E-n2	4.6300nE-02 0.	7.5r00nE-n]1051	11
2.22000E+01 2.23000E-03	3 3.13000E-02	7.5000E-02 0.	7.5000E-011051	12
2.39000E+01 8.70000E-04	4 3.87000E-02	3.7100/E-02 0.	7.5000E-011051	5
2.62000E+01 1.78000E-03	3 3.8700UE-02	3.5700nE-92 0.	7.5r000E-011051	4
2.73000E+01 1.30000E+04	4 3.87000E-02	2.8000nE-n3 0.	7.5000E-011051	5
3.23000E+01 8.60000E-04	4 3.87000E+r2	1.8900nF-01 0.	2.50000E-011051	9
3.53000E+01 3.10000E-04	+ 3.87000E-n2	4.1n000E-03 0.	7.50000E-011051	7
4.)4000E+01 6.07000E-03	3 5.92000E-n2	1.0700nE-02 0.	7.50000E-011051	8
4.45000E+01 6.34000E-03	3 2.78000E-n2	4.2000nE-03 0.	7.50000E-011051	19
4.76000E+01 5.40000E-02	3 3.87000E-n2	3.01000E-01 0.	2.50000E-011051	20
4.98500E+01 4.4000E-04	4 5.98000Em02	7.5n00nE-nl 0.	2.50000E-011051	21
5.02200E+01 3.04000F-03	3 4.13000E-n2	1.1200nF-02 0.	7.50000F-011051	25
5.26000E+01 1.00500E+02	2 3.93000E-02	7.70000E-03 0.	7.50000E-011051	53
5.57900E+01 1.43000E+01	3 2.60000E-n2	2.Zn000E=02 0.	7.5000E-011051	40
5.76000E+n1 1.70000F-c2	2 3+87000E+n2	5.4600nF-01 0.	2.50000E-011051	ŝ
5.80000E+01 1.20000E+02	2 3.87000E+02	8.05000E-01 0.	2.50000E-011051	26
5.93900E+01 5.59000F+03	3 4.86000E-07	1.3300nE-01 0.	7.500n0E-011051	74
6.11000E+01 2.24000E+02	2 3.87000E-02	2,00000E+00 0.	2.50000E-011051	28 2
6.34000E+01 1.94000E+03	3 3.87000E-02	1.3900nE-02 0.	7.50000E-011051	<u>م</u>
6.59600E+01 1.25000E-02	2.24000E-02	7.7A00AE-02 0.	7.50000E-011051	30
7.43100F+01 3.27000E+03	3 3.66000E-n2	2.9500nE=02 0.	7.50000E-011051	31
7.52100E+01 2.21000E-02	2 4.49000E-12	9.50000E-02 0.	7.50000E-011051	32
8-20000E+01 6-2000nE+0	3 3.87000Emp	1.5000E+00 0.	2.50000E-011051	6
8-53000E+01 8.67000F+0	3 3.87000E-02	2.00000E+00 0.	2.50000E-011051	4
8-56000E+01 3.070n0E-0	3 3.87000E-02	2.1×700E-01 0.	7.50000E-011051	35
9.09000E+01 2.47000E+03	3 3.87000E-n2	1.1460nE=01 0.	7.5r000E-011051	5
9.55000E+01 9.34000E-04	4 3.87000E-02	2.3000nE=01 0.	7.50000E-011051	37
9.60000E+n1 9.20000E-03	3 3.87000E-02	1.4000nE+00 0.	2.50000E-011051	6
9.76000E+01 1.80000F+0	3 3.87000E-02	3.6n00nE-01 0.	2.50000E-011051	66
9.900005 - 1	3.87000t-n2	2.00001E+00 0.	2.5000E-011051	¢ 0
*0-302024 - CATSONDER		4.1]000E101 0. 0 310017113 0		41
				(<
172 13 174 175 178 l R O 0 <u>д</u> Д ک 5 177 a 40 4 4 5 47 4 5 5 5 ŝ 50 171 0 1 H I ñ 4 4 4 4 49 C S 5 ŝ ŝ 51 ŝ ŝ Ş 5 Ę 4 С С 51 ά 4 2.427476-011051 2.88305E+00 5.241]nF=n21051 1.48848F-n]:051 2.00440F-0]105) 2.66774E+001051 2.89542E+011051 1.31120F-011051 1051 1051 1051 1051 9.50085E-021051 4. cv39vF + c01051 3.50908E+001051 2.87024E+001051 2.87000E+00105] 2.87000E+001051 1.0000E-101051 1.00000E-101051 1.25522E-011051 1.R2614E-n11051 2.13602F-011051 4.45611E-011051 1.14848E+001051 1.34052E+001051 1.45635E+011051 6.80251E-021051 1.13864E-01105 3.063725+901051 2.97572E+001051 2,92827E+n01051 2.90195E+001051 2.847ANE+00105 2.87491E+001051 2.87109E+001051 2.87005E+001051 2.87001E+001051 2.87000E+001051 1.010000E-101051 2.06927E-021051 6.95824E-02105] 5.72147E+00105 2.35977E+n0105 9.7433AF-02105 2.0410-3465-0-5 3.220976+00105 0 1.027695+00 4.38832F+00 4.11720F+00 4.03202F+00 1.00000F=10 3.15070E-n3 2.27646E+00 4.43305E+00 4.78/345+00 3.08372E+00 2.98683E+00 2,93432E+00 2.88947E+00 2.87141E+00 2.8703]E+00 2.87007E+00 2.87002E+00 2.8700nE+00 2.8700nE+n0 1.00000E-10 1.00000E-10 1.00000E-10 .00000E-10 1.54518E+00 3.15217E+00 4.14599E+00 4.40330F+00 4.258946 +00 3,57517E+00 2,90533E+00 2.8763nE+00 2.87000E+00 9.40495E+n0 3.25761E+00 4.14961E+00 6.2361AE+02 1.13115E-01 1.75347E-01 3.33481E-01 1.4874]E+0] 2.77737E+01 1.02125E+01 2.11167E-01 0 4.2H34.5 3.649046+00 .00001F-10 .00000E-10 4.32543E-06 1.943475+00 .15997E+00 2.999n9E+n0 2.94100E+00 2.8704nE+00 2.87000E+nn 2.8700nE+00 2.8700nE+00 5.5421 nE-02 3.40444E+00 .2R347E+00 3.10705E+00 .90894E+00 2.69144E+00 2.87809E+00 .87181E+00 2.67009E+00 2.87007E+00 2.87001E+nn 2.8700nE+00 .0461JF-01 .64422E-01 2.06284E-01 3.89059E+10 2.93518E+nn 5.01042E-12 6.1075nE-12 8.694455-02 9.51642E-02 •04895E-01 .26849F-0] 4.193816+nn 1.58725F-n1 .52109E-01 9.02881F-01 -77765E+01 8.342246+11 .87044F-01 11-121210. 11-34[574. 1.43887E+r> 0. • 0 2 2 4.18264F+nn 2 4.44774E+00] 4.56573F+nn 3.01397E+nn 2.94841E+nn 2.91310E+nn 2.8938UE+nn 2.88039E+nn 2.87052E+nn 2.87012E+00 4.53301E-02 1.54625E-n1 1.65978E+nn 6.23749E+n1 2.94770E+00 3.86410E+nn 4.40779E+00 3.13056E+nn 2.87232E+00 2.87000E+00 5.89678E-n9 3.91172E+nn 6.15011E+nn 4.77397E+00 4.37868E+nn . - 2924F + nn 3,73121E+nn 3.34610E+00 2.87003E+nn 2.87000E+00 1.00000E-10 1.00000E-10 9.96240E-n2 6+03944E+nn 1.99238E-n1 7.853046-01 4.43070E+nn 2.18351E-01 2.85362E+02 2.91792E+00 2.89615F+00 2.87066E+00 2.87015E+00 .068H2E+02 3.03040E+00 2.95671E+00 2.47000E+00 1.0000UE-10 1.00000E-10 1.00000E-10].44332E+np 4.77300E+00 4.59365F+00 3.82056E+00 3.34353E+00 3.15768E+00 2.8H334E+00 2.87298E+00 2.87003E+00 2.87001E+00 2.47000E+00 2.87000E+00 1.00000E-10 1.00000E-10 3.49039F-r2 9. n9937E+02 1.45763E-01 3.911696+00 2.53100F+00 4.773H7F+01 4.66244E=n2 9.52811f ---2 1.92449F-61 1.33000E+01 8.788356+01 5.60817E-02 7.78406F-22 9.415n0F-r2 1.218855-11 5.29816E+01 2.216795-01 6.721/6E-01 [-46]04E-C] - 17471 T. 1 7.543764 NU-SIGMA FISSION N+GAMMA 4.45979F+nn 4.2457JF+na 3.92001E+00 3.44869E+00 3.18789E+00 3.04702E+00 2.96541E+00 •00000E-10 3-450966+00 2.87085E+00 2.87019E+00 2.87000E+00 1.00000E-10 •00000E-10 4.32233E+30 4.404425400 2.88611E+00 2.87001E+00 2.87000E+00 1.28500E+00 2.99051E+00 2.92266E+00 2.89895E+00 2.87382E+00 2.87004E+00 2.87000E+00 3+14072F+00 9.63408E+00 2+87513E+00 5.63048E+01 .68750E-12 -05485F-n2 1.37292E-01 2.34518E+.1 1.87095E-01 2.84446E+01 00+3464440 5.61310E-01 2.16080E-01 9.6628HE + 1 4 + n7322F + 00 4.119194 4.37H03F+

CHAPTER 4

PROGRAMMER'S INFORMATION

This section contains many of the internal details of the program. The intent is that this section will provide the programmer with information that will prove helpful for making additions or modifications and also assist in making the program operational at other installations.

4.1 GENERAL PROGRAM DESIGN PHILOSOPHY

This program was written with the assumption that it would be used at many installations with a variety of computing machinery. Also it is not primarily a production program but one that will simply be used from time to time to generate new libraries or update old ones. Hence a basic aim was to produce straightforward, clear programming that would be readily understood. The program is entirely in ASA standard FORTRAN (FORTRAN IV) and uses no programming tricks and takes no advantage of any particular hardware or software. Also in the spirit of simplicity, variable dimensioning was not used.

The program was written with the expectation that there will be future additions and modifications. Some of these are anticipated with statement allocations and comments. Others are already wholly or partially included.

The main program is simply a series of tests and calls. It is quite straightforward and serves as a gross flow diagram. The flow is in a straight line with few deviations; hence, segmenting is readily accomplished. The program as distributed is segmented according to the overlay structure given in Section 4.3.

Many of the subroutines used by the program may be useful in other (present and future) codes connected with the ENDF/B system. Hence an attempt has been made to write these routines with general use in mind and they are selfcontained (or nearly so). Some ETOG-1 subroutines may be replaced by similar routines from other ENDF/B codes when they become available.

Most of the data handling is done with large common storage blocks. All tape data are first read into these blocks before processing. Data manipulation is performed in these blocks. The blocks also serve as temporary storage for some processed results before final editing. These blocks are the device which permits the general purpose subroutines to be self-contained. At present there are 2 floating point blocks of length 4000. Associated with these are 2 fixed point blocks of length 100.

The logical flow of the program is designed so that the ENDF/B library tape will be scanned only once. Hence, the library tape is never backspaced, and is read forward only. Therefore, some data must be saved from the time they are first encountered on the library tape until such time as they are needed by the program. One such example is the scattering cross section which is saved on scratch tape ITPS and used at various times in the program. Certain other data are stored in /DENS/ of length 10000. For example, due to the frequency of the need, the weighting function (if other than constant) is stored as the first record in /DENS/.

The program will optionally produce MUFT-4, MUFT-5, GAM-I, GAM-II or ANISN library cards as part of the output. Therefore, after library data have been generated, they are stored and then recalled in the last part of the program when the cards are constructed and punched.

4.2 LABELED COMMON VARIABLES

The ENDF/B notation has been retained for variable names when possible. Hence more detailed explanations of the variables may be found in Reference 7. Connected with the ENDF/B data are control paramters to further define and describe the various sections of the ENDF/B information. Therefore, note that in addition to the large storage areas /RECS/ and /DENS/, there are common blocks /CONTF1/-/CONTF5/. The blocks /FILE3/-/FILE6/ are used to store the required information generated by the program. Other blocks are self-explanatory. In the following section, the labeled COMMON block name is given first and its general category described. The variables in

the block are then described in the same order as they appear in the block.

/TAPES/	literal tape names and data mode
MODE	mode of the ENDF/B library tape
105	input tape
106	output print tape
107	output punch tape
NDFB	ENDF/B library tape
ITP1-ITP4	scratch tapes
/TAPUSE/	literal tape names
ITPR	contains resonance scattering data
ITPS	contains smooth scattering data
ITPE	contains elastic (resonance plus smooth) scattering data
/RECS/	single record storage*
MAT	material number
MF	file number
MT	reaction type number
C1, C2	floating point constants
L1, L2	integer constants (usually test numbers)
N1	count of items in a list to follow
N2	count of items in a second list to follow
NBT, JNT	general integer storage space (usually contain interpolation
	tables)
X,Y	general floating point storage space (usually contain point-
	wise data)
N1X	maximum length of the NBT and JNT arrays
N2X	maximum length of the X and Y arrays
NS	card sequence number

^{*} This common block is part of the package of Retrieval Subroutines for the ENDF/B System written by H. C. Honeck (Reference 14). In ETOG-1, some of the array dimensions have been changed.

/DENS/	dense (multi-record) storage*
JMT	record identifier
JAT	record starting location
JTT	record type
JLT	record length
А	record bulk storage array
JNS, MNS	pointers for next record
JX	maximum length of the A array
MX	maximum length of the JMT, JAT, JTT, and JLT arrays
/BLOCK/	data storage area within an overlay (information in this
	area cannot be retrieved or manipulated within another
	overlay)
В	data bulk storage array
/BLOCKS/	data storage area within an overlay (information in this
	area cannot be retrieved or manipulated within another
	overlay)
В	data bulk storage array
/BLOKS/	record length indicators
LBK12	record length variable (usually the number of data pairs
	listed in X and Y)
LIBK12	record length variable (usually associated with NBT and JNT)
LBK34	record length variable (usually the number of data pairs listed
	in B)
LIBK34	record length variable (usually associated with NBT and JNT)
/CONTF1/	control information associated with File 1
ZA	material (Z,A) designation

^{*} This common block is part of the package of Retrieval Subroutines for the ENDF/B System written by H. C. Honeck (Reference 14). In ETOG-1, some of the array dimensions have been changed.

AWR	atomic weight ratio
LRP	resonance indicator
LFI	fissile indicator
LDD	radioactive decay indicator
LFP	fission product indicator
NWD	number of (computer) words in material description
LNU	v representation indicator
NC	number of v polynomial terms
С	v polynomial coefficients
NR1	interpolation table length
NP1	data list length
/CONTF2/	control information - File 2
NIS	number of isotopes
ZAI	isotope (Z,A) designation
ABN	abundance of isotope
LFW	fission width indicator
NER	number of energy ranges for isotope
LISR, LISRX	resolved scattering calculation indicators
EL	lower energy limit of a range
EH	higher energy limit of a range
LRU	data type indicator
LRF	resonance formula indicator
LISU, LISUX	unresolved scattering calculation indicators
SPIR	nuclear spin-resolved range
AP, AM, AA	scattering lengths
NLSR	number of l states - resolved range
CR	penetration factor constant – resolved range
LR	l - resolved range
NRS	number of resonances
SPIU	nuclear spin - unresolved range
NLSU	number of l states - unresolved range
CU	penetration factor constant - unresolved range
NEX	number of points in fission width tabulation

LU	l - unresolved region
NJS	number of J states
MUF	number of degrees of freedom in fission width tabulation
ELOR	lowest energy - resolved region
EHIR	highest energy - resolved region
ELOU	lowest energy - unresolved region
EHIU	highest energy - unresolved region
XPOTR	potential scattering - resolved region
XPOTU	potential scattering - unresolved region
LLRR	resolved data indicator
LLRU	unresolved data indicator
LFWX	fission width data indicator
/CONTF3/	control information - File 3
LFS	final state number
NR3	interpolation table length
NP3	data list length
/contf4/	control information - File 4
LVT	transformation matrix indicator
LTT	data form indicator
LCT	coordinate system indicator
NK4	number of elements in transformation matrix
NM4	number of columns in transformation matrix minus one
NRE4	length of E interpolation table
NE4	number of energy values
NL4	order of Legendre polynomial
NR4	length of interpolation table for tabulation
NP4	number of points in tabulation
E4	energy values at which secondary energy distributions are
	given

/CONTF5/ control information - File 5
NK number of representations (subsections)

THETA	θ
LF	function representation indicator
NE	number of E values in $g(E' \leftarrow E)$ tabulation
NR5	interpolation table length
NP5	data list length
EINIT	E values in $g(E' \leftarrow E)$ tabulation
AWATT	constant "a" in Watt spectrum
BWATT	constant "b" in Watt spectrum
LTHET	length of theta array
LITHET	length of theta interpolation table
LPP	length of P list
LIPP	length of P interpolation table
LGG	length of g(E'/0) list
LIGG	length of g(E'/ θ) interpolation table
/IN/	basic input (see input description)
/MOREIN/	input options (see input description)
KRES	resonance parameter or equivalent smooth data indicator for
	stacked cases
/OPTION/	input options (see input description)
MAXG1	MAXG+1
MAXG2	MAXG+2
MINR1	MINR+1
MINR2	MINR+2
MAXI1	MAXI+1
MAXI2	MAXI+2
/FLAGS/	program control indicators
KEY	data presence indicator
NOXS	elastic scattering cross section presence indicator
NOXIN	inelastic scattering cross section presence indicator

NON2N	n-2n cross section presence indicator
NOXF	fission cross section presence indicator
NONG	(n,γ) cross section presence indicator
NONP	(n,p) cross section presence indicator
NOND	(n,d) cross section presence indicator
NONT	(n,t) cross section presence indicator
NOHE	(n,He ³) cross section presence indicator
NONA	(n, α) cross section presence indicator
NON 2A	$(n, 2\alpha)$ cross section presence indicator
NOCAP	absorption cross section presence indicator
NOMU	$\overline{\mu}_{\varrho}$ (average cosine of the scattering angle) presence
	indicator
CONSTS/	data constants
	1 0 + 10 ⁷

/CONSTS/	data constants
EZERO	1.0×10^7
PI	π
HAFPI	π/2

/GROUPS/	group structure
EGRP	energy structure
UGRP	lethargy structure

/RESON/	resonance region variables
NRES	number of resolved resonances
NUNR	"acceptable" set of unresolved resonance parameters indicator
ECUT	cutoff energy between resolved and unresolved ranges
DLEV	unresolved mean level spacing
GNOBAR	average unresolved resonance reduced neutron width
GGBAR	average unresolved resonance capture width
GBAR	average unresolved resonance statistical spin factor
GOBAR	average unresolved resonance reduced neutron width
GAFBAR	average unresolved resonance fission width
RFACT	GAM-II r-factor
SFACT	GAM-II S-factor

WEAG	resonance statistical spin factor
ER	energy of resolved resonance
GAMN	resolved resonance neutron width
GAMG	resolved resonance capture width
GAMF	resolved resonance fission width
NROIM	narrow resonance or infinite mass approximation indicator
/RESCNT/	resonance indicator
NRIG	group critical resonance indicator
/EXTRAS/	resonance integral variables
CDTEUP	capture resonance integral due to the explicit unresolved
	parameters output for GAM-I or GAM-II
FDTEUP	fission resonance integral due to the explicit unresolved
	parameters output for GAM-I or GAM-II
G2CASBR	asymmetric contribution to GAM-II capture resonance inte-
	gral below ENDF/B resolved energy region due to resolved
	resonances output for GAM-II
G2CASIR	asymmetric contribution to GAM-II capture resonance inte-
	gral in ENDF/B resolved energy region due to resolved
	resonances output for GAM-II
G2FASBR	asymmetric contribution to GAM-II fission resonance inte-
	gral below ENDF/B resolved energy region due to resolved
	resonances output for GAM-II
G2FASIR	asymmetric contribution to GAM-II fission resonance integral in
	ENDF/B resolved energy region due to resolved resonances
	output for GAM-II
RINP	(n,p) resonance integral
RIND	(n,d) resonance integral
RINT	(n,t) resonance integral
RIHE	(n,He ³) resonance integral
RINA	(n,α) resonance integral
RIN2A	(n,2α) resonance integral
ARRAY	total (resolved or unresolved plus smooth) (n,γ) cross section

/SMOOTH/	multigroup cross sections
XABS	absorption cross section
XFIS	fission cross section
XNU	average number of neutrons per fission
/TRANS/	elastic scattering calculation variables
AM1	A-1; A = atomic mass
AP1	A+1 2
ALPLG	$\log (\alpha); \alpha = \left(\frac{A-1}{A+1}\right)$
CFAL	$1-\alpha$
AL	lower limit for outer integral
BU	upper limit for outer integral
CL	lower limit for inner integral
DU	upper limit for inner integral
NUPP1	NLENG+1
NLENG	highest order of non-zero Legendre expansion coefficients
	available for a group
A19	2j + 1; j = 0, 1, NLENG
FBB	value of inner integral at any energy mesh point
FOLA	$\frac{2\ell+1}{1-\alpha}$; $\ell = 0, 1, 2,$
CX	components, σ_{i}^{ℓ} , of transfer matrix
PLXMU	$P_{g}(\mu); \ell$ th order Legendre polynomial evaluated at μ
PLETA	$P_{l}^{(n)}$, th order Legendre polynomial evaluated at n
PLT1	coefficients in recursion formula for calculation of
	Legendre polynomials
PLT2	coefficients in recursion formula for calculation of
	Legendre polynomials
/PARAM/	elastic scattering calculation variables
NPE	number of mesh points used in calculating outer integral
XNPE	NPE-1; number of intervals used in calculating outer
	integral

NPEP	number of mesh points used in calculating inner integral
XNPEP	NPEP-1; number of intervals used in calculating inner integral
LPEP	number of mesh points used in calculating inner integral
	(in-group component only)
QLPEP	LPEP-1; number of intervals used in calculating inner
	integral (in-group component only)
NPIS	number of energy points for which elastic scattering cross
	sections are calculated for a particular group
NPIM	number of energy points for which Legendre expansion coef-
	ficients are calculated for a particular group
LOR1	highest order of scattering matrix desired plus one
NGROUP	source group number
/PLCOMP/	final elastic scattering matrix elements
PO	P _O matrix elements for a particular source group
P1	P_1 matrix elements for a particular source group
P2	P_2 matrix elements for a particular source group
P3	P_3^2 matrix elements for a particular source group
/EXTRA/	matrix column sums
COLUMS	matrix column sums (e.g., inelastic and (n,2n))
/MATXL/	matrix dimensions
LOLIN	total number of elements in the inelastic matrix
LAIN	number of source groups from which inelastic scattering occurs
LDIN	number of groups into which inelastic downscattering occurs
LOL2N	total number of elements in the (n,2n) array
LA2N	number of source groups from which (n,2n) transfer occurs
LD2N	number of groups into which (n,2n) transfer occurs
LOLPO	total number of elements in P_0 matrix (GAM-I)
LAPO	number of source groups from which P $_{m 0}$ elastic scattering
	occurs (GAM-I)
LDPO	number of groups into which P downscattering occurs (GAM-I)
LOLP1	total number of elements in P ₁ matrix (GAM-I)
LAP1	number of source groups from which P_1 elastic scattering
	occurs (GAM-I)

LDP1	number of groups into which P ₁ downscattering occurs (GAM - I)	
LOLP	total number of elements in each P_{ℓ} , i.e., P_{0} , P_{1} , P_{2} , and	
	P ₃ , matrix (GAM-II)	
LAP	number of source groups from which P $_{\ell}$ elastic scattering	
	occurs (GAM-II)	
LDP	number of groups into which P downscattering occurs	
	(GAM-II)	
LOL	total number of elements in composite transfer matrix	
LA	number of source groups from which composite transfer occurs	
LD	number of groups into which composite transfer occurs	
/MUFT 4 5/	output card construction variables	
NFIL	file number	
NCOD	MUFT material number	
NGR	group number	
NSEQ	sequence number	
LAST	matrix column indicator	
SIGN	constructed sign	
IXP	constructed exponent	
FRAC	constructed fraction	
/INFO/	information for GAM punched output	
ANID	alphanumeric identification for nuclide	
NAOC	GAM-I library new addition or change indicator	
LTOT	total number of entries in P_0 , P_1 , inelastic, and (n,2n)	
	matrices and in the σ_{f} , σ_{a} , and v tables	
IWA	absorption cross section presence indicator	
IWF	fission cross section presence indicator	
IWR	resonance parameter presence indicator	
NUMID	number of one-dimensional arrays present for nuclide	

/ANISN/

NC	card sequence number
NF	field number indicator

.

NUM	number of elements in array		
KT	array element counter		
IX	first subfield; integer or blank		
JX	second subfield; operation indicator		
FX	third subfield; numerical data		
/FILE3/	(output for MUFT File 3) multigroup cross sections, slowing		
	down and fission product parameters		
XS	scattering cross section		
XC	capture cross section		
XIN	inelastic scattering cross section		
XF	fission cross section		
AGN	isotropic Greuling-Goertzel parameter (age number)		
XSMU	anisotropic scattering cross section		
GNU	ν		
XSXI	isotropic slowing down power		
ETA	anisotropic slowing down power		
ZETA	anisotropic Greuling-Goertzel parameter (also used to		
	store the group integral of the weight)		
/FILE4/	(output for MUFT File 4) MUFT group resonance indicator		
JRS	number of resonances in group		
/FILE5/	(output for MUFT File 5) inelastic and (n,2n) matrices		
PMX	probability and/or cross section matrix		
DIAG	ingroup scatter		
XTRA	out of matrix scatter		
/FILE6/	(output for MUFT File 6) source spectrum		
TRUM	source spectrum (also used for temporary storage)		

4.3 OVERLAY STRUCTURE AND ROUTINE LIST

Following is a list of the programs, subroutines, and functions used by ETOG-1.

.

A brief summary of the purpose of each is included. The order of the list is the same as that of the physical deck. It is arranged by program segment; hence, this list also serves as the overlay structure description.

Overlay (0,0)

FLOW	controls flow of main program
ERR	prints error message
ERROR	prints error message*
STORE	stores record in dense storage*
FETCH	fetches record from dense storage*
DELETE	deletes record from dense storage*
ECSI	computes integral of y(x)*
GRATE	integrates TAB1 function*
COMB	combines two TABl functions*
COMBP	combines one panel of two TABl functions*
ADD	combining function for addition*
SUB	combining function for subtraction*
MULT	combining function for multiplication*
DIV	combining function for division*
TERP	interpolates between two points*
TERP1	interpolates one point*
TERP2	forms new table by interpolation*
LRIDS	locates record in dense storage*
FPDS	fetches point from dense storage*
LPDS	interpolates point in dense storage*
HOLL	reads hollerith material description
CONT	reads control (CONT) record
LIST	reads LIST record
TAB1	reads TAB1 record
TAB2	reads TAB2 record
TPOS	positions ENDF/B tape to file (MF) and reaction (MT)
XTND	extends data array
SAVE	writes or reads a scratch tape
TERPO	interpolates a data array

1

^{*} This subroutine (or function) is part of the package of Retrieval Subroutines for the ENDF/B System written by H. C. Honeck (Reference 14).

GPAV AVRG OUT3 XSP4		averages over selected groups averages over a selected energy range prints output (File 3 data) converts data to excess-50 format, punches MUFT-4 and MUFT-5
Overlay	(1,0)	
ETOG10		controls flow of program in overlay (1,0)
ININ OUTO ZERO EU GENT1 FISS TRID TMAT TMF1 OUT1		reads input lists input options selected initializes variables constructs group structure, weight, and weight averages generates TAB1 function generating function for fission spectrum reads ENDF/B tape I.D. positions ENDF/B tape to material (MAT) reads ENDF/B File 1 prints output (input)
Overlay	(2,0)	
ETOG20		controls flow of program in overlay (2,0)
TMF2 RESO RESS FACTR RESR RESU		reads ENDF/B File 2 calculates resonance parameters for GAM-I and GAM-II calculates resolved resonance scattering calculates penetration and shift factors and phase shift calculates resolved resonance parameters and low resonance effect calculates unresolved resonance contribution
0verlay	(3,0)	
etog30		controls flow of program in overlay (3,0)
TMF3 CROS RESI		reads ENDF/B File 3 calculates smooth cross sections calculates infinitely dilute resonance integrals
Overlay	(4,0)	
ETOG40		controls flow of program in overlay (4,0)
TRAN		controls calculation of transfer elements, prints elastic scattering matrices

GRID	sets up lethargy mesh for integration
MVAL	evaluates inner integrand at an energy mesh value
DINT	performs double integration for matrix element
SINT	performs double integration for in-group matrix element
	(special case)
GADD	retrieves scattering cross sections and Legendre coef-
	ficients
TMF4	reads ENDF/B File 4
LECOM	establishes Legendre coefficients in center-of-mass
	coordinate system
LEGEND	fits Legendre coefficients to tabulated angular distributions

Overlay (5,0)

ETOG50	controls flow of program in overlay (5,0)
INF5	initializes File 5
TMF5	reads ENDF/B File 5
IMAT	calculates contributions to inelastic matrix
CWAX	combines weight and cross section
PUTW	restores weight to proper place
OUT5	prints output (File 5 data)
RENO	renormalizes inelastic matrix
SPEC	calculates source (fission) spectrum

.

Overlay (6,0)

ETOG60	controls flow of program in overlay (6,0)
POUT	punches output for MUFT
GOUT	prints and punches output for GAM

Overlay (7,0)

ETOG70 controls flow of program in overlay (7,0)

ANOUT	prints output for ANISN	ĺ
ANPUN	punches output for ANIS	N
ANPUNF	punches last card	

4.4 ERROR STOPS

If certain errors are detected, an error message will be printed. Some messages are printed directly by the routine in which they are detected. Others are printed by one of the error printing subroutines. Subroutine ERR will print an error number, the subroutine and the statement number where the error occurred and the control words, MAT, MF, MT, Cl, C2, Ll, L2, N1 and N2. Subroutine ERROR prints only the error number and the control words, MAT, MF, and MT. Following is a list of the error numbers, the subroutine which detects the error and an explanation of the error.

Error Number	Detecting Subroutine	Explanation
110	ECSI	Interpolation code out of range
130	TERP2	X(N) not in increasing order
131	TERP2	XP(N) not in increasing order
132	TERP2	Interpolation table incorrect
133	TERP1	Interpolation code not in range 1-5
134	TERP1	$X \leq 0$ cannot be interpolated by logs
135	TERP1	X1 = X2, discontinuity
300	STORE	JT not in range 1-6
301	STORE	MA=0 not allowed
302	STORE	Overflow, record will not fit
303	FETCH	MA = 0, record not in /DENS/
308	COMB	Overflow, answer will not fit in /RECS/
309	COMB	MA or MB not in /DENS/
310	COMB	$XL \geq XH$
311	COMB	MA or MB is zero
314	IPDS	Improper interpolation table
315	GRATE	Interpolation table incorrect

CHAPTER 5

ENVIRONMENT INFORMATION

The amount of core storage required by ETOG-1, associated system library functions, and the SCOPE 3.1 operating system is approximately 55,000₁₀ locations. ETOG-1 uses four scratch tapes in addition to the mounted library tape. It also requires standard system input, output, and punch units. The program, written entirely in FORTRAN IV, should compile and execute properly on any configuration meeting these requirements.

CHAPTER 6 COMMENTS AND CONCLUSIONS

As indicated in the report, the present version of ETOG handles the job for which it was written quite well. However, suggestions may be made as to possible improvements in a future version of the code, particularly the generation of higher order terms of the elastic scattering transfer matrix. Where the analytic behavior of the cross section and weighting function is known it might be possible to include a semi-analytic treatment of the integrals. When pointwise resonance cross sections are generated, a test on linearity of points in the table might be incorporated to determine the integration. Although the running time of the program will be increased appreciably, it is expected that cross sections generated for a given material will be valid for a year, perhaps; therefore, running time should not be the primary consideration.

In addition, modification of the current version of the code is required to permit treatment of a number of high energy reactions such as (n,3n), $(n,n')\alpha$, $(n,n')2\alpha$, etc. Presently, if cross sections above 10 Mev are required, the user should examine ENDF/B File 3 to determine whether this shortcoming will affect his output results.

Finally, comments should be made about modifications required to permit the handling of altered ENDF/B formats. Currently, in the resolved resonance region, only the Breit-Wigner single-level formula is assumed to hold. In the unresolved region, neutron and gamma widths are assumed to be energy-independent, while the fission widths may be tabulated as a function of energy. Also the total inelastic cross section, i.e., MT=4, is treated while components of the cross section, i.e., MT=5-15, are not handled. A considerable effort is required to extend the capabilities of the current version of the code.

CHAPTER 7

REFERENCES

- G. D. Joanou and J. S. Dudek, "GAM-I: A Consistent P. Multigroup Code for the Calculation of Fast Neutron Spectra and Multigroup Constants", GA-1850 (1961)
- G. D. Joanou and J. S. Dudek, "GAM-II: A B₃ Code for Calculation of Slowing Down Spectrum and Associated Multigroup Constants", GA-4265 (1963)
- 3. W. W. Engle, Jr., "A Users Manual for ANISN, A One-Dimensional Discrete Ordinates Transport Code With Anisotropic Scattering", K-1693 (1967)
- 4. R. A. Dannels and D. E. Kusner, "ETOM-1, A Fortran IV Program to Process Data from the ENDF/B File to the MUFT Format", WCAP-3688-1 (1968)
- 5. L. B. Freeman and E. M. Gelbard, Nucl. Sci. Eng. 26, 424 (1966)
- 6. J. R. Lamarsh, <u>Nuclear Reactor Theory</u>, Addison-Wesley Publishing Co., Inc., 1966
- 7. H. C. Honeck, "ENDF/B, Specifications for an Evaluated Nuclear Data File for Reactor Applications", BNL 50066, USAEC (1966). Revised by S. Pearlstein, BNL (1967)
- 8. C. W. Craven, Jr., and J. L. Lucius, "TRANSFER: A Program to Calculate P_n Multigroup Scattering Matrices", ORNL-TM-1537 (1966)
- 9. A. M. Weinberg and E. P. Wigner, <u>The Physical Theory of Neutron Chain</u> Reactors, Univ. of Chicago Press, 1957
- 10. R. L. Murray, Nuclear Reactor Physics, Prentice Hall, Inc., 1957
- 11. D. M. O'Shea, B. J. Toppel, and A. L. Rago, "MC² A Code to Calculate Multigroup Cross Sections", ANL-7318 (1967)
- 12. H. Bohl, Jr., E. M. Gelbard, and G. H. Ryan, "MUFT-4 Fast Neutron Spectrum Code for the IBM-704", WAPD-TM-72 (July 1957)
- 13. H. Bohl, Jr., and A. P. Hemphill, "MUFT-5, A Fast Neutron Spectrum Program for the Philco-2000", WAPD-TM-218 (February 1961)
- 14. J. Felberbaum, Ed., "Description of the ENDF/B Processing Codes CHECKER, CRECT, DAMMET, and Retrieval Subroutines", BNL, ENDF-110 (1967)
- P. Greebler, P. G. Aline, and B. A. Hutchins, "Evaluation and Compilation of Pu-239 Cross Section Data for the ENDF/B Files", GEAP-5272 (December (1966)

.