ENDF-103 (BAW-316) May 1967

U-238 NEUTRON CROSS-SECTION DATA FOR THE ENDF/B

ENDF-103 (BAW-316) May 1967

U-238 NEUTRON CROSS-SECTION DATA FOR THE ENDF/B

by

W. A. Wittkopf D. H. Roy A. Z. Livolsi

THE BABCOCK & WILCOX COMPANY Lynchburg, Virginia

.

1

The Babcock & Wilcox Company Report BAW-316 (ENDF-103) May 1967

ABSTRACT

As part of the cooperative effort of the Cross Section Evaluation Working Group organized at Brookhaven National Laboratory in June 1966, the nuclear data on U-238 for use in the Evaluated Nuclear Data File B (ENDF/B) are presented. The data cover the energy range from 0.001 eV to 15 MeV. Data sources are referenced and the theoretical methods used in evaluating certain data are described. A complete listing of the data in the ENDF/B format is provided.

CONTENTS

	Pa	ıge
1.	INTRODUCTION	- 1
	1.1. Purpose.1.1.1.2. Ground Rules1.1.1.3. Thermal Scattering Law Data1.1.1.4. Possible Neutron Reactions With U-238.1.1.1.5. Outline of the Data1.1.	- 1 - 1 - 2 - 2 - 3
2.	U-238 CROSS SECTIONS BELOW 50 KeV 24	- 1
	2.1. Thermal Energy Region $(10^{-3} \le E \le 5 \text{ eV})$ 2 2.2. Resonance Energy Region (5.0 eV $\le E \le 50 \text{ KeV}$) 2	- 1 - 4
3.	U-238 CROSS SECTIONS BETWEEN 50 KeV AND 15 MeV 3-	- 1
	3.1. The Total Cross Section3-3.2. The Elastic Scattering Cross Section3-3.3. The Radiative Capture Cross Section3-3.4. The Fission Cross Section3-3.5. The (n, 2n) Cross Section3-3.6. The (n, 3n) Cross Section3-3.7. The Inelastic (n, n') Cross Section3-3.8. Other Cross Sections3-	- 1 - 2 - 4 - 5 - 6 - 7 - 8
4.	REFERENCES 4	- 1
	APPENDIXES	
	 A. Listing of ENDF/B Data A. B. Graphical Representation of Resolved Resonance Levels	- 1 - 1

List of Tables

1-1.	Thresholds for Reactions of Neutrons With U-238 1	- 2
2-1.	U-238 Resolved Resonances · · · · · · · · · · · · · · · · · · ·	- 3
2-2.	Unresolved Resonance Parameters for U-238 24	-7
2-3.	Comparison of U-238 Resonance Integrals	-9
3-1.	Interpolation Scheme for Smooth Cross Sections 3	-9

Tables (Cont'd)

Table	
3-2.	Energy-Dependent Smooth Neutron Cross Sections for
	U-238
3-3.	Legendre Expansion Coefficients for Elastic Scattering in
	CM System
3-4.	$\overline{\mu}$ (equation 3-4), ξ (equation 3-5), and γ (equation 3-6) Vs
	Neutron Energy
3-5.	Center of Mass to Laboratory System Transfer Matrix
	$(U_{\ell m})$ for Elastic Scattering of Neutrons on U-238 3-16
3-6.	Neutron Cross Sections for (n, 2n) and (n, 3n) Reactions Vs
	Neutron Energy
3-7.	U-238 Inelastic Cross Section
3-8.	Fractional Contribution of Each Level to the Total
	Inelastic Cross Section of U-238
3-9.	Maxwellian Temperature (T _c) for Evaporation Neutrons
	for U-238

List of Figures

Figure

2-1. U-238 Thermal Energy Range	2-10
2-2. U-238 p-Wave in Upper Resolved Region	2-11
2-3. U-238 Unresolved Resonance Energy Range,	
Calculations Vs Experiments	
2-4. U-238 Unresolved Resonance Energy	
Range	2-13
3-1. U-238 Neutron Cross Sections	3-25
3-2. Average Cosine of Scattering Angle ($\overline{\mu}_{a}$) Vs Neutron	
Energy	3-26
3-3. Legendre Expansion Coefficients (f_{ℓ}) for Elastic	
Scattering in CM System	3-27
3-4. ξ (equation 3-5) and y (equation 3-6) Vs Neutron Ene	rgy 3-28
3-5. U-238 (n, y) Cross Section	
3-6a. U-238 Fission Cross Section	3-30
3-6b. U-238 Fission Cross Section	
3-7. U-238 (n, 2n) Cross Section	3-32
3-8. U-238 (n, 3n) Cross Section	
3-9. U-238 Evaporation "Temperature" for (n, 2n) and (n,	3n)
Secondary Neutrons	•
	3-34
3-10a. U-238 (n, n') Level Data	3-34
3-10a. U-238 (n, n') Level Data	3-34 3-35 3-36
 3-10a. U-238 (n, n') Level Data	3-34 3-35 3-36 3-37
 3-10a. U-238 (n, n') Level Data	3-34 3-35 3-36 3-37

Page

1. INTRODUCTION

1.1. Purpose

The Cross Section Evaluation Working Group (CSEWG) was established as the result of a request by the Director of the USAEC Division of Reactor Development and Technology (DRDT) for laboratories to participate in a cooperative effort on the evaluation and processing of nuclear data for immediate use in reactor calculations.¹ As part of this cooperative effort, the nuclear data on U-238 for use in the Evaluated Nuclear Data File B (ENDF/B) are presented. Honeck gives an excellent summary of the purposes and objectives of the evaluation program, ² and BNL-8381 includes a detailed description of the ENDF/B structure.³

1.2. Ground Rules

At a CSEWG meeting in June 1966, the assignment of specific isotopes to evaluators was completed and ground rules for the evaluations were established. In view of the limited time available to complete the required work, the evaluators were instructed to utilize the best evaluations (bases on their experience) currently available and to put them in the standard ENDF/B format. Data could be re-evaluated if it could be done within the time schedule. Fortunately, U-238 is an element for which more than the average amount of experimental crosssection data are available in the energy range from 0.001 eV to 15 MeV, so that we do not have to rely greatly on theoretical calculations.

In keeping with these ground rules, the present compilation reflects to a large extent the results of other evaluators—the evaluations of Parker⁴ and Schmidt, ⁵ in particular, have been used extensively. Furthermore, where we have used the results of others, we did not list the references to the basic data used by them, nor did we describe the methods used in their evaluations; this information is available in

1 - 1

their own reports. However, for data that are the result of our evaluation, the methods are described and the basic source data are referenced.

1.3. Thermal Scattering Law Data

Data for the thermal scattering law are given in the form of a free-gas model. The constant free-scattering cross section is given as 10.6 barns, and the thermal energy cutoff is 2.5 eV. The data are tabulated in File 7 of the ENDF/B listing (Appendix A).

1.4. Possible Neutron Reactions With U-238

Table 1-1 lists thresholds for various reactions of neutrons with U-238. Except for the (n, F) reaction these thresholds are taken from the results of Howerton.⁶

Reaction	<u>Threshold, MeV</u>
(n, y)	Exothermic
(n,F)	1.47
(n, n')	0.05
(n, 2n)	6.07
(n, 3n)	11.51
(n, p)	2.03
(n, np)	7.59
(n,d)	5.35
(n, nd)	10.45
(n, t)	4.16
(n, nt)	10,03
(n, He ³)	5.01
(n, nHe ³)	10.74
(n,a)	Exothermic

Table 1-1. Thresholds for Reactions of Neutrons With U-238

The threshold for the (n, F) reaction was obtained by selecting the energy at which the fission cross section equals half the value at the first plateau. As mentioned in section 3.8, the last nine reactions in Table 1-1 are assumed to be small and have been neglected in this compilation.

1.5. Outline of the Data

In compiling the U-238 nuclear data the energy range has been separated into two main divisions. The data for neutron energies below 50 KeV are given in section 2, and those for energies between 50 KeV and 15 MeV are given in section 3. The data in section 2 are further subdivided into a low-energy range (from 0.001 to 5 eV), a resolvedresonance energy range (from 5 to 3920 eV), and an unresolved-resonance range (from 3920 eV to 50 KeV). This separation was convenient because of the somewhat different methods used in each range. In section 3 (energy range from 50 KeV to 15 MeV) the subdivisions are based on cross-section type for convenience. Section 4 is a list of references, and Appendix A is a listing of all data in the ENDF/B format. Table 3-1 gives the interpolation scheme for interpolation between energy points in the various tables of cross sections and parameters.

2. U-238 CROSS SECTIONS BELOW 50 KeV (A. Z. Livolsi, D. H. Roy)

Below 1 eV, the capture cross section of U-238 is almost 1/v, since all resonance levels (including those below the neutron separation threshold) lie considerably above or below this range. From 1 to approximately 5 eV, the capture cross section profile is dominated by the 6.67 eV resonance level. This profile is essentially unaffected by Doppler broadening even at normal reactor fuel temperature. Thus 5.0 eV has been chosen as the cutoff between the thermal and the resonance energy regions.

2.1. Thermal Energy Region $(10^{-3} \le E \le 5 \text{ eV})$

For any energy point the capture cross section can be computed by summing the contributions from the various positive and negative energy resonance levels. In this study, these contributions have been obtained from the single-level, Breit-Wigner formula corrected for Doppler broadening:

$$\sigma_{n,\gamma}(E) = \sum_{i} \sigma_{o}^{i} \sqrt{\frac{E_{i}}{E}} \psi(X,\theta)$$
(2-1)

where

$$\sigma_{0}^{i} = \frac{2.6038 \times 10^{6}}{\sqrt{E_{i}}} \left(\frac{A+1}{A}\right)^{2} g_{i} \frac{\Gamma_{n}^{0,i} \Gamma_{\gamma}^{i}}{\left(\sqrt{E_{i}} \Gamma_{n}^{0,i} + \Gamma_{\gamma}^{i}\right)^{2}}$$
(2-2)

At E = 0.0253 eV, the first 22 positive levels in U-238 contribute 2.38 barns; parameters for these levels were taken from reference 7 (recommended values) and are tabulated in Table 2-1. Taking

as the preferred experimental value,⁸ then 0.35 barns must be attributed to the negative energy levels and to the remaining positive energy resonances. In this evaluation, the remaining contributions were attributed to a single negative energy level at -15 eV (as noted by Sumner,⁹ the first two negative levels would be expected at approximately -11 and -29 eV). By assigning $\Gamma_n^0 = 0.7884 \times 10^{-3} (eV)^{1/2}$ and $\Gamma_Y = 24.6$ meV, this fiducial level contributes the 0.35 barns necessary to produce the experimental value of the capture cross section at 2200 M/S.

The entire analysis is performed by the DOPS code, a FORTRAN IV program for cross-section calculations using the single-level, Breit-Wigner formula corrected for Doppler broadening.

Total cross-section data were taken from Parker's compilation⁴ and appear on the Aldermaston/Winfrith data file of ENDF-A. This tabulation is derived from the graphical representation of the slow-chopper data from BNL, Columbia, and ANL given in BNL-325 (2nd Ed.).⁸ Sumner also gives a description of the data.⁹ The scattering cross section varies sharply at the Bragg limit (about 0.003 eV). Scattering below this cutoff is due to coherent thermal inelastic effects with a small incoherent contribution due to isotopic impurity of the samples used in the crosssection measurements (there being no spin incoherence for nuclei with I = 0). It is accurate enough, however, to assume that between 1 and 3 meV, the scattering cross section is nul. From 3 meV to 5 eV, values of the capture cross section was tabulated, and the scattering cross section was obtained as the difference:

$$\sigma_{s}(E) = \sigma_{TOT}(E) - \sigma_{n, \gamma}(E)$$
(2-3)

The total, capture, and elastic scattering cross sections of U-238 for the energy range 1 meV to 5 eV are listed in Table 3-2 and are presented graphically in Figure 2-1.

Babcock & Wilcox

Table 2-1. U-238 Resolved Resonances

 $\Gamma_{\gamma} = 24.6 \text{ meV}$

g = 1.0

E	Γ _n	E	Γ _n	E	Γ _n
-1.5000+01	3,0534-03	1.2670.03	2.7000-02	2.7163+03	7.0897-02
5.6700+00	1.5200-03	1.2732.03	2.9000-02	2.7300+03	2,6125-03
1.0200+01	1.4000-05	1.2985+03	3.6000-03	2.7501+03	3.9331-02
2.1000-01	8,5000-03	1+3172+03	4.7000-03	2.7619+03	1.5765-02
3.6700+01	3-1000-02	1.3357+03	1.5000-03	2.7879+03	1.0560-0Z
6.6200.01	2.5000-02	1+3430+03	1.7000-01	2.7980.03	2.6448-03
8.1100+01	2.0000-03	1,4051-03	8.2000-02	2.8002+03	6.8866-03
8.9500.01	8.5000-05	1.4278+03	1.1000-02	2.8230+03	9.0414-03
1.02/0+02	8.200-02	1.4441+03	3.3000+02		2.00/0-03
1.1090.02	2.0000-02	1.4738+03	8-0500-02	2.6829403	5 2619-01
1.4540402	1-0000-03	1.5231.03	2.1000-01	2.8978+03	2.6916-02
1.8960+02	1.4500-01	1.5460+03	2.0000-03	2.9085+03	2.6965-03
2.0860.02	5.6000-02	1.5500+03	2.0000-03	2,9235+03	4,3256-03
2.3740.02	2.9000-02	1.5650+03	2.4000-03	2,9323+03	2.4909-02
2.6390.02	2.3000-04	1.6229+03	9.0000-02	2.9563+03	1.5224-02
2.7370+02	2.5000-02	1.6362.03	4.0400-02	2.5674+03	8.1711-03
2.9110+02	1.6000-05	1.6621.03	1.6000-01	2.9740+03	2.7267-03
3•1110•05	9.9000-04	1.6883403	7.0000-02	2.98/4+03	5.4057-03
3.4790+02	1.5000-05	1.7094+03	5.0000-02	3.0031.03	9.3161-02
3.7690+02	1.1500-03	1 759.03	1.4000-02	3.01-0-03	1 2150-01
3.9740-02	7.3000-03	1.7823+03	7.0000-02	3.0510+03	2.7573-03
4.1030.02	1.0000-02	1.7477+03	3.1200-01	3-0502+03	2.7660-02
4+3420+02	5.0000-03	1.8083+03	1.7009-02	3.0811+03	4.4405-03
4-6330+02	5,2000-03	1.8455+03	1,3318-02	3,1094+03	1.0037-01
4.7870+02	3.1000-03	1.9023+03	2.0935-02	3.1332-03	5.5975-03
4 8890+02	4.4000-04	1.9171+03	2.1692-02	3.1490+03	6.1728-02
5.1860.02	4.3000-02	1.9657.03	5.7680-01	3.1690+03	1.0133-02
5.3550+02	4.0000-02	1.9746-03	4.6659-01	3.1794+03	6.2025-02
5,5010+02	7.0000-04	5.0539+03	2.0243-01	3.1890+03	4,3483-02
5.8020.05	3.1000-02	2.0311+03	4.9574-02	3.2000-03	5.5522-02
5.9520+02	8.0000-02	2.0886.03	1.3710-02	3.2200+03	2.2119-02
50+0005+02	3.0000-02	2.0903.03	1.0073-02	3,2472403	1.0309-01
6.2870+02	1 2100-03	2.160.03	3 4741-03	3.2450+03	8.6103-03
6,0120,02	8 0000-04	2,1528403	1.7631-01	3.3109+03	9.4942-02
5-9330+02	3.7000-02	2-1720+03	2.3302-03	3,3213+03	8,1836-02
7.0850+02	2.1000-02	2.1850.03	3.6469-01	3.3340+03	5.7741-02
7.2180+02	1.2000-03	2.1940-03	2.3420-03	3.3557+03	7.5307-02
7,3010+02	1.0000-03	2.2014+03	1.1261-01	3.3710+03	2.9030-03
7,6510+02	6.6000-03	2.2300+03	4.7222-03	3.3878+03	8.1437-03
1.7920.02	1.7000-03	2.2357+03	4.7284-03	3.4090+03	1.0510-01
7.9090+02	5.1000-03	2.2415.03	1.4203-03	3+4190+03	2.9236-03
8.2160+02	5.9000-02	2+2591+03	6.5591-02	3.4303-03	1.9053-01
8.5100.02	5.8000-02	2.2004+03	1+4520-01	1.4700403	1 1 281-01
8.5020.02	3 5000-02	2 2887443	1.0903-01	3.4843+03	1.1701-03
8.9130+02	1.2000-03	2.3020+03	9.5958-04	3.4920+03	1.1228-02
9.0510+02	5.1000-02	2+3159+03	1.4437-02	3.5120+03	2.9631-03
9.2520.02	1.0000-02	2+3374+03	4.8347-03	3.5260+03	1.0688-02
9.3690+02	1,5000-01	2-3520-03	6.3047-02	3.5615+03	1.4323-01
9.5840.02	1.5500-01	2.3560+03	6.3100-02	3.5740+03	2.3913-01
9.9180+02	3.5000-01	2.3925.03	1.1250-02	3.5930.03	1.5585-02
1.0113+03	1.3000-03	2.4102+03	4.4184-03	3.6000.03	3.0000-03
1.0230.03	1.3000-02	2.4205+01	8.1278-02	3.6110+03	3.0046-03
1.0332.03	7.0000-04	2.4402.03	1 1128-01	3.6250.03	3.0104-03
1.0234.03	3,300-02	2+4340+03	2.4/07-03	3-6500-03	2.1090-01
1.0703-03	7.0000-04	2+4570+03	1,0041-02	3.6740.03	3.0475-03
1.0986403	1.2000-02	2.5497+03	3.4330-01	3.6930.03	2.4308-01
1.1089+03	2.3000-02	2.5593.03	2.1753-01	3.7177.03	6.0973-02
1.1315+03	2.3000-03	2+5807+03	2.4384-01	3.7333+03	1.5275-01
1.1404.03	2.3000-01	2+5987+03	5.6075-01	3.7647+03	3.4360-02
1.1675+03	7.0000-02	2.6040+03	2.5515-03	3.7837+03	2.7680-01
1.1776+03	5.8000-02	5.6502.03	4.0953-02	3.7997.03	3.0821-03
1.1950+03	8.3000-02	2.6316-03	1.0260-03	3.8320+03	6.1903-03
1.2109+03	9.0000-03	2+6728+03	1.7578-01	E0+1828+E	3.4162-01
1.2451.03	5.3000-01	2+6420+03	5+3304-05	3.85013+03	2.4888-01
				3.3044.03	3 3495-03

2.2. Resonance Energy Region (5.0 eV $\leq E \leq 50$ KeV)

2.2.1. Resolved Resonances

The resolved energy region for U-238 extends from 5 eV to 3.92 KeV. The peak parameters for the resonances between 5 eV and 1.782 KeV are the recommended values given in reference 7. For the remaining energy interval the peak parameters (last resolved resonance appears at 3.904 KeV) were obtained from the measurements reported by Garg, et al.¹⁰ The capture width was taken as constant, $\Gamma_{\gamma} = 24.6$ meV in accordance with theoretical predictions. All levels were taken as s-wave (l = 0) levels even though a few of the measurements reported in reference 10 were denoted p-wave or doubtful; this should introduce little error in the cross-section calculation. These parameters are to be used in the single-level, Breit-Wigner formula designed as Type 1 (LRF = 1) in ENDF/B.

A smooth contribution to the capture cross section has been added in the upper portion of the resolved region between 0.748 and 3.92 KeV. As shown in Figure 2-2, the p-wave used in the unresolved region does not have a negligible value at the high energy cutoff for the resolved region. Therefore, an attempt was made to compare the contribution obtained from a statistical treatment with that derived by the calculation of the resolved peaks (cross sections averaged over 1/4-unit lethargy groups, GAM scheme with $E_{max} = 10$ MeV); Figure 2-2 shows that if the unresolved region started at 0.748 KeV, it would contribute 1.02 barns more to the total resonance integral (0.54 barns is the contribution of the p-wave). The 0.75 KeV cutoff was chosen because below it, the p-wave contributions account for less than 5% of the capture cross section. Since the ENDF/B does not have provisions for different energy ranges for the various waves, a smooth p-wave component, as from infinite dilution, is entered in File 3 and is also shown in Figure 2-2; therefore it is unshielded. Although the effect of shielding is slight in this energy range, in regard to the capture it might affect the Doppler coefficient. However, no investigations were conducted in that direction for this evaluation.

The potential scattering cross section for U-238 has been analyzed by Seth, et al, ¹¹ Lynn, ¹² and Uttley. ¹³ The value

2-4

recommended by both Lynn and Uttley, 10.6 barns, was selected. It corresponds to a spin-independent scattering length (AM) of 0.0184×10^{-12} cm.

The resolved resonance parameters are shown in Table 2-1, and a graphical representation of the total, absorption, and scattering cross section for each resolved peak is provided in Appendix B.

2.2.2. Unresolved Resonances

The unresolved energy region for U-238 extends from 3.92 to 50 KeV and the capture cross section throughout this region may be calculated by using appropriate parameters for only the s- and p-wave neutrons.

The s-wave parameters were taken from MC^2 library prepared at ANL. The strength function is in good agreement with the value (0.90 ± 0.10 × 10⁻⁴) determined by Garg, et al, ¹⁰ and the average level spacing, \overline{D} , corresponds to an arithmetic average of the minimum (pure s-wave) and maximum (s-wave + doubtful and p-wave) values reported by these same workers.

The p-wave strength function was obtained by comparing effective, infinitely-dilute capture cross sections computed by the ERIC 2 Code¹⁴ with experimental values presented in reference 7.

The capture cross-section values for the combined sand p-waves were compared over an energy range extending from 10 to 200 KeV, although the unresolved region is limited to E = 50 KeV. For these calculations, the strength function was taken as constant for all J and the average level spacing assumed proportional to $(2J + 1)^{-1}$; the mean reduced neutron width can then be computed from

$$\overline{\Gamma}_{n}^{0}(E) = S_{\ell} \times \overline{D}_{\ell, J} \sqrt{E} \times v_{\ell}$$

* For 2.0 ≤ E ≤ 3.9 KeV.

where

S₀ = strength function

 v_{a} = penetration factor

$$v_{\ell} = 1 \text{ for } \ell = 0$$

 $v_{\ell} = \frac{X^2}{1 + X^2} \text{ for } \ell = 1; X = 0.00191 \text{ } \sqrt{E}$

The neutron level widths were assumed to be distributed in a χ^2 -distribution with one degree of freedom (v = 1). For $S_1 = 1.58 \times 10^{-4}$, the calculated and experimental capture cross sections are in good agreement, as indicated in Figure 2-3. The solid curve in Figure 2-3 corresponds to the curve appearing in reference 7. The ERIC 2 unresolved resonance calculations employed 100 "narrow" groups, and the potential scattering cross section was taken as 10.6 barns.

The scattering cross sections for the unresolved region were obtained by subtracting the calculated capture cross section (infinitely dilute) from the total cross section taken from Parker's compilation.⁴ The resulting infinitely dilute set of cross sections is shown in Figure 2-4. This procedure, of course, implies that in reactor calculations the scattering cross section of U-238 is to remain independent of composition and temperature; this assumption is normally made in practice but is not necessary. If this procedure is not compatible with the cross-section generation methods employed in ETOE and ETOM, then the appropriate effective scattering cross sections can be computed with the unresolved parameters, and the entries for MT = 2 on File 3 deleted. It was not determined if the capture and scattering cross sections generated in this way would yield reasonable agreement with the measured total cross section. In this presentation, the capture cross section is to be computed using the unresolved parameters, and the scattering cross section taken from File 3.

	$\ell = 0$ J = 1/2	$\ell = 1$ $J = 1/2$	$\ell = 1$ J = 3/2
₽, eV	18.5	18.5	9.25
$S \times 10^4$, (eV) ^{-3/2}	0.94	1.58	1.58
Γ _v , meV	24.6	24.6	24.6

Table 2-2. Unresolved Resonance Parameters for U-238

2.2.3 Evaluation of Resonance Integrals

The ENDF/B resolved and unresolved resonances of U-238 were input to the STRIP^{*} and ERIC 2 codes to compare the total resonance integrals obtained through experimental fits and calculation methods in the case of infinite dilution, oxide and metal rods.

As stated previously, the ENDF/B contains the recommended resolved peak parameters obtained from BNL-325⁷ up to approximately 1.8 KeV, and for the rest of the energy interval the peak parameters are from Garg, et al. ¹⁰ For the sake of comparison, in Table 2-3 are also shown the results obtained by Joanou and Stevens¹⁵ in the resolved region by using only Grag's parameters. The calculated values of the resonance integrals compare fairly well with the ones obtained through Hellstrand's experimental fits (although for the large rods they start to diverge) and with the ones calculated by Joanou and Stevens.

Although the total resonance integral calculated with ENDF/B parameters for the case of infinite dilution falls within the experimental uncertainty, it has a somewhat lower value than the one calculated with Garg's parameters. The difference appears mainly in the resolved region and is due to the somewhat larger neutron width used in the low-energy resonances (the 6.7 eV level contributes about half of the total integral). At this point it would be proper to suggest

STRIP is a B&W computer code that solves the slowing down in the resolved region with overlapping resonances by using a generalized Nordheim treatment.

^{- - - - -}

a modification of the ENDF/B parameters for a few low-energy peaks; however, the authors feel that appropriate actions may be taken after discussion of the problem with the Data Testing Subcommittee.

			·				CB + 410		
			Resolve	ed res.	Unresol	ved res.	Total	resonance	integral(c)
	Ĭ	S/M	B&W	GA	s - wave	p-wave	B&W	GA	EXP
Infinite dilution			268.70	273.20	0.834	1.019	270.72	275.30	280 ± 10
Oxide rods									
$p(UO_2) = 10.2$	0.50	0.8855	25.11	25.82	0.714	1.005	26.92	27.89	27.70 ^(a)
g/cc	1.0	0.6261	18.66	19.03	0.661	0.995	20.41	21.09	$20.80^{(a)}$
	4.0	0.3131	11.42	11.48	0.567	0.970	13.05	13.40	12.48 ^(a)
Metal rods									
$\rho(U) = 18.7$	0.50	0.6542	16.78	1	0.638	0.970	18.52	1	19.83 ^(b)
g/cc	1.0	0.4626	12.50	1	0.576	0.953	14.12) 1	$14.89^{(b)}$
	4.0	0.2313	7.35	1	0.480	0.913	8.84	1	8.92 ^(b)
		High-en	ergy (>50	KeV) con	tribution:	0.652 ba	rns		
		Smooth	resolved	contributi	:uo	0.54 ba	rns		
		1/v cont	ribution:			l.l ba	rn		

Table 2-3. Comparison of U-238 Resonance Integrals

(a) Hellstrand's: 4.15 + 26.6 S/M.
(b) Hellstrand's: 2.95 + 25.8 S/M.

(c) 1/v contribution excluded.

2-9

Babcock & Wilcox

Figure 2-1. U-238 Thermal Energy Range

Figure 2-2. U-238 p-Wave in Upper Resolved Region

Babcock & Wilcox

Cross Section, barns

Figure 2-4. U-238 Unresolved Resonance Energy Range

Babcock & Wilcox

U-238 CROSS SECTIONS BETWEEN 50 KeV AND 15 MeV (W. A. Wittkopf)

In compiling the neutron cross-section data for the energy range between 50 KeV and 15 MeV, the primary sources of data were references 4, 5, 7, and 8. Both Parker⁴ and Schmidt⁵ give evaluated neutron cross-section data in this energy range. Parker has considered references known to him up to December 31, 1962, and Schmidt has considered references known to him through about July 23, 1965. Both of these are quite complete and are well documented. The main differences between the two evaluations are caused by recent measurements of neutron inelastic scattering and neutron capture.

3.1. The Total Cross Section

The total cross section used for ENDF/B is that recommended by Parker⁴ and shown (along with experimental data) in his Figures 2 and 3, pages 94 and 95. Schmidt⁵ shows the additional experimental points of recent measurements and recommends a total cross section that is (relative to Parker's curve) slightly lower between 0.2 and 1.0 MeV, slightly higher between 1.2 and 7 MeV, and slightly lower between 7 and 10 MeV. Schmidt's total cross-section values extend only to 10 MeV. However, the differences between these two recommended curves is less than about 3% over most of the energy range of interest. Schmidt estimates the accuracy of his total cross-section values to be in the range of plus or minus 4 to 10% in this energy range. Since we had already based our analysis on Parker's data when we learned of Schmidt's evaluation, and because the differences were relatively small in size and somewhat random in nature, we felt justified in accepting Parker's data for the total cross section. The total cross section is shown in Figure 3-1 and tabulated in Table 3-2.

3-1

3.2. The Elastic Scattering Cross Section

The elastic scattering cross section was taken as the difference between the total cross section and the non-elastic cross section (σ_{v}).

$$\sigma_{x} = \sigma_{n, \gamma} + \sigma_{n, F} + \sigma_{n, n'} + \sigma_{n, 2n} + \sigma_{n, 3n}$$
(3-1)
$$\sigma_{n, n} = \sigma_{T} - \sigma_{x}$$
(3-2)

The resulting cross section is shown in Figure 3-1 and is tabulated in Table 3-2. This cross section agrees within about 3% of the values recommended by Schmidt⁵ over the range from 0.05 to 10 MeV.

The differential elastic scattering cross section is represented by a Legendre polynomial expansion with the center-of-mass (CM) scattering angle (μ) as variable.

$$\sigma(\mathbf{E},\mu) = \frac{\sigma_{s}(\mathbf{E})}{4\pi} \sum_{\ell=0}^{18} (2\ell+1) f_{\ell}^{c}(\mathbf{E}) \mathbf{P}_{\ell}(\mu)$$
(3-3)

Thus, if the $f_{\ell}^{c}(E)$ are available, the differential cross section is given by equation 3-3. In addition, the average cosine of the laboratory scattering angle ($\overline{\mu}_{o}$), the average logarithmic energy decrement (ξ), and the slowing-down parameter (γ) are given by equations 3-4 through 3-6.

$$\overline{\mu}_{0} = \sum_{\ell=0}^{18} \mathbf{T}_{1\ell} \mathbf{f}_{\ell}^{\mathbf{C}}$$
(3-4)

$$\xi = -\sum_{\ell=0}^{18} T_{0\ell}^{1} f_{\ell}^{C}$$
(3-5)

$$Y = \xi^{-1} \sum_{\ell=0}^{18} T_{0\ell}^2 f_{\ell}^C$$
 (3-6)

where

$$\Gamma_{Li}^{n} = \frac{2i+1}{2n!} \int_{-1}^{1} P_{L}(\mu_{0})(-U)^{n} P_{i}(\mu) d\mu \qquad (3-7)$$

$$-U = \ln \left[1 - \frac{2A(1-\mu)}{(A+1)^2} \right]$$
(3-8)

$$\mu_{0} = \frac{A\mu + 1}{\sqrt{A^{2} + 2A\mu + 1}}$$
(3-9)

In choosing the $f_{\ell}^{C}(E)$ for the ENDF/B, the f_{ℓ} data of Wittkopf, ¹⁶ Alter, 17 and Joanou¹⁵ were considered. All of these f_l data were obtained by fitting equation 3-3 to the basic experimental data listing of Goldberg¹⁸ and Howerton.¹⁹ Figure 3-2 compares the basic parameter $\overline{\mu}_{o}$ calculated using equation 3-4 and the various f, data. Except at the three highest energy points, the data of Wittkopf and Alter agree quite well; the data of Joanou do not agree. On this basis the f, data were obtained by drawing smooth "eyeball" curves through the data of Wittkopf and Alter to give the data shown in Figure 3-3 and tabulated in Table 3-3. Using these f, data and equation 3-4, the smooth solid $\overline{\mu}_{0}$ curve of Figure 3-2 is obtained and used for the ENDF/B. This latter curve may be compared with the recent recommended curve of Schmidt,⁵ which is the dotted curve in Figure 3-2. Except for sharp oscillatorytype peaks in Schmidt's data near 1.7 and 2.2 MeV, the two curves agree to within about 5%. The fact that we smoothed the basic f, data would eliminate any sharp variations in our curve. Perhaps optical model calculations (which we did not have time to perform) would help to resolve the differences in the region from 1 to 3 MeV.

The energy-dependent values of ξ and γ were calculated from equations 3-5 and 3-6 respectively by using the f_{ℓ} data of Figure 3-3. These calculated values are shown in Figure 3-4. Finally, the calculated values of $\overline{\mu}_{0}$, ξ , and γ are tabulated in Table 3-4.

The center-of-mass-to-laboratory-system transfer matrix $(U_{\ell m})$ for elastic scattering was calculated using the work of Lane.²⁹ The

relation between the Legendre expansion coefficients in the laboratory system (f_{ℓ}^{L}) and the center of mass system (f_{ℓ}^{C}) is given by

$$f_{\ell}^{L} = \sum_{m=0}^{18} U_{\ell m} f_{m}^{c}$$
(3-10)

The matrix elements $(U_{\ell m})$ are tabulated in Table 3-5.

3.3. The Radiative Capture Cross Section

From 0.05 to 0.1 MeV the smooth (n, γ) curve of Stehn⁷ was used. From 0.1 to 7.6 MeV the curve is drawn to agree closely with the results of Barry,²⁰ who used the well known (n, p) cross section as standard. From 7.6 to 15 MeV the curve was extended through the 14 MeV measurement of Perkin.²¹ The resulting curve is shown in Figure 3-5 and the values are tabulated in Table 3-2. The resulting curve agrees to within about 3% of that recommended by Schmidt.⁵

3.4. The Fission Cross Section

The fission cross section up to 10 MeV was taken from the work of Davey,²² in which the author makes a detailed study of the reference cross section used, in relation to the experimental measurements, to arrive at the best cross sections for fast reactor analysis. From 10 to 15 MeV the cross section was taken from Stehn.⁷ The resulting curve is shown in Figures 3-6a and 3-6b, and the values are tabulated in Table 3-2.

The neutrons per fission are based on the curve recommended by Schmidt⁵ and may be expressed in the form

$$v = 2.358 + 0.156E$$
, (E in MeV) (3-11)

Over the range from 1 to 15 MeV, this expression agrees to within 1.5% of the values given by the solid line of Stehn.⁷

The secondary energy distribution is taken from the work of Barnard, et al.,²³ who fitted the measured spectra to a simple fission spectrum. Barnard obtained Maxwellian temperature values of T = 1.29and 1.42 MeV at incident neutron energies of 2.09 and 4.91 MeV, respectively. The 1966 ENDF/B format restrictions require that the fission

🕖 Babcock & Wilcox

spectra be independent of incident neutron energy, so we have chosen a Maxwellian temperature of T = 1.35 MeV. The fission spectrum is then of the form

$$p(E \rightarrow E') = \sqrt{\frac{4E'}{\pi T^3}} \exp{-\frac{E'}{T}}, \quad (T = 1.35 \text{ MeV})$$
 (3-12)

By plotting the results of his and other experimenters against the average number of neutrons per fission ($\overline{\nu}$) Barnard²³ found that the energy dependence of neutron temperature could be represented approximately by a formula derived by Terrell.²⁴

$$T \cong 0.52 + 0.42 \sqrt{\overline{\nu} + 1}$$
 (3-13)

Using the value of $\overline{\nu}$ from equation 3-11 gives

$$\mathbf{T} \cong \mathbf{0.52} + \mathbf{0.42} \sqrt{3.358 + \mathbf{0.156E}} \tag{3-14}$$

When the restriction of energy independence on T is removed from the ENDF/B format, equation 3-14 should be used to give a more sophisticated representation of the secondary fission energy distribution. The ENDF/B format does allow for a distribution of the form

$$\mathbf{p}(\mathbf{E} \rightarrow \mathbf{E}') = \mathbf{p}_{1} \sqrt{\frac{4\mathbf{E}'}{\pi\theta_{1}^{3}}} \exp{-\frac{\mathbf{E}'}{\theta_{1}}} + \mathbf{p}_{2} \frac{\mathbf{E}'}{\theta_{1}^{2}} \exp{-\frac{\mathbf{E}'}{\theta_{2}}}$$
(3-15)

where p_2 is the fraction of evaporation neutrons from second and third chance fission, and $p_1 = 1 - p_2$. However, θ_1 is energy-dependent (given by equation 3-14) and θ_2 is also energy-dependent.

3.5. The (n, 2n) Cross Section

The (n, 2n) cross section is taken from the recommended curve of Schmidt.⁵ In addition, data in the form of IBM cards and computer printout were obtained from Pearlstein.²⁵ The data of Pearlstein agree well with those of Schmidt from threshold to about 8 MeV and then rise above Schmidt's curve from 8 to 15 MeV. The data are plotted in Figure 3-7 and a comparison is shown. The tabulated data are found in Table 3-6.

We know of no direct measurements of the (n, 2n) secondary neutrons; consequently, we have used the estimations of Parker⁴ for the energy distributions of the secondary neutrons. Parker estimates the following distributions for the secondary neutrons:

$$E' = 0.2(E - 6.00), \quad (6.07 \le E < 7 \text{ MeV})$$

$$p(E \rightarrow E') = \frac{E'}{T^2} \exp - \frac{E'}{T} , \qquad (7 \le E \le 15 \text{ MeV})$$
$$T = 0.0378 \sqrt{E} , \qquad (7 \le E < 9 \text{ MeV})$$
$$= 0.125 \sqrt{E} , \qquad (9 \le E < 12 \text{ MeV})$$
$$= 0.200 \sqrt{E} , \qquad (12 \le E \le 15 \text{ MeV})$$

As Parker⁴ states, this gives a roughly linear variation of T from 0.1 at 7 MeV to 0.75 at 14 MeV. For the ENDF/B file, we have chosen this linear variation of T from 6.09 to 15 MeV and have arbitrarily set T = 0.01 at threshold. The resulting curve is illustrated and tabulated in Figure 3-9.

3.6. The (n, 3n) Cross Section

The (n, 3n) cross section is taken from the recommended curve of Schmidt.⁵ Data in the form of IBM cards and computer printout were also obtained from Pearlstein.²⁵ The (n, 3n) cross section is relatively small except in the vicinity of 15 MeV. We used Schmidt's data because they were more consistent with the non-elastic cross section in this range and agreed with the few experimental measurements. The resulting curve is shown in Figure 3-8 and the data points are tabulated in Table 3-6.

We know of no direct measurements of (n, 3n) secondary neutron spectra, so we used a modification of Parker's estimates to obtain the Maxwellian temperature variation. Parker estimates the following distribution for the (n, 3n) secondary neutrons:

 $E' = 0.2 (E - 11.5), (Threshold \le E < 13.5 MeV)$

3-6

$$p(E \rightarrow E') = \frac{E'}{T^2} \exp{-\frac{E'}{T}}, \quad T = 0.0802\sqrt{E}, \quad (13.5 \le E \le 15 \text{ MeV})$$

We have approximated this variation of T with two straight lines on a plot of T versus E. The resulting curve is shown in Figure 3-9, and the values are also tabulated there.

3.7. The Inelastic (n, n') Cross Section

Schmidt⁵ has recently completed an extensive evaluation of the (n, n^1) total and partial cross sections for U-238. His evaluation includes the recent measurements of Barnard, et al.,²⁶ who obtained data on 21 levels up to 1.47 MeV. We believe the evaluation of Schmidt to be the most complete and extensive available at this time and have selected his recommended curves for the ENDF/B for 1966. From threshold to 2 MeV the total inelastic cross section was obtained by summing the contributions of individual levels. From 2 to 15 MeV the inelastic cross section is obtained primarily by subtracting the (n, γ) , (n, F), (n, 2n), and (n, 3n) cross section obtained in this manner is shown in Figure 3-1, and the tabulated values are given in Table 3-7.

The cross sections for the excitation of specific levels are shown in Figures 3-10a, 3-10b, and 3-10c, and the fractional contribution of each level to the total inelastic cross section is tabulated in Table 3-8.

The secondary energy distribution for individual levels is given by a δ -function, and the energy of the level as provided by the ENDF/B format. The secondary energy distribution for the remaining part of the inelastic cross section (not due to specific levels) is given by a Maxwellian distribution with the Maxwellian temperature a function of the incident neutron energy. By choosing two fictitious levels (one each at 1.5 and 1.75 MeV) Schmidt⁵ was able to represent the region from threshold to 2.0 MeV by individual level data. From 2.0 to 15 MeV the Maxwellian temperature for evaporation neutrons was obtained by passing a smooth curve through the data points of Batchelor, et al.,²⁷ as given in their Figure 8, page 249. The resulting curve is shown in Figure 3-11 and the data are tabulated in Table 3-9. For comparison, the widely used relation,

3-7

$$T_{c} = 3.22\sqrt{E/A} \quad MeV \qquad (3-16)$$

is shown as the dotted line in Figure 3-11.²⁸ In this manner the secondary energy distribution for inelastic scattering is given by

$$p(E \rightarrow E') = \sum_{k=1}^{K} p_k \delta(E' + \theta_k - E) + p_c \frac{E'}{T_c^2} \exp{-\frac{E'}{T_c}}$$
(3-17)

k = level index

p_k = fractional contribution of level k
θ_k = energy of level k
p_c = fractional contribution of continuum
T_c = Maxwellian temperature for continuum

also

$$\sum_{k=1}^{K} p_{k} + p_{c} = 1$$
 (3-18)

It should be noted that this inelastic secondary energy distribution (and also the distribution for the (n, 2n), (n, 3n), etc., reactions) are normalized in the range $(0, \infty)$ and the processing code should properly renormalize these when generating transfer matrices.

It is also mentioned that the (n, n'), (n, 2n), (n, 3n), and (n, F) secondary neutrons are assumed to be isotropic in the laboratory system.

3.8. Other Cross Sections

It is seen from Table 1-1 that certain charged-particle reactions are possible in the range from 0.05 to 15 MeV. However, because of Coulomb barrier effects, these cross sections should be negligible below 15 MeV. In a more elaborate compilation perhaps some of these reactions should be considered. In particular, the exothermic (n, a) reaction should be investigated. For the 1966 ENDF/B compilation, we have neglected the (n, p), (n, d), (n, t), (n, He^3) , and (n, a) reactions. Table 3-1. Interpolation Scheme for Smooth Cross Sections

ļ

Cross	Energy Re	gion I	Energy Regic	on II	Energy Regi	on III
section type	Energy range, eV	Interpolation scheme	Energy range, eV	Interpolation scheme	Energy range, eV	Interpolation scheme
Total	0.031 – 5	log σ vs log E	$5 - 5 \times 10^{4}$	σ = constant	5 × 10 ⁴ – 15 × 10 ⁶	σvs Έ
(n, n)	0.001 - 5	log v vs log E	5 - 3920	σ ≈ constant	39 20 – 15 × 10 ⁶	σ vs Έ
(n, F)	$0.001 - 4.5 \times 10^{5}$	σ ≈ constant	$4.5 \times 10^5 - 3.5 \times 10^6$	log o vs E	3.5 × 10 ⁶ – 15 × 10 ⁶	σ vs Ε
(n, γ)	$0.001 - 15 \times 10^{6}$	log v vs log E	1	3 1	t I	t I
(n, n')	$0.001 - 4.5 \times 10^{4}$	o = constant	$4.5 \times 10^4 - 15 \times 10^6$	σ vs E	:	ı J
(n, 2n)	0.001 – 6.07 × 10 ⁶	σ = constant	$6.07 \times 10^{6} - 15 \times 10^{6}$	σ vs E	ť	;
(u, 3n)	$0.001 - 11.51 \times 10^{6}$	$\sigma = constant$	$11.51 \times 10^{6} - 15 \times 10^{6}$	σvsΕ	:	1
C L	$0.001 - 1.0 \times 10^{4}$	$\mu_{\rm c}$ = constant	$1.0 \times 10^4 - 15 \times 10^6$	L vs log E	}	1 ;
) m	$0.001 - 1.0 \times 10^{4}$	ξ = constant	$1.0 \times 10^4 - 15 \times 10^6$	É vs log E		1
۲	$0.001 - 1.0 \times 10^{4}$	$\gamma = constant$	$1.0 \times 10^4 - 15 \times 10^6$	γ vs log E	1 1	1
T c	2.0 × 10 ⁶ – 15 × 10 ⁶	T _{cvs} E	J S	1	4	;

Babcock & Wilcox

Energy		Neutron cros	ss section, bar	rns
eV	Total	(n, n)	(n, F)	<u>(n,γ)</u>
1.000 - 3	13.68	0	0	13.68
3.0	7.90	0	1	
3.2	-	0		
3.2	8.90	1.25		
3.6	14.20	6.99		
4.0	14.11	7.27		
4.4	13.30	6.77		
4.8	12.30	6.05	{	
5.2	11.38	5.38		
5.6	11.21	5.43		
6.2	11.70	6.20		
6.8	11.94	6.69		
7 4	11 29	6.26		
8.0	10.75	5.91	ļ	
8.6	10.79	5 63		
0.0	10.10	5.53		- -
1.000 2	10.10	6 33		
1.000 - 2	11.00	6.96		
1.1	0.00	6.03		
1.2	7.77 0.90	6.00		
1.5	10.99	734		
1.5	10.00	8.07		
2.0	11,40	7 01		
2.0	10.55	9.04		
5.0	10.55	0,04		
5.0 1	10,18	0.23		1 300
1.000 - 1	7.07	0,40		1.570
2.0	0.54	e 71		0.820
3.0	9.54	0.71		0.027
4.0				0.751
5.0				0.005
6.0				0.019
7.0				0.564
8.0		~~		0.557
9.0 1				0.536
1.000 + 0	9.43	8.91		0.519
1.5				0,475
1.8				0.469
2.0		8,86		0.471
2.5				0.494
3.0 1		8.59		0,546
3.500 + 0				0.637
4.0	9.00	8,21	}	0.793
4.5				1.07
4.7				1.25
5.0	9.10	7.46	4	1.64
5.0 + 0	0	0	0	0

Babcock & Wilcox

Table	3-2.	(Cont'd)
-------	------	----------

Fnergy		Neutron cros	ss section,	barns
eV	Total	<u>(n, n)</u>	(n, F)	(n, y)
7 480 + 2	0	0	0	0
7 48 1	Ĭ	Ĭ	Ĩ	0,192
8 50		l	1	0.204
9 00		}		0.207
9.61				0.213
1.10 + 3		}		0.226
1.10			}	0.239
1.25	1			0,250
1 59				0.268
1.80	ł			0.283
2 04		}		0,300
2 30				0.312
2 61				0.328
3 00				0.344
3 36	ļ		ļ	0.358
3 60	ſ	•		0.370
3.92	1	0		0.382
3 92		16.4	(0
4.10		19.2		1
4 25		14.5		
4 37		13.9	4	
5.00		14.0	}	
1.000 + 4	ļ	14.2		
1.5 1	(14.3	}	}
2.0	1	14.0		
3.0		13.1	ļ]
4.0	4	12.8	4	•
5.0	ò	12.5		0
5.0	12.9	12.5		0.345
5.5	12.8			
6.0	12.7	12.25		0.305
7.0	12.5	11,98		0.274
8.0 🕴	12.3	11.71		0.248
9.000 + 4	12.1	11.44		0.228
1.000 + 5	12.0	11.26		0.211
1.4				0.182
1.5	11.2	10.13	ļ	
2.0	10.7	9.46		0.159
2.5	10.3	8.98	}	
3.0	9.86	8.48		0.140
3.4				0.137
3.5	9.49	8.03	1	
3.8				0.134
4.0	9.15	7.56		0.133
4.4			1	0.132
4.5	8.84	7.06	+	
4.8 + 5			Ó	

Energy	<u> </u>	Neutron cro	oss section, bar	ns
eV	Total	<u>(n, n)</u>	(n, F)	(n, y)
5.0 + 5	8.56	6.65	0.00025	0.133
5.5 1	8.30	6.35		
5.8			0.00100	
6.0	8.07	6.10	0.00110	0.138
6.5	7.86	5.79	0.00120	
7.0	7.76	5.78		0.142
7.2			0.00125	
7.5	7.51	5,42	0.0020	
8.0	7.37	5.14	0.0038	0.149
8.4				0,150
8.5	7.24	4.90	0.0064	
9.0	7.14	4.73	0.0110	0.151
9.2			0.0140	
9.5	7.05	4.65	0.0160	0.151
1.000 + 6	6.98	4.55	0.0169	0.150
1.05			0.0180	
1.10	6.89	4.22	0.024	0,149
1.15			0.034	
1 2.0	6.84	4.02	0.040	0.142
1.25		~~	0.042	
1 30	6.85	3.85	0.056	0.130
1.35			0.092	
1.40	6.89	3,53	0.150	0.114
1.45			0.225	
1.50	6.96	3.45	0.295	0.096
1.550 + 6			0.343	
1.60	7.05	3.32	0.381	0.082
1.65			0.419	
1.70	7.15	3.42	0.443	
1.75			0.468	
1.80	7.25	3.65	0.483	0.064
1.85			0.505	
1.90	7.35	3.92	0.521	
1.95			0.539	
2.00	7.44	4.17	0.550	0.0525
2.25	7.55	4.32	0.590	
2.50	7.62	4.42	0.565	
2.75	7.72	4.53	0.543	
3.00	7.80	4.61	0.540	0.0268
3.25	7.88	4.70	0.540	
3.50	7.90	4.70	0.560	
3.75	7.87	4.66	0.568	
4.00	7.84	4.65	0.566	0.0158
4.25			0.563	
4.50	7.80	4.64	0.563	
4.75			0.565	
5.00 + 6	7.70	4.58	0.569	0.0109

Table 3-2. (Cont'd)

Energy	<u>. </u>	Neutron cro	ss section, bar	ns
eV	Total	(n, n)	(n, F)	(n, y)
5.25 + 6	~ -		0.571	
5.50	7.50	4.40	0.575	
5.75	~-	- ~	0.585	
6.00	7.18	4.11	0.620	0.0085
6.25	~~		0.700	
6.50	7.00	3.97	0.822	
6.75			0.911	
7.00	6.80	3.76	0.968	0.0072
7.25			1.001	
7.50	6.58	3.58	1.010	
7.75			1.002	
8.00	6.35	3.39	0.991	
8.25	~ ~		1.009	
8.50	6.22	3.26	1.040	
8.75			1.054	
9.00	6.10	3.15	1.050	0.0053
9.25 1			1.035	
9.500 + 6	6.05	3.13	1.021	~
9.75			1.011	
10.00	6,00	3.12	1.004	0.0047
10.50	5.93	3.06		
11.00	5.85	3.00		
11.50	5.82	2.99	1.005	
12.00	5.80	2.96	1.010	0.0039
12.50	5,75	2.90		
13.00	5.70	2.85	1.020	
13.50	5.60	2.75		
14.00	5.70	2.86	1.150	
14,50 🕴	5.80	2.95		
15.00 + 6	5.70	2.86	1.300	0.0032

Table 3-2. $(Cont'd)^{(a)}$

(a) Table 3-2 contains only the smooth contribution to the various cross sections. The contributions of the resonances are given by the Breit-Wigner formula as described in section 2. For this reason, some of the smooth cross sections of Table 3-2 are double-valued at certain energies. When this occurs, the first value applies below and the second value applies above that energy.

Energy, eV	f ₁	f ₂	f ₃	f4	f ₅	f ₆	f ₇	f ₈	f9
1.0 + 4	0	0	0	0	o	0	0	0	0
1.5	4.00 - 3	0				1			
2.0	9.00 - 3	0	((
3.0	1.80 - 2	0				1			
5.0	3.40 - Z	3.00 - 3	} }		} }	}		} }	
7.0	5.20 - Z	9.00 - 3		1 1					
1.0 + 5	8,30 - 2	1.70 - 2	1]]				
1.5	1.32 - 1	2.70 - 2	0	{ {	1		((
2.0	1.71	4.00 - 2	2.00 - 3) †	1	j ;	+	+	
3.0	2.31	6.50 - 2	1.10 - 2	0	0	0	0	0	0
5.0	3.18	1.33 - 1	4.18 - 2	1.28 - 2	4.17 - 3	2.80 - 3	2.63 - 3	1.87 - 3	4.60 - 4
7.2	3,86	1.99	7.74 - 2	2.27 - 2	6.14 - 3	4.66 - 3	6.02	4.44	1.65 - 3
1,1+6	4.77	3.14	1.85 - 1	7.31 – 2	2,35 - 2	1,05 - 2	3.59	-2.38	-3.99 - 3
1.7	5.75	4.11	2.74	1.72 - 1	8.29 - 2	2.78 - 2	3.27	-4.13	-4.47 - 3
2.5	6.61	4.97	3.52	2.60	1.36 ~ 1	4.32 - 2	2.98 - 3	-5.68 - 3	-4.90 - 3
4.1	7.51	6.00	4.69	3.72	2.41	1.29 = 1	6.51 - 2	3.10 - 2	1.27 – 2
7.0 1	8.21	6.89	5.74	4.61	3.49	2.42	1.53 - 1	8.91 - 2	4.37 – 2
1.0 + 7	8.58	7.41	6.27	5.12	4.00	2.95	2.05 - 1	1.34 - 1	7.66 – Z
1.5 + 7	9.01 - 1	8.00 - 1	6.87 - 1	5.69 - 1	4.57 - 1	3.56 - 1	2.65 - 1	1.85 - 1	1.14 - 1
Energy, eV	f 10	£ ₁₁	f 12	f 13	f 14	f 15	f 16	f 17	f 18
Energy, eV 1.0 + 4	f 10 0	f ₁₁ 0	f ₁₂ 0	f ₁₃ 0	f ₁₄ 0	f 15 0	f 16 0	f 17 0	f 18 0
Energy, eV 1.0 + 4 1.5	f 10 0	f ₁₁ 0	f ₁₂ 0	f ₁₃ 0	f ₁₄ 0	f 15 0	f 16 0	f 17 0	f 18 0
Energy, eV 1.0+4 1.5 2.0	f 10 0	£ ₁₁ 0	f ₁₂ 0	f ₁₃ 0	f ₁₄ 0	f 15 0	f 16 0	f 17 0	6 18 0
Energy, eV 1.0 + 4 1.5 2.0 3.0	f 10 0	£ ₁₁	0	6 13 0	f ₁₄ 0	f 15 0	f 16 0	f ₁₇ 0	f 18 0
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0	f 10 0	£ ₁₁ 0	f ₁₂ 0	f ₁₃ 0	f ₁₄ 0	f ₁₅ 0	f 16 0	f 17 0	6 18 0
Energy, eV 1.0+4 1.5 2.0 3.0 5.0 7.0	f 10 0	£ ₁₁ 0	f ₁₂ 0	f ₁₃ 0	f ₁₄ 0	f 15 0	f ₁₆ 0	f 17 0	6 18 0
Energy, eV 1.0+4 1.5 2.0 3.0 5.0 7.0 1.0+5	f ₁₀	£ ₁₁	f ₁₂ 0	6 15 0	f ₁₄ 0	f 15 0	f ₁₆ 0	f 17 0	f 18 0
Energy, eV 1.0+4 1.5 2.0 3.0 5.0 7.0 1.0+5 1.5	f ₁₀	£ ₁₁	f ₁₂ 0	f ₁₅ 0	f ₁₄ 0	f 15 0	6 ₁₆	f 17 0	f 18 0
Energy, eV 1.0+4 1.5 2.0 3.0 5.0 7.0 1.0+5 1.5 2.0	f 10 0	£11 0	f ₁₂ 0	6 115 0	f ₁₄ 0	f 15 0	6 116 0	f 17 0	f 18 0
Energy, eV 1.0+4 1.5 2.0 3.0 5.0 7.0 1.0+5 1.5 2.0 3.0 3.0	f 10 0	£11 0	f ₁₂ 0	6 115 0	f ₁₄ 0	f 15 0	616 0	f 17 0	f 18 0
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 5.0 3.0 5.0 7.0 5.0 3.0 5.0 7.0 5.0 5.0 7.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	f_{10} 0 0 -6.49 - 4	f_{11} 0 0 -5.27 - 4	f ₁₂ 0	6 115 0	f ₁₄ 0	f 15 0	616 0	f 17 0	f 18 0
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 7.2		£ ₁₁ 0 0 -5.27 - 4 1.28 - 4	f ₁₂ 0	f ₁₅ 0	f ₁₄ 0	f 15 0	6 16 0	f 17 0	f 18 0
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 2.0 3.0 5.0 7.0 1.5 1.5 2.0 3.0 5.0 7.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	$\begin{array}{c c} f_{10} \\ \hline 0 \\ \hline 0 \\ -6.49 - 4 \\ 6.24 - 4 \\ -1.83 - 3 \end{array}$	f_{11} 0 -5.27 - 4 1.28 - 4 5.81 - 4	f ₁₂ 0 0 8.77 - 4	f ₁₅ 0 0 4.85 - 4	f ₁₄ 0	f 15 0	6 ₁₆	f 17 0	f 13 0
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 7.2 1.1 + 6 1.7	$\begin{array}{c c} f_{10} \\ \hline 0 \\ \hline 0 \\ -6.49 - 4 \\ 6.24 - 4 \\ -1.83 - 3 \\ -3.79 \end{array}$	$ \begin{array}{c} f_{11} \\ 0 \\ -5.27 - 4 \\ 1.28 - 4 \\ 5.81 - 4 \\ -3.08 - 3 \end{array} $	f ₁₂ 0 0 8.77 - 4 -1.66 - 3	f ₁₅ 0 0 4.85 - 4 1.66 - 4	f ₁₄ 0	f 15 0	6 ₁₆	f 17 0	f 13 0
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 7.2 1.1 + 6 1.7 2.5	$\begin{array}{c c} f_{10} \\ \hline 0 \\ 0 \\ -6.49 - 4 \\ 6.24 - 4 \\ -1.83 - 3 \\ -3.79 \\ -5.52 \end{array}$	$ \begin{array}{c} f_{11} \\ 0 \\ -5.27 - 4 \\ 1.28 - 4 \\ 5.81 - 4 \\ -3.08 - 3 \\ -6.32 - 3 \end{array} $	$ \begin{array}{c c} f_{12} \\ 0 \\ 0 \\ 8.77 - 4 \\ -1.66 - 3 \\ -3.91 - 3 \end{array} $	$ \begin{array}{c c} f_{13} \\ 0 \\ 0 \\ 4.85 - 4 \\ 1.66 - 4 \\ -1.17 - 4 \end{array} $	f ₁₄ 0	f 15 0	f 16 0	f 17 0	£ 18 0
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 7.2 1.1 + 6 1.7 2.5 4.1	$\begin{array}{c c} f_{10} \\ \hline 0 \\ \hline 0 \\ -6.49 - 4 \\ 6.24 - 4 \\ -1.83 - 3 \\ -3.79 \\ -5.52 \\ 4.43 \end{array}$	$ \begin{array}{c} f_{11} \\ 0 \\ -5.27 - 4 \\ 1.28 - 4 \\ 5.81 - 4 \\ -3.08 - 3 \\ -6.32 - 3 \\ 1.11 - 3 \end{array} $	$ \begin{array}{c c} f_{12} \\ 0 \\ 0 \\ 8.77 - 4 \\ -1.66 - 3 \\ -3.91 - 3 \\ 6.03 - 4 \end{array} $	$ \begin{array}{c c} f_{15} \\ 0 \\ 0 \\ 4.85 - 4 \\ 1.66 - 4 \\ -1.17 - 4 \\ 1.11 - 3 \end{array} $	f ₁₄ 0 0 3.16 - 4	f_{15}	616 0	f 17 0	£ 13
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 7.2 1.1 + 6 1.7 2.5 4.1 7.0	$\begin{array}{c c} f_{10} \\ \hline 0 \\ \hline 0 \\ -6.49 - 4 \\ 6.24 - 4 \\ -1.83 - 3 \\ -3.79 \\ -5.52 \\ 4.43 \\ 9.27 - 3 \end{array}$	$ \begin{array}{c} f_{11} \\ 0 \\ -5.27 - 4 \\ 1.28 - 4 \\ 5.81 - 4 \\ -3.08 - 3 \\ -6.32 - 3 \\ 1.11 - 3 \\ -1.38 - 2 \end{array} $	$ \begin{array}{c c} f_{12} \\ 0 \\ 0 \\ 8.77 - 4 \\ -1.66 - 3 \\ -3.91 - 3 \\ 6.03 - 4 \\ -2.31 - 2 \end{array} $	$\begin{array}{c c} f_{13} \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 4.85 - 4 \\ 1.66 - 4 \\ -1.17 - 4 \\ 1.11 - 3 \\ -2.21 - 2 \end{array}$	f ₁₄ 0 0 3.16 - 4 -1.80 - 2	$ \begin{array}{c c} f_{15} \\ 0 \\ 0 \\ -1.03 - 3 \\ -1.47 - 2 \end{array} $	f ₁₆ 0	f ₁₇ 0	f_{13} 0 0 0 -2.06 - 3
Energy, eV 1.0 + 4 1.5 2.0 3.0 5.0 7.0 1.0 + 5 1.5 2.0 3.0 5.0 7.2 1.1 + 6 1.7 2.5 4.1 7.0 1.0 + 7	$\begin{array}{c c} \mathbf{f}_{10} \\ \hline 0 \\ 0 \\ -6.49 - 4 \\ 6.24 - 4 \\ -1.83 - 3 \\ -3.79 \\ -5.52 \\ 4.43 \\ 9.27 - 3 \\ 2.99 - 2 \end{array}$	$\begin{array}{c c} f_{11} \\ 0 \\ 0 \\ -5.27 - 4 \\ 1.28 - 4 \\ 5.81 - 4 \\ -3.08 - 3 \\ -6.32 - 3 \\ 1.11 - 3 \\ -1.38 - 2 \\ -5.31 - 3 \end{array}$	$\begin{array}{c c} f_{12} \\ 0 \\ 0 \\ 0 \\ 8.77 - 4 \\ -1.66 - 3 \\ -3.91 - 3 \\ 6.03 - 4 \\ -2.31 - 2 \\ -2.63 - 2 \end{array}$	$\begin{array}{c c} f_{13} \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ 4.85 - 4 \\ 1.66 - 4 \\ -1.17 - 4 \\ 1.11 - 3 \\ -2.21 - 2 \\ -3.43 - 2 \end{array}$	f ₁₄ 0 0 3.16 - 4 -1.80 - 2 -3.36 - 2	$\begin{array}{c c} f_{15} \\ 0 \\ 0 \\ -1.03 - 3 \\ -1.47 - 2 \\ -2.84 - 2 \end{array}$	f ₁₆ 0 0 -1.13 - 2 -2.02 - 2	f ₁₇ 0 0 -6.67 - 3 -1.05 - 2	f ₁₈ 0 0 0 -2.06 - 3 -1.67 - 3

Table 3-3. Legendre Expansion Coefficients for Elastic Scattering in CM System ($f_0 = 1.0$ for all energies)

Energy, eV	μ _o	ξ	Υ
1.0 - 3	2.825 - 3	8.450 - 3	5.642 - 3
1.0 + 4	2.825 - 3	8.450	5.642
1.5	6.825 - 3	8.417	5.630
2.0	1.183 - 2	8.374	5.616
3.0	2.083	8.298	5.590
5.0	3.682	8.162	5.551
7.0	5.480	8.010	5.514
1.0 + 5	8.578	7.748	5.438
1.5	1.348 – 1	7.333	5.300
2.0	1.737	7.002	5.195
3.0	2.336	6.494	5.032
5.0	3.205	5.759	4.876
7.2	3.883	5.184	4.783
1.1 + 6	4.789	4.416	4.764
1.7	5.767	3.588	4.554
2.5	6.624	2.861	4.279
4.1	7.521	2.101	3.932
7.0	8.219	1.509	3.562
1.0 + 7	8.587	1.197 🖠	3.319
1.5 + 7	9.016	8.342 - 4	2.766

Table 3-4. $\overline{\mu}$ (equation 3-4), ξ (equation 3-5), and γ (equation 3-6) Vs Neutron Energy

l m	0	1	2	3	4	5	6	7	8	9
0	1.00000	0	0	0	0	0	0	0	Ω.	0
1	2.825-3	0.99999	-2.825-3	1.077-5	0	•				
2	3.591-6	5.085-3	0.99997	-5.085-3	2.462-5	0				
3	0	1.231-5	7.264-3	0.99994	-7.264-3	4.275-5	0	t i		
4		0	2.565-5	9.416-3	0.99991	-9.416-3	6.529-5	0		
5			0	4.353-5	1.156-2	0.99986	-1.156-2	9.228-5	0	
6				0	6.592-5	1.369-2	0.99981	-1.369-2	1.237-4	0
7					0	9.281-5	1.582-2	0.99975	-1.582-2	1.597-4
8						0	1.242-4	1.795-2	0.99968	-1.795-2
9							0	1.601-4	2.007-2	0.99959
10	1	ł	ł	1			1	0	2.005-4	2.220-2
11	0	0	0	0	0	0	0	0	0	2.453-4

Table 3-5.	Center of Mass to Laboratory System Transfer Matrix
	(U_{lm}) for Elastic Scattering of Neutrons on U-238

m	10	11	12	13	14	15	16	17	18
8	2.001-4	0	0	0	0	0	0	0	0
9	-2.007-2	2.450-4	0						
10	0.99951	-2.220-2	2.944-4	0					
11	2.432-2	0.99941	-2.432-2	3.483-4	0				
12	2.947-4	2.644-2	0.99930	-2.644-2	4.066-4	0			
13	0	3.486-4	2.856~2	0.99918	-2.856-2	4.695-4	0		
14)	0	4.069-4	3.068-2	0.99906	-3.068-2	5.368-4	0 .	
15			0	4.697-4	3.280-2	0.99892	-3.280-2	6.086-4	0
16				0	5.370-4	3.493-2	0.99878	-3.493-2	6.850-4
17	1	+			0	6.089-4	3.705-2	0.99863	-3.705-2
18	0	0	0	0	0	0	6.852-4	3.917-2	0.99846
	, , , , , , , , , , ,			f_{ℓ}^{L}	$= \sum_{m=0}^{18} U_{lm}$	i ^c m	<u> </u>	<u> </u>	

Energy, Neutron cross section,	barns
$\underbrace{eV}_{(n, 2n)} \underbrace{(n, 3n)}_{(n, 3n)}$	
1.00 - 3 0 0	
6.07 + 6 0 1	
6.25 (0.03	
6.50 0.10	
6.75 0.22	
7.00 0.46	
7.25 0.75	
7.50 0.93	
7.75 1.05	
8.00 1.13	
8.25 1.20	
8.50 1.25	
8.75 1.28	
9.00 1.31	
9.25 1.33	
9.50 1.34	
10.00 1.35	
10.50 1.34	
10.75 1.33	
11.00 1.32	
11.25 1.31	
11.50 1.30 0	
11.75 1.29 0.14	
12.00 1.27 0.28	
12.25	•
12.75 1.18 0.51	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
15.00 ± 6 0.58 0.84	

Table 3-6. Neutron Cross Sections for (n, 2n) and (n, 3n) Reactions Vs Neutron Energy

Energy,	σn, n''	Energy,	^σ n, n''	Energy,	^σ n, n''	Energy,	^σ n, n''
MeV	barns	MeV	barns	MeV	barns	MeV	barns
1 000 - 9	0	0.55	1 818	1.50	3,117	8.25	0.73
0.045	Ŏ	0.56	1.825	1.55	3.180	8.50	0.66
0.050	0.050	0.58	1.833	1.60	3.263	8.75	0.62
0.055	0.098	0.60	1.831	1.65	3.274	9.00	0.58
0.060	0.143	0.61	1 834	1.70	3.220	9.25	0.56
0.065	0.193	0.62	1.833	1.75	3.140	9.50	0.55
0.070	0.242	0.64	1.824	1.80	3.043	10.00	0.52
0.075	0.289	0.66	1.818	1.85	2.945	11.50	0.52
0.080	0.337	0.68	1.807	1.90	2.850	11.75	0.40
0.085	0.385	0.69	1.820	1.95	2,733	12.00	0.28
0.090	0.433	0.70	1.832	2.00	2.667	12.25	0.20
0.095	0.480	0.72	1.858	2.25	2.60	12.50	0.15
0.10	0.530	0.74	1.908	2.50	2.60	14.50	0,15
0.12	0.728	0.76	1.978	2.75	2.61	14.75	0.14
0.14	0.850	0.78	2.032	3.00	2.62	15.00	0.12
0.16	0.938	0.80	2.080	3.25	2.62		
0.18	1.024	0.82	2.126	3.50	2.62		
0.20	1.085	0.84	2.165	3.75	2.62		
0.22	1.125	0.86	2.209	4.00	2.61	li	
0.24	1.161	0.88	2.242	4.25	2.60		
0.26	1.189	0.90	2.252	4.50	2.58		
0.28	1.215	0.92	2.248	4.75	2.56		
0.30	1.240	0.94	2.234	5.00	2.54		
0.32	1.265	0.96	2.231	5.25	2.53		
0.34	1.296	0.98	2.238	5.50	2.51		
0.36	1.346	1.00	2.259	5.75	2.47		
0.38	1.383	1.05	2.301	6.00	2.44		
0.40	1.454	1.10	2.492	6.25	2.32		
0.42	1.532	1.15	2.644	6.50	2.11		
0.44	1.611	1.20	2.642	6.75	1.87		
0.46	1.690	1.25	2,673	7,00	1.60		
0.48	1.738	1.30	2,818	7.25	1.32		
0.50	1.772	1.35	3.011	7.50	1.05		
0.52	1.794	1.40	3.091	7.75	0.90		
0.54	1.812	1.45	3.111	8.00	0.83	1	

Table 3-7. U-238 Inelastic Cross Section

Table 3-8. Fractional Contribution of Each Level to the TotalInelastic Cross Section of U-238

	1.047	0																								-	0
	1.006	0																								8	0
	0.968	0								•																-	0
Me V	0.939	0																		<u> </u>						-	0
y level,	0.838	0				<u></u>								<u> </u>					,				.			-	0
tic energ	0.732	Q																								-	0
Inelas	0.680	0																								-	0
	0.310	0								<u></u>									-	0	0.002	,008	.013	.017	.021	.025	0.028
	0.148	0								<u> </u>		0	0.014	.036	.053	.069	.084	.094	.105	.115	.124	.132	.137	.142	.143	.144	0.144
	0.0447	0	1.000							•	b	1.000	0.986	.964	.947	.931	.916	.906	.895	.885	.874	.860	.850	.841	.836	.831	0.828
Neutron	MeV	0.045	.05	.06 0.	.065	.075	.08	60. 09	.095	.10	.12	.14	.16	.18	.20	.22	.24	.26	.28	.30	.32	.34	.36	.38	.40	.42	0.44

Table 3-8. (Cont'd)

eV 0.0447 46 0.825 53 58 54 0.825 55 54 54 .820 55 .813 56 .799 56 .799 56 .795 66 .772 66 .7751 66 .7751 68 .7751 68 .7751 68 .7751 70 .762 717 .762 68 .7751 68 .7751 705 .772 705 .772 705 .772 705 .772 705 .772 705 .772 705 .772 88 .565 .665 .565 .765 .461 90 .472 92 .461 93 .472 94 .453 725 .461	•	••••	•						
0.825 813 825 813 825 767 767 767 767 767 767 767 767 767 76	0.148	0.310	0.680	0.732	0.838	0.939	0.968	1.006	1.047
8.88 8.87 7.77 7.77 7.77 7.77 7.77 7.77	0.144	0.031	0	0	0	0	0	0	0
818 808 7007 7007 7007 7007 7007 7007 70	.146	.034			<u>-</u>	_		_	
80 80 80 80 80 80 80 80 80 80	.150	.037							
799 797 797 797 797 797 707 707 707 707	.154	.041							
795 797 797 797 797 797 797 707 707 707 707	.157	.044							
792 777 777 777 777 777 777 777 777 777	.159	.046						الله د	
782 7672 7672 7672 7672 7672 7672 7672 7	.161	.047							
77777777777777777777777777777777777777	.167	.051							
767 767 767 767 767 77 77 77 77 77 77 77	.173	.055							
762 751 717 717 717 717 717 717 717 717 717	.177	.056							
751 717 717 717 717 717 717 717 717 717	.180	.058							
741 717 657 717 665 717 705 705 705 705 705 705 705 705 705 70	.186	.063							
729 717 681 681 565 565 565 565 565 565 563 565 565 565	.193	.066	-						
717 681 6581 6581 6581 6582 565 5721 5721 563 563 5721 563 563 563 563 563 563 563 563 563 563	.201	.070	0						
.705 .681 .5616 .5782 .5782 .5721 .472 .5031 .472 .5031 .572 .5231 .53311 .531	.202	.072	0.009				<u>-</u>		- <u></u>
682 652 567 565 565 565 565 565 565 565 565 565	.204	.073	.018	*				<u>.</u>	•
.652 .5616 .565 .565 .565 .472 .461 .461 .533 .521 .472 .521 .472 .533 .521 .521 .521 .523 .533 .521 .523 .521 .523 .523 .523 .523 .523 .523 .523 .523	.207	.076	.036	0					
.5616 .565 .565 .565 .565 .565 .472 .461 .453 .503 .453	.209	.076	.051	0.012					
.589 .565 .521 .521 .422 .422 .422 .461 .453	.209	.075	.066	.034					
.565 .542 .521 .521 .484 .461 .461 .453	.211	.073	.080	.047				. <u></u>	
.542 .521 .521 .484 .472 .453 .453	.213	.072	.093	.057					
.521 .503 .484 .472 .461 .453	.216	.071	.105	.066	-	•••••			
.503 .484 .472 .461 .453 .453	.221	.069	.117	.072	0				
.484 .472 .461 .453 .453	.225	.067	.128	.076	0.001	_,			
.472 .461 .453 .430	.232	.065	.136	.080	.003				
.461 .453 430	.234	.064	.142	.084	.004			<u> </u>	
.453 430	.236	.064	.146	.088	.005	-	4		
439	.235	.064	.149	.093	.006	0	-		
	.232	.063	.150	.096	,008	0.012	0		-
0.423	0.223	0.062	0.151	0.099	0.009	0.025	0.008	0	0

Table 3-8. (Cont'd)

1.04 1.40 .006 1.361 00 .968 .313 00 0.939 1.272 Inelastic energy level, MeV Inelastic energy level, MeV 1.246 00 1.210 0.0 1.190 0.680 .150 .150 .132 .132 .0099 .0099 .0099 .0015 .0023 .0023 .0076 .0076 .0023 .0023 .0076 .00776 .0 00 1.150 0.310 00 .148 1.123 0.002 .0447 0.404 3597 .2577 .247 .214 .178 .178 .178 .137 .099 .069 .061 .014 0.015 .076 1.00 1.05-1.15 1.15 1.20 1.25 1.25 1.45 1.45 1.45 1.45 1.60 1.55 1.60 1.75 1.85 1.90 1.95 1.90 1.95 2.00001 1.55 1.90 energy, Mev Veutron energy, Mev Jeutron 1.10 Table 3-8. (Cont'd)

Neutron				Inelas	tic energ	y level,	Me V			
MeV	1.076	1.123	1.150	1.190	1.210	1.246	1.272	1.313	1.361	1.401
1.20	0.057	0.007	0.007	0.001	0	0	0	0	0	0
1.25	.074	.018	.017	.008	0.003	0	0	0		
1.30	.088	.033	.030	.017	.008	0.007	0.004	0	+	
1.35	.101	.045	.045	.027	.013	.014	.011	0.002	0	-
1.40	.108	.053	.054	.035	.018	.019	.017	.006	0.003	0
1.45	.109	.058	.058	.040	.024	.025	.022	.016	.008	0.004
1.50	.108	.061	.059	.042	.029	.030	.028	.029	.016	.000
1.55	.103	.062	.058	.042	.031	.033	.032	.041	.023	.014
1.60	.097	.062	.056	.042	.032	.034	.035	.048	.030	.019
1.65	.091	.062	.054	.042	.032	.034	.036	.049	.031	.022
1.70	.087	.061	.053	.042	.032	.033	.035	.047	.029	.023
1.75	.083	.061	.052	.042	.032	.030	.033	.040	.024	.020
1.80	.079	.060	.052	.042	.031	.026	.029	.031	.019	.015
1.85	.073	.059	.051	.041	.030	.020	.023	.022	.014	.011
1.90	.067	.056	.050	.041	.028	.014	.018	.013	.008	.006
1.95	.062	.053	.050	.040	.027	.008	.012	0.006	0.003	0.002
2.00	0.054	0.047	0.049	0.039	0.025	0.002	0.005	0	0	0
2.00001	0	0	0	0	0	0	0	0	Q	0
15.00	0	0	0	0	0	0	0	0	0	0
Neutron		Inelasti	c energy	level, M	eV					
MeV	1.437	1.470	1.500	1.750	Continu	un				
1.45	0.002	0	0	0	0					
1.50	.008	0.002	0							
1.55	.017	.008	0.009	, 75						
1.60	.025	.014	0.028	-						
1.65	0.029	0.019	0.057	0	0					

Table 3-8. (Cont'd)

еV	Continuum	0					-	0	1.000	1.000
level, Me	1.750	0	0	0.012	.029	.054	.091	0.145	0	0
c energy	1.500	0.103	.174	.243	.308	.360	.393	0.410	0	0
Inelasti	1.470	0.018	.012	.007	0.002	0				0
	1.437	0.027	.020	.013	.007	0.002	0		-	0
Neutron energy.	MeV	1.70	1.75	1.80	1.85	1.90	1.95	2.00	2.00001	15.00

.

Neutron energy,	Maxwellian temperature,
MeV	MeV
	0 2 70
2.0	0.270
2.5	.311
3.0	.353
3.5	.396
4.0	.438
4.5	.464
5.0	.483
5.5	.497
6.0	.509
6.5	.519
7.0	.527
7.5	.534
8.0	.539
8.5	.543
9.0	.547
9.5	.549
10.0	.550
15.0	0.550

Table 3-9.Maxwellian Temperature (Tc) for
Evaporation Neutrons for U-238

Figure 3-1. U-238 Neutron Cross Sections

Figure 3-2. Average Cosine of Scattering Angle $(\overline{\mu}_0)$ Vs Neutron Energy

Neutron Energy, eV

Figure 3-7. U-238 (n, 2n) Cross Section

Figure 3-8. U-238 (n, 3n) Cross Section

Figure 3-9. U-238 Evaporation "Temperature" for (n, 2n) and (n, 3n) Secondary Neutrons

Figure 3-10c. U-238 (n, n') Level Data

Figure 3-11. U-238 Evaporation Temperature for (n, n') Secondary Neutrons

3-38

4. REFERENCES

- ¹ Pearlstein, S., letter to CSEWG participants, June 1, 1966.
- ² Honeck, H., "The Evaluation and Processing of Nuclear Data for Use in Reactor Calculations," <u>Trans. Amer. Nuc. Soc.</u>, <u>9</u>, No. 2, 469 (1966).
- ³ BNL-8381 and supplements, Sigma Center, June 1964.
- ⁴ Parker, K., AWRE 0-79/63, 1964.
- ⁵ Schmidt, J. J., private communication to W. A. Wittkopf, October 1966 (to be published in <u>KFK 120</u>, <u>Part I</u>).
- ⁶ Howerton, R. J., et al., UCRL-14000, 1964.
- ⁷ Stehn, J. R., et al., BNL-325, 2nd Ed., Sup. 2, Vol III, 1965.
- ⁸ Hughes, D. J. and Schwartz, R. B., BNL-325, 2nd Ed., 1958.
- ⁹ Sumner, H. M., AEEW-M-414, 1963.
- ¹⁰ Garg, J. B., et al., Phys. Rev., 134, B895 (1964).
- ¹¹ Seth, K. K., et al., Phys. Rev., 110, 692 (1962).
- ¹² Lynn, J. E., Proc. Phys. Soc., 82, 903 (1963).
- ¹³ Uttley, C. A., Proc. Int. Cong. Nuc. Phys., Paris, France, 700 (1964).
- ¹⁴ Summer, H. W., <u>AEEW-R-323</u>, April 1964.
- ¹⁵ Joanou, G. D., GA-6087, January 1965.
- ¹⁶ Wittkopf, W. A., unpublished B&W work from analyses of data in BNL-400 and UCRL-5573.
- ¹⁷ Alter, H., private communication to W. A. Wittkopf, August 1966 (author stated data sources would be in <u>NAA-SR-11231</u> and <u>NAA-SR-11980</u>, Vol II).

- ¹⁸ Goldberg, M., et al., BNL-400, 2nd Ed., Vol II, October 1962.
- ¹⁹ Howerton, R. S., <u>UCRL-5573</u>, January 1961.
- ²⁰ Barry, J. F., Bunce, J., and White, P. H., J. Nuc. Energy, <u>18</u>, 481 (1964).
- ²¹ Perkin, J. L., O'Connor, L. P., and Coleman, R. F., Proc. Phys. Soc. Lond., 2, 505 (1958).
- ²² Davey, W. G., Nuc. Sci. Engr., 26, 149 (1966).
- ²³ Barnard, E., et al., Nuclear Physics, 71, 228 (1965).
- ²⁴ Terrell, J., Phys. Rev., 113, 527 (1959).
- ²⁵ Pearlstein, S., personal communication to W. A. Wittkopf, 1966.
- ²⁶ Barnard, E., et al., Nuclear Physics, 80, 46 (1965).
- ²⁷ Batchelor, R., Gilboy, W. B., and Towle, J. H., <u>Nuclear Physics</u>, <u>65</u>, 236 (1964).
- ²⁸ Blatt, J. M. and Weisskopf, V. F., <u>Theoretical Nuclear Physics</u>, Wiley, New York, N. Y. (1952).
- ²⁹ Lane, R. O., et al., ANL-6039 (p 6), August 1959.

APPENDIX A Listing of ENDF/B Data

00110	014 0050	4						
92235.0	230.0000	1	1	Û	0104/	1421	1	
0.0	υ.υ	a	a	2	01047	1451	2	
LIDAA TI.M-DIR	COMPTEED NO	V 45 4044 A	I BARCOCK	AND WTLCOV CO	04047	1 A h. a	-	
04441104 238	CONTILLD NO	1. 1211400 W	BADUUUN	AND MILCOA CO.	01047	1421	3	
COMPILATION	PROCESS AND	DATA SOURCE	S ARE DESC	RIBED IN ENDE-	103 0104/	1451	4	
0.0	D.D	0	ð	0	01047	1 0	5	
072.68 0	236 0458	-	4	0	01041	1450	-	
72200,0	200.0000	0	+	0	01047	1422	0	
υ,υ	U.U	0	0	2	0104/	1452	7	
2,358	0,156-6				0104/	1452	8	
0 0	11 11	0	0	n	01047	1 0	Ğ	
0,0	0.0	U O	0	0	01010	<u>+</u> 0	,	
U , U	0.0	0	U	U	01047	U 0	10	
92258.0	236.0058	D	0	1	01047	2151	11	
022.48 0	1 /1	-	ň	2	0104/	0151		
7220010	7	0	U	2	01047	21-1	12	
>,0	3.42+3	1	1	0	0104/	2191	13	
9,0	0.9184	0	0	1	0104/	2121	14	
0 191-2	0.0	n	n	1254	2091047	2151	15	
1 5000.01	= 0000-01	3 345 7 NO	2 0574 07	D 4600-00 0	1041		14	
-T+2000+0T	9.0000-01	2.7023-02	3.0934403	2.4000-02 0.	1047	~1.01	10	
6,6700+00	5.0000-01	2,6120-02	1,5200-03	2,4600-02 0,	104/	2151	1/	
1.0200+01	5,0000-01	2.4601-02	1.4000-06	2.4600-02 0.	1047	2151	18	
2. 100/14/11	5.0000-01	5 3100-02	8 5000-03	3 4600-02 0	104/	2151	10	
2 4 3 0 0 0 1	- 0000 01				1047	61-1	17	
940100401	5.0000*01	2.3000-05	3.1000-02	2.4000-02 0.	104/	5123	20	
6,6200+01	5.0000-01	4.9600-02	2.5000-02	2,4600-02 0.	104/	2151	21	
8,1100+01	5.0000-01	2.6600-02	2.0000-03	2.4600-02 0.	1047	2151	22	
					-			
0.05.00.01	5 0000 01	0 4696 00	0 0000 00	0 44 0 0 0 0	4.0.47		A (
8,9500+DI	2.0 000-01	2,4009-02	0.0000-00	2.4000-02 0.	1047	2121	23	
1.0270+02	5.0000-01	9,2600-02	6.8000-02	2,4600-02 0,	1047	2151	24	
1.1690+02	5,0000-01	5.0680-82	2.6080+02	2.4600-02 0.	1114/	2131	25	
4 4570.00	6 0000-01	3 5400-03	7 0000-04	2 4600-02 0	104/	0454	14	
1.49/0+02	2.0000-01	2,5300-02	7.0000-04	2.4000-02 0.	1047	67.07	20	
1,6540+02	5.0000-01	2.7600-02	3.0000-03	2.4600-02 0.	104/	2121	21	
1,8960+02	5.0000-01	1.6960-01	1,4500-01	2.4600-02 0.	1047	2121	28	
2 0060+02	5 0000-01	8 0600-02	5 6000-02	2 4600-02 0	1 ((4 /	2151	20	
210800-02	5.0000 01 5.0000 01	6 7600 02	2,0000-02	2.4000 02 0.	1047	2161	2.1	
2,3/40+02	2.0000-0T	2,3000-02	2.9040-02	2.4000-02 0.	LU47	1121	30	
2,6390+02	5.0000-01	2.4830-02	2.3000-04	2.4600-02 0.	1047	2151	31	
2.7370+02	5.0000-01	4,9600-02	2.5000-02	2.46nn-02 0.	104/	2151	32	
2011010	5 0000-01	4 0600-02	1 6000-02	2 4600-02 0	104/	151	71	
217110-02		7,0000-02	1,0000-02		1047	2 1 - 1		
3,1110+02	5.0000-01	2,5590-02	9,9000-04	2.4600-02 0.	104/	2121	- 34	
3.4790+02	5.0000-01	9.9600-02	1.5000-02	2.4600-02 0.	104/	2151	35	
1 7400+03	5 0000-01	2 5760 02	1 1500.03	2 4600-02 0	1042	2151	14	
3,7870402			1,1200#03	2.4000-02 0.	1047	~ ~ ~ ~ ~ ~		
3,9760+02	5.0000-01	3.1000-02	7.0000-03	2.4000-02 0.	104/	2171	37	
4,1030+02	5.0000-01	4,2600-02	1,8000-02	2.4600-02 0.	1047	2151	38	
4.3428+02	5.0000-01	3.3600-02	9.0000-03	2.4600-02 0.	104/	2121	39	
A EA00+02	5 0000-01	2 5100-02	5 0000-04	2 4600-02 0	1047	1154	4.0	
4,3420+02	5.0000-01	2.2100-02	5.0000-04	2.4000-02 0.	1047	21-1	40	
4,6330+02	5,0000-01	5.9800-05	2.2000-03	2.4000-02 0.	104/	2121	41	
4.7870+02	5.0000-01	2,7700-02	3.1000-03	2.4600-02 0.	104/	2171	42	
4.8890+02	5.0000-01	2.5040-02	4.4000-04	2.4600-02 0.	1047	1151	43	
5 4040.00	5 0000-01	6 7600-02	4 6000-00	2 4600-02 0	1007	21 54		
211900+02	5.0000-01	0.7000-02	4.3000402	2.4000-02 0.	1047	21/1	44	
5,3550+02	5.0000-01	6.4600-02	4.0000-02	2.4600-02 0.	1047	2151	45	
5.5610+02	5,0000-01	2,5300-02	7.0000-04	2.4600-02 0.	1047	2151	46	
,	- •	•	•					
6 0000000	6 0000-01	5 5600 00	3 4000 02	2 4600-02 4	4047		A 2	
2.0020+05	>.0000-01	2.2000-02	3.1000-02	2.4010-02 0.	104/	5151	4/	
5,9520+02	5.0000-01	1.0460-01	8.0000-02	2.4600-02 0.	1047	2151	48	
6,2000+02	5.0000-01	5,4600-02	3.0000-02	2.4600-02 0.	1047	2151	49	
6.2870+02	5.0000-01	2.8600-02	4.0000-03	2.4600-02 0	1 1 4 7	2151	5.0	
0+20/U-U2	**********				T041		20 E 1	
p.0150+05	2.0000-01	1.4200-01	1.2100-01	2.4000+02 U.	1047	5151	21	
6,7700+02	5.0000-01	2,5500-02	9.0000-04	2.4600-02 0.	1047	2151	52	
6.9338+02	5.0000-01	6,1601-82	3.7000.02	2.4600-02 0.	1047	2151	53	
7.0850-02	5.0000-01	4.5600-02	2.1000-02	2.4600-02 0	1847	2151	54	
/10000-02	7.0000.0T		5 + T D D D - D S	2.4000 07 01	104/	C # 4 T	27	

7,2180+02	5.0000-01	2.5800-02	1,2000-03	2,4600-02	0.	1047	2151	55
7,5010+02	5,0000-01	2.6200-02	1,6000-03	2.4680-02	υ.	104/	2121	50
7 7020+02	5.0000-01	2 6500-02	0,0000+03 1 7000-03	2.4000-02	υ.	104/	2121	52
/,/9CU4U2	9.0000-01	2.0300-02	T •\000⊕02	2.4000-02	υ.	104)	217.	20
7,9090+02	5.0000-01	2,9700-02	5.1000-03	2,4600-02	Ο.	104/	2121	59
8,2160+02	5.0000-01	8.3600-02	5.9000-02	2.4600-02	0.	1047	2151	5 U
8.5100+02	5.0000-01	8.2000-05	5.8000-02	2.4600-02	υ.	104/	2151	61
8,2620+02	5.0000-01 5.0000 01	1,0000-01	8,2000=02	2.4000-02	υ.	1047	2123	0 Z
8.9130±02	5 0000-01	2,0100-02	3.9000+03	2.4000-02	0.	104/	2121	n 3 6 4
9,0510+02	5.0000-01	2.5600-02	5.1000#02	2.4600-02	¥.	104/	2151	65
9.2520+02	5,0000-01	3,4600-02	1.0000-02	2,4600-02	Û.	104/	2151	66
9.3690+02	5.0000-01	1,7460-01	1.5000+01	2.4600-02	υ.	1047	2151	67
9,5840+02	5.0000-01	1,7960-01	1.5500-01	2.4600-02	υ.	104/	151	68
9,9180+02	5.0000-01	3,7460-01	3,5000+01	2,4600-02	0.	104/	2151	69
1,0113+03	5.0000-01	2,5900-02	1.3000-03	2.4600-02	Ú.	1047	2151	7 1)
1,0230+03	5.0000-01	3,7680-02	1.3000-02	2.4600-02	Ú.	1047	2151	71
1,0332+03	5,0000-01	2,5300-02	7.0000-04	2,4600-02	Ο.	1 U 4 /	2131	7 -
1,0539+03	5,0000-01	8,9600-02	6,5000+02	2,4600-02	ΰ.	104/	1151	73
1.0705+03	5.0000-01	2,4927-02	3.2700-04	2.4600-02	Û.	1047	2151	74
1,0811+03	5,0000-01	2.5300-02	/.0000+04	2,4600-02	0.	104/	2151	/5
1,0904403	5.0000-01	4 7600-02	1.2000+02	2.4000-02	υ.	104/	2121	70
1.1315+05	5 0000-01	2 6900-02	2.3000-02	2.4600-02	U. 0	1047	2151	78
1.1404+03	5,0000-01	2.5460-01	2.3000-00	2.4600-02	0.	1047	2151	7 ÷
1.1675+03	5.0000-01	9.4600-02	7.0000-02	2,4600-02	ů.	1047	2151	80
1,1776+03	5.0000-01	S0-005,8	5.8000-02	2.4600-02	Ο.	1047	2151	81
1,1950+03	5.0000-01	1.0760-01	8,3000-02	2.4600-02	Ο.	1047	2151	8∠
1,2109+03	5.0000-01	3.3600-02	9.0000-03	2.4600-02	υ.	1 ù 4 7	2151	нз
1,2451+03	5.0000-01	2,5460-01	2.3000-01	2,4600-02	Ο.	1847	2151	84
1.2670+03	5.0000-01	5.1600-02	2,7000-02	2.4600-02	θ.	1047	2151	85
1,2732+03	5.0000-01	5,3600-02	2.9000-02	2.4600-02	0.	1047	2151	86
1,2985+03	5.0000-01	2.8200-02	3.6000-03	2,4600-02	Q.	104/	2151	87
1,31/2+43	5,0000+01	2,9300-02	4,7000+03	2,4000-02	υ.	1047	2121	ମ ମ ମ
1,303/ =03 1,303/ =03	5,0000-01	1.9460-01	1.7000=03	2,4600-02	0.	1047	2151	9 H
1,4051+03	5.0000 - 01	1.0660-01	8.2000-02	2.4600-02	0.	1047	2151	91
1,4197+03	5,0000-01	3,5600-02	1.1000-02	2.4600-02	Ο.	1047	2151	92
1,4278+03	5.0000-01	5.8600-02	3.4000-02	2.4600-02	Ο.	1047	2151	93
1,4441+03	5.0000-01	4,7600-02	2.3000*02	2.4600-02	Ο.	1047	2151	94
1,4738+03	5,0000-01	1,0510-01	8.0500-02	2,4600-02	ü.	1047	2151	95
1,5231+03	5.0000-01	2.3460-01	2.1000-01	2.4600-02	0.	1047	2151	96
1,5460+03	5,0000-01	5.9909-05	5,0000+03	2,4600-02	Ο.	1047	2151	97
1,5500+03	5.0000-01	2.6600-02	5.0000-03	2.4600-02	Ο.	1047	2151	9 8
1.5650+03	5.0000-01	2.7000-02	2.4000-03	2.4600-02	0.	104/	2151	99
1,6229+03	5,0000-01	1.1460-01	9.0000-02	2.4600-02	0.	104/	2151	100
1 6621+03	5.0000-01	0,7090-02	4.0400-02	2,4000-02 2,4600-02	U. 0	1047	2151	101
1.6883+03	5.0000-01	9.4600-02	7.0000.02	2.46n0-02	0.	1047	2151	100 LAS
1.7094+03	5.0000-01	7,4600-02	5.0000-02	2.4600-02	υ.	1047	2151	114
1,7230+03	5.0000-01	3.8600-02	1.4000-02	2.4600-02	0.	1047	2151	105
1.7558+03	5.0000-01	9.4600-02	7.0000-02	2.4600-02	0.	1047	2151	106
1.7823+13	5.0000-01	5.2460-01	5,0000-01	2.4600-02	0.	1047	2151	107
1.7977+03	5.0000-01	2.6720-02	2.1200-03	2,4600-02	Ū.	1047	2151	108
1,8083+03	5,0000-01	4,1609-02	1,7009-02	2.4600-02	Ο.	1047	2151	109

1.8456+03 1.9023+03 1.9171+03 1.9687+03 1.9746+03 2.0236+03 2.0311+03 2.0886+03 2.0965+03	5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01	3.7918-02 4.5535-02 4.6492-02 6.0140-01 4.9119-01 2.2703-01 7.4174-02 3.8310-02 3.4673-02	1.3318.022.0935.022.1892.025.7680.014.6659.012.0243.014.9574.021.3710.021.0073.02	2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	$\begin{array}{c} 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \\ 1047 & 2151 \end{array}$	110 111 112 113 114 115 116 117 128
2,1243+03 2,1243+03 2,1528+03 2,1528+03 2,1720+03 2,1860+03 2,2014+03 2,2300+03 2,2357+03 2,2415+03 2,2591+03 2,2664+03	5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01	2,9209-02 5,9343-02 2,0091-01 2,6930-02 3,8929-01 2,6942-02 1,3721-01 2,9322-02 2,9328-02 2,6020-02 9,0191-02 1,6980-01	$\begin{array}{c} 4.6091-03\\ 3.4743-02\\ 1.7631-01\\ 2.3302-03\\ 3.6469-01\\ 2.3420-03\\ 1.1261-01\\ 4.7222-03\\ 4.7284-03\\ 1.4203-03\\ 6.5591-02\\ 1.4520-01\\ \end{array}$	2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02	D. U. D. D. D. D. D. D. D. D. D. D. D. D. D.	1047 2151 1047 2151	119 120 121 122 123 124 125 126 127 128 129 130
$\begin{array}{c} 2.2813+03\\ 2.2887+03\\ 2.3020+03\\ 2.3159+03\\ 2.3520+03\\ 2.3520+03\\ 2.3560+03\\ 2.3560+03\\ 2.4265+03\\ 2.4265+03\\ 2.462+03\\ 2.4540+03\\ \end{array}$	5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01	1.3445-01 2.6992-02 2.5560-02 3.9037-02 2.9435-02 8.7647-02 8.7700-02 3.5850-02 2.9018-02 1.0588-01 1.3588-01 2.7077-02	1.0985-01 $2.3920-03$ $9.5958-04$ $1.4437-02$ $4.8347+03$ $6.3047-02$ $6.3100-02$ $1.1250+02$ $4.4184-03$ $8.1278-02$ $1.1128-01$ $2.4769-03$	2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	$\begin{array}{c} 1047 & 2151 \\ 1047 & 21$	131 132 133 134 135 136 137 138 139 140 141 142
2,4898+03 2,5207+03 2,5487+03 2,593+03 2,5987+03 2,5987+03 2,6040+03 2,6206+03 2,6316+03 2,6728+03 2,6956+03 2,7168+03	5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01	7,9488-02 3,4641-02 3,6790-01 2,4213-01 2,6844-01 5,8535-01 2,7151-02 6,5553-02 2,5626-02 2,0038-01 4,7964-02 9,5487-02	5.4888-02 $1.0041-02$ $3.4330-01$ $2.1753-01$ $2.4384-01$ $5.6075-01$ $2.5515-03$ $4.0953-02$ $1.0260-03$ $1.7578-01$ $2.3364-02$ $7.0887-02$	2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02 2.4600-02	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	$\begin{array}{c} 1047 & 2151 \\ 1047 & 21$	143 144 145 146 147 148 150 151 152 153 154
2,7300+03 2,7501+03 2,7619+03 2,7879+03 2,7980+03 2,8062+03 2,8286+03 2,8286+03 2,8661+03 2,8661+03 2,8829+03 2,8978+03	5,0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01 5.0000-01	$\begin{array}{c} 2,7212-02\\ 6,3931-02\\ 4,0366-02\\ 3,5160-02\\ 2,7245-02\\ 3,1487-02\\ 3,3641-02\\ 2,7267-02\\ 1,0383-01\\ 5,5079-01\\ 5,1516-02 \end{array}$	2.6125 = 0.3 3.9331 = 0.2 1.5766 = 0.2 1.0560 = 0.2 2.6448 = 0.3 6.8866 = 0.3 9.0414 = 0.3 2.6670 = 0.3 7.9233 = 0.2 5.2619 = 0.1 2.6916 = 0.2	2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02 2,4600-02	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	1047 2151 1047 2151	155 156 157 158 159 160 161 162 163 164 165

2,9085+03	5.0000-01	2,7297-02	2.6965-03	2,4600-02	0.	1047 215	1 166
2.9236+03	5.0000-01	2,8926-02	4.3256=03	2,4600-02	0.	1047 215	1 167
2,9323+03	5.0000-01	4,9509-02	2.4909-02	2.4600-02	Ο.	1047 215	1 168
2,9563+03	5,0000-01	3,9824-02	1.5224+02	2,4600-02	Ο.	1047 215	1 169
2.9674+03	5.0000-01	3,2771-02	8.1711-03	2.4600-02	0.	104/ 215	1 170
2.9/40+03	5.0000-01	3 0066.02	2./20/=03	2.4000~02	0.	1047 212	1 172
3.0031+03	5.0000-01	1 1776-01	9.3161=02	2.4000-02	υ.	1647 215	1 173
3.0150+03	5.0000 01	3.1738-02	7.1382=03	2.4600~02	0.	1047 215	1 174
3.0290+03	5.0000-01	1.6219-01	1.3759-01	2.4600-02	ů.	1047 215	1 175
3.0410+03	5.0000-01	2,7357-02	2.7573=03	2.4600-02	0.	1047 215	1 176
3.0602+03	5.0000-01	5.2260-02	2.7660-02	2,4600-02	Ο.	1047 215	1 177
3+0811+03	5,0000-01	2,9041-02	4.4406-03	2.4600-02	0.	1047 215	1 178
3.1094+03	5.0000-01	1,2497-01	1.0037=01	2.4600-02	Ο.	1047 215	1 179
3,1332+03	5.0000-01	3.0197-02	5.5975-03	2.4600-02	0.	1047 215	1 180
3,1490+03	5.0000-01	8,6328-02	6.1728-02	2,4000-02	0.	104/ 212	1 181
3,1090403	5,0000-01	3,4/33-02	4 2025-02	2,4000-02	U. D	1047 212	1 183
3.1890+03	5 0000-01	6.8083+02	4.3483=02	2.4600-02	0.	1047 215	1 184
3,2060+03	5.0000-01	8.1222-02	5.6622-02	2.4600-02	ů.	1047 215	1 185
3,2260+03	5,0000-01	4,7319-02	2,2719-02	2,4600-02	0.	1047 215	1 186
3,2492+03	5.0000-01	3,6000-02	1.1400-02	2.4600-02	0.	1047 215	1 187
3,2800+03	5.0000-01	1,2769-01	1.0309-01	2.4600-02	Ο.	1047 215	1 188
3,2950+03	5,0000-01	3.3210-02	8.6103-03	2.4600-02	0.	1047 215	1 189
3,3109+03	5.0000-01	1.1954-01	9.4942-02	2.4600-02	0.	104/ 215	190
3,3213+03	5,0000-01	1.0644-01	8,1836-02	2.4600-02	0.	1047 215	1 191
3,3340+03	5.0000-01	8,2341-02	5,7741+02	2.4600-02	0.	1047 215	1 192
3.3557+03	5.0000-01	9.9907-02	7.5307-02	2.4600-02	0.		1 193
3,3/10+03	5,0000-01	3 2740-02	2,9030=03	2.4000-02	0.	1047 215	1 105
3,38/0+03	5.0000-01	1 2970-01	1 0510=01	2.4600-02	0. N.	1047 215	1 196
3,4198+03	5.0000-01	2.7524-02	2.9236-03	2.4600-02	0.	1047 215	1 197
3,4369+03	5.0000-01	2,1513-01	1,9053-01	2.4600-02	0.	1047 215	1 198
3.4591+03	5.0000-01	4.0689-01	3,8229-01	2.4600-02	Ο.	1047 215	1 199
3,4700+03	5.0000-01	2.5778-02	1,1781-03	2.4600-02	0.	1047 215	1 200
3,4843+03	5.0000-01	1.4266-01	1.1806-01	2.4600-02	0.	1047 215	1 201
3,4920+03	5.0000-01	3.5828-02	1.1228-02	2.4000-02	υ.	104/ /15	1 202
3.5120+03	5.0000-01	2.7563-02	2.9631-03	2.4600-02	0.	1047 215	1 203
3,5260+03	5.0000-01	3,5288-02	1,0688-02	2.4600-02	0.	104/ 215	1 204
3,5615+03	5.0000-01	1,6783-01	1.4323+01	2,4600-02	0.	104/ 217	1 200
3+5740+03	5.0000-01	2.63/3-01	2.3913-01	2.4000-02	0.	1047 215	002 EV 102
3,3930+03	5.0000-01 5.0000-01	2 7600-02	3.0000-03	2.4600-02	0.	1047 215	1 208
3.6110+03	5.0000-01	2.7605-02	3.0046-03	2.4600-02	0.	1047 215	1 209
3.6250+03	5.0000-01	2,7610-02	3.0104-03	2.4600-02	<u>0</u> .	1047 215	1 210
3,6300+03	5.0000-01	2,4150-01	2,1690-01	2.4600-02	Ο.	1047 215	1 211
3,6470+03	5.0000-01	2.7620-02	3.0195-03	2.4600-02	0.	1047 215	1 /12
3,6740+03	5.0000-01	2.7668-02	3.0676-03	2,4600-02	0.	1047 215	1 213
3,6930+03	5.0000-01	2,6768-01	2,4308-01	2,4000-02	U.	104/ 215	1 214
3.7177+03	5.0000-01	8,5573-02	6.0973-02	2.4600-02	0.	1047 215	1 215
3,7333+03	5,0000-01	1,7735-01	1.5275-01	2,4600-02	0.	1047 215	1 216
3.7647+03	5.0000-01	5,8960-02	3.4360-02	2.4600-02	0,	104/ 215	1 217
3,7837+03	5.0000-01	3.0140-01	2.7080-01	2,4000-02	U. 0	104/ 212	012 L
3,/99/+03	5,0000-01 5 0000-04	2,/002-02	3,U021+U3 6 1907-07	2.4000-02 2 46nn-n2	0. n.	1047 219	1 200
0+0320+03	210000-01	0.0/70-02	0+1-00=00	c 0 0 0 - 0 /	••	TA40 CTA	

3,8581+03 3,8713+03	5.0000-01 5.0000-01	3.6622-01 2.7348-01	3.4162-01 2.4888-01	2.4600-02 2.4600-02	0.	1047 1047	2151 2151	221 222	
3.0920403	5,0000-01	2,9293-02	9.9920=03	2.4000-02	0.	1047	2191	223	
3,9044403	5,0000-01	2.4900-01	2.2493-01	2.4000-02	υ.	1047	2121	205	
3.9243	0,U+4	2	1	0		01047	2121	647	
0.0	0.4194	1	u	2		0104/	5121	220	
		-	-						
0,191-2	· U,U	0	0	6		11047	2121	227	
18,5	0.5	1.0	1.739-3	24.0-3		0.0104/	2121	228	
0.191 - 2	0.0	1	0	12		2104/	2121	229	
18,5	0.5	1.0	2.923-3	24.6-3		0.0104/	2151	230	
9.25	1.5	1.0	1,4615-3	24,6-3		0.01047	2151	231	
0.0	0.0	0	0	0		01047	2 0	232	
0,0	0.0	0	0	0		0104/	υn	233	
92238.	236.0058	0	0	0		01047	3 1	234	
0.0	0.0	0	0	3		961047	3 1	235	
29	5	32	1	96		21047	31	236	
1,0-3	13,68	3.0-3	7,90	3,2-3		8.901047	3 1	237	
3,6-3	14.20	4,0-3	14.11	4,4-3		13.301047	5 1	238	
4,8-3	12.30	5,2-3	11,38	5,6-3		11.211047	3 1	239	
6.2.3	11.70	6.8-3	11,94	7,4-3		11.291047	5 1	240	
8.0-3	10.75	8.6-3	10.30	9.0-3		10,101047	3 1	241	
1.0+2	10.66	1.1-2	11.09	1.2-2		9.991047	3 1	242	
1 3-2	9.89	1 5-2	10.88	1.7-2		11.401047	3 Î	243	
2.0.2	11.01	3.0-2	10.55	5.0-2		10.181047	3 1	244	
1 0-1	0.87	3 0=1	0 64	1.040		0.431047	2 4	245	
	9,07	5 0+0	9 10	5.0+0		1 -501047	3 I 3 I	246	
5 044	1 -50	5 0+4	12 00	5.5+4		12.801047	3 1	247	
6 0+4	12 70	7 0+4	12 50	B 0+4		12 301047	3 4	248	
0,004	12 40	0 1+6	12 00	15+4		11 201047	ر ال الا	240	
109+0	10 70	0,1+0	10 30	30+6		0 961047	3 I 4 4	280	
• 40 40	10.70	• 27 * 0	10,00	.00+0		A*001041	0 1	200	
75.4	0 40	40+6	0.45	45+4		0 041047		064	
, 39+0 50 - 6	9,49 D E 4	• 4 U T D	9,12	42+0		0.041047	3 1	551	
,50+0	0,90	, 22 40	0,30	.0070		0.0/104/	3 1	276	
.02+0	7.00	./0+0	7.70	,/2+0		7.511047	3 1	273	
.00+0	7.3/	.85+0	/ .24	. 90+0		/.14104/	3 1	224	
. 75+0	/.05	1,0+0	0,90	1,1+0		0.89104/	3 I	277	
1.2+0	0.84	1.3+8	0,87	1,4+0		6.89104/	5 1	270	
1.5+5	0.90	1,6+6	/,05	1,/+0		/.15104/	5 1	27/	
1+8+6	7.25	1,9+6	7.35	2,0+6		7.44104/	3 1	258	
2,25+6	/.55	2,5+6	7,62	2,75+6		7.721047	5 1	259	
3,0+6	7.80	3.25+6	7,88	3.5+6		7.90104/	3 1	260	
3,75+6	7.87	4.0+6	7,84	4+5+6		7.801047	3 1	261	
5,0+6	7,70	5,5+6	7,50	6,0+6		7.18104/	5 1	262	
		_							
6,5+6	7.00	7.0+6	6,80	7.5+6		6.581047	31	263	
8:0+6	6.35	8.5+6	6,22	9.0+6		6.101047	31	264	
9,5+6	6,05	10,0+6	6,00	10,5+6		5,931047	3 1	265	
11,0+6	5.85	11,5+6	5,82	12.0+6		5.801047	31	266	
12:5+6	5.75	13.0+6	5.70	13.5+6		5.421047	3 1	267	
14,0+6	5.70	14,5+6	5,80	15.0+6		5.701047	3 1	268	
0.0	0.0	0	C	ŋ		01047	3 0	269	
92238.	236.0058	0	0	0		01047	32	270	
0.0	0.0	0	Ó	3		1071047	32	271	
31	5	34	1	107		21047	5 2	272	
1.0+3	16	3.2-3	16	3,2-3		1.251047	32	273	
3.6+3	6.99	4.0-3	7.27	4.4-3		6.771047	3 2	274	
510-0		••••	· • • • •						
4.8+3	6.05	5.2-3	5.38	5.6-3		5.431047	3 2	275	
		- • • •							

0,2-3	0,20	6,8-3	6,69	7,4-3	6.261047 3	5 2	276
8+0=3	5,91	8,6-3	5,63	9.0-3	5.531047 、	5 2	277
1,0-2	6.33	1.1-2	6,96	1.2-2	6.031047	5 2	278
1.3-2	6,09	1.5-2	7.34	1.7-2	8.071047	5 2	279
2.0-2	7.94	3.0-2	8.04	5.0-2	8.231047		280
1 0 - 1	8 4 8	3 0-1	0 74	2 0 C	0 044047		200
7:0-1	0,40	3.0-1	0./1	1.0+0	8.911047	2	281
2,0+0	0.00	3,0+0	8,59	4.0+0	8,21104/	5 2	282
>,0♦0	7.46	5.0+0	0.0	3.92+3	0.01047	5 2	283
3.92+3	16,40	4.1+3	19.2	4,25+3	14.51047	5 2	284
4.37+3	13.90	5.0+3	14.0	1.0+4	14,21047	5 2	285
1.5+4	14.30	2 0+4	14 0	3 0 + 4	13 11 147	່ເ	286
- (-	2.100	~,0.4	T * 0	5.044	10.11047	, <i>(</i>	200
4.0+4	12.80	5.0+4	12.5	6.0+4	12.251047	5 2	287
7,0+4	11,98	8.0+4	11,71	9.0+4	11.441047	5 2	288
1.0+5	11,26	1.5+5	10.13	2.0+5	9.461047	\$ 2	289
2.5+5	8.98	3 0+5	8 4 8	7 5+5	9 07+047		200
4 0 5	7 54	5.0+2	0,40	3,249	0.031047		290
4,0+2	/.50	4,5+5	/,00	ち,0+5	6,65104/ 3	5 2	291
2,5+5	6.35	.6.0+5	6,10	6,5+5	5.901047	52	292
7,0+5	5,78	7,5+5	.5.42	8.0+5	5.141047	5 2	293
8,5+5	4,90	9.n+5	4.73	9,5+5	4,651047	3 2	294
1.0+6	4.55	1 10+6	4 22	1 20+6	4 021047	ι.	205
4 30+6	1 95	1 40+6	7 5 7	4 6016	7 464 047		272
1.0000	7,07	1.40-0	3,53	1.3040	3.471047	2	290
1.00+0	3.32	1.70+6	5,42	1,80+6	3,65104/ .	\$ 2	297
1.90+6	3.92	2.00+6	4.17	2.25+6	4.321047	s 5	298
3 50+6	4.42	2 75+6	4 5 3	5 0.0+6	4 611047	(⁻	200
2.2040	4 70	2.7340	4,20	3 75.4	4.0110+/ C		277
3.25+0	4,70	3,20+0	4,70	3./2+6	4,001047	2 2	300
4.01+6	4.62	4,50+0	4,64	ち、00+6	4.58104/ 3	5 2	301
5,50+6	4,40	6.00+6	4,11	6,50+6	3.971047 、	5 2	302
7.00+6	3.76	7.50+6	3.58	8.00+6	3.391047	3 2	303
8 50+6	3.26	9 00+6	3 15	9 50+6	3 1 3 1 0 4 7	ξ <u>σ</u>	304
4 00+7	3 12	1 05+7	7 74	1 10+7	7 001047	2 2	304 X05
1.00-7	0.12	1,0047	3,00	4.10+/	3.001047 3		305
1+12*/	2.99	1.20+/	2,90	1.23+/	2.901047	2 5	300
1.30+7	2,85	1,35+7	2,75	1.40+7	2.861047 3	5 <u>2</u>	307
1,45+7	2.95	1.50+7	2,86		1047 3	5 2	308
0.0	0.0	0	0	ß	01047	3 N	389
92238.0	236.0058	0	Ō	0	01047	5 4	310
		_		_		_	
0,0	U.U	0	0	2	1201047	5 4	311
2	1	120	2		1047 3	5 4	312
1.0-3	0.0	0.045+6	0.0	0,050+6	0,0501047 3	5 4	313
0,055+6	0.098	0.060+6	0.143	0.065+6	0.1931047	4	314
0.070+6	0.242	0.075+6	0.289	0.080+6	0 3371047	<u>م</u>	315
0,0,0,0,0	0 105		0 4 2 2 2	0 005-4	0.00/10-/ C		216
			0.433		0.4501047 3	4	310
0,100+0	0.230	0.120+0	Q.728	0,140+6	0.850104/ 3	4	317
0,160+6	0.938	0,180+6	1.024	0,200+6	1,0851047	5 4	518
0.220+6	1.125	0.240+6	1.161	0.260+6	1.1891047 3	5 4	319
0.280+6	1.215	0.300+6	1.240	0.320+6	1 2651047	5 4	328
0 340 + 4	1.296	0.360+6	1 346	n. 38046	1 3831047	۰. ۸	321
	4 151	0,000+0	4 570		T'000T040 -		400
U , ↔UU +O	1,474	0.420+0	1.732	() ,44()*0	1,011104/ 3	, 4	326
0,460+6	1,690	0.480+6	1.738	0.500+6	1,7721047	; 4	323
0,520+6	1.794	0,540+6	1,812	0.550+6	1.8181047	4	324
0 560+6	1 826	0.590+4	1 972	0.400-4	1 8314047 3		(25
0,00000	1 974	0.400-0	1 677		T 00TT04/ 0	. 4	323
0.070.00	1,004	U,020+D	1,800	0+0+0+0	1.024104/ 3	4	320
0,000+0	1,818	0.080+6	1.807	0.690+6	1.820104/ 3	4	521
0,700+6	1.832	0.720+6	1.858	0.740+6	1.9081047 3	4	528
0.760+6	1.978	0.780+6	2.032	0,800+6	2.0801047 3	4	329
0.820+6	2.126	0.840+6	2.165	0.860+6	2.2091047	4	330
0 000.4	2 242	0 000.4	2 353	0.020+4	2 2404047	-	474
<i>u</i> .noU+⊳	61646	u,∀UU≠⊖	6.276	0.450+0	2.248104/ 3	4	331

0.940+6	2,234	0.960+6	2.231	0,980+6	2,2381047	3	4	332
1.00+6	2,259	1,05+6	2.301	1.10+6	2.4921047	3	4	333
1.15+6	2,644	1.20+6	2.642	1.25+6	2.6731047	3	4	534
1,30+6	2,818	1,35+6	3.011	1.40+6	3.0911047	3	4	335
1.45+6	3.111	1.50+6	3.117	1.55+6	3.1801047	3	4	336
1.60+6	3.263	1.65+6	3.274	1.70+6	3.2201047	3	4	337
1,75+6	3,140	1,80+6	3.043	1,85+6	2,9451047	5	4	338
1.90+6	2.850	1.95+6	2.733	2.00+6	2.6671047	3	4	339
2.25+6	2.60	2.50+6	2,60	2,75+6	2,611047	3	4	340
3.00+6	2,62	3.25+6	2.62	3.50+6	2.621047	3	4	341
3,75+6	2.62	4.00+6	2,61	4,25+6	2.601047	.3	4	342
4.50+6	2,58	4.75+6	2,56	5,00+6	2.541047	3	4	343
5.25+6	2.53	5,50+6	2,51	5,75+6	2,471047	3	4	344
6.01+6	2,44	6,25+6	2,32	6,50+6	2.111047	3	4	345
6.75+6	1.87	7.00+6	1.60	1.25+6	1.321047	3	4	346
7.50+6	1,05	7,75+6	0,90	8.00+6	0.831047	3	4	347
8.25+6	0.73	8,50+6	0,66	8,75+6	0.621047	3	4	348
9.00+6	0.58	9.25+6	0,56	9,50+6	0,551047	3	4	349
10.00+6	0.52	11.50+6	0,52	11.75+6	0.401047	3	4	350
12.00+6	0.28	12.25+6	0,20	12,50+6	0.151047	3	4	351
14,50+6	0.15	14.75+6	0.14	15.00+6	0.121047	3	4	352
0,0	0.0	D	٥	0	01047	3	n	353
92238.0	236.0058	D	0	0	01047	3	16	354
0.0	6.04+6	0	0	2	361047	3	16	355
2	1	36	2		1047	3	16	356
1.0-3	0.0	6.07+6	0.0	6.25+6	0.031047	3	16	557

6 B046	0 10	6 75+6	0 22	7 0046	0 464047	1 16	158
7.25+6	0.75	7.50+6	0,22	7.00+0 7.75+6	1.051047	3 16	359
8.00+6	1.13	8.25+6	1.20	8.50+6	1,251047	3 16	360
8.75+6	1.28	9,00+6	1,31	9,25+6	1.331047	3 16	361
9.50+6	1.34	10.00+6	1,35	10.50+6	1.341047	3 16	362
10.75+6	1.33	11.00+6	1,32	11.25+6	1.311047	3 16	363
11,50+6	1,30	11.75+6	1,29	12.00+6	1.271047	3 16	364
12.25+6	1.24	12.50+6	1.21	12,75+6	. 1.18104/	3 16	365
13.00+0	1,13	13.27+0	1,07	13,3045	1,UIIU47	3 16	367
13.,) 00	0,70	1410040	0,00	14,6240	0.//104/	0 40	0.077
14,50+6	0.71	14.75+6	0,65	15,00+6	0.581047	3 16	368
0.0	0.0	0	0	0	01047	3 ()	369
92238,0	236.0058	0	0	0	01047	3 17	370
0.0	11.46+6	0	0	2	161047	3 17	371
2	1	16	2	44 75.4	104/	3 17	372
1,0•3	0.0	11,51+0	. 0.0	11,/2+8	0,14104/	3 17	3/3
12.00+0	0.20	13.00+6	0,37	13 25+6	0.571047	3 17	375
13 50+06	0.60	13.75+6	0.65	14.00+6	0.691047	3 17	376
14.25+6	0,73	14.50+6	0.76	14.75+6	0.801047	31	377
15.00+6	0.84		•		1047	3 17	378
0.0	0.0	0	0	0	01047	3 N	379
92238.0	236.0058	n	n	ń	01047	3 18	380
0.0		Ď	õ	3	711047	3 18	381
2	1	40	4	71	21047	3 18	382
1,0-3	1,-50	0,45+6	150	0,50+6	0.000251047	3 18	383
0.58+6	0,001	0.60+6	0,0011	0.65+6	0,00121047	3 18	384
0.72+6	0.00125	0.75+6	0.0020	0,80+6	0,00381047	3 18	385
0.05+6	0,0064	0.90+6	0.011	0,92+6	0.014104/	5 18	386
	0.010	1 15+6	0,0109	1 20+6	0,0101047	3 10	1997
1.25+6	0.042	1.30+6	0.054	1.35+6	0.0921047	3 18	389
1.40+6	0.150	1.45+6	0.225	1,50+6	0.2951047	3 18	390
1.55+6	0.343	1.60+6	0.381	1,65+6	0,4191047	3 18	391
4 70+4	0 444	1 75+6	0 468	1 80+6	0 4931047	< 18	(02
1.85+6	0.505	1.90+6	0.521	1,95+6	0.5391047	3 18	393
2.00+6	0,550	2.25+6	0.590	2,50+6	0.5651047	3 18	594
2.75+6	0.543	3,00+6	0.540	3,25+6	0,5401047	3 1 A	395
3,50+6	0,560	3.75+6	0.568	4,00+6	0.5661047	3 18	396
4,25+6	0,563	4.50+6	0.563	4,75+6	0.5651047	3 18	397
5.00+6	0.569	5.25+6	0.571	5.50+6	0.575104/	3 18	398
5./5+0	0,265	0,00+0 6 75+6	U.02U	0,27+0 7 00+6	0.7001047	3 18	400
7 25+6	1.001	7.50+6	1.010	7.75+6	1 0021047	3 18	401
8.00+6	0.991	8.25+6	1.009	8.50+6	1.0401047	3 18	402
8.75+6	1.054	9.00+6	1.050	9,25+6	1.0351047	3 1 A	403
0 50+4	1 001	0.75+4	1.011	1 00+7	1 0041047	₹ 1 <u>0</u>	401
y•20=0 1 15±7	1.005	1.20+7	1.010	1.30+7	1 0201047	3 1A	405
1.40+7	1.150	1.50+7	1.300		1047	3 1A	416
0.0	0.0	0	Û	Ø	01047	30	407
92238.0	236.0058	D	0	0	01047	3102	408
0.0	0.0	0	0	1	791047	3102	409
79	5				1047	3102	410
1.0+3	13,68	0.10	1,39	0.50	1.00104/	3102	411

0.30	0.829	0.40	0.731	0.50	0.6651047	3102	412
0.60	0.619	0.70	0.584	0.8n	0.5571047	3102	413
n on	0.536	1 00	0 519	1.50	n 4751047	3182	414
1 80	n.469	2.00	0 471	2 50	0 4041047	3102	415
1.00		2.00	Q 1 T		4	0102	
3 00	0.546	3 50	0 637	4.00	0 7931047	3102	416
4 50	1 07	4 70	1 25	5 00	1 641047	3102	417
5 0 + 0	1 0-50	7 48+2	+ 0-50	7 4847	1 1021147	4160	418
	0 204	0 00.2	1:0=20	0 41+0	0.1721077	4102	410
8.20+2	0,204	9.00+2	U.207	7 ,01+2	0,2101047	24.02	400
1.10+5	0.220	1.23+3	0.239	1.00+3	0.2001047	0102	720
1.29+3	0.200	1.00+3	0.283	2.04+3	0.3001047	3102	721
2.30+3	0.312	2.01+3	0.328	3.00+3	0.344104/	3102	422
3.36+3	0.358	3.60+3	0.370	3,92+3	0.382104/	3102	423
3.92+3	150	5.00+4	1.•50	5.00+4	.345104/	3102	424
6,0+4	0.305	7.0+4	0.274	8.0+4	0.2481047	3102	425
.09+6	.228	.10+6	.211	.14+6	.1821047	3102	426
.20+6	,159	.30+6	.140	.34+6	,1371047	3102	427
.38+6	.134	.40+6	.133	.44+6	.1321047	3102	428
.50+6	.133	.60+6	.138	.70+6	.1421047	3102	429
.8n+6	,149	.84+5	.150	.90+6	.1511047	3102	430
.94+6	.151	1.0+6	150	1.1+6	.1491047	3102	431
1.2+6	142	1.3+6	.130	1.4+6	.1141047	5102	432
1 5+6	0.96	1 6+6	082	1.8+6	0641047	3102	433
2.0+6	0525	3 0+6	. 0268	4.0+6	01581047	3102	434
5 0+6	0109	6 0+6	0085	7 0+6	00721047	3100	435
9 0+6	0053	10 +6	0007	12 +6	00721047	3102	436
15 +6	0000	±0.+0	10047	14.1	1047	3102	437
12.00	• 0 0 0 E	n	0	0	n1047	3 0	437
0.0	236 0058	0	0	0	01047	\$251	430
72200.0	200,0000	0	0			0221	
0 0	0 0	n	٥	1	201047	3251	440
ປ ະ ປ ຕາຍ	0.0	0	U	1	4047	4254	440
4 0 3	2 825.4	1 0 4	0 905 7	4 5+4	4 905.71047	4254	441
1,0=3	2,029=0	L.U+4	2.027-3	1,944	0.029-010-7	1061	442
2	1.103-2	3.0+4	2.003-2	7 , U≠4	0.002-2104/	3221	443
7.0+4	2.480-2	1,0+5	8.5/8-2	1,2+2	1.348-11047	3221	444
2,0+5	1,/3/-1	3,0+5	2.338-1	5,0+5	3.205-1104/	3221	445
7.2+5	3.883-1	1.1+6	4.789-1	1./+6	5.76/-1104/	3221	446
2,5+6	6.624-1	4,1+6	7.521-1	7,0+6	8,219-1104/	3251	447
1.0+7	8.587-1	1.5+7	9.016-1		1047	3251	448
0.0	0.0	0	0	n	01047	3 11	449
92238,0	236.0058	0	.0	n	01047	3252	450
0,0	D.Q	D	D	1	201047	25255	451
20	3				1047	3252	452
1,0-3	8,450-3	1.0+4	8.450-3	1.5+4	8.417-31047	3252	453
2,0+4	8.374-3	3.0+4	8.298-3	5,0+4	8.162-31047	3252	454
7.0+4	8.010-3	1,0+5	7.748-3	1,5+5	/.333-31047	3222	455
2.0+5	7.002-3	3.0+5	6.494-3	5.0+5	5.759-31047	3252	456
7,2+5	5,184-3	1,1+6	4.416-3	1.7+6	3.588-31047	5252	457
2.5+6	2.861-3	4,1+6	2.101-3	7.0+6	1.509-31047	3252	458
1.1+7	1.197-3	1.5+7	8.342-4	•	1047	5222	459
•••0··	0.0	0	<u> </u>	n	01047	3 n	460
92238.0	236.0058	0	ů	n	01047	3253	461
		-	Υ	· · · · · · · · · · · · · · · · · · ·			-
- · ·	. .	•	•				
-------------------	------------	----------	------------	------------------	---------------	----------	-------
υ,υ	0,0	Ų	U	1	201047	3223	402
20	- 3	•			1047	3253	463
1.0-3	5.642-3	1.0+4	5.642-3	1.5+4	5.630-31047	3253	464
2 0 + 4	5 616-3	3 0.4	5 506 3	5 0+4	5 551 74047	1257	465
2,004	5,010-0	0.044	9.990-3	2.044	2,351+310+7	3223	405
/ : 0 + 4	7,714-3	1.0+5	5.438-3	1.5+5	5.300-3104/	3223	400
2,0+5	5,195-3	3.0+5	5.032-3	5.0+5	4.876-31047	3253	461
7.2+5	4.783-3	1.1+6	4.764-3	1.7+6	4.554-31047	3253	468
2.5+6	4 279-5	4 1 + 6	1 972-1	7 0+6	3 662-31047	1052	460
21540	7 7 6 7	7,170	0.702-0	/ • U · G	0.002-010/7	305-3	1707
1.0+/	3.319-3	1.2+/	2./00-3	_	1047	3223	4 / U
0,0	ບູບ	8	a	n	01047	5 0	471
n.n	0.0	n	n	n	n 1 0 4 7	0 n	472
00048	274 2058	•	о 4		01047	4 0	471
72200.1	230.0090	1	1 1	744		A .	473
n . u	235.0050	U	۷	301	101047	4 /	4/4
1.0000+0	2,8250-3	3.5910-6	• 0	• 0	.0104/	4 2	475
. 0	.0	.0	.0	• 0	.01047	4 2	476
. 0	. 0	. 0	. 0	.0	.01047	4 2	471
, ,		0 0000-1	5 0850-7	1 2310-5	01047	4 7	479
		7,777-1	2,0020-0	T'EOT0-)	,01047	1 2	470
• 0	. U	• U	. U	• U	.010.	4 2	4/9
• 0	• 0	• 0	• 0	* O	.01047	4 2	488
. 0	.0	.0	-2,8250-3	9.9997-1	7.2640-31047	4 2	481
1 5650-5	n	n	n i	. 0	01047	4 2	482
C. 3070-3		, 0		• •	01047	4 2	407
• 0	. U	• 0	• 0	• 0	.01047	4 2	483
. 0	.0	• 0	,0	1.0770-5	-5.0850+31047	4 2	484
9,9994-1	9.4160-3	4.3530-5	. 0	• 0	.01047	4 2	485
0	n	0	0	0	01047	4 2	494
	• •	• •	• 0	• 0	01047	1 5	407
• •		, U		• 0	.0104/	4 2	487
2,4620-5	-7.2640-3	9.9991-1	1,1>60-2	6.2920-5	.0104/	4 2	488
.0	.0	.0	• 0	• 0	.01047	4 2	489
. 0	.0	. 0	.0	.0	.01047	4 2	490
	'n	4 2750-5	-9 4160-3	9 9086-1	1 3600-21047	4 2	401
0 0040 6	, v	4.6/20-2	2,4100-0	7.7700 -1	110090-21077		400
A.5010-5	. 0	• 0	• 0	• 11	.01047	1 6	492
• 8	.0	.0	• 0	• 6	.0104/	4 7	493
. 0	.0	, 0	.0	6,5290-5	-1,1560-21047	4 2	494
9.9981-1	1.5820-2	1.2420-4	. 0		. 01047	4 2	495
				• /		-	
	n	•	•	0	04047	4 7	404
• 0	. U	.0	. U	• 11	.01047	4 2	440
• 0	·• O	• 0	• 0	• Ü	.0104/	4 2	49/
Y.2280+5	-1.3690-2	9,9975-1	1,7950-2	1.6010-4	.01047	4 2	498
. 0	.0	. 0	.0	. N	.01047	4 2	499
'n	. 0	. 0	n	. n	01047	4 2	5011
, ,		1 2370-4	-1 5820-2	0 4048-1	2 0070-21047	a 5	501
• (¹	• •	4,20/0-4	T. JOSD-S	7,7700-1	2100/0-210-/		×01
2.0050-4	• 0	• 0	• 0	• 8	.0104/	4 2	205
.0	.0	, D	.0	• 0	.0104/	4 2	203
. 0	. 0	.0	.0	1.5970-4	-1,7950-21047	4 2	504
4 0050-1	2.2200-2	2.4530-4	. n		. 01047	4 2	505
				0	01047	4 3	504
. 0	. u	• 0	, U	.0	.01047		200
• • 0	.0	• 0	• 0	• 0	.0104/	4 2	207
2.001- 4	-2.0070-2	9,9951-1	2.4320-2	2.9470-4	.01047	4 2	508
0	. D	. በ	. 0	. በ	.01047	4 2	509
		, ŭ	n.		01047	4 2	510
	• •	0 4Ean-4	- 2 2200 2	0 6041-1	2 6440-21047	، ر م	541
• 0	• 0	2.4700-4	-2.2200-2	7,7941*1	2.0440=2104/		11
3,4860-4	.0	. 0	.0	• 0	.0104/	4 2	512
.0	.0	.0	.0	• 0	.01047	4 2	513
	. 0	. 0	. 0	2.9440-4	-2,4320-21047	4 2	514
4 ag3n=1	2.8560-2	4.0600-4	n		. n 1 0 4 7	4 2	515
* * * * * * * * *				• • •	· · • • · ·		

0	. 0	n	n	. 0	04047	4	2	516
10	, , ,	, 0	••	• •	04047	7	ĥ	510
					.01047		~	111
3.4830-4	-2.0440-2	9.9918-1	5,0680-2	4,69/0-4	.0104/	4	- 2	518
.0	.0	.0	.0	• 0	.01047	4	2	519
•	0	n	•	•	01047	^	2	600
. 0				• !!	.01047		<i>c</i>	220
• 0	0	4.0660-4	-2.8560-2	9,9906-1	3.2800-2104/	4	2	>21
5.3700-4	0	.0	. 0	. 0	.01047	4	2	522
	 N	0	0	0	01047	4	5	521
	• •	• •	• •			7	2	220
• 0	. 0	• 0	• 0	4,0950-4	-3.0680-2104/	4	2	224
9.9892-1	3.4930-2	6,0890-4	. D	• 0	.01047	4	2	525
. 0	. 0	- 0	. 0	. በ	.01047	4	2	526
, ,	'n		, o	. , , ,	01047	Å	5	507
5 7480 A	7 2000 0	0.0070.4	3 7 5 5 0		.01047	7	<u> </u>	200
2.3000-4	-0.2000-2	A'AQ\9+1	3./020-2	0.0720-4	.0104/	4	6	2/0
,0	.0	.0	.0	.0	,01047	4	2	529
. 0	. 0	. 0	. 1	. n	01047	4	2	530
, ,		6 0860-A	-3 4030-2	0 0843-1	7 0170-21047	Å	2	571
• U		0.000-4	-0,4900-2	3.3000-1	3.41/0-2104/	-	6	101
					_			
.0	.0	• 0	.0	• 9	.01047	4	2	532
. 1	. 0	. 0	. 0	. 0	.01047	4	2	533
, , , , , , , , , , , , , , , , , , , ,	, v n	, U	••	6 8500-4	-3 7050-21047	Å	2	534
	• •	* U	• U .	0,0000044	-311030-21047	7	2	204
9.9846-1					1047	4	2	535
0.0	0.0	0	0	2	201047	4	5	536
2	2	20	3		1047	4	2	537
		-			00047	Å	5	
0.0	U • U	U	V,	1	01047		2	230
n, n					104/	4	2	539
0.0	1.0+4	0	0	1	01047	4	2	540
n n					1047	4	2	541
0,0	4 5.4	•	•	1	01047		5	
υ,υ	2.2+4	IJ	u	L	01047	*	1	242
0.004					104/	4	- 2	243
n . n	2.0+4	0	ก	1	01047	4	2	544
6 6 6 0	2.00.1	U	3	4 .	4047		5	544
0.009					1047	4	2	242
0.0	3.0+4	0	D	1	01047	4	2	546
0.018					1047	4	2	547
0 0 0 1 P	5 0.4	n	n	2	01047	4		548
		v	v	<i>r</i> .	1047	7	6	- 40
0,034	0.003			_	1047	4	2	249
0.0	7.0+4	0	0	2	01047	4	2	550
0.052	0.009				1047	4	2	551
0.0	1 0 + 5	ń	n	2	01047	4	5	552
0.00		U	Ų	۴.	4047		5	
u.083	u.ul/				1047	4	2	223
0.0	1,5+5	Û	0	2	01047	4	2	554
0.132	0.027				1047	4	2	555
· •	•							
	0 o.F	-	•	-	A 4 4 7		~	5 5 4
0.0	2.0+2	Q	0	3	0104/	4	2	770
0.171	0.040	0.002			1047	4	2	557
n.0	3.0+5	n	0	3	01047	4	2	558
0 2 (1	0 045	0 011	•		1047	4	2	550
0,201		0.UTT	-	. .	10-7 10-7	7	c	194
0.0	>• 00+ >	0	0	11	01047	4	-2	250
3,19-1	1.33-1	4.18-2	1,28-2	4.17-3	2,80-31047	4	2	561
2.63-3	1.87-3	4.60-4	-6.49-4	-5.27-4	1047	4	2	262
	7 0015			14	01047	4	ŝ	561
U • U	1.20-3		0 n = -	1 1 1	01041	-		200
3,86-1	1.99-1	1.74-2	2,27-2	0.14-3	4,66-3104/	4	2	264
6.02-3	4.44-3	1.65-3	6,24-4	1.28-4	1047	4	2	565
- <u>-</u> 0	1.10+6	- ^	n	1 3	n1n47	4	2	566
	7 44.4	1 06 1	7 74 - 7	2 25.5	4 65-34047	Å	5	- 4 7
4.4/-1	3,14+1	1.87-1	/,31-2	6,00+1	1.07-2104/	-	1	20/
3,59-3	-2.38-3	-3.99-3	-1,83+3	5.81-4	8.77-41047	4	2	568
A 85-4					1047	4	2	560
	1 76+4		n	4 7	01047	Å	Ś	570
9 a U	T'\A-0	U	U	₽ 3	01041	-	· 6	J/ ()

- 75 4						6	
5./2-1	4,11+1	2.74-1	1,/2+1	8.29-2	2.78-21047 4	2	2/1
5-27+3	-4.13+3	-4.4/-3	-3,/9-3	-3.08-3	-1.60-3104/ 4	2	2/2
1.05-4		_			104/4	- 2	573
0.0	2,50+6	0	0	13	01047 4	2	574
6.61-1	4.97-1	3.52-1	2,60-1	1.36-1	4.32-21047 4	2	575
2.98-3	-5.68-3	-4.90-3	-5,52-3	-6.32-3	-3,91-31047 4	- 2	576
-1.17-4					1047 4	2	577
- "a.o	4.10+6	0	0	15	01047 4	2	578
7.51-1	6.00-1	4.69-1	3.72-1	2.41-1	1.29-11047 4	2	579
						-	
6.51-2	3,10-2	1,27-2	4.43-3	1,11-3	6.03-41047 4	2	580
1.11-3	3.16-4	-1.03-3			1047 4	2	>91
n.0	7.00+6	_ · · · ·	n	18	01047 4	2	582
8.21+1	6.89-1	5.74-1	4.61=1	5.49-1	2.42-11047 4	2	583
4 53-1	8 91-2	4 17-2	0 27 - 3	-1 38-2	-2 -1 -21047 4	5	784
-2 21-2	-1 80-2	-1 47-2	-1 17-3	-1.00-2	-2 06-31047 4	2	595
-2.01-2	-1.00-2	-1.4/-2	-1,13-2	-0.0/-3	-2.08-31047 4	6	595
<u></u>	1.00+/	0	0	18	01047 4	- 2	280
8.28-1	/,41-1	0.2/-1	5,12-1	4.00-1	2,95-1104/ 4	2	58/
2.05-1	1.34-1	7.66-2	2,99-2	-5.31-3	-2.63-21047 4	- 2	588 588
-3.43-2	-3,36-2	-2.84-2	-2,02-2	-1.05-2	-1,67-31047 4	2	589
0.0	1.50+7	0	0	18	01047 4	2	590
9,01-1	8.00-1	6.87-1	5,69-1	4,57-1	3,56-11047 4	2	591
2.05-1	1,85-1	1.14-1	5,34-2	4,34-3	-2,99-2104/ 4	- 2	592
-4.80-2	-5.14-2	-4.39-2	-3,02-2	-1,48-2	-1.22-3104/ 4	2	593
ο. ο.		0	0	0	01047 4	n	594
0 . 0	.0	0	0	0	0104/ 0	0	595
92238,0	236.0058	0	0	25	01047 5	4	796
0.0	0.044/+6	0	3	2	591047 5	4	597
2	1	59	2		1847 5	4	598
11.0447+6	1.000	0.14+6	1,000	0.16+6	n. 9861047 5	4	599
0 18+6	0 964	0 20+6	n 947	0 22+6	0 93111147 5	à	600
0.2046	0 916	0.20+0	0 906	0.22+0	0 8951047 5		601
0.2440	0,910	0.20+0	0.900	0.20+6		-	600
0.3148	0.009	0.32+0	0.0/4	0.34+0	0.080104/ 5	4	0 (i Z
0.30+0	0.850	0.38+0	0.841	0.40+6	0,836104/ 5	4	0113
n.42+6	0.831	0.44+6	n.828	R.46+6	0.8251847 5	4	604
0 48+6	0 820	0 6046	0 813	0 52+6	0 8051047 5		605
j	0,020		0.010				605
0.5446	0,797		0.795			4	607
0.28+6	0.702	0.00+0	0.772	0.01+0	0.76/104/ 5	4	007
0.62+6	0./62	0.64+5	0.751	U.66+6	0./41104/ 5	4	008
₫.68+6	0.729	0.69+6	0.717	0,70+6	0.7051047 5	4	609
0,72+6	0.681	0.74+6	0.652	0.76+6	0.6161047 5	4	610
n,78+6	0.589	0.80+6	0.565	0.82+6	0.5421047 5	4	611
n.84+6	0.521	0.86+6	0.503	0.88+6	0.4841047 5	4	612
0 90+6	0 472	0 92+6	0 461	0 94+6	0 4531047 5	۵	61.3
0.00+0	ú 470	0.92.0	0 433	1 00+6	0 4041047 5	-	614
0.5040	0,707		0,423	1 45+4		4	614
1.02+0	0.329	1.10-0	4.29/	1+12+0	0.24/104/ 5	4	012
1.20+6	0,214	1.25+6	0.178	1,30+6	0,1371047 5	4	616
1.35+6	0.099	1.40+6	0.069	1.45+6	0.0411047 5	4	617
1.50+6	0.014	1.55+6	0.0		1047 5	4	618
U U U	0 148+6	1	υ.υ τ	1	A41047 5	۸	619
U • U • •	0,1,0,0	U	5	1	4 NA7 4		630
	с н о	0 46.4		0 4 0 . 4		4	02U 601
0,148*0		0.10+0	U.014	U.10+0	0.030104/ 5	4	921 (92
0.20+0	0.053	0.22+6	0.069	0.24+6	0.084104/ 5	4	072
0.26+6	U,094	0.28+6	0.105	0.30+6	0.1151047 5	4	623
Q.J2+6	0.124	0.34+6	0.132	0.36+6	0.1371047 5	4	624
0.38+6	0.142	0.40+6	0.143	0,42+6	0.1441047 5	4	625
0.44+6	0,144	0.46+6	0.144	0,48+6	0.1461047 5	4	626
- ·		-					

0.50+6	0.150	0.52+6	0.154	0.54+6	0.1571047 5	4	627
0.55+6	0.159	0.56+6	0.161	0.58+6	0.1671047 5	4	628
0.60+6	0.173	0.61+6	0.177	0 62+6	0 1801047 5	4	629
0.64+6	0.186	0.46+6	0.103	0.68+6	0.2011047 5	4	630
0.60+6	0 202	0 70+6	0.190	0 7246	0 2074047 5	7	674
0.0448	0.200	0.76+6	0.204			- - -	670
0.74-0	0.047	0.70-0	0.209	0.70+0	0.2111047 5	4	0.32
0.00+0	0.213	0.82+0	0.210	0,84+5	0.221104/ 5	4	033
0,86+6	0.225	0.88+6	0.232	0,90+6	0,234104/ 5	4	634
0.92+6	0.236	0.94+6	0.235	0.96+6	0.232104/ 5	4	635
0.98+6	0.223	1.00+6	0.210	1.05+6	0.1851047 5	4	636
1.10+6	0.161	1.15+6	0.144	1,20+6	0.1391047 5	4	637
1.25+6	0.131	1.30+6	0.118	1.35+6	0.1021047 5	4	638
1.40+5	0.091	1.45+6	0.083	1.50+6	0.0731047 5	4	639
1,55+6	0.063	1.60+6	0.051	1,65+6	0.0411047 5	4	640
1,70+6	0.031	1.75+6	0.050	1.80+6	0.0071047 5	4	641
1.85+6	0+0				1047 5	4	642
0.0	0.310+6	0	3	1	601047 5	4	643
60	2				1047 5	4	644
0.310+6	0.0	0.32+6	0.002	0.34+6	0.0081047 5	4	645
n.36+6	0.013	8.38+6	0.017	0.40+6	0.0211047 5	4	646
0.42+6	0.025	0.44+6	n. n28	0 46+6	0 0311047 5	٩	647
0.48+6	6.034	0.50+6	0.037	0 52+4	8 0411047 5	4	648
n 54+6	B 0.44	0 55+6	0 046	0.56+6	0 0471047 5	4	649
0 58+6	0.051	0.60+6	0 055	0.61+6	0 0561047 5	4	650
0.63+6	a a58	0.00+0	0.022	0.61+6		~	651
0,02+0	0.000	0.04.00	0.000	0.0010	0.00010-0.0	-	001
0.68+6	0.070	0.69+6	0.072	0.70+6	0.0731047 5	4	652
0.72+6	0.076	0.74+6	0.076	0.76+6	0.0751047 5	4	653
0.78+6	0.073	0.80+6	0.072	0.82+6	n.0711047 5	4	654
0.84+6	0.069	0.86+6	0.067	0.88+6	0.0651047 5	4	655
0.90+6	0.064	0.92+6	0.064	0.94+6	0.0641047 5	4	656
9.96+6	0.063	g.98+6	0.062	1.00+6	0.0601047 5	4	657
1,05+6	0,056	1,10+6	0.050	1,15+6	0.0441047 5	4	658
1.20+6	0.042	1.25+6	0.039	1.30+6	0.0351047 5	4	659
1.35+6	0.031	1.40+6	0.028	1.45+6	0.0261047 5	4	660
1.50+6	0.024	1.55+6	0.021	1.60+6	0.0191047 5	4	661
1.65+6	0.017	1.70+6	0.015	1.75+6	0.0141047 5	4	662
1.80+6	0.012	1.85+6	0.011	1,90+6	0.0091047 5	4	663
1.95+6	0,007	2.00+6	0.005	2.00001+6	0.01047 5	4	664
0.0	0.680+6	Û.	3	1	371047 5	4	665
37	2				1047 5	4	666
0,680+6	υ.ο	0.69+6	0.009	0.70+6	0.0181047 5	4	667
0.72+6	0,036	D.74+6	0.051	0.76+4	0.0661047 5	4	668
0.78+6	0,080	0,80+6	0.093	0.82+6	0.1951047 5	4	669
0.84+6	0,117	0.86+6	0.128	0.88+6	0.1361047 5	4	670
0,90+6	0,142	0.92+6	0.146	D,94+6	0,1491047 5	4	671
0.96+6	0,150	0.98+6	0.151	1.00+6	0.1501047 5	4	672
1.05+6	0.146	1.10+6	0.132	1.15+6	0.1171047 5	4	673
1.20+6	0,099	1.25+6	0.091	1,38+6	0.0831047 5	4	674
1,35+6	0.078	1.40+6	0.076	1.45+6	0.0721047 5	4	675
1.50+6	0.067	1,55+6	0.061	1.60+6	0.0511047 >	4	676
1.65+6	0.043	1.70+6	0.037	1,75+6	0,0301047 5	4	671
1.80+6	0.023	1.85+6	0.015	1,98+6	0.0071047 5	4	678
1.95+6	0.0				1047 5	4	679
0.0	0,732+6	0	3	1	361047 5	4	680
36	2				1047 5	4	681

0.732+6	0.0	8.74+6	0.012	0.76+6	0 0341047	5	4	682
n.78+6	0.047	0.80+6	0.057	n.82+6	0.0641047	ś	4	683
1.84+6	0.072	0.86+6	0.076	0.88+6	0.0801047	ś	4	684
n.9n+6	0 084	0 92+6	0.088	8 94+6	0.0031047	5	4	685
0,00-0	0.004	0,92+0	0.000	1 00+6	0.0901047	5	~	696
0.9000	0.090		0.099	1.00+0	0.1001047	2	-	407
1.0548	0.100	1.10+0	0.102	1,12*0	0.100104/	2	4	00/
1.20+6	0.100	1.25+6	0.095	1.30+6	0.0871047	5	4	688
1.35+6	0.078	1.40+6	D D D 73	1.45+6	0.0691047	5	4	689
1.50+6	0,065	1.55+6	0.059	1,60+6	0.0531047	5	4	690
1.65+6	0.050	1,70+6	0.046	1,75+6	0.0421047	5	4	691
1.88+6	0.038	1.85+6	0.034	1,90+6	0.0301047	5	4	692
1,95+6	0.024	2.00+6	0.018	2.00001+6	0.01047	5	4	693
σ,σ	0,838+6	0	3	1	301047	5	4	694
30	2				1047	5	4	695
D.838+6	0,0	0.86+6	0.001	0.88+6	0.0031047	5	4	696
0,90+6	0.004	0.92+6	0.005	0.94+6	0.0061047	5	4	697
0,96+6	0.008	0.98+6	0.009	1,00+6	0.0111047	5	4	698
1.05+6	0,015	1.10+6	0.020	1,15+6	0.0271047	5	4	699
	_			_				_
1.20+6	0,031	1.25+6	0.033	1.30+6	0.032104/	5	4	700
1,35+6	0.030	1,40+6	0.029	1,45+6	0.0291047	5	4	/01
1,50+6	0.029	1.55+6	0.029	1.60+6	0.0281047	5	4	102
1.65+6	0.027	1.70+6	0.027	1.75+6	0.0271047	5	4	703
1,80+6	0,027	1.85+6	0.028	1,90+6	0.0281047	5	4	704
1.95+6	0,028	2.00+6	0.028	2.00001+6	0.01047	5	4	105
0.0	0.939+6	0	3	1	241047	5	4	706
24	2				1047	5	4	707
0.939+6	0.0	0.96+6	0.012	0.98+6	0.0251047	5	4	708
1.00+6	0.039	1.05+6	0.071	1.10+6	0.0951047	5	4	709
1.15+6	0.102	1.20+6	0.092	1.25+6	0.0811047	5	4	710
1.30+6	0.085	1.35+6	0.094	1.40+6	0.0911047	5	4	711
								34.0
1,45+6	0.083	1,50+0	0.0/5	1,55+6	0.00/104/	2	4	/12
1,00+6	0.058	1.65+6	0.050	1.70+6	0.044104/	2	4	/13
1./5+6	0.037	1.80+6	0.031	1.85+6	0.024104/	5	4	/14
1.90+6	D+016	1.95+6	0.008	2.00+6	0.0104/	5	4	/15
0,0	0,968+6	0	3	1	24104/	5	4	/16
24	2		_		104/	ל	4	/17
0.968+6	0.0	0.98+6	0.008	1.00+6	0.025104/	5	4	/18
1.05+6	0.052	1.10+6	0.065	1,15+6	0.0751047	5	4	719
1.20+6	0.086	1.25+6	0.094	1,30+6	0.0951047	5	4	150
1.35+6	0.092	1.40+6	0.092	1,45+6	0.0911047	5	4	721
1.50+6	Q,U 90	1,55+6	0.086	1,60+6	0.0811047	5	4	122
1,65+6	0,077	1,70+6	0.074	1.75+6	0.0721047	5	4	723
1.8n+A	n.0 69	1.85+6	0,066	1,90+6	0.0621047	5	4	124
1.95+6	0.058	2.00+6	0.052	2.00001+6	0.01047	5	4	125
1,,,,,	1 006+6	210040	1	1	221047	ś	Å	126
22	2,00040	0	0	I	1047	ś	4	727
1 0.06+6	0 0	1 05+6	0 010	1 10+6	0 0311047	ś	4	728
4 1ETT	0.0 N NEA	1 2414	0.010	1 2614	0 0494047	ž	4	720
1.1.5+0	0.054	1 76.6	0,007	1 40.46	0,0001047	É	~	720
1,0040	0.000	1 50770	0.00/ n n4P	1.4UYO 1.6612	0,00/104/	2	4	721
1 4 7 7 7 7	0,007	1 4614	0.000	4 7044	0.0454047	ś	~	731
1.0U+0	0,007	1 02-0		4,7UT0 9 BEL2	0,000104/	ر د	7	/ 02 777
1,/240	0,002	1.05.4		1.0740	0.0244047	5	*	733
1,40+0	4,007	1.42+0	0.004	¢.00+0	U.UAL1U4/ ∧∧∧√	7	4	775
2.00001+0	0.0				104/	2	*	130
0,0	1,047+6	D	3	1	211047	5	4	736

21	2				1047	5	4 737
1 0/7+4	0 0	1 10+4	0 070	1 4 5 4 4		5	1 129
1.04/40	0 0 4 4	1.10.40	0.032	1.10-0	0.0401047	5	4 730
1.20.40		1.27+0	0.070	1.30+0	0.0/3104/	2	4 7.39
1.35+6	0.0/1	1.40+6	0.071	1.45+6	0.0/3104/	5	4 /40
1,50+6	0.074	1,55+6	0.074	1.60+6	0.072104/	ל	4 /41
1.65+6	0.072	1.70+6	0.071	1.75+6	0.0701047	5	4 742
1.80+6	0.069	1.85+6	0.067	1,90+6	0.0661047	5	4 743
1.95+6	0.064	2.00+6	0.061	2.00001+6	0.01047	5	4 /44
11.200	1 076+6	L , 00 · 8	2 U U U U	1	211047	5	A 145
0.0	T.0.0+0	U	3	1	<1047	2	4 745
					1047	2	4 /40
1,0/0+0	υ.υ	1.10+0	0.015	1,12+0	U.U4U1U4/	2	4 /4/
	A						
1.20+0	0.05/	1.25+0	0.0/4	1,30+0	0.055104/	2	4 /48
1.35+6	0.101	1.48+6	0.108	1.45+6	0.109104/	5	4 /49
1,50+6	0,108	1.55+6	0.103	1.60+6	0.0971047	5	4 750
1,65+6	0.091	1.70+6	0.087	1.75+6	0,0831047	5	4 151
1.80+6	0.079	1,85+6	0.073	1,90+6	0.0671047	5	4 152
1.95+6	0.062	2.00+6	0.054	2.00001+6	0.01047	5	4 753
111510	1 123-6	2100.0	0.05 T	1	201047	ŝ.	A 754
010	1:150+0	U	J.	1	201047	2	- 17-
20	<u> </u>				104/	2	4 / 77
1,123+6	0.0	1.15+6	0.002	1.20+6	0.00/104/	5	4 /56
1,25+6	0.018	1.30+6	0.033	1.35+6	0.0451047	5	4 757
1.40+6	0,053	1.45+6	0.058	1,50+6	0.0611047	5	4 /58
1.55+6	0.062	1.60+6	0.062	1,65+6	0.0621047	5	4 159
				·	•••		
1.70+6	0.061	1.75+6	D. 061	1.80+6	0.0601047	5	4 761
1 85.6	0.059	1 90+6	0 056	1 95+6	0 0531047	с. с.	4 761
1.0046	0.017	2 00001+6	0.020	2.2240	1047	í.	A 163
2.00+0	0.04/	2.0000170	0.0		104/	2	4 702
0.0	1,120+0	Ų	3	3	201047	2	4 /03
20	2				104/	ל	4 164
1,150+6	0.0	1,15+6	0,002	1,20+6	0,0071047	5	4 /65
1.25+6	0.01/	1.30+6	0.030	1.35+6	0.0451047	5	4 /66
1.41+6	0.054	1,45+6	0.058	1.50+6	0.0591047	5	4 167
1.55+6	0.058	1.60+6	0.056	1.65+6	0.0541047	5	4 768
1 70+6	0 053	1 75+6	n n52	1 88+6	0 1521047	ŝ	4 769
	0.050	1 00+6	0.002	1 05+4	0.0501047	5	A 270
1.02*0	0.051	1.9070	0.000	1,4040	0.0901047	2	4 770
2.00+6	0.049	2,00001+6	0.0		1047	2	4 //1
0 0	4 40.4	•	7		1 4 1 0 4 7	<u>د</u>	A 770
Ų.U	1.17+0	U	3	1	1047	2	~ // <i>C</i>
14	2			4 05 4	1047	2	4 //3
1.19+6	0.000	1.20+8	0.001	1,25+6	0.008104/	5	4 //4
1.30+6	0.017	1.35+6	0.027	1,40+6	0.0351047	5	4 775
1.45+6	0.040	1.50+6	0.042	1,80+6	0.0421047	5	4 776
1.85+6	0,041	1.90+6	0.041	1,95+6	0.0401047	5	4 177
2.00+6	0.039	2.00001+6	ú. 0 na		1047	5	4 /78
n.n	1.21+6	 N	3	1	161047	5	4 779
14	11010		0	-	1047	ŝ	A 790
4 14 4 4 0 4	0.000	1 35.6	0.004	1 40+6	0 0081047	ź	A 291
1.41-0	0.000	1,2940		1,00+0	0.0001047	2	· · · · ·
1.22*0	0.013	1.40*0	0.010	1.42*0	0.0241047	2	4 /72
1.50+6	0.029	1,55+6	0.031	1.00+6	0.032104/	ל	4 /93
	0 0 7 0		0 - 74	4 04.7	C 0 4 0 4 0 4 0	њ.	a 10 -
1./5+0	0.032	7.80+0	0.031	1.02+0	0.0301047	2	4 /84
1,90+6	0.058	1,95+6	0.057	∠,00+5	0.025104/	2	e /*5
2,00001+6	0.000				1047	ל	4 786
θ,Ο	1,246+6	Ū	3	1	171047	5	4 787
17	2				1047	ל	4 788
1,246+6	0.000	1.30+6	0.007	1.35+6	0.0141047	ר	4 189
1.40+5	0.019	1.45+6	0.025	1,50+6	0.0301047	5	4 790
1.55+6	0.033	1.60+6	0.034	1.65+6	0.0341047	5	4 791
1.70+6	0.033	1,75+6	0.030	1.80+6	0.0261047	5	4 192
T F C D C F		- • • •					

1.85+6	0.020	1,90+6	0.014	1.95+6	0.0081047	54	793
2.00+6	0.002	2,00001+6	0.000		1047	5 4	794
0,0	1,272+6	0	3	1	171047	54	795
17	2				1047	5 4	196
1,272+6	0.000	1.30+6	0.004	1.35+6	0.0111047	5 4	797
1,40+6	0,017	1.45+6	0.022	1,50+6	0.0281047	5 4	798
1.55+6	0.032	1.60+6	0.035	1,65+6	0.0361047	5 4	799
1.70+6	0.035	1.75+6	0.033	1.80+6	0.0291047	54	810
1.85+6	0,023	1,90+6	0.018	1,95+6	0.0121047	54	801
2.00+6	0.005	2.00001+6	0.0		1047	54	802
0.0	1.313+6	0	3	1	151047	5 4	803
15	2		-		1047	5 4	804
1,313+6	.000	1,35+6	.002	1.40+6	.006104/	5 4	805
1,42+0	0.010	1.50+0	0.029	1,55+6	0.041104/	5 4	000
1.00*0	0.040	1:02+0	0.049	1.70+6	0.04/104/	5 4	807
1.75+6	0,040	1.80+6	0.031	1.85+6	0.0221047	54	808
1,90+6	0.013	1.95+6	0.006	2.00+6	0.000104/	5 4	809
0.0	1,001+0	0	3	1	14104/	5 4	810
14	2	4 4 4 4 4		4 45.4	104/	5 4	811
1,301+0		1.649+0	0.003	1.42+0	0.000104/	フ 4 に ル	912
1.20+0	0.010	1.70+6	0.023	1 75+6		5 4	814
1 80+6	0.019	1 85+6	0.027	1 90+6	0.0241047	5 4	815
1.95+6	0,013	2.00+6	0 000	x , , 0, 0	1047	5 4	816
0.0	1.401+6	1.00.0	3	1	131047	5 4	817
13	2		5	+	1047	5 4	818
1,401+6	0.000	1.45+6	0.004	1.50+6	0.0091047	5 4	819
1 550+6	0.014	1.60+6	0 619	1 65+6	0 0221047	5 A	820
1.700+6	0.023	1,75+6	0.019	1.80+6	0.0221047	5 4	821
1.850+6	0.011	1.90+6	0.006	1.95+6	0.0021047	5 4	822
2,000+6	0,000				1047	5 4	823
0.0	1,437+6	0	3	1	121047	5 4	824
12	2				1047	5 4	825
1,437+6	0.000	1.45+6	0.002	1.50+6	0.0081047	54	958
1,550+6	0.017	1,60+6	0.025	1,65+6	0.0291047	5 4	827
1,700+6	0.027	1.75+6	0.050	1.80+6	0,0131047	5 4	858
1,850+6	0.007	1.90+6	0.002	1,95+6	0.0001047	5 4	829
0.D	1.4/+6	D	3	1	10104/	5 4	830
10	2				1047	5 4	831
1,47+6	0,000	1.50+6	0.002	1,55+6	0.0081047	54	832
1.60+6	0.014	1.65+6	0.019	1,70+6	0.018104/	5 4	833
1./5+6	0.012	1.80+6	0.007	1.85+6	0.002104/	5 4	834
1.90+0	0.000	0	7		1047	5 4	037
10	1.50+0	U	3	1	121047	5 4	900
1.50+4	0 0 00	1.5516	0 000	1 60-6	1047 0 0 0 0 1 0 1 0	5 1	937 878
1 65+6	0.057	1 70+6	0.009	1 75+6	n 1741047	5 4	839
1.80+6	0.243	1.85+6	0.308	1.90+6	0.3601047	5 4	840
1.95+6	0.393	2.00+6	0.410	2,00001+6	0.0001047	54	841
0.0	1.75+6	0	3	1	71047	5 4	842
7	5				1047	54	843
1.75+6	0.000	1.80+6	0.012	1.85+6	0.0291047	54	844
1.90+6	0.054	1.95+6	0.091	2,00+6	0.1451047	5 4	845
2,00001+6	0.000				1047	5 4	846
0.0	0.0	0	9	1	31047	5 4	847

3	2				1047	5	4	848
2,00+6	0.0	2,00001+6	1.0	15,0+6	1.01047	5	4	849
0.0	0.0	0	0	1	181047	5	4	850
18	2				1047	5	4	851
2,0+6	.270+6	2,5+6	.311+6	3.0+6	.353+61047	5	4	852
3,5+6	,396+6	4,0+6	.438+6	4,5+6	,464+61047	5	4	853
5,0+6	,483+6	5,5+6	.497+6	6.0+6	,509+61047	5	4	854
6,5+6		7.0+6	,527+6	7,5+6	,534+61047	ל	4	855
8,0+6	.539+6	8,5+6	,543+6	9,0+6	,547+61047	5	4	d56
9,5+6	.549+6	10.0+6	.550+6	15,0+6	.550+61047	5	4	457
0.0	0.0	0	Q	0	01047	5	0	858
92238.	235.0058	0	0	1	01047	5	16	859
Q.	Ο,	0	9	1	21047	5	16	990
5	1				1047	5	16	861
6.07+6	1,	15.0+6	1.		1047	5	16	862
Ο.	٥,	0	0	1	41047	5	16	863
4	2				1047	5	16	864
6,07+6	1.0+4	6,09+06	0.0155+06	7.0+6	0,10+61047	5	16	865
15,0+6	0.84+6				1047	5	16	966
ο.	Ο,	ŋ	0	ß	01047	5	Ŭ	867
92238.	236.0058	0	D	1	01047	5	17	868
).	0.	ō	9	1	21047	5	17	869
2	1				1047	5	17	870
11.51+6	1,	15.0+6	1.		1047	5	17	871
	Ο.	0	0	1	31047	5	17	872
3	Ś				1047	5	17	873
11.51+6	1.0+4	12,5+6	0.20+6	15,0+6	8.48+61047	5	17	374
ā.	Ο,	0	Û	ŋ	01047	5	n	875
92238.	235.0058	0	Û	1	01047	5	18	876
ο,	1.35+6	0	6	1	21047	5	18	877
2	1				1047	5	18	878
ŋ.48+6	1.	15,0+6	1.		1947	5	18	879
Ο.	Ο.	0	D	0	01047	5	ħ	880
0.	0.	0	٥	9	01047	0	n	881
92238,0	235.0058	0	0	0	01047	1	4	985
n,0	υ.υ	0	D	12	11047	1	4	883
Π,Ο	100.0	236.0058	2.5	0.0	0.01047	7	4	884
1.0	10.6	236.0058	0.0	0.n	0.01047	7	4	885
0,0	θ,Ο	ņ	D	n	01047	7	Ĥ	986
0.0	υ.Ο	O	D	n	01047	0	D	887
0.0	0,0	0	0	Ü	0 0	0	n	888
ŋ.U	0.0	0	D	ŋ	0 -1	Ŋ	n	889

APPENDIX B

Graphical Representation of Resolved Resonance Levels

By courtesy of Dr. E. M. Pennington of Argonne National Laboratory, Calcomp plots of the capture, scattering, and total cross sections were obtained using the single-level, Breit-Wigner model and the ENDF/B resonance parameters.

B-3

B-4

B-10

B-12

B-13

B-14

.

B-20

B-22

B-24

B-26

DISTRIBUTION

 Brookhaven National Laboratory (500) Upton, L. I., New York 11973

Attn: Dr. Sol Pearlstein

2. The Babcock & Wilcox Company (62)

Barringer, HS Bingham, BE Central Files (20) Croft, MW Deuster, RW Engelder, TC Helholtz, J Holt, CD Hostetler, DR Howard, JO Jones, HM Judd, DF Library (2) Littrell, LW (2) Livolsi, AZ (5) Minner, DA Mumm, JF Neuhold, RJ Paulson, AE Pettus, WG Poor, HH/Alliance Probert, PB/Barberton Roy, DH (5) Schuler, TM Snidow, NL Travis, CC/TRG Webb, RA Wittkopf, WA (5) Wolfe, GE

