ENDF-102 data formats and procedures FOR THE EVALUATED NUCLEAR DATA FILE, ENDF
 Revised by D. Garber, C. Dunford, and S. Pearlstein
 October 1975

This publication brings under one cower
what was formerly Vol. I (neutron formats) and Vol. II (photon formats)

iNFORMATION AMALYSIS CENYER REPORT

NATIONAL NEUTRON CROSS SECTION CENTER

BROOKHAVEN NATIONAL LABORATORY
ASSOCIATED UNIVERSITIES, INC.
UPTDN, NEW YORK 11973
UNDER CONTRACT NO. E(30-1). 16 WITH THE
UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

This publication is based on previous reports:
8NL 8381, ENDF - Evaluated Nuclear Data File Description and Specifications, June 1964, H.C. Honeck.
BNL 50066, ENDF 102, Vol. I - ENDF/Q - Specifications for an Evaluated Nuclear Data File for Reactor Applications, May 1966, H.C. Honeck; Rev. July 1967, S. Pearlstein; Rev. Act. 1970, M.K. Drake, Editor.

LA 4549, ENDF 102, Vol II - ENDF Formats and Procedures for Photon Production and Interaction Dato, Oct. 1970, D.J. Dudziak.

It brings under one cover both the neutron and photon formats.

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any iuformation, apparatus, product or process disciased, or represents that its use would not infringe privately owned rights.

Printed in the United States of America

Available from
National Technical Information Service
U.S. Department of Commerce

5285 Port Royal Road
Springfield, VA 22161
Price: Domestic $\$ 2.75$, Foreign $\$ 15.25$;
Microfiche $\$ 2.25$

DATA FORMA'TS AND PROCEDURES

FOR THE ENDF NEUTRON CROSS SECTION LIBRARY
0. ENDF/B-IV VERSION PREFACE
0.1. INTRODUCTION
0.2. GENERAL FEATURES OF THE EVALUATED NUCLEAR DATA FILE
0.3. RELATIONSHIP OF THE ENUF TO OTHER DATA SYSTEMS
0.3.1 Experimental Data Libraries
0.3.2 Processing Codes and Nevtronics Calculations
0.4. GENERAL DESCRIPTION OF THE ENDF LIBRAPY
0.4.1 Definitions and Conventions
0.4.2 Structure of an ENDF Data Tape
0.4.3 Representation of Data
0.5. GENERAL DESCRIPTION OF THE DATA FGRMATS
0.5.1 Nomenclature
0.5.2 Types of Binary Records
0.5.3 Card Image (BCD) Fonnat

1. FILE 1, GENERAL INFORMATION
l.l Descriptive Data and Dictionary ($\mathrm{MT}^{\prime}=451$)
1.1.1 Formats
1.1.2 Procedures
2. 2 Nimber of Neutrons per Fission, $v(M T=452$)
1.2.1 Formats
1.2.2 Procedures
1.3 Radioastive Nuclide Production (Mm:=453)
1.3.1 Formats
1.3.2 Procedures

DATA FORMATS AND PROCEDURES

1.4 Fission Product Yield Data (MT $=$ 454)
1.4.1 Formats
1.4.2 Procedures
1.5 Delayed Neutron Data, $v_{d}(M T=455)$
1.5.1 Foimats
1.5.2 Procedures
1.6 Numer of Prompt Neutrons per Fission, $\nu_{p}(M T=456)$
1.6.1 Formats
1.6.2 Procedures
1.7 Radioactive Decay Data (MT $=457$)
1.7.1 Formats
1.7.2 Procedures
2. FILE 2. RESONANCE PARAMETERS
2.1 General Description
2.2 Resolved Resonarice Parameters
2.2.1 Formats
2.2.2 Procedures
2.3 Unresolved Resonance Parameters
2.3.1 Formats
2.3.2 Procedures
3. FILE 3, NEUTRON CROSS SECTIONS
3.1 General Description
3.2 Formats
3.3 Procedures

DATA FORMATS AND PROCEDURES
4. FILE 4, ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS
4.1 General Description
4.2 Formats
4.3 Procedures
5. FILE 5, ENERGY DISTRIBUTIONS OF SECONDARY NEUTRONS
5.1 General Description
5.2 Representation of Energy Distributions
5.3 Formats
5.4 Procedures
6. FLLE 6, ENERGY-ANGULAR DISTRIBUTIONS FOR SECONDARY NEUTFONS
6.1 General Description
6.2 Formats
6.3 Procedures
7. FILE 7, THERMAL NEUTRON SCATTERING LAW DATA
7.1 General Description
7.2 Formats
7.3 Procedures
11. GENEFAL COMMENTS ON PHOTON PRODUCTION
12. FILE 12, PHOTON PRODUCTION MULTIFLICITIES AND TRANSITION PROBABILITY ARRAYS
12.1 Formats
1.2.1.1 Option 1 ($£ \varnothing=1$): Multiplicities 12.1.2 Option 2 ($\quad \varnothing=2$): Transition Probability Arrays
12.2 Procedures

DATA FORMATS AND PROCEDURES
13. FILE 13, PHOTON PRODUCTION CROSS SECTIONS
13.1 Formats
13.2 Procedures
13.3 Preferred Representations
14. FILE 14, PHOTON ANGULAR DISTRTBUTIONS
14.1 Formats
14.2 Procedures
15. FILE 15, CONTINUOUS PHOTON ENERGY SPECTRA
15.1 Formats
15.2 Procedures
16. FILE 16, PHOTON ENERGY-ANGLE DISTRIBUTIONS
16.1 Formats
16. 2 Procedures
22. GENERAL COMMENTS ON PHOTON INTERACTION
23. FILE 23, "SMOOTH" PHOTON INTERACTION CROSS SECTIONS
23.1 Formats
23.2 Frocedures
24. FILE 24. SECONDARY ANGULAR DISTRIBUTIONS FOR PHOTON INTERACTION
24.1 Formats
25. FILE 25, SECONDARY ENERGY DISTRIBUTIONS
26. FILE 26, SECONDARY ENERGY-ANGİE DIE'TRIBUTIONS
27. FILE 27, ATOMIC FORM FACTORS OR SCATTERING FUNCTIONS
27.1 Formats
27.2 Procedures

```
APPENDIX A: Glossary
    B: Definition of Reaction Types
    C: 2A Designation of Materials
    D: Resonance Region Formulae
    E: Interpolation Schemes
    F: Temperature Dependence
    G: Alternative Structure for ENDF Data Tapes
    H: Data Formats for the ENDF/A Library
    I: Summary of Processing Codes Used With the ENDF Library
    J: Materials in the ENDF/B Library
    K: Sample Data Set
    L: Sample of Interpreted Data Set
    M: Sample Graphical Display
    N: Examples of Card Image Formats
    O: Format Differences Between Versions
        of the ENDF Library
    P: Summary of Important ENDF Rules
    Q: Dimensions of Important ENDF Parameters
    R: Trial Format for Non-Neutron Data
```

0. ENDF/B - IV PREFACE

These revisions to Data Formats and Procedures for the ENDF Neutron Cross Section Library, ENDF-102, pertain to the latest ver ion of ENDF/B-IV. The descriptions of the formats have been brought up to date and important procedural matters have been explained. Other explanations of formats will be made at a later time. Users of this manual who note deficiencies or have suggestions are encouraged to contact the National Neutron Cross Section Center at Brookhaven National Laboratory.

Three new appendices have been added. Appendix P contains a checklist of the most important rules for or misunderstandings about ENDF formats and procedures. Appendix Q summarizes the dimensions of important ENDF variables. Appendix R describes a new trial format approved for Files 62-76 that is now being tested for non-neutron reaction data.

Some of the data in the 1974 version of ENDF/B will contain files of data variances, sometimes called error files. Formats and procedures for the erior files will be supplied at a later date.

The authors have been helped in these revisions by several people. Much material is based on an April 1973 draft memo entitled "Clarification of Existing Formats and Procedures" by M. K. Drake. The formats for radioactive decay data were largely constructed, ciarified, and impiemented by $0.0 z e r, C . W$. Reich, and R. E. Schenter. Numerous people, in the U.S. and abroad, submitted suggestions and ideas, many of which were included in this edition.

1. IMTRUDUCTION
0.1.1. EivLi System

This report describes the philosophy, of the Evaluated Nuclear Data File (EINLF)* and the data formats and procedures that have been developed for it. The ENDF system was designed for the storage and retrieval of the evaluated nuclear data that are required for neutronics, photonics and decay heat calculations. This system is composed of several parts that include a series of data processing codes and neutron and photon cross section nuclear structure libraries.

The LNDF system was developed to provide a unified format that could be used to store and retrieve evaluated sets of neutron cross sections. It was designed to allow easy exchange of cross section information between various laboratories. The initial system contained format specifications for neutron cross sections and other related nuckear constants. During the later stages of development the formats were expanded to include photon interaction cross sections, photr, production data (photons produced by neutron interactions) and nuclear structure data.

The basic data formats developed for the library are versatile enough to allow accurate description of the sross sections considered for a wide range of incident neutron energier $\left(10^{-5} \mathrm{eV}\right.$ to 20 MeV$)$. The ENDF formats are flexible in the sense that almost any type of neutron interaction mechanism can be accurately described. They are restrictive in that only a limited number of different representations are allowed for any given neutron reaction mechanism.

[^0]
-.1.2. ENDF Documentation

The purpose of this report is to describe the data formats and the procedure: to be used for entering data into the LNDF library. In addition, this report describes the relationship between the ENDF evaluated data libraries and the experimental data library CSISRS (Cross Section Information Storage and Retrieval System). The relationship between the LNDF libraries and the processing codes that are used to generate secondary data iibraries (for example, fine group-averaged cross section libraries) is also doscribed. The processing codes connected with the ENDF libraries are sumarized here, but the codes themselves are described in separate documents.

This report is organized in the following manner. The first section describes the general features of the ENDF libraries, the relationship between ENDF and CSISRs, and the relationship between ENDF and its secondary libraries. Section 0.5 describes the standard formats used in all record types. An understanding of Section 0.5 will facilitate understanding the data formats given in Sections 1-15. BCD card-image formats are given in Appendix N.

The ENDF experience has prompted evaluation guidance to the evaluator in some instances to cope with familiar situations but cannot always be followed absolutely. Comments to the evaluators were primarily to improve data for shielding.

0.1.3. A and B Libraries

Two different evaluated data libraries are maintained at the National Neutron Cross Section Center (NNCSC). The ENDF/A lubary contains either conr plete or partial data sets (partial in the sense that the data set may be, for example, an evaluation of the fission cross section for ${ }^{235} u$ in tine energy range 100 keV to 15 MeV only). This library may also contain several different evaluations of the cross sections for a particular nuclide. The ENDF/B library,
on the other hand, contains only one evaluation of the cross sections for each materaal in the library, but each material contains cross sections for all significant reactions. The data set selected for the ENDF/B library is the set recommended by the Cross Section Evaluation Working Group (CSEWG). The ENDF/B library contains reference data sets with which other information may be compared, as opposed to data sets that are revised often on the basis of new information so as to constitute current standard ciata sets. After an extensive review period of 1 or more years, CSEWG may from time to time replace an older set with a new data set. The ENDF/A and ENDF/B libraries are described in more detail in Section 0.2.
0.2. GEIVERAL FEATURES OF THE EVALUATED NUCLEAR DATA EILE

0.2.1. Evaluated Data

The process of analyzing experimentaily measured cross section data, combining it with the predictions from nuclear model calculations, and attempting to extract the true value of a cross section is referred to as evaluation. Parametrization and reduction of the data to tabular form produces ar evaiuated data set. If the written description of the preparation of an uque data sot from the data sources is available, it is referred to as a documented evaluation. The ENDF format was developed to store the results of this process in a form suitale for automated retrieval for further processing.

0.2.2. A and B Libraries

The demands on an evaluated data file vary according to the user's applications. Whether the user is interested in performing a reactor physics calcu-
lation or in doing a shielding analysis, he wants evaluated data for all neutroninduced reactions, covering the full range of incident neutron energies, for each material in the system that he is analyzing. Also, the user expects that the data lile wi 11 contain information such as the angular and energy distributions for secondary neutrons. The ENDF/B library will contain only one representation (or interpretation) of the cross sections for a particular material at any given time. ENDF/A may contain several alternative sets of evaluated data for the materials on the ENDF/s library. The data sets that are concained on the ENDF/A library may or may not be complete (for the purposes of reactor physics or shielding calcuiations). The ENDF/A library is, in effect, a system for compiling evaluated data sets.

The formats used for these two litraries are basically identical; i.e., the codes that are used to read and provess data from the ENDF/B library may be used for the ENDF/A library. The dat. formats for these libraries are given in the foilowing sections. The differences in the formats for the ENDF/A and ENDF/B libraries are given in Appendix H .

0.2.3. Choices of Data

The data sets contained on the ENDF/B library are thoce chosen by the CSEWG. The data set that represents the cross sections for a particular material may change from time to time upon the recomnendation of cSEWG. Such a recomendation generally is made when (1) new and significant experimental results become available, (2) jntegral data testing shows that the data set gives erroneous results, or (3) users' requirements indicate a need for more accurate andior a better representation of the cross sections for a particular material.

U.2.4. Liturary lioues

The neutron cross section libraries comprise the central part of the EivDr system. The libraries are contained on magnetic tapes or disks. Two different modes of the data tapes are maintained: a binary form and a BCD card-image form. The formats for these two modes are very similar. The data formats for a binary tape are ciefined in Sections 1-15. Basically there are only four different types of binary records (see Section $) .5 .2$), each with a specific format. Control numbers arne flags always appeax in the same position within a record of a particular type. Understancirg the definitions of ali record types will facilitate understanding the particular formats described later on.

Since binary tapes generated witi use of a particular computer may not be easily read on another type of computer, a $B C D$ card-image format was developed. The card-image formats are described in Section 0.5 .3 and are similar to those used for winary records. Certain key data words (for example, material and cross section type identifiers), which are given only at the beginning of each binary record, are given at the end of each $B C D$ card-inage record. BCD card-image formats are described in Appendix N along with examples of data sets.

0.2.5. Systematization of Data

The ordering of nuclear data for a particular material is described in Section 0.4.2. Integral cross section data (for example, the total cross section) may be represented by giving tabulated values of σ_{T} vs. neutron energy. An interpolation scheme is also specified to define the cross section at intermediate energy values. Also, rusolved and,or unresolvod resonance parameters may be given. Note that if resonance parameters are given, then contributions to a particular cross section from the resonance parameters must be added to the
integral cross sections to obtain the complete cross section. In other words, the integral cross sections and the resonance parameters are not redundant. Note that the angular and energy distribution differential data are expressed as probabilities. Therefore these data must be combined with integral (integrated) data to ubtain absolute differential cross sections.

0.3 RELATIONSHIP OF THE ENDF TO OTHER DATA SYSTEMS

0.3.1. Experimental Data Libraries

NrvCSC maintains a library for experimentally measured neutron cross section data, known as CSISRS.

The CSISRS library is quite flexible, with many types of data stored. Bibliographic information (a succinct abstract to a reference) is stored with many details ahout each experiment (standard, renormaiizations, corrections, etc.).

At the beginnirg of the evaluation process the eval ator generally requests the available experimental cross sections that are stored in the CSISRS data library for a particular material. The retrieved information may be in the following forms:
(a) Listings of all or selected data sets.
(b) Magnetic tapes concaining the requested data.
(c) Graphical displays containing selected data.

The experimental cross section data are supplemented by other nuclear data, such as spins, energies, and parities of excited states. The experimental data are then analyzed, and in some cases the results are combined with predictions from model calculatiuns to obtain recommended cross sections. The recommended cross sections are then converted to the ENDF formats for subsequent incorporation into either the ENDF/A or the ENDF/B library.

A nunber of systems have been developed ${ }^{1,2}$ for automating much of the timeconsuming parts of the evaluation process. There systems, by permitting man/ computer interartion through computer graphics, shorten the time required for the evaluation process. Since the evaluator can suke more cietailed analyses of the cross sections, the quality of the evaluation process should be improved.

0.3.2. Processing Codes and Neutronics Calculations

The purpose of the ENDF library is to provide evaluated cross section data sets in a form that can be used in varicus neutronics and photonics calculations. The existing codes that perform these calculations require data libraries that are quite diffexent from one another and from tue ENDF library. Therefore a series of processing cudes have been written which read the ENDF library as input ana generate a secondary cross section library. The secondary libraries, in turn, are read as input to a spectrum-generating code, ana generally broad \exists ruip-average cross sections are obtained for use in the neutronics calculations. The available processing codes are summarized in Appendix I. Figure 0.3.2.1. shows tl: flow of data for a particular set of codes.

The basic data formats for the ENDF library have been developed in such a manner that few constraints are placed on using the data as input to the codes that generate any of the secondary libraries.

O.4. GENERAL DESCRTPTICN OF THE ENDF LIBRARY

The ENDF library is a collection of documented data evaluations stored in a defined computer readable format that can be used as the main input into

[^1]

Fig. 0.3.2-1: Schematic of the flow of nuclear data from compilation to reactor calculation.
cross section processing programs. As such it has been designed with the processing programs in mind and requires some familiarity with the FORFRAN programming language. The ordering of data on the tape allows the use of segmented as well as ordinary programs.

Punched cards are a nuisance, particularly when required in vost numbers, as is the case here. Unfortunately, it is not always possible to exchange data on magnetic tapes, particularly oinary tapes. Therefore, two formats are provided, one for binary data and the cther for BCD card images. Magnetic tapes containing BCD card-image data generally can be exchanged between laboratories. Also, it is much easier to use the $B C D$ card-image formats when translating evaluated cross sections into the ENDF library.

0.4.1. Definitions and Conventions

A material is defined as either an isotope or a collection of isotopes. It may be a single nuclide, a natural element containing several isotopes, a molecule containing several elements, or a standard mixture of elements (such as 304 type stainless steel). Each evaluated set of cross sections for a material in the ENDF library is assigned a unique identification number. These numbers are designated by the symbol MAT and they range from 1 to 9999. Two different evaluated sets of cross sections for ${ }^{235} U$ would have different MAT numbers even though they describe the cross sections for the same nuclide. A program that processes data from the ENDF library generally refers to the materials by their MAT number, but $a(Z, A)$ designation is also given for each material and this value may be used.

When an evaluated set of cross sections for a material (in the ENDF format) is sent to the NiNCSC, the Center assigns a MAT number to this material. This
number will never be assigned to another set of evaluated cross sections. If significant modifications are made to the data in this particular set, a new MAT number will be assigned. Material numbers from 1 to 999 are to be assigned by the user to data sets that he generates. As an example, consider the following sequence of events. User X evaluates a set of data for ${ }^{235} u$ and assigns the material number 278 to this set. Within his installation the data set is always referred to as material 278. After checking and testing, the user feels that the data set is satisfactory and transmits it to the NNCSC. The Center adds the data set to its files and assigns it a MAT number of 1261 . The Center then issues a newsletter descrioing data received and available for distribution. User y reads the newsletter and requests materiai 1261 from the Center's files. Upon receipt of the data he adds it to his ENDF tape as material 1261 and refers to it. in later processing programs by this number. Should user Y subsequently alter the data, he would assign a new material number between 1 and 999。 The entire process might then start anew.

The evaluated data set for each material is divided into Files. These files are not physical files in the magnetic tape sense (i.e. there is no End-of-File mark at the end of each file). Each file contains data of a certain class.

File Number (MF)

1

2

3

4

5

6

33
General information
Resonance parameter data
Neutron cross sections
Angular distributions of secondary neutrons
Energy distributions of secondary neutrons
Energy-angular distributions of secondary neutrons
Thermal neutron scattering law data
Muitiplicities for photons (from neutron reactions)
Angular distributions of photons (from neutron
reactions)
Energy distributions of photons (from neutron
reactions)
Energy-angular distributions of photons (from
neutron reactions)
Photon interaction cross sections
Angular distributions of photons (from photon
reactions)
Energy distributions of photons (from photon
reactions)
Energy-angular distributions of photons (from
photon reactions)
Atomic form factors (for photon interactions)
Variance information (error files) Formats and
procedures to come
(fron

Each file is divided into sections, each containing the data for a particular reaction type. The various reaction types are identified by the symbol MT. The definitions for allowed reaction types (MT numbers) are given in Appendix B .

The first record of each section contains a $Z 4$ number that identifies the specific mat:erial. $2 A$ is the (Z, A) designation (charge, mass). $2 A$ for a specific material is constructed by

$$
Z A=\left(1000.0^{*} Z\right)+A,
$$

where Z is the atomic number and A is the mass number for the material. For exampie, $Z A=92238.0$ for ${ }^{238}$ U. If the material is an element containing two or more naturally occurring isotopes, A, in the above equation, is taken to be 0.0. The $Z A$ designators for materials that are molecules or common mixtures have been assigned certain values. These designators are given in Appendix C.

The first record of each section also contains a quantity that is proportional to the nuclear mass of the material. This quantity symbol AWR, is defined as the ratio of the nuclear mass of the material (isotope, element, molecule, or mixture) to that of the neutron. The mass of a neutron is taken to be 1.008665 (1 n the carbon-12 system).

The data given in all sections always use the same set of units. These are summarized below.

Parameters

energies
angles
crass sections
cemperatures
mass
angular distributions
energy distributions
energy-angle distributions

Units

electron volts
dimensionless cosines of the angle
barns
${ }^{\circ}$ Kelvin
in units of the neutron mass
probability fer unit cosine
probability per electron volt
probability per unit cosine per electron volt
U.4.2. Structure of an EiNDF Data Tape

The structure uf an ENDE tape is shown schematically in Figure 0.4.2-1. 'The structure uf a card deck a BCD card image, tape or binary tape is exactly tlit: same.

The tape contains a single record at the beginning tnat identifies che tape, and a single record at the end that signals the end of the tape. The major subdivisio, between these records is by material. The data for a material 1s divided into files, and each file (MF number) contains the data for a certain class uf information. A file is subdivided into sections, each containing data for a particular reaction type (MT number). Finally a section is divided into records. The cont oist of each record is different and depends on whether a binary tale format or a $B C D$ card-image format is used. Every record on a tape contains three identification numbers: MAT, MF, and MT. For a binary record, these numbers are given at the beginning of each record. For $B C D$ card-image records, they are given in the last three fields of each record. These numuers are always in increasing numerical order, and the hierarchy is MAT, MF, MT. The und of a section, file, or material is signaled by special records.

0.4.3. Representation of vata

The data in the ENDF library are given by providing parameters to known analytic functions <such as resonance formulae or secondary energy distribution laws), or are presented by tabulating the data in one $[y(x)]$ or two $[y(x, z)]$ dimensional arrays.

Consider how a simple function, $y(x)$, which might be a cross section, $\sigma(E)$, is represented. $y(x)$ is represented by a series of tabulated values, pairs of x and $y(x)$, plus a method for interpolating between input values. The pairs are

Eigure 4.2.1. Arrangement of an ENDF Tape
ordered by ancredsing values of x. There will be NP values of x and $y(x)$ given. The complute region over which x is dafined is broken into ink interpolation ranges. An interpolation range is defined as a sequential series of x in which a sperified interpolation scheme can be used; i.e., the same scheme can be used to obtain interpoluted values of $y(x)$ for any value of x that $2 s$ within this range. To illustrate this, see Fig. 0.4.3-1 and the definitions below: $x(n)$ is the $n^{\text {th }}$ value of x. $Y(n)$ is the $n^{\text {th }}$ value of y.

If is the numiver of pairs (X and Y) given.
I:TT (m) is the interpolation scheme identification number used in the min ranye.
UBP(n) is the value of if separating the $m^{\text {th }}$ and $(m+1)^{\text {th }}$ interpolation ranges.

The allowed interpolation schemes are

Note that where a function is discontinuous (for example, when resonance parametexs are used to specify the cross section in one rangel, the value of X is

Figure 0.4.3-1. Tabulated one dimensional function illustrated for the case NP-10, NR-3
repested and a pair (X, Y) given for each of the two values at the discontinuity (シue lig. 0.4.3-1).

Wext consider a two-dimensional function of x and z. Again, the function is represented by a series of tabulated values of $y(x)$ plus rules for interpoIuting between values of z. The function is thus considered to be a sequence of one-dimensional functions, $y(x)$, each evaluated at a particular value of z. The individual $y(x)$ can be represented as illustrated above. The only additional information that need be given is a breakpoint and interpolation table for interpolation between values of z.

0.5. GENERAL DESCRIPTION OF THE DATA FORMATS

0.5.1. Nomenclature

An attempt has been made to use an internally consistent notation. We list here some of the rules used.
a) Symbols starting with lettres I, J, K, L, M, or N are integers. All other symbols refer to flacting puint numbers.
b) The letter I or a symbol starting with I refers to an interpolation code (see Appendix E).
c) Letters J, K, L, M, or N, when used alone, are incices.
d) A symbol starting with M is a control number. Examples are MAT, MT, ME.
e) A symbol starting with L is a test number. Examples are LFI, LCT, LTT.
f) A symbol starting with N is a count of items. Examples are Nil, NR, NP, NFP.
g) Brackets [] denote one record on a binary tape.
h) Brackets \rangle denote a group of records.

Several frequently used symbols are defineá below.
MAT - Material number
MF - File number
MT - Feaction type number
ZA - The (Z, A) designation for a material (see Aprendix C)
AWR - The ratio of the mass of an atom (or molecule) to that of the neutron
$N P$ - The rumber of points in a tabulation of $y(x)$ that are contained in the same record

```
NR - The number of different interpolation intervals in a tabulation
        of }y(x)\mathrm{ that are contained in the same record
    - Temperature
    E - Energy
    H - Cos: re of an angle
LT - Temperature dependance (see Appendix F).
```


0.5.2. Types of Binary Records

All records on ar. ENDF binary tape are one of four possible types, denoted by CØNT, IIST, TAB1, and TAB2. A vecord always consists of nine numbers followed (depending on the record type) by one or two arrays of numbers. A general description of these nine nunbers is given below, but the actual definition of each number will depend on its usage.

MAT is the material number (integer).
$M F$ is the file number (integer).
$M T$ is the reaction type number (integer).
Cl is a constant (floating point).
C 2 is a constant (floating point).

Ll is an integer generally used as a test.
L2 is an integer generally used as a test.
N1 is a count of items in a list to follow.
N2 is generally a count of items in a second list to follow.
0.5.2.1. C \varnothing NT Records

The smallest possible record is a control (CDNT) record consisting of the nint numbers given above. For convenience, a CØNT record is denoted by [MAT, MF, MT/C1, C2; L1, L2; N1, N2]CØNT

The numbers within the brackets ara symbolic of the numbers in a CøNT record. The semicolon is used to mark the separation between floating point numbers, test numbers, and counts. The slash is a reminder that the numbers MAT, MF, and MT appear in a different issition in BCD card-image records. Ihe BCD card-image format is described in Section 0.5.3.

There are five special cases of a CøNT record, denoted by HEAD, SEND, FEND, MEND, and TEND. The HEAD record is the first in a section aud has the same form as a CøNT record. The numbers $C 1$ and $C 2$ are interpreted as $Z A$ and AWR, respectively, on a HEAD record.

The SEND, FEND, MEND, and TEND recu. s use only the first three numbers in the cøNT record, and they are used to signal the end of a section, file, material, and tape, respectively:
[MAT, MF, 0/0.0, 0.0; 0, 0; 0, 0]SEND
[MAT, $0,0 / 0.0,0.0 ; 0,0 ; 0,0]$ FEND
! © , 0, 0/0.0, 0.0; 0, 0; 0, 0]MEND
$[-1,0,0 / 0.0,0.0 ; 0,0 ; 0,0]$ TEND
A FORTRAN IV statement to read any CøNT record from Tape inib would be:
READ (IIB) MAT, MF, MT, C1, C2, Li, L2, N1, N2

0.5.2.2. LIST Records

The ser:ond type of record is the LIST record, used to list a string of floating point numbers, $\mathrm{E}_{1}, \mathrm{~B}_{2}, \mathrm{E}_{3}$, etc. These numbers are given in an array, $B(N)$, and there are $N 1$ of them. A FORTRAN IV statement to read a LIST record from Tape LIB would be

READ (LIB) MAT, MF, MT, C1, C2, L1, L2, N1, N2, (B (N), N=1, N1)

For convenience, this record is denoted by
[MAT, MF, MT/C1, C2; L1, L2; N1, N2/ B_{n}]LIST
For example, to enumerate the particular items in a list (A, B, $C, D, E)$, the record would be
[MAT, MF, MT/Cl, C2; L1, L2; 5, N2/ A, B, C, D, E]LIST
where the 5 indicates that there are five items in the list.

0.5.2.3. TABI Records

The third type of record is the TABI record used for one-dimensional tabulated functions such as $y(x)$. The data needed to specify a one-dimensional tabulated function are the interpolation tables NBT(N) and INT(N) for each of the NR ranges, and the NP tabulated pairs of $X(N)$ and $Y(N)$. The FORTRAN IV statement to read a TABl record is

READ (LIB) MAT, MF, MT, CI, C2, L1, L2, NR, NP, $(\operatorname{NBT}(N), \operatorname{INT}(N), N=1, N R),(X(N), Y(N), N=1, N P)$

For convenience, the TABl recora is denoted by
[MAT, MF, MT/ Cl, C2; L1, L2; NR. NP/ $\left.\mathrm{x}_{\text {int }} / \mathrm{y}(\mathrm{x})\right] \mathrm{TAB}$?
The term $x_{i n t}$ means the interpolation table for interpolating between successive values of the variable $x . ~ Y(x)$ means pairs of x and $y(x)$. x is generally used as the incident neutron energy E, and $Y(x)$ is generally a parameter such as the cross section $\sigma(E)$.

0.5.2.4. TAB2 Records

The iast record type is the TAB 2 record, which is used to control the tabulation of a two-dimensjonal function, $y(x, z)$. It specifies how mary values of z are to be given and how to interpolate between successive value of z. Tabu-
lated values of $y(x)$ at each value of z are given in TAB1 or LIST records following the $T A B 2$ record, with the appropriate value of z in the rivid designated as C2. The FORTRAN IV statement to read a TAB2 recora is

```
READ (LIB) MAT, MF, MT, Cl, C2, L1, L2, NR, NZ, (NBT(N),
```

$\operatorname{INT}(\mathrm{N}), \mathrm{N}=1, \mathrm{NR})$
where $N Z$ in the number of values of z. For convenience, a TAB2 record is denoted by
[MAT, MF, MT/C1, C2; L1, L2; NR, N2/Z ${ }_{\text {int }}$]TAB2
For example, a TAB2 record is used in specifying angular distribution data. NZ
in the TAB2 record specifies the number of incident neutron energies at which angular distributions are given. Each distribution is given in a TABl record, and there will be NZ such records.

0.5.3. Card-Image (BCD) Formats

An alternative format is used when data are contained on punched cards or BCD card-image tapes. Basically the data zre stored in the same order for this format as in the binary tape format. The maior difference is the position of the three numbers MAT, MF, and MT. Also a card sequence number has been added to the card-image format. In general, more than one BCD card-image record will be required to contain the data in a binary record.

A standard 80-column card is divided into the following ten fields:

Field	Columns	Description
1	$1-11$	Datum
2	$12-22$	$"$
3	$23-33$	$"$
4	$34-44$	$"$
5	$45-55$	$"$
6	$56-66$	$"$
7	$67-70$	MAT
8	$71-72$	MF
9	$73-75$	MT
10	$76-80$	Sequence number, starting
		with 1 for the first
		card of a material

Consider a TABl binary record that was denoted by
$\left[M A T, M F, M T / C 1, C 2 ; L 1, L 2 ; N R, N P / x_{i n t} / Y(x)\right] T A B 1$
This record would be punched on cards in the following way:

Field

1	2	3	4	5	6	7	8	9
C1	C 2	11	L2	NR.	NP	MAT	MF	MT
NBT (1)	INT (1)	NBT (2)	INT (2)	NBT (3)	INT (3)	MAT	MF	MT
NBT (4)	INT (4)	NET (5)	INT(5)	------	------	MAT	MF	MT
-------	------	------	------	NET (NR)	INT (NR)	MAT	MF	MT
X(1)	Y (1)	$\mathrm{X}(2)$	$Y(2)$	X (3)	Y (3)	MAT	MF	MT
$\mathrm{X}(4)$	$Y(4)$	$x(5)$	$Y(5)$	--------	--------	MAT	MF	MT
..-----	------	------	------	X (NP)	$Y(N P)$	IMAT	MF	MT

The FORTRAN IV statements to read a TABl record from input tape INP would be READ(INP, 10)C1, C2, L1, L2, NR, NP, MAT, MF, MT, (NBT(N), INT(N), $\mathrm{N}=1$, NR)

10 FGRMAT (2E11.4, 4:11, 14, I2, I3;(6I11))
READ (INP, 20) (X(N), Y(N), N=1, NP)

20 FgRMAT (6Ell.4)
A TAB2 record is the same as the TABl record, except that the list of x and y values is omitted. The HEAD record consists of one card punched in fields I-9. The SEND, FEND, MFND, TEND, and TPID recosds each consist of one card punched in Fields 7-9 oniy. Note that a completely blank card (NEND record) signals the end of a material.

The LIST record denot od by
IMAT, MF, MT/ Cl, C2: L1, L2: N1, N2/ BnJLIST
is punched in the following way:

Field

1	2	3	4	5	6	7	8	9
C1	C 2	L1	L2	N1	N2	MAT	MF	MT
B(1)	$B(2)$	$B(3)$	B (4)	$B(5)$	$B(6)$	MAT	MF	MT
$B(7)$	B(8)	$B(9)$				MAT	MF	MT
--	----	----	--	--	----	MAT	MF	MT

The FORTRAN IV statements to read a LIST record from input tape INP would be READ (INP, 30) C1, C2, L1, L2, N1, N2, MAT, MF, MT, (B(N), $\mathrm{N}=1, \mathrm{~N} 1$)

30 FøRMAT (2Ell.4, 4I11, I4, 12, 13/6E11.4))
An exception occurs when the LIST record contains Hollerith information (see File 1):
[MAT, MF, MT/ Cl, C2; L1, L2: NWD, N2; HnlLIST
In this case the FOETRAN IV READ statements depend on the type of computer being used, but the cards should he machine independent. Define NWD as the number of cards containing Hollerith information punched in Cols. l-65. The READ statements would be

READ (INP, 40), C1, C2, L1, L2, NWD, N2, MAT, MF, MT
40 FØRMAT (2E11.4, 4111, I4, I2, I3)
$N H=17{ }^{*}$ NWD

READ (INP, 50) ($\mathrm{H}(\mathrm{N}), \mathrm{N}=1, \mathrm{NH}$)
$50 \mathrm{~F} 日 \mathrm{RMAT}$ (LEA4, A2)
BCD card-image formats are given in Appendix N. Figu-e 0.5.3-1 illustrates how the four basic record types are punched. Fields l-6 refer to the card Cols. 1-66 with 11 columns per field. Fields $7-10$ (MAT, MF, MT, and sequence .imbers) must also be punched but are omitted for convenience.

When arrays of numbers are punched, the first element of the array is in Fiold l ffor example, $x(1)]$. The last element may fall in any ficld, depending on how many values are in the array. Thus, the fact that $X(N P)$ is shown in Field 6 shouid not be taken literally.

 i
Illustration of standard record types

Field 1	Fieid 2	Field	Field
Cl	C2	Ll	L2
ZA	AWR	Ll	L2
Cl	c 2	L1	L2
NBT (1)	INT (1)	NBT (2)	INT (2)
NBT (4)	INT (4)	---	---
X(1)	Y (I)	X(2)	$Y(2)$
X (4)	Y (4)	---	---
Cl	c2	Ll	L2
NBT (1)	INT (1)	NBT (2)	INT (2)
NBT (4)	II:T (4)	---	---
Cl	c2	L1	L2
$B(1)$	B(2)	B(3)	$B(4)$
B(7)	B(8)	---	---

Fig. 0.5.3-1 - A BCD Card-Image Record

1. FILE 1, GENERHL INFORMATION

File l is thr. first part of any set of evaluated cross section data for a material. Each matexial must have a File 1 , which consists of one or more sections that contain neutron cross section infornation and other related nuclear data. File 1 provides a brief documentation of how the data were evaluated and a dictionary that summarizes the data files and cross section types given in Files $2,3,4,5$, etc. File 1 may also contain such basic nuclear data as the number of neutrons per fission (for fissile materials), the radioactive decay chains for the material and the decay chains for the residual nuclei produced by neutron reactions with the material, fission product yield data (for fissile materials), and delayed neutron data (for fissile materials).

File 1 consists of at least one section and may contain as many as seven sections for fissile materials. Each section has been assigned an MT number (see below), and the sections are arranged in increasing MT numbers. Each section always starts with a HEAD record and ends with a SEND record. The end of File 1 (and all other files) is indicated by a FEND record. These record types are defined in detail in section 0.5.2. The structure of a typical head record is
[MAT, MF, MT/ ZA, AWR, IL, L2, N1, N2]HEAD
where $Z A$ is the (Z, A) designation for a material (see Appendix C,
AWR is the ratio of tise mass of the atom (or molecule) to that of the neutron,

Ll is an integer to be used as a flag or a test,

L2 is an integer to be used as a flag or a test,

N1 is an integer to be used as a count of items in a list to follow except for MT 451, and

N2 is an integer to be used as a count of items in a second list to follow.

The symbolism used above to represcilt the HEAD record and to be used in the following format descriptions should be understood to mean that only data contents of each record are specified in the binary format. BCD card-image formats for $F i l e s l$ to 7 are given in Appendix N.

1.1 Descriptive Data and Dictionary $(M T=451)$

This section is always the first section of any material, and has two main parts: (1) a brief documentation of the cross section data, and (2) a dictionary.

In the first part, a brief description of the evaluated data sets is given. This information should include the significant experimental results used to obtain the evaluated data as well as other important features about the evaluated data set. The descriptive information is given as a series of Hollerith characters. The information is contained in an array $H(N), N=1$, 2, ... NWD. Each element of the array, $H(N)$, contains 66 Hollerith characters. On cards the information is punched in cols. 1-66, and NWD such cards are prepared.

The first two cards of the Hollerith information should contain titling information for the material. This information is used to provide titles for listings and plots and, while part of the Hollerith, has been organized and formatted. The following quantities are defined within the Hollerith and organized as shown in section l.1.l.
(First BCD Card Image Record)

ZSYMA is a Hollerith representation of the material z-chemical symbol A with

2 right justified in col. 1 to 3

- hypher: in col. 4
$A L A B$ author(s) of evaluation (1eft adjusted) cols. 34-66

HEF reference 2-22

DDATE original distribution date fleft adjustec DIST- foㅇloved by month-year as in EDATE

RDATE date and number of last revision REVI- followed by month-year as in EDRTE

The Following quantities are defined.
LPP is a flag that indicates that resolved andior, inresolved resonance parameters are given in File 2.

LRF $=0$, no resonance parameter data given;
$\mathrm{LRP}=\mathrm{I}$, resolved and or unresolved resonance farameter data given iri File 2.

LFI is a flag that indicates whether this material is fissionable:
LFI $=0$, this is not a fissionable material;
$\mathrm{LFI}=1$, this material is fissionable.
NXC is an integer count of all the sections to be found in the dictionary. Each section of this naterial is represented by a single card image that contains MF, NT, (reaction number), and NC (a count of
the rumber of cards in the saction). NXC is the total number of sections for the complete material; i.e.. it is equal to the sum of all the sections in the different filos.
is a flas to indicate whether induced reaction decay data are given
for this material:
$I D D=0$, radioactive decay data not given for this material;
$L D D=1$, radioactive decay drta given.
IFP is a flag that indicates whether fission product yield data are given
for this material:
LFF $=0$, fission product yields not given;
LFP $=1$, fission product yields are given.
is the count of the number of elements in the Hollerith section.
For BCD card image tanes, NWD is the number of card images used to.
describe the data set for this material (NWD -294). For hinary
tapes, NW is the number of words containing the Hollorit. :nfor-
mation, and it is understood that 17 words are required for each
card image (66 characters) and the format is (16A4, A2). (NWD ≤ 5000.)
$H(N)$ is the array containing the follerith information that describes
the particular evaluated data set. تror a BCD card-image tape,
each element of the array is contained on one card image.
$M_{n}, M n_{n}$, and $N C_{n}$ are included in each of the NXC items in the dictionary. $M F_{n}$ is the $M F$ of the $n^{\text {th }}$ section.
MT n is the MT of the $n^{\text {th }}$ section.
$\overline{N C_{n}}$ is the number of $B C D$ card images in a giverı section (the $n^{\text {th }}$ section). This card count does not include the SEND card. (Note that NC $=$ NKC + NWD +2.)
1.1.1. Formats

Thisi section aiways begins with a HEAD record and \cdot nds with a SEIJ record. Its structure 1 s
[MAT, 2, 451 $7 \mathrm{MA}, \mathrm{AMR}$, LPP, LFI, J, NXC]HEAD

I:AT, 1. 451/0.0, 0.2, LDD, LFF, NWL, 0, ZSYIMA, ALAE, EUATE, AUT'H $\because=3$
characters), REF (22 ctaracters), DDATE, RDATE, b, b,H(N)]LIST*
$\left(\mathrm{MAT}, 1,4510.0,0.0, \mathrm{MF}_{1}, \quad \mathrm{MT}, \quad N C_{1}, 0\right) C \operatorname{CiNT}$
[NAT, 1, 451 0.0, 0.0, $\mathrm{MF}_{2}, \quad \mathrm{MT}_{2}, \quad \mathrm{NC}_{2}, 0$) CXINT

[$\left.\mathrm{AAT}, \mathrm{i}, 45 \mathrm{i} / 0.0,0.0, \mathrm{MF}_{\mathrm{NXC}}, \mathrm{MT}_{\mathrm{NXC}}, \mathrm{NC}_{\mathrm{NXC}}, 0\right] \mathrm{CONT}$
[NAT, 1, 0,0.0, 0.0, 0 , 0 , 0 , 0)SEMD
*Note: ZSYMA to AUNH are part $O \because H(N)$

1.1.2. Procedures

The flag LFP indicates whether resolved and'or unresolved resonance pazaneter data are to be found in File 2 (Resonance Parameters). Every material will ?ave will have a file 2 unless only file 1 is present, but not every file 2 will sontain resonance parameter data. File 2 for certain materials will contain a scattering length (see sections 2.1. and 3.2.2.). For cases in which File 2 contains information on the scattering lengsh only, LRP will be set at zero.

The flag LFI = l indicates that this material is issionable. In inns case, a section specifying the total number of neutrons per fission, $V(F)$, must be given, i.e., $M T=452$. Sections may also be given that specify fission rroduct jields ($M T=454$), the number of delaved neutrons per fission $: 3 T=455$), and the number of prompt neutrons per fission (MT = 456).

The flag LDD indicates whether induced reaction is given in $M T=453$. Certain materials represent natural elements that contain more than one isotope or they represent molecules. for chese sases radioactive nuclide production data may be ambiguous and are not allowed.

The descriptive data in the Hollerith section must be given for every material. The first card image should be a self-contained title for the material. (This title should contain a material identification, name of the person and laboratory preparing the evaluətion, and a date). The remaining card images should give a verbal description of the evaluated data sets for the material. This should include mention of the important experimental results upon which the recommended cross sections were based, the evaluation procedures, brief history and origin of evaluatior, resonance integrals and thermal values, and references. Also, any limitations on the use of the particular data set should be clearly pointed out, along with other remarks that will assist the user in understanding the data. The $2200-\mathrm{m} / \mathrm{sec}$ cross sections contained in the data set should be given. This information is not always easy to find, since there may be contributions from resolved resonance parameters. The infinite dilution resonance integrals should be given for the radiative capture cross sections and the fission \rightarrow ross section (if applicable).

If the material is an element containing more than one naturally occurring isotope, the basis for establishing the reaction Q-values (given in File 3) should be explained.

```
1.2. Number of Neutrons per Fission, (MT = 452)
    If the material is fissionable (LFI = l), then a section specifying tine
average total number of neutrons per fission, }\overline{v}(MT=452) must be given. \overline{v
```

is given as a function of incident neutron energy. The energy dependence of \bar{v} may be found by tabulating \bar{v} as a function of incident neutron energy or by providing the coefficients for a polynomial expansion of $\bar{v}(E)$,

$$
\bar{v}(E)=\sum_{n=1}^{N C} c_{n} E^{(n-1)},
$$

where $\bar{\nu}(E)$ is the average total (prompt plus delayed) number of neutrons per fission produced by neutrons of incident energy $E(e V), C_{n}$ is the $n^{\text {th }}$ coefficient, and $N C$ is the number of terms in the polynomial.

1.2.1. Formats

The structure of this section depends on whether values of $\bar{v}(E)$ are tabulated as a function of incident neutron energy or whether \bar{v} is represented by a polynomial. The following quantities ake defined:

LNU is a test that indicates what representation of $\bar{v}(E)$ has been used: LNU $=1$, polynomial representation has been used; LNU $=2$, tabulated representation.

NC is a count of the number of terms used in the polynomial expansion. ($\mathrm{NC} \leq 4$)
C_{n} are the coefficients of the polynomial. There are NC coefficients given.

NR is the number of interpolation ranges used to tabulate values of $\bar{v}(E)$. (See Appendix E.)

NP is the total number of energy points used to tabulate $\bar{v}(E)$.
$\mathrm{E}_{\text {int }}$ is the interpolation scheme (see Appendix E for details.)

If $L N U=1$, the structure of the section is [MAT, 1, 452/ ZA, AWR, O, LNU, 0, O\}HEAD LNU =1 [MAT, 1, 452/ 0.0, 0.0, 0, $0, N C, 0 / C_{1}, C_{2}, \ldots C_{N C}$]LIST [MAT, 1, $0 / 0.0,0.0,0,0,0,0] S E N D$

If LNU $=2$, the structure of the section iss
[MAT, 1, 452/ ZA, AWR, 0, LNU, 0, 0]HEAD LNU $=2$
$\left[M A T, 1,452 / 0.0,0.0,0,0, N R, N P / E_{\text {int }} / \bar{v}(E)\right] T A B=$
[MAT, $1,0 / 0.0,0.0,0,0,0,0] S E N D$

1.2.2. Procedures

If a polynomial representation (LNU $=1$) has been used to specify $\bar{v}(E)$, this representation is valid over any range in which the fission cross section is specified (as given in Files 2 and 3). When using a polynomial to fit $\bar{v}(E)$, the fit shall be limited to a third-degree polyne.ial ($N C=4$). If such a fit does not reproduce the recommend values of $\bar{v}(E)$, a tabulated form ($L N U=2$) should be used.

If tabulated values of \vec{v} are specified ($L N U=2$), then pairs of energy\bar{v} values are given. Values of $\bar{v}(E)$ should be given that cover any energy range in which the fission cross section is given in File 2 and/or File 3.

The values of $\bar{v}(E)$ given in this section are for the average total number of neutrons produced per fission event. Even though another section ($M T=455$) that specifies the delayed neutron from fission may be given, $\bar{\nu}_{d}$, the average number of delayed neutrons per fission must be included in the values of $\bar{v}(E)$ given in this section ($M T=452$).

1.3. Radioactive Nuclide Eroduction $(M T=453)$

When an evaluation represents the nucleav data for a single nuclide, then a section (MT = 453) may be given which specifies various radioactive product nuclides produced by neutron interactions. This section is given if LDD $=1$ in $M T=451$ (see section 1.1.1. of this report).

Data for the spontaneous decay of the ground state (and/or any excited state) of the original nuclide are given in $M T=457$ (see section l.7.l.).

Data are given in $M T=453$ to specify the radioactive products resulting from various neutron reaction mechanisms. These data are given for neutron reactions on the grounci state and/or any excited state of the original nuclides. One or more excited states of the reaction product nuclide may be given. The following quantities are defined:
$Z A$ is the designation of the original nuclide $(Z A=(1000.0 * Z)+A)$

NS is the integer number of states of the original nuclide for which reaction product data are given. (NS ≤ 5.$) *$

LIS designates the state of the original nuclide, $2 A$. (LIS $=0$ means the ground state, LIS = 1 means the first excited state, etc.)*

LFS designates the state of the producr nuclide. (LFS $=0$ means the ground state, LFS $=1$ means the first excited state.)

NPR is the number of product nuclides and/or product nuclide states for which data are given for one state of the original nuclide (the sum of all product nuclide states formed by neutron interactions).

[^2]RTYP is the designation of the reaction type leading to the described product nuclide state and is a floating-point equivalent of MT numbers (see Appendix B).

ZAP is the $(2, A)$ designation of the product suclide $(Z A P=(1000.0 * Z)+A)$.
$D C$ is the decay constant (sec^{-1}) for the decay of a particular state of the product nuclide (ZAP).

Q is the reaction Q-value (ev). $Q=$ (rest mass of initial state - rest. mass of final state.)
$\mathrm{FS}(\mathrm{N})$ is the energy of the Nth incident energy (eV) at which branching ratios are given.
$B R(N)$ is the branching ratio at the Nth energy point giving the fraction of the original nuclide in a specified state that results in a specified product nuclide state for a specified reaction. At any particular energy point the sum of all branching ratios for a specified RTYP must be 1.0 .

NE is the number of energy points at which branching ratios are given for a specified initial state.

1.3.1. Formats

The structure for this section always starts with a HEAD record and ends with a SEND record. The section is divided into subsections, each containing the data for a particular reaction (MT number). The subsections are ordered according to IIS; i.e., the data for the ground state (LIS $=0$) of the original nuclide is given first.

Each subsection contains twc or morn LIST records; i.e., there will be (NPR + 1) LIST records. After the first LIST record (which specified NPR) the

LIST records are first ordered by increasing values of RTYp. If there are more than two LIST records for the same STYP, then the LIST records are first ordered by increasirg values of anf (ZA designation of the procuct nuclide) and then by increasing values of LFs (product nuclide state designation).

The structure of a section is
[MAT, 1, 453/ZA, AWR; 0, 0; NS, O]HFAD
< subsection for LIS $=0$ (ground state) $>$

* subsection for LIS $=1$ (first excited state) *
$<$ subsection for LIS $=$ NS - 1 ;
[MAT, 1, 0/0.0, 0.0: 0, 0: 0, 0]SFND
There will be NS subsections.

The structure of a subscection is
[MAT, 1, 453.'ZA, AWP; LIS, O; NE, NPR'

(MAT, 1, 453/0.0. Q; LES, 0, NE + 3, 0/
RTYF, ZAP; $D C, \operatorname{BR}(1), B F(2), \operatorname{BR}(3) /$

BR(4), -----------------BR(NE)]LIST

NPR such LIST records (of the second type).
Note that the first LIST record contaius the set of energy points to describe the branching ratios of all final states from the particular initial state. Although this may lead to some superfluous zeros in the branching ratio lists, it will ensure proper normalization. Linear-linear interpolation is implicit for branching ratios between the given energy points.

1.3.2. Procedures

1. Data should be given in $M T=453$ for all isotopes for which radioactive products are produced in neutron interactions. Data should not be given for mixtures of elements, molecules, or elements that have more than one naturally occurring isotope.
2. All spontaneous decay modes of the ground state and important isomeric states should be described in section $M T=457$. When branching ratios for the formation of particular final states are given as a function of incident neutron energy the information should be consistent with that in file 3. For example, the (n, a) reaction on ${ }^{1 C_{B}}$ thet are given as energy-dependent branching ratios in File 1 should be consistent with the cross section information in file 3 for MT $=107,780$, and 781.
3. When data are given to specify the radioactive nuclides formed by neutron reactions (RIYF must be >0.0), they should not be given for reactions like the total cross sections (RTYP $=1.0$) or the fission cross sections (RTYP $=$ 18.0). Branching ratio data refer to a paricular reaction type (RTYP). Therefore the sum of the branching ratios (at a particular energy point) is unity only for a specified RTYP.
4. There will be a natural overlap of the same data (dersy of a particular nuclidel being given in two or more different materials. It is important that the data given in various materials be consistent.

1.4. Fission Product Yield Data $(M T=454)$

This section ($M T=454$) specifies the incident neutron energy-dependent fission product yield data and may be given if $L F P=1$ in the first section (MT $=451$). A complece set of fission product yield data is given for a par-
ticular incident noutron energy. Data sets should be giver at sufficient inCident entrgits to completely specify yield data for the energy rarge given for the fission cross section (as determined from files 2 and/or 3). The data are Given by specifying fission product identifiers and fission product yields. Fractional yields are given, and the sum of all fractional yields for any parti jular incident neutron energy will be r. 2.0 .

The fission products are specified by giving an excited state designation (FPS) and a (charge, mass) identifier (ZAFP). Thus, fission product nuclides are given, not mass chains. More than one (Z, A) may be used to represent the yiclds for a particular mass chain.

The following quantities are defined

NFP is the number of fission product nuclide states to be specified at each incident energy point (this is actually the number of sets of fission product identifiers - fission product yields). (NFP ≤ 1666.)

ZAFP is the (Z, A) identifier for a particular fission product. (ZAFP $=$ $(1000.0 * 2)+A)$.

FPS is the state designator (floating-point number) for the fission prodLuct nuclide (FPS $=0.0$ means the ground state, $F P S=1.0$ means the first excited state, etc.).

YD is the fractional yield for a particular fission product.
$C_{n}\left(E_{i}\right)$ is the array of yield data for the $i^{\text {th }}$ energy point. This array contains NFP sets of three parameters in the order ZAFP, FPS, YLD.
$N 1$ is equal to $3 * N F P$, the number of items in the $C_{n}\left(E_{i}\right)$ array.
E_{i} is the incident neutron energy of the $i^{\text {th }}$ point (ev).
LE is a test to determine whether energy-dependent fission product yields are given:

LE $=0$ implies no energy-dependence (only one set of fission product Yield data given);
$L E>0$ means that (LE +1) sets of fission product yield data are given at (LE +1) incident neutron energies.
I_{i} is the interpolation scheme (see Appendix E) to be used between the E_{i-1} and E_{i} energy points.

1.4.1. Formats

The structure of a section always starts with a HEAD record and ends with a SEND record. Sets of iission product yield data are given for one or more incident neutron energies. The sets are ordered by increasing neutron energy. For a particular neutron energy the data are presented by giving three parameters (FPS, ZAFP, YLD) for each fission product state. The data are first ordered by increasing values of ZAPF. If more than one yield is given for the same ($2, A$), the data are ordered by increasing value of the state designator (FPS).

The structure for a section is
[MAT, $1,454 / Z A$, AWR, $L E+1,0,0,0]$ HEAD
[MAT, 1, 454/E $\left.\mathrm{E}_{1}, 0.0, \mathrm{LE}, 0, \mathrm{Nl}, \mathrm{NFP} / \mathrm{C}_{\mathrm{n}}\left(\mathrm{E}_{1}\right)\right] \mathrm{LIST}$
[MAT, $\left.1,454 / E_{2}, 0.0, I_{2}, 0, N 1, N F P / C_{n}\left(E_{2}\right)\right] L I S T$
$\left[\mathrm{MAT}, 1,454 / \mathrm{E}_{3}, 0.0, \mathrm{I}_{3}, 0, \mathrm{~N} 1, \mathrm{NFP} / \mathrm{C}_{\mathrm{n}}\left(\mathrm{E}_{3}\right)\right]$ LIST

[MAT, 1, 0/0.0, 0.0, 0, 0, 0, 0]SEND
There are (LE + J.) LIST records.

1.4.2. Procedures

The data sets for fission product yields should be given over the same energy range as that in Files 2 and/or file 3 for the fission cross section. The yields are given as fractional values at each energy, and normally they will sum to ≈ 2.0.

This format provides for the yields (YLD) to each excited state (FPS) of the nuclide designated by $2 A F P$, and hence accomodates the many metastable fission products having direct fission yields. Data may be given for one or more fission product nuclide states to represent the yield for a particular mass chain. If yiold data are given for more than one nuclide, the yield for the lowest z (charge) nuclide state for a particular mass chain should be a cumulative fractional yield, and all other yields for this same chain should be direct fracticnal yields.

Yields for the same fission product nuciides should be given at each energy point. This will faciliate interpolation of yield data between incident energy points. Also, a linear-linear interpolation scheme should be used.

1.5. Delayed Neutron Data (MT $=455$)

This section describes the deleyed neutrons resulting from fission events. The average total number of delayed neutron precursors emitted per fission, \bar{v}_{d} is given, along with the decay constants, A_{i}, for each precursor family. The fraction of \bar{v}_{d} generated for each family is given in File 5 (section 5 . of this report). The energy distributions of the secondary neutrons associated with each precursor family are also given in File 5.

The total number of delayed neutron precursors is given as a function of incident eutron energy. Two representations are provided to specify the eneryy
dependence. They are the same as those used in this file, ($\mathrm{MT}=452$), to describe the average total number of neutrons produced per fission event (see section 1.2.). The inciaent energy dependence may be specified by tabulating $\bar{v}_{d}(E)$ at a series of incident neutron energies or by rroviding the coefficients of a polynomial expansion in energy.

The total number of delayed neutron precursors emitted per fission event, at incident energy E, is given in this file and is defined as the sum of the number of precursors emitted for each of the precursor families,

$$
\bar{v}_{d}(E)=\sum_{i=1}^{N N F} \bar{v}_{i}(E)
$$

where NNF is the number of precursor families. The fraction of the total, $\mathrm{P}_{\mathrm{i}}(\mathrm{E})$. emitted for each family is given in File 5 (see section 5) and is defined as

$$
P_{i}(E)=\frac{\bar{v}_{i}(E)}{\bar{v}_{d}(E)}
$$

1.5.1. Formats

The structure of a section depends on whether $\bar{v}_{d}(E)$ is tabulited as \therefore function of incident energy or given as coefficients of a poivnomial expansion in energy. If a polynomial is used, $\vec{v}_{d}(E)$ is defined as

$$
\bar{v}_{\mathrm{d}}(E)=\sum_{m=1}^{N C D} \mathrm{CD}_{\mathrm{m}} E^{(m-1)}
$$

The following quantities are defined:
is a test that indicates which representation is used: LND $=1$ means that a polynomial expansion is used; LND $=2$ means that a tabulated representation is used.

NCD is the number of terms in the polynomial expansion. (NCD ≤ 4) $C D_{m}$ are the coefficients for the polynomial.
$N R$ is the number of interpolation ranges used. (NR ≤ 200)
$N P$ is the total number of incident energy points used to represent $\bar{v}_{d}(E)$ when a tabulation is used. is the interpolation scheme (see Appendix E). $\bar{v}_{d}(E)$ is the total average number of delayed neutron precursors formed per fission event.

NN: is the number of precursor families considered.
1 i is the decay constant (sec^{-1}) for the $i^{\text {th }}$ precursor. The structure of a section when a polynomial representation has been useri (INH) $=1$) is
[MAT, 1, 455: ZA, AWR, O, LND, 0, 0]HEAD LND $=1$
[MAT, 1, 45:/0.0, 0.0, 0, 0, NNF, 0/ $\lambda_{1}, \lambda_{2}, \ldots \lambda_{\text {NNF }}$]IIST
[MAT, 1, 455:0.0, 0.0, 0, 0, NCD, O/CD $, ~ C D_{2}, \ldots C D_{N C D}$]LIST
[MAT, 1, 0;0.0, 0.0, 0, 0, 0, O]SEND
The structure values of \bar{v}_{c} are tabulated (LND $=2$) is
$[M A T, 1,4 j 5,2 A$, AWR, $0, L N D, 0,0] H E A D \quad$ LND $=2$
[MAT, 1, 455: 0.0, 0.0, 0, 0, NNF, $\left.0 / \lambda_{1}, \lambda_{2} \ldots \lambda_{\text {NNF }}\right]$ LIST
$\left[M A T, 1,45 ; 0.0,0.0,0,0, \quad N R, N P / E_{i n t} / \bar{\nu}_{d}(E)\right] T A B 1$
[MAT, 1, $0,0.0,0.0,0,0,0$ O]SENL

1.5.2. Procedures

When the polynomial representation is used, the calculated values of $\bar{v}_{d}(\Sigma)$ may be used over any range in which the fission cxoss section has been given in

Files 2 andior 3 . When tabulated values of $\vec{v}_{d}(E)$ are specified, they should be given for the same energy range as that used to specify the fission cross section.

The probability of producing the precursors for each family and the energy distributions of neutrons produced by each precursor famjly are given in file 5 (section 5 of this report). It is extremely important that the same precursor families be given in File 5 as are given in File 1 (MT $=455$), and the ordering of the families should be the same in both files. It is recomended that the families be ordered by decreasing half-lives ($\lambda_{1}<\lambda_{2}<\ldots<\lambda_{\mathrm{NNF}}$).
1.6. Number of Prompt Neutrons per Fission, $\bar{\nu}_{p},(M T=456)$

If the material is fissionable ($L F I=1$), a section specifying the average number of prompt neutrons per fission, $\bar{v}_{\mathrm{p}},(M T=456)$ can be given using formats identical to $M T=452 . \bar{v}_{p}$ is given as a function of incident neutron energy. The energy dependence of \bar{v}_{p} may be given by tabulating \bar{v}_{p} as a function of incident neutron energy or by providing the coefficients for a polynomial expansion of $\bar{v}_{p}(E)$.

$$
\bar{v}_{p}(E)=\sum_{n=1}^{N C P} C P_{n} E^{(n-1)}
$$

where $\bar{v}_{p}(E)$ is the average number of prompt neutrons per fission produced by neutrons of incident energy $E(e V), C P_{n}$ is the $n^{\text {th }}$ roefficient, and NCP is the number of terms in the polynomial.

1.6.1. Formats

The structure of this section depends on whether values of $\bar{v}(E)$ are tabulated as a function of incident neutron energy or whether \bar{v} is represented by a polynomial. The following quantities are defined:

LNP is a test that indicates what represertation of $\bar{v}(E)$ has been used; LNP $=$ i. priynomial representation has been used; LNP $=2$, tabulated representation.

NCP is a count of the number of terms used in the polynomial expansion. $(N C P \leq 4)$
CP_{n} are the coefficients of the polynomial. Ther are NC coefficients given.

NR is the number of interpolation ranges used to tabulate values of $\bar{y}_{p}(E)$. (See Appendix E.)
NF is the total number of energy points used to tabulate $\bar{V}(\bar{E})$.

Eint is the interpolation scheme (see Appendix E .)
If LNP $=1$ (polynomial representation ustid), the structure of the section 15

```
[MAT, 1, 456/ZA, ANR, O, LNP, O, O]HEAD LNP = 1
```

[NAT, 1, 456.0.0, 0.0, 0, 0, NCP, OCP1, CP $2, \ldots C_{\text {NCF }}$]LIST
[MAT, $1,000,0.0,0.0,0,0]$ EEND
If INF $=2$ (tabulated values of \bar{v}), the structure of the section is
[MAT, 1, 45E,ZA, AKR, 0, LNP, 0, 0]HEAD LNP $=2$

[MAT: 1, 0.0.0, 0.0, 0, 0, 0, 0]SELDD

1.6.2. Procedures

If a polynomial representation (LNP $=1$) has been used to specify $\bar{v}_{p}(E)$, this representation is valid over any range in which the fission cross section is specified (as given in files 2 and 3). When using a polynomial to fit $\bar{v}_{\mathrm{p}}(E)$, the fit shall be limited to a third-degree polynomial (NCP $=4$). If such a fit
does not reproduce the recommended values of $\bar{u}_{p}(E)$, a tabulated form (LNP $=2$) should be used.

If tabulated values of $\bar{\nu}_{p}(E)$ are specified (LNP $=2$), then pairs of energy\bar{v} values are given. values of $\overline{u_{p}}(E)$ should be given that cover any energy range in which the fission cross section is given in File 2 and/or File 3.

The values of $\bar{v}_{p}(E)$ given in thi section are for the average number of prompt neutrons produced per fission event. Even though another section (MT $=$ 455) that specifies the cielayed neutron from fission may be given \bar{v}_{d}, the number of delayed neutrons per fission, and \bar{v}_{p}, the number of promipt neutrons per fission, must be included in the values of $\bar{v}(E)$ given in the section ($M T=452$); i.e., $\bar{v}(M T=452)=\bar{v}_{d}(M T=455)+\bar{v}_{p}(\mathrm{IHT}=456)$.

1.7. Radioactive Decay Data $(M T=457)$

The spontaneous radioactive decay data are given in section 457.* This section is given for materials that are single nuclides in their ground state or
 sec.) The main purpose of $M T=457$ is to describe absolutely the energy spectra resulting from radioactive decay and give average parameters useful for applications such as decay heat studies. The information in this section can be divided into three parts: i. General infcimation about the materiai

g: $\quad=$	Designation of the original (radioactive) nuclide $(=1000 \% \mathrm{~g}+\mathrm{A})$
$\underline{\text { LIS }}=$	Isomeric state flag for original nuclide (LIS $=0$, ground
	state; LIS $=1$, first isomeric state; etc.).

[^3]$T_{1 / 2}=$ Half-life of the original nuclide (seconds).
$\Delta T_{1 / 2}=$ Uncertainty in the half-life (should be considered as one standard deviation).

NAV $=$ Total number of decay modes for which average energies are given.
$\bar{E}_{\mathbf{x}}, \Delta \bar{E}_{\mathbf{x}}=$ Average decay energy (ev) of radiation of type \mathbf{x} and its uncertainiy (ev) for decay heat applications. The β, r and α energies are given in that order, with space reserved for zero β or γ entries. All non- γ and non- α energies are presently included as B energy. The α energy includes the recoil nucleus energy.
II. Decay mode information for each mode of decay:

NDK = total number of decay modes given.
RTYP = Indicates the mode of decay.

Drcay modes defined

0.0	γ	Gamma decay (not used for mode of decay)
1.0	β^{-}	Beta decay
2.0	β^{+}	Positron and/or electron capture decay
3.0	IT	Isomeric transition (in general, present only when tine state being considered is an isomeric state)
4.0	α	Alpha decay
5.0	β^{-}, n	Neutron emission (generally given for delayed neutrons)
6.0	SF	Spontaneous fission

$=$ Isomeric state flag for daughter nuclide. (Fixed point numbirr.)
Q \quad Total decay energy (eV) available in the corresponding decay process. (This is not necessarily the same as the maximum energy of the emitted radiaiion. In the case of an isomeric transition Q will be the difference in energy between the initial state and the isomeric state. For both β^{+}and β^{-}, Q equals the energy corresponding tc the mass difference between the initial and final atoms


```
\DeltaQ = Uncertainty in Q value (ev).
BR = Fraction of the decay which proceeds by the corresponding decay
    mode. (e.g., if only \mp@subsup{B}{}{-}}\mathrm{ occurs and no isomeric states in the
    daughter nucleus are (:xcited, then }BR=1.0\mathrm{ for }\mp@subsup{B}{}{-}\mathrm{ decay.)
    \triangleBR = Uncertainty in BR (should be given as one standard deviation)
III. Resulting radiation spectra
STYP = Decay type (Use mode of decay variable list;.
NSP = Total number of spectra. (NSP may be zero.)
E and }\DeltaE=\mathrm{ Energy (ev) or radiation produced ( }\mp@subsup{E}{\mp@subsup{B}{}{-}}{\prime},\mp@subsup{E}{\mp@subsup{B}{}{+}}{},\mp@subsup{E}{\mp@subsup{Y}{}{\prime}}{},\mathrm{ stc.).
I and \DeltaI = Intensity of radiation produced (relative units).
ICC and = Internal conversion coefficient.
    \triangleICC
F and \DeltaF = Normalization factor (absolute intensity/relative intensity).
NE = Total number of tabulated energies.
```


1.7.1. Formats

The structure of this section always starts with a HEAD record and ends with a SEND record. The section is divided into subsections as follows;

(MAT, 1/457)	2A	AWR	LIS	b	b	NSP	1	HEAD
[MAT, 1/457/	$\mathrm{T}_{1 / 2}$	$\Delta T_{1 / 2}$	b	b	2*NAV	NAV		
	$\stackrel{E}{E}^{\text {B }}$	$\Delta \bar{E}_{B}$	\bar{E}_{γ}	$\Delta \bar{E}_{\gamma}$	\bar{E}_{α}	$\wedge^{E_{O_{2}}}$	1	LIST

[MAT, 1/457]	2A	AWR	b	b	6*NDK	NDK	$/$
	RTYF $_{1}$	RFS_{1}	Q_{1}	AQ_{1}	BR_{1}	SBR_{1}	
	-						
	-						
	-						
	RTYP ${ }_{\text {ND }}$	$\mathrm{RFS}^{\text {NDK }}$	Q^{2}	$\triangle Q^{\text {ND }}$	$\mathrm{BR}_{\text {NDK }}$	$\therefore \mathrm{SR}$!

[MAT, 1, 457]	STYP	b	b	b	6*	NE/	Repeat ssP times	
	F	$\Delta \mathrm{F}$	b	b	b	b		if
	E	4E	I	ΔI	ICC	$\triangle I C C$	1	LIS
[MAT, 1, O/	b	b	b	b	b	b	1	SEN

1.i.2. Procedures

1. The initial state of the parent nucleus is designated by LIS, which equals 0 for the ground state and n for the $n^{\text {th }}$ isomeric state. only isomeric states are included in the count of LIS. (In other files isomeric and nonischeric states may be included in the count of levels.) Radioactive decay data need be given only for initial isomeric states with half-lives >0.1 sec.
2. The average energy \vec{E} and its uncertainty $\overline{\mathrm{E}}$ is presently given for three types of ra: ation although the format does not limit the number. The average decay ene:gy and its uncertainty for B, γ, and a radiation must be specified in that order, with space reserved for zero or unknown information. The average α energy also includes the recoil energy, but the a energy alone can be separated out by multiplying by the usual $M_{R^{\prime}}\left(M_{R}+M_{A}\right)$ factor, where M_{R} and M_{A} are the masses of the recoil nucleus and a particle, respectively. The s radiation includes the contribution from 8, positron, and conversion electron decay, and presently includes the average delayed neutron energy as well.
3. The symbol RTYP indicates the mode of decay as determined by the initial event. A nucleus undergoing 8 decay to an excited state of the daughter nucleus, which subsequently decays by γ emission, is in the B decay mode. In general, an $\operatorname{RTYP}=0$, indicating γ mode cf decay, will not be used, since decay initiated by γ emission is classified as an isomeric transition requiring RTYF $=3$. An isomeric state of the daughter nuclide resulting from the decay of parent nuclides is designated by RFS (floating point integer) following the procedures used for LIS. Q represente the total energy available in the decay process and is equal to the energy difference available between the initial and final states (both may be isomeric). The branching ratio $B R$ for each decay mode is given as a fraction, and the sum over all decay modes must equal unity.
4. The energy spectra should be specified, if known. Thr decay type STYP should be specified using the RTYP variable list. γ spectra are described using STYP $=0$. Relative intensities can be specified and normalized absolutely by multiplying by F. If absolute spectra are given, F must equal unity. The intensity I should be the total of the contributions from all decays lead-
ing to radiation within a particular decay type STYP having an energy $E \pm \Delta E$. The internal conversion coefficient should be the sum of all the partial conversion coefficients.
5. The specification of data uncertainties, an important quantity, is difficult to represent in a simple way. Although one standard deviation is desired, a number should be entered that at least indicates qualitatively how well the parameter is known.
6. One report detailing methods for specifying data in this section is ANCR-1157(1974), Radioactive-Nuclide Decay Data for ENDF/B, by C.W. Reich, R.G. Helmer, and M.H. Putnam.

$$
-2.1-
$$

2. FILE 2, RESONANCE PARAMETERS

2.1. General Description

File 2 contains data for both resolved and unresolved resonance parameters. It has only one section, which has been assigned the reaction type number $M T=151$. The total $(M T=1)$, elastic scattering ($M T=2$), fission $(M T=18)$, and radiative capture $(M T=102)$ cross sections given in File 3 must be added to corresponding contributions calculated from the resoived and/or unresolved parameters given in File 2 in order to obtain the correct reaction cross sections.

Every material will contain a File 2 even though no resolved andfor unresolved parameters are given. The purpose of a File 2 in such cases is to specify the effective scattering radius for the material. This scattering radius (to be used to obtain the potential scattering cross section) is required when resonance calculations are made for other materials and the presence of this material, i.e., the potential scattering rross sections, must be taken into consideration during analyses of the other materials.

The resonance parameter data for a material are obtained by specifying the parameters for each isotope in the material. The data for the various isotopes are ordered by increasing ZAI values (charge-isotopic mass number). The data for each isotope may be divided into several incident neutron energy ranges, and the data for the energy ranges are ordered by increasing energy. The energy ranges should not overlap; each will contain a different representation of the resonance parameters. Normally two energy ranges will be specified for each isctope. The first will contain resolved parameters, and the zecond, unresolved resonance parameters.

Several representations are allowed for specifying the resolved resonance parameters. The particular representation used for a particular energy range is indicated by a flag, LRF. The allowed representations for the resolved resonance parameters are

LRF $=1$, single-level Breit-Wigner parameters given;
LRF $=2$, multilevel Breit-Wigner parameters are given (level-level interference effects are considered for the elastic scattering cross section and the total cross section):

LRF = 3, R-matrix (Reich-Moore) multilevel resonance parameters are given;
$L R F=4$, Adler-Adler multilevel resonance parameters are given.
The data formats for each of the above representations are basically the same, except for LRF $=4$.

Each energy range contains a flag, LRU, that indicates whether the parameters in this energy range ase resolved or unresolved resonance parameters. LRU $=1$ means that the data are for resolved resonance parameters. LRU $=2$ means that the data are for unresolved resonance parameters.

Only one representation is allowed for the unresolved resonance parameters, e.g., average single-level Breit-Wigner resonance parameters. However, several options exist for specifying the unresolved parameters. With the first option, LRF $=1$, only the average fission width is allowed to be specified as a function of incident neutron energy. The second option, LRF $=2$, allows the following average parameters to be given as a function of incident neutron energy: level spacing, fission width, reduced neutron width, radiation width, and a width for an unspecified competitive reaction.

The data formats for the various resonance parameter representations are given in Sections 2.2.1 (resolved) and 2.3.1 (unresolved). The formulae for

Gilculating cross sections for the various resonance region theories are given in Appendix D.

Several quantities used in File 2 have definitions that are the same for all resonance parameter representations:

NIS is the number of 1 sotopes in this material (NIS < 10).
ZAI is the ($2, A$) designation for an isotope.
ABN is the abundance (weight fraction) of an isotope in this material.

LFW is a flag indicating whether average fission widths are given in the unresolved resonance region for this isotope: LFW $=0$, average fission widths are not given; LFW = l, average fission widths are given.

NER is the number of energy ranges given for this isotope (NER ≤ 2).
EL is the lower limit for an energy rance.*
EH is the upper limit for an energy range.*
LRU is a flag indicating whether this energy range contains data for resolved or unresolved resonance parameters:

LRU $=0$, means only effective scattering radius is given (LRF $=0$, NLS $=0$, IFW $=0$ required)

LRU $=1$, means resolved resonance parameters are given;
LRU $=2$, means unresolved resonance parameters are given.
LRF is a flag indicating which representation has been used for this energy range. The definition of LRF depends on the value of LRU for this energy range:

If $L R U=1$ (resolved parameters), then
I.RF = l, single-level B-W parameters

LRF $=2$, multilevel $B-W$ parameters
$L R F=3$, Reich-Munre parameters
$L R F=4$, Adler-Adler parameters

[^4]If LRU $=2$ (unresolved parameters), then
ZRF $=1$, only average fission widths are energy dependent; $\operatorname{LRF}=2$, average level spacing, competitive reaction widths, reduced neutron widths, radiation widths, and fission widths are energy dependent.

The general structure of a section is as follows:
[MAT, 2, 151/ ZA, ANR, 0, 0, NIS, 0]HEAD
[MAT, 2, 151/ ZAI, ABN, 0, LFW, NER, 0]CØNT (isotope)
[MAT, 2, 151/EL, EH, LRU, LRF, O, O]CすNT (range)
<Subsection for the first energy range for the first isotope (depends on LRU and LRF)>
[MAT, 2, 151/EL, EH, LRU, LRF, 0, O]CDNT (range)
<Subsection for the second energy range for the first isctope depends on LRU and LRF) >
[MAT, 2, 151/ EL, F:H, LRU, LRF, 0, 0]CØNT (range) <Subsection for the last energy range for the last isotope for this material>
[MAT, 2, $0 / 0.0,0.0,0,0,0,0]$ SEND
The data are given for all ranges for a given isotope, and then for all isotopes. The data for each range start with a CøNT (range) record; those for each isotope, with a CØNT (isotope) record. The specifications for the subsections are given in Sections 2.2.1 and 2.3.1, below.

The structure of File 2 for the special case, in which just the effective scattering radius is specified, is given below (no resolved or unresolved parameters are given for this material):

[MAT.	2	151	ZA,	AWR,	0	0.	NIS,	0)HERD	$N I S=1$	
[MAT.	2.	151	ZAI.	$A B N$,	0.	LFW,	NER,	$0] C \varnothing N T$	$L F W=0$	O, NER = 1
IMAT,	2	151/	EL,	EH,	LRU.	LRF,	0,	$0] \mathrm{CDNI}$	$251=0$	$0, L R F=0$
IMAT,	2	151'	SPI	AP,	0,	0 ,	NLS ,	0] C3NT	NLS $=0$	0
[MAT,	2	0 \%	0.0	0.0	0 ,	9	0.	01 SEND		
(MAT,	0	0%	0.0,	0.0,	0.	0 ,	0.	0) FEND		

2.2. Resolved Resonarse Parameters (LRU $=1$)

2.2.1. Formats

Four different resonance formulations are allowed to represent the resoived resonance parameters. The pertinent formulae associated with these representations are given in detail in Appendix D. The flag LRU $=1$, given in the CONT (range) record, irdicates that resolved resonance parameters are given for a particular energy range. Another flag, Lhe, in the same record specifies which resonance formulation has been used.

The structure of a subsection is the same for LRF $=1$ (single-level BreitWigner parameters) 3 s it is for LFF $=2$ (multi-level Breit-Wigner paiameters). The following quantities are defined for use when LRF $=1$ and 2 (see Appendix D fur formulae):

Resolved Resonance Parameters if LRF $=1$ (SLBW) and LRF $=2$ (MLBW)
SPI is the ruclear spin of the target nucleus, I (positive number).
AP is the spin-dependent effective scattering radius A_{+}(for spin-up) in units of $10^{-12} \mathrm{~cm}$. AP is also given for the case of spir independence. AP is defined in the relation $\sigma_{\text {pot }}=4 \Gamma(A P)^{2}$.
$A M$ is the spin-dependent effective scattering radius, A for spindownl. ($\underline{A M}=0.0$ for spin independence is eresently reyuired).

NLS is the number of i states in this enurgy region. A set of parameters is given for each l-state (neuis: anaular momentum quantum number). (NLS $=3.1$

1 is the value of the i-state (neutron angular momentum quantum number).
AWRI is the ratio of the mass of a particular isotope to that of a neatron.
NRS is the nunber of resolved resonences for a given i-state. (NRS ≤ 500.)
ER is the resonance energy (in the laboratory system).
$A J$ is the floating point value of J (the spin of the resonance).
GT is the resonance total width evaluated at the resonance energy ER.
GN is the neutron width $\ddot{\sigma}_{n}$ evaluated at the resonance energy ER.
GG is the radiatior. width " evaluated at the resonance energy ER.
GF is the fission width ${ }^{\prime}$ f evaluated at the resonance onergy $E R$.
The structure of a subsection containing : izta for (LRU $=1$ and LRF $=1$) or $(L R U=1$ and $L R F=2)$ is
[MAT, 2, 151/SPI, AP, 0, 0, NLS, 0]CØNT
[MAT, 2, 151/ AWRY, AM, L, 0, 6*NRS, NRS/

$$
\mathrm{ER}_{1}, \quad \mathrm{AJ}, G T_{1}, G N_{1}, G G_{1}, \quad G F_{1},
$$

$$
E R_{2}, \quad A J_{2}, G T_{2}, G N_{2}, G G_{2}, \quad G F_{2},
$$

The LIST record is repeated until eacin NLS \hat{i}-state has been specified (in order of increasing value of 2.). The values of $E R$ for each i-state shall be ordered by increasing neutron energy.

The structure for a subsection, when R-Matrix (Reich-Moore) multilevel parameters are given $\{L R F=3$): is similar to that given above. The major
difforence is that the total resonance widths are not giren and two fission widths are allowed for each resolved resonance. The duantities for use when LRF $=3$ are defined below. Resolved Fesonance Parameters

If LRF $=3$ (Reich-Moore multilevel parameters)

SPI is the spin of the target nucleus I.
$A P=A+$ is the spin-up effective scattering radius in units of $10^{-12} \mathrm{~cm}$. $A M=A$ _ is the spin-cown effective scattering radius in units of $10^{-12} \mathrm{~cm}$.
$A M=0.0$ for spin independence. ($A M=0.0$ required.)
NLS is the number of $\bar{\ell}$-states considered. A set of resolved resonance
parameters is given for each l-state. (NLS ≤ 3.)
\pm is the value of the l -state (neutron angular momentum quantum numier).
AWRI is the ratio of the mass of a particular isotope to that of a neutror.
NRS is the number of resolved resorances for a given i-state. (NRS ≤ 500.)
ER is the resonance energy (in the laboratory syscem).
AJ is the compcund nucleus spin, J (the spin of the resonance).
GN is the neutron width Γ_{n} evaluated at the resonance energy.
GG is the radiation width $\Gamma \gamma$ evaluated at the resonance energy.
GFA is the first partial fission width for Relch-Moore parameters.
GFB is the second partial fission width for Reich-Moore parameters. GFA and GFB are signed quantities, their signs being determined by the relative phases of the width amplitudes in the two fission channels. The structure of a subsection when LRU $=1$ (resolvec parameters) and $L R=3$ (Reich-Moore multilevel parameters) is

| [MAT, 2, $151 / S P I, ~$ | AP, | 0, | 0, | NLS, | $0] C \varnothing N T$ |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |

$E_{\text {NRS' }}{ }^{A J}$ NRS' $^{\prime} \mathrm{GN}_{\mathrm{NRS}}{ }^{\prime} \mathrm{GG}_{\mathrm{NRS}}{ }^{\prime} \mathrm{GFA}_{\mathrm{NRS}}{ }^{\prime} \mathrm{GFB}_{\mathrm{NRS}}$ \}LIST
The LIST record is repeated until each of the NLS \&-states has been specified in order of increasing value of ℓ. The values of $E R$ for each ℓ-state are ordered by increasing value of $E R$.

Resolved Resonance Parameters

If LRF $=4$ (Adler-Adler muitilevel parameters)
LI is a flag to indicate the kind of parameters given:
If $L I=1$: total widths only*
$=2$, fission widths only*
$=3$, total and fission widths*
$=4$, radiative capture widths only*
$=5$, total and capture widths
$=6$, fission and capture widths*
$=7$, total, fission, and capture widtns.
NX is the count of the number of sets of backqround constants to be given. There are six constants per set. Each set refers to a particular cross section type. The background correction for the total cross section is calculated by using the six constants is the following manner:
$\sigma_{T} \quad$ (background) $=\frac{C}{\sqrt{E}}\left(A T_{i}+A T_{2} / E+A T_{3} / E^{2}+A T_{4} / E^{3}\right.$

$$
\left.+B T_{1} * E+B T_{2} * E^{2}\right)
$$

[^5]where $C=\pi \lambda^{2}=\pi / k^{2}$ and $k=2.19677 \times i 0^{-3}\left(\frac{A W R I}{A K R I+1.0}\right) \sqrt{E(\mathrm{eV})}$. The background terms for the fission and radiative capture cross sections are calculated in a similar manner.

If $N X=2$, background constants are given for the total and capture cross sections.
$=3$, background constarts are given for the total, capture, and fission cross sections.

AJ is the floating-foint value of J (the spin of the resonance).
L is the value of the ℓ-state (neutron angular momentum quantum number).

NLS is the count of the number of l-statas for which parameters will be given (NLS ≤ 3).

NJS is the number of sets of resolved resonance parameters (each having the same J state) for a specified l-state.

NLT is the count of the number of levels for which parameters will be given (each level having a specified A_{J} and L).

SPI is the spin of the target nucleus.
AWRI is the ratio of the mass of a particular isotcpe to that of the neutron.

AP is the spin-dependent effective scattering radius, A_{+}(for spinup) in unirs of $10^{-12} \mathrm{~cm}$. AP is also given for the case of spin independence.

ZM is the spin-dependent effective scattering radius, A_ (for spindown). $A M=0.0$ for spin independence.
$\mathrm{AT}_{1}, \mathrm{AT}_{2}, \mathrm{AT}_{3}, \mathrm{AT}_{4}, \mathrm{BT}_{1}, \mathrm{BT}_{2}$ are the background constants for the total crcss section.
$\mathrm{AF}_{1}, \mathrm{AF}_{2}, \mathrm{AF}_{3}, \mathrm{AF}_{4}, \mathrm{BF}_{1}, \mathrm{BF}_{2}$ are the background constants for the fission cross section.
$A C_{1}, A C_{2}, A C_{3}, A C_{4}, B C_{1}, B C_{2}$ are the background constants for the radiative capture cross section.
DET n is the resonance energy for the total cross section. Here and
below, the subscript n denotes the nth level.
DEF n is the renance energy for the fission cross section.

DWT n is the value of $[/ 2,(v)$, used for the total cross section.
$\mathrm{DWF}_{\mathrm{n}}$ is the value of $[/ 2,(v)$, used for the fission cross section.
$D W C_{n}$ is the value of $[/ 2,(v)$, used for the radiative capture cross section.

Note: $\quad D E T_{n}=D E F_{n}=D E C_{n}$ and $D W T_{n}=D N F_{n}=D W C_{n}$.
$\underline{G R T}_{n}$ is related to the symmetr; dil total cross section parameter.
$\underline{\text { GIT }}$ n is related to the asymmetrical total cross section parameter.
$\underline{G R F}_{n}$ is the symmetrical fission parameter.
$\mathrm{GIF}_{\mathrm{n}}$ is the asymmetrical fission parameter.
GRC_{n} is the symmetrical capture parameter.
GIC $_{n}$ is the asymmetrical capture parameter.
The structure of a subsection containing data for $(L R U=1$ and $L R F=4$, AderAder multilevel parameters) depends on the value of $N X$ (the number of sets of background constants). For the most general case ($N X=3$) the structure is

[HAT, ?,	151/SPI.	AP,	0.	0.	NLS,	0) CONT]
[mat, 2,	151/AWRI.	0.0,	LI,	0.	6*N久,	NX/
	AT_{1},	$\mathrm{AT}_{2}{ }^{\text {, }}$	$\mathrm{AT}_{3}{ }^{\text {a }}$	$\mathrm{AT}_{4}{ }^{\text {, }}$	$\mathrm{BT}_{1}{ }^{\prime}$	BT_{2}
	$A F_{1}$,				--	BF_{2}
	$A C_{1}$,					BC_{2} JLIST]

```
[MAT, 2. 151/U.0. 0.0. L, D, NJS. 0]CONT(E)
MMAT, 2. 151/AJ. N!, 0. 0, 12#NLN, NLJ/
    DET1, DNT, (GFT1, GIT1, DEF:, DWF1,
    GPF1, GIE', DEC, , DWC, GRC GRC, GIC1,
    DET 2, DWT 2,
    DET, %,
```

The last LIST record is repeated for each J-state (there will be NJS such LIST recorts). A new CøNT (t) record will be given which will be followed by NJS LIST records. Note that if $N X=2$ then the quantities $A F_{1}, \cdots, B F_{2}$ will not be given in the first LIST record. Also, if LI $\neq 7$ then certain of the parameters for each level may be set at zero, i.e., the fields for parameters not given (depending on LI) will be set to zero.

Since the format has no provision for giving the Adler-Adler parameters for the scatterir, cross-section, this is obtained by subtracting the sum of capture and fission cross sections from the total cross section.

2.2.2. Procedures

For certain resonances the value of ℓ is known but the resonance spin J is not. In such a case, the resonance spins J may be assigned to follow the level density law $\rho_{J}=\frac{1}{D_{J}}=\sim(2 J+1)$ where ρ_{J} is the density of compound nucleus levels of spin J and D_{J} their spacing. The statistical weight factors g_{J} corresponding to resonances of spin J are such that $\sum_{J, S} g_{J}=(2 \ell+1)$ where the summation is over the different spin states J and the channel spins s.

The resonance spins if not measured should not be set equal to the target nucieus spin.

Ths upper (EH) and lower (EL) energy limits of an energy range indicate the energy range of validity for the given parameters for calculating cross sections. Outside this energy range the cross sections must be obtained from the parameters given in another energy range and/or from data in File 3. Therefore, it is sometimes necessary to give parameters whose energies lie outside a specified energy range in order to accurately give the cross section for neutron energies that are within the energy range. for example, the inclusion of bound levels may be required to predict the correct cross section at low energies, and resonances will usually be needed above EH to compensate the opposite, positive, bias at the high energy end.

For materials that contain more than one isotope, it is recommended that the lower energy limit of the resolved resonance reyion be the same for all isotopes. It is also recomended that the upper energy limit for the unresolved resonance range be the same for all isotopes. If resolved andor unresolved resonance parameters are not given for all the naturally occurring isotopes, some data should be given for the other isotopes. In particular, AP should be given for each of these isotopes.

If more than one energy range is used to describe the resonance parameters for any given isotope, the energ. ranges must be contiguous and must not overlap. It is further required that the data for each isotope be divided into no more than two energy ranges, one for resolved and the other for unresolved resonance parameters.

With single-level Breit-Wigner parameters it is sometimes possible for negative cross sections to be calculated. Negative cross sections are not
physically possible and can be avoided by one of the following changes in representation:

1. Constraint of single-level parameters and scattering radius to produce non-negative cross sections.
2. Insertion of File 3 "background" to produce a File $2+$ File 3 summation cross section everywhere positive.
3. Use of multilevel formalisms.

2.3. Unresolved Resonance Parameters (LRU $=2$)

2.3.1. Formats

Only one representation of the unresolved resonance parameters is allowed (see Appendix D for pertinent formulae). However, several options are available for specifying the average properties of the resonances.

The parameters given are for the single-level Breit-Wigner formula with interference, and they depend on both ℓ (neutron angular momentum) and J (compound nucleus spin) states. The widths are distributed according to a chi-squared distribution with a specified number of degrees of freedom. This number may be different for neutron ant fission wi 3 ths and for different (ℓ, J) states.

The following quantities are defined for use in specifying unresolved resonance parameters (LRU $=2$):

SPI is the nuclear spin I of the target nucleus.
A is the effective scattering radius in units of $10^{-12} \mathrm{~cm}$.
NE is the number of energy points at which energy-dependent widths are tabulated. (NE < 250.)

NLS is the number of ℓ-states given (NLS ≤ 3.)

ES(N) is the enargy of the $N^{\text {th }}$ point used to tabulate energy-dependent widths.
\pm is the value of ℓ (neutron angular momentum quantum number).
AWRI is the ratio of the mass of the particular isotope to that of the neutron.

NJS is the number of J-states for a particular ℓ-state. (NJS ≤ 6.)
$A J$ is the floating-point value of the J-state.
D is the mean level spacing for a particular J-state. (This value is energy dependent if $L F R=2$.)

AMUX is the number of degrees of freedom used in the competitive width distribution. (If an actual value is not known or is extremely large, set AMUX $=0.0$.)

AMUN is the number of degrees of freedom used in the neutron width distribution. (AMUN ≤ 2.0.

AMUS is the number of degrees of freedom used in the radiation width distribution. (If this value is not known or is extremely large, set AMUG $=0.0$.)

AMUF is the number of degrees of freedon used in the fission width distribution. (AMUF ≤ 4.0.

MUF is the integer value of the number of degrees of freedom for fission widths. (MUF ≤ 4.)
is the interpolation scheme to be used for interpolating between the cross-sections obtained from average resonance parameters (normally, INT = 1.)
is the average reuuced neutron width. It is energy dependent if $\operatorname{LRU}=2$.

GG is the average radiation width. It is energy dependent if $L R U=2$.
GF is the average fission width. This value may be energy dependent.
GX is the average competitive reaction width.

The structure of a subsection depenas on whether LRF =1 or LRF =2. If LRF $=$ l, only the fission widths can be given as a function of neutron energy. If $L R F=1$ and the average fission widths are not given (indicated by LFW $=0$), then a simple form of the unresolved resonance parameters is given. If LRF $=2$, the energy-dependent average values may be given for the level densj.ty, a competitive reaction width, reduced reutron width, radiation width, and fission widths. Therefore, three different formats are considered:

If $L F W=0$ (fission widths not given),
$\underline{L R U}=2$ (unresolved parameters),
$\underline{L R F}=1$ (all parameters are energy-independent).
the structure of a subsection is
[MAT, 2, 151/SPI, A, 0, 0, NLS, 0]CøNT
[MAT, 2, 151/AWRI, 0.0. L, 0, 6*NJS, NJS/

D_{1},	AJ,	AMUN_{1},	GNO_{1},	GG_{1},	0.0
D_{2},	AJ	,	AMUN_{2},	GNO_{2},	GG,
2,		0.0			

The LIST record is repeated until data for all ℓ-states have been specified.
If LFW $=1$ (fission widths given),
$\underline{L R U}=2$ (unresoived parameters),
$\underline{L R F}=$. (only fission widths are energy-dependent; the rest are energy-independent).
the structure of a subsection is
[MAT, 2, 151/SPI, A, 0, 0, NL, NLS/

	$E S_{1}$,	$E S_{2}$,	$E S_{3}{ }^{\prime}$	-'	-'	-
	-'	-'	-'	'	$E S_{\text {NE }}$] LIST
[MAT, 2,	151/AWRI,	0.0	L,	0 ,	NJS,	$0] \mathrm{C}$ (NT (ℓ)
[MAT, 2,	151/0.0,	0.0,	L,	MUF ;	NE+6,	$0 /$
	D,	AJ,	AMUN,	GNO,	GG,	0.0,
	GF_{1},	GF_{2},	GF_{3},	-,	-'	*'
	- ${ }^{\text {P }}$	-'	-'	$\mathrm{GF}_{\mathrm{NE}}$]LIST

In the above section, interpolation is assumed to be log-log.
If $L F W=0$ or 1 (does not depend on LFW).
$\underline{L R U}=2$ (unresolved paraineters).
$\underline{L R F}=2$ (all energy-dependent parameters).
The structure of a subsection is:

The LIST record is repeated until all the NJS J-states have been specified for a given l-state. A new CøNT (l) record is then given, and all data for each J-state for that ℓ-state are given. The structure is repeated until all ℓ states have been specified.

2.3.2. Procedures

The number of degrees of freedom for the distrirution of the competitive reaction width (AMUX) and radiation widths (AMUG) may be extremely large. If AMUX and, or AMUG are zero, this is a flag that indicates the number of degrees of freedom is extremely large. The average competitive reaction width is given (LRF $=2$) to account for all unspecified competitive reactions other than scattering, capture, and £ission.

Up to 250 energy points are allowed for giving energy-dependent average parameters. These data should allow average cross sections that show any gross structure in the reaction cross sections to be computed. The unresolved resonance parameters should be provided for neutron energy regions where temperature or resonance self-shielding effects are important. Therefore, it is recommended that the unresolved resonance region extend up tc at least 20 keV .

When preparing data for the unresolved resonance region, it is important to use a consistent set of definitions in obtaining unresolved resonance parameters. ?hese definitions are given in the Glossary (Appendix A) and the resonance region formulae (Apperidix D). In particular, note that the neutron penetrability, $v_{\ell}(\rho)$, is defined as

$$
\begin{array}{ll}
v_{0}(\rho)=1 & \text { for } \ell=0 \text { neutrons (s-wave) } \\
v_{1}(\rho)=\rho^{2} /\left(1+\rho^{2}\right) & \text { for } \ell=1 \text { neutrons (} p \text {-wave) } \\
v_{2}(\rho)=\rho^{4} /\left(9+3 \rho^{2}+\rho^{4}\right) & \text { for } \ell=2 \text { neutrons (d-wave) }
\end{array}
$$

$\rho=k a$.

$$
\begin{aligned}
& \text { The wave number of the neutron in the center } \\
& k=2.196771\left(\frac{A W R I}{(A W R I+1.0)}\right) \sqrt{E(\mathrm{eV})} \times 10^{-3}
\end{aligned}
$$

and "a" is the radius used in calculating the penetration, shift, and hardsphere phase factors,

$$
a=\left[1.23 \mathrm{~A}^{1 / 3}+0.8\right] \times 10^{-1}
$$

in units of $10^{-12} \mathrm{~cm}$. Note: A is usually approximated by AWRI ($A W R I=\frac{A}{m_{n}}$).

The Greebler-Hutchins* scheme for evaluating the width-fluctuation factor should be used in order to have uniformity between evaluators and users.

[^6]
3. FILE 3, NEUTRON CROSS SECTIONS

3.1. Gentral Descripion

Neutron cross sections, such as the total cross section, elastic acattering cross section, and raciative capture cross section, are given in file 3 . Certain derived quantities are aiso given. These data are given as a function of energy, E, where E is the incident neutron energy (ir ov) in the laboratory system. They are glven as energy-cross section (or derived quantity) pairs. An interpolation scheme is given that specifies the energy variation of the data for neutron energies between a given energy point and the next nigher energy point.

File 3 is divided into sections, each containing re data for a particular reaction type (MT number). The sections are ordered by increasing MT number. A complete list of MT's and their definitions can be found in Appendix B.

3.2. Formats

File 3 is made up of sections where each section gives the neutron cross sections (or derived quantities) for a particular reaction type (MT number). Each section always starts with a HEAD record and ends with a SEND record.

The common variables used in this other file are defined in Section 0.5.1 and in the Glossary (Appendix A). For File 3 the following quantities are defined:

LIS is an indjcator that specifies the initial state of the target nucieus (for materials that represent nuclides), LIS $=0$, the initial state is the ground state. $=1$, the initial state is the first excited state generally the first metastable state).
$=2$, the initial state is the second excited state. etc.

LFS is an indicator that specifies the final excited state of the residual nucleus produced by a particular reaction.
$\operatorname{LES}=0$, the final state is the ground state.
$=1$, thes final state is the first excited state.
$=2$, the final stite is the excited state.
$=98$, an unspecified range of final states.
= 99, all final states.
\& is the reaction Q-value (eV).
S is the temperature $\left({ }^{\circ} \mathrm{K}\right)$. NOTE: If the LR flag is used, S becomes Q 1 for the reaction corresponding to LR.
$\underline{L T}$ is a fiag to specify whether temperatuxe-dependent data are given. S and LT are normally zero. Details on temperature-dependent data are given in Appendix F.
$L R$ is a flag to be used in the reactions $M T=51,52,53, \ldots, 90$, and 91, to define x in $\left(n, n^{\prime} x\right)$. (Ses Section 3.24.4.)

NR is the number of energy ranges that have been given. A different interpolation scheme may be given for each range. (NR ≤ 200, but normaliy ≤ 20).

NP is the total number of enexgy points used to specifir the data.
(ND ≤ 5000).
Eint is the intexpolation scheme for each energy range. for details. see Section 0.4.3.).

$$
-3,3-
$$

(E) is the cross section (barns) for a particular reaction type at incident energy point, E, in (eV). Data are given in energy-cross section pairs.

The structure of a section is
[MAT, 3, MT/ZA, AWR, LIS, LFS; O , OJHEAD
[MAT, 3, MT/S , Q, LT, LR , NR, NP/E $\left.{ }_{\text {int }} / \mathrm{C}(E)\right] T A B l$
[MAT, 3, 0,O.0, 0.0, $0,0,0,0]$ SEND

3.3 Procedurs

3.2.1. Reaction Tyess to be Included

A complete list of possible reaction types and their defiritions can be found in Appendix B, Cross sections for all reaction types that are not zero or negligibly small should be given in File 3 . As a minimum, data for the reactions listed below should be given, if applicable.
M_{T}^{T}

```
Total zross section
```

Elastic scattering cross section
Inelastic scattering cross section (total)
$(n, 2 n)$ croes section
(n,3n) cross section
Fiselcn cross section
Inelastic excitation cross section for the lst level
" " " " " " 2nd level
Inelastic excitation cross section for the 40 th level
" " " " " continuum
(n, γ) radiative cafture cross section
(n, p) cross section
(n. d) "
$(n, t) \quad " \quad$
$\left(n, \mathrm{He}^{3}\right) " \quad "$
$(n, \alpha) \quad "$
$(n, 2 \alpha) \quad "$
$\bar{\mu}_{L a b}$
ε
γ

3.2.2. General Procedures

1 Ail significart cross sections must be given in this file using the reaction types (MT numbers) that have been defined. Appendix B summarizes all currently defined reaction types. If new MT numbers are needed, the National Neutron Cross Section Center at Brookhaven National Laboratory should be contacted.

Select the mosi appropriate $M T$ numer to represent the reactions. In many cases different Mi numbers may be used to represent the same reaction mechanism, e.g., Lf-6in,t) and $\mathrm{Li}-6(\mathrm{n}, \alpha)$. This situation arises when the reaction produces multipie secondary particies or wher the seconriary particle and the residual nucleus are intexchangeable. Many reactions of neutrons on light targets fall into this category. It is not possible to estabiish rigid ground
rules, but in general, the $M T$ chosen includes the lightest nucleus in the exit channel.
2. Reaction Q-values are important, and attempts should be made to obtain a value for each section in File 3 . Even when the material epresents a natural element containing two or more isovopes, reaztion g-values should be given. In these cases for which there is no unique Q-value, the value given should be the Q-value that produces the lowest threshold energy.

3.2.3. Initial and Final States

The formats have been generalized to specify data for excited states of the target (injtial) and residual (final) nucleus using the LIS and LFS flags. If the initial state is isomeric and has a half-life $>1 \mathrm{sec}$, current ENDF procedures require data to be given as a separate ENDF Material. keaction data prociucing known final states are given within the Material associated with the initial nucleus.

Where se:eral final states are produced by a reaction, the sumation, discrete level, and continuuin cross sections can be specified. Specification of summation reaction cross sections to all states, discrete and continuum, is given within an NT number by LFS $=99$. Data for an unspecified range of final states is given by using the same MT number with LFS $=98$.

For the $(n, p),(n, d),(n, t),\left(n,{ }^{3} H e\right)$, and (n, α) reactions, the summation cross sections must be given in the $M T=103,104,105.106$, and 107 sections, respectively. Use of $L F S=99$ in these cases is redundant. The cross sections to the ground and the first 17 discrete excited levels of the final nucleus must be given in the $M T=700$ series. Use of LFS is redundant for a number of levels ≤ 17. For the $(n, 2 n)$ reaction the summation cross section must be given
in the $M T=16$ section. Use of $L F S=99$ is redundant. The ($n, 2 n$) cross sec-
tion to isomeric states should be given in the $M T=26$ section, using the $L F S$
flag to indicate the isomeric states (counting all states) designated.

3.2.4. Yrocedures for Specific Reactions

3.2.4.1. Indek for Section 3.2.4.
3.2.4. Subsection

1

2

3
4

5

6
7

8

9

10

11

12

Fielevant kir Nos. (See Appendix B)

1
2

3
4
5-9, 16, 17, 26, 46-49
18, 19, 20, 21, 38
27
$5 i-91$
101
120
102-114
700-799

3.2.4.1 Total Cross Sections

1. If resolved or unresolved resonance parameters are given in file 2, the contribution to the total cross section in the resonance region is the sur calculated from File 2 and $M T=1$ in File 3. (see Section 3.3.)
2. The total cross section is generally the most importani cross section in a shielding material. Considerable care should be exercised in evaluating this cross section and in deciding how to represent it.
3. Cross section minima (potential windows) and cross section structure should be carefully examined. Sufficient energy points must be used in describing the structure and minima to reproduce the experimental data to the measured degree of accuracy.
4. The total cross section as well as any partial cross section must be represented by 5000 incident energy points or less. The set of points or energy mesh used for the total cross section must be a union of all energy meshes used for the partial cross sections. Within the above constraints, every attempt should be made to minimize the number of points used. rhe total cross section must be the sum $c_{i}^{-} M T:=2$ (elastic) and $M T=3$ (nonelastic). If $M T=3$ is not given, then the elastic cross section plus all nonelastic components must sum to the total cross section.

3.2.4.2. Elascic Scattering Cross Section

1. If resolved or unresolved resonance parameters are given in File 2, the contribution to the elastic scattering cross section in the resonance region is the sum calculated from File 2 and MT $=2$ in File 3 (see Section 3.3).
2. The elastic scattering cross section is generally not known to the same accuracy as the total cross section. Frequently the elastic scattering cross section is obtained by subtracting the non-elastic cross section from the total cross section. This procedure can cause problems. The result is an elastic scattering cross section that contains unreal structure. There may be several causes. First, the nonelastic cross section, or any part thereof, is not generally measured with the same energy resolution that the total cross section has been measured. When the somewhat poorei resolution nonelastic cross section is subtracted from the total cross section, much of the structure (at

Abstract

times very unrealistic) is placed in the elastic scattering cros: section. Second, if the observed structure in the nonelastic cross seceion is improperly correlated with the structure in the total cross section, an unrealistic structure is generated in the elastic scattering cross section. 3. Frequently the experimentaily measured elastic scattering cross section is obtained by integrating angular distribution data. fi: $\begin{aligned} & \text { ase data may contain }\end{aligned}$ contributions from neutrons producing nonelastic reacticns. This contamination is generally due to contributions from inelastic scattering to low lying levels that are not resolved in the experiment. Care must be taken in using such results to obtain integreted cross sections. Such angular distribution data can also ause similar problems when they are used to prepare File 4 data.

3.3.4.3. Nonelastic Cross Section (MT = 3)

The nonelastic cross section is not required unless any part of the photon production cross section data given in Files 12 and/or 13 uses $M T=3$ to represent these data. In thas case $M T=3$ is required in File 3. If $M T=3$ is given, then the set of points used to specify this cross section should be a union of the sets used for all its partials.

3.3.4.4. IneIastic Scattering Cross Sections

1. A total inelastic scattering cross sertion must be given if any of the partials are given, i.e., discrete level excitation cross section, MT = 51, 52, 53,....., 90, or continuum inelastic scattering, $M T=91$.
2. The set of incident erexgy points used for the total inelastic cross section $(M T=4)$ must be a union of all the sets used for the partials.
3. Values should be assigned to the level excitation cross sections for the first few levels for the entire energy range (up to 20 MeV). Frequently the inelastic level cross section for the first few levels can be obtained from experimental measurements. At other times, deformed nucleus model calculations must be made. Direct interaction contributions are important in neutron inelastic scattering particularly for deformed nuclei with 0^{+}ground states. The secondary energy distribution for these neutrons resembles elastic scattering more than as evaporation spectrum.
4. The recomended procedure for specifying inelastic scattering cross sections is to give level excitation cross sections for as many levels as possible and up to an incident energy for which level energies, spins, and parities are known. Above this point and up to 20 MeV , estimates should be made for those levels that have significant direct interaction contributions. Any remaining inelastic scattering should be treated as continuum.
5. Level excitation cross sections must start with zero cross section at the threshold energy. If the cross section for a particular level does not extend to 20 MeV , it must be double-valued at the highest energy point, for which the cross section is now zero. The second cross section value at that point should be zero and it should be followed by another zero value at 20 MeV . This will positively show that the cross section has bean truncated.
6. An LR flag specifies inelastic scattering to levels that de-excite by particle emission or pair production rather than by γ emission. Use the $L R$ flag to completely define a reaction like ($n, n^{\prime} x$). The LR flag is to be used in the reactions $M T=51,52,53, \ldots, 90$, and 91 to define x in (n, n ' x). If $x=\gamma$ then $L R=0$. If x is a particle then $L R$ becomes the $M T$ number that defines the reaction: e.g., if the reaction is ($n, n^{\prime} p$), then $L R=28$. When $L R>0$ then S is the Q-value for the combined reaction specified by the $L R$ value.

When the $L R$ flags are used, the following reactions take on slightly different meanings. $M T=4$ means the reaction is (n, n ' everything). $M T=51-91$ means the reaction is (n, n ' something), where "something" is defined by the LR flag. When $M T=91$ is a composite of several de-excitation modes, then $L R=4$. This system has been established to facilitate accurate descriptions of the energy and angular distribution of these neutrons the angular distributions are given in File 4).

If a particular level, which has been left in an excited state, decays by emission of particles of more than one type, then several sentjons must be given in File 3. Consider the case in which an excited state decays by emission of a proton and an α particle. That part of the reaction that represents ($n, n^{\prime} \alpha$) would use $L R=22$, and the other part would be given in the next section (next higher $M T$ number) and would use $L R=28(n, n ' p)$. The angular distribution for the neutron would have to be given in two different MT numbers in File 4 , even though they represent the same neutron. Competition for the de-excitation of a level should be considered only if it is at least 10% of the total de-excitation cross section for that level. The section must be ordered by increasing Q-values, i.e., increasing values of S in the $T A B 1$ records.

3.2.4.5. (n, 2n), (n, 3n), (n, 4n) Cross Sections

1. If any of the these reactions takes place, it must be giver in File 3 .
2. If the $(n, 2 n)$ cross section reaction produces an isomeric state, then in addition to the total ($n, 2 n$) cross section (given $n M=16$), the isomeric state production cross section can be given in $M T=26$. Processing codes concerned only with the neutron cross sections can ignore the data given in MT -26 .
3. It is possible to represent the $(n, 2 n)$ cross section either totally as direct ($n, 2 n$) ($M T=16$) or as a combination of this and a time sequential reaction.

In the time-sequential $(n, 2 n)$ reaction $A\left(n, n_{1}\right) A *\left(n_{2}\right)(A-1) *$, the "first" neutron (n_{1}) is essentially an inelastic scattering event that may leave the nucleus A^{*} in one of several excited states. the "second" neutron (n_{2}) is subsequently emitted by the decay of the recoiling nucleus A^{*}. Conservation of energy and momentum ensure a correlation between first and second neutrons for this time-sequential $(n, 2 n)$ reaction for each level. The second neutron lab system angular and energy distributions can be drastically different for each level and must be described separately. In addition to the time-sequential $(n, 2 n)$ reaction there may be a direct $(n, 2 n)$ reaction, which proceeds without going through any intermediate states. The total ($n, 2 n$) reaction must therefore be considered as a composite of time-sequential (n,2n) plus a direct (n,2n).

The $(n, 2 n)$ level events are described by treating the first neutron as coming from an inelastic level (energy ordered in $M T=51-90$) and the second neutrons from levels represented by $M T=46-49$, but there is no correlation between energy spectra of the first and second neutrons. Reaction types MT $=6-9$, are used to represent the first neutron from the first few individual levels, and reaction types $M T=46-42$ would be used to represent the second neutron from individual levels. Reaction type $M T=16$ is to be used for the representation of both neutrons when time-sequential ($n, 2 n$) reactions do not apply or when detailed data are not available. The total ($n, 2 n$) cross section

[^7]is the sum of reaction types $M T=6-9$ and 16 and does not include reaction types $M T=46-49$. This procedure removes the necessity for representing the first neutron from an ($n, 2 n$) reaction by an inelastic level (MT = 51-90).

3.3.4.6. Fission Cross Sections

1. The total fission cross section must be given in $M T=18$ for fissionable materials. Every attempt must be made to break this cross section into its various parts: first chance fission (n, f), $M T=19 ;$ second chance fission (n,n'f), $M T=20$; third chance fission ($n, 2 n f$), $M T=21$, and fourth chance fission ($n, 3 n f$), $M T=33$.
2. The data in $M T=18$ is to be the sum of data in $M T=19,21$ and 38 . The set of energy points used for MT $=18$ should $k=$ the union of all sets for the partials.
3. If resolved or unresolved resonance parameters are giver. in File 2, the contributions to the total fission cross section in the resonance region are the sum calculated from File 2 and $M T=18$ from File 3 (see Section 3.3). If data are given in File 3 for $M T=19-21$ or 38 , they must sum to data in file 3 for $M T=$ 18. Since only the total fission cross section can be calculated from the resonance parameters to be added to File 3 values for $M T=18$, the resonance region should not extend above the threshold for second chance fission data (MT $=20$) given in File 3, to prevent inconsistency between the total fission cross section and its partials. If $M T=20$ data are present, $M T=19$ must exist and cover the full range of $M T=18$ data.

3.3.4.7. Absorption Cross Sections (MT $=27$)

The absorption cross section is not required. It is defined as the sum of $M T=18$ (total fission) plus $M T=101$ (total neutron disappearance).

3.3.4.8. ($\left.n, n^{\prime} x\right)$ Reaction Cross Sections

The cross sections for those reactions in which the secondary neutron leaves the target nucleus in an excited state should be given in File 3 as sections using the MT's in the series MT $=51,52, \ldots, 90,91$. In cases in which there are several reactions like $\left(n, n^{\prime} x\right)$, it is better to enter the reactions separateiy in File 3 under their regular Mr numbers.
3.3.4.9. Neutron Disappearance Cross Section (MT - - 101)

The neutron disappearance cross section is the sum of all cross sections in which a neutron is not in the exit channel. It is the sum of Mr = . 102 - 109 and 111 - 114.

3.3.4.10. Target Destruction Cross Seetion (MT $=120$)

The taxget destruction cross section will depend on the various reaction mechanisms present. In general, it is the nonelastic cross section minus the total $\left(n, n^{\prime} \gamma\right)$ cross sections.
3.3.4.11. (n, x) Reaction Cross Sections (MT $=102, \ldots, 114$)

1. If resolved or unresolved resonance parameters are given in File 2 , the contribution to the radiative capture cross section in the resonance region is the sum calculated from File 2 and $M T=102$ in File 3 (see Section 3.3.).
2. If both (n, p) and $(n, 2 p)$ are given, they are not redundant. Both should be given, if present.
3. Partial cross sections such as $n, p_{0} ; n, p_{1} ; \ldots$ etc., should be given using the $M T=7 C 0$ series for materials in which particle heating is important. The (n, p) cross section $M T=103$ is equal to the sum of $M T=700$ through $M T=718$.

3.3.4.12. Reaction Cross Sections to Discrete and Continuum Levels

(MT $=700$ series $)$
For studies of radiation damace and/or long-lived activation in fission and fusion reactors, additional information about exit particles is naturai. Exit protons will be used for illustration, although the same arguments hold for deuterons, tritons, and ${ }^{3} \mathrm{He}$ and ${ }^{4} \mathrm{He}$ partjcles. The MT $=700$ series allows the cross sections and the energy and angular distributions for protons leaving the Einal nucleus in the ground through the 18 th excited state to be described by using $\mathrm{MT}=700$ to $\mathrm{MT}=718$.

Data in sestions $M T=700$ to $M T=718$ for (n, p_{0}) through (n, p_{18}) must add up to $N T=103$. In some cases cross section information about the exit proton is needed that has already been included in the ENDF/B files. For example, the ($n, n^{\prime} p$) cross section is usually found under $M T=51-91$. It may be, however, that this proton energy distribution is more important for radiation damage studies than the energy of the neutron. In this case, a so-called redu.dint cross section that is already part of $\sigma_{\text {tot }}$ is included in section MT $=719$ so that this section would refer to protons from both the (n, p) continua.

Similar procedures are used to describe the exit deuteron, triton, and ${ }^{3}$ He and ${ }^{4}$ He particles in sections $M T=720$ through $M T=799$.

3.4. Relationship Between File 3 and Other Files

If File 2 (Resonance Data) contains resolved and/or unresolved resonance parameters, then in order to obtain the total cross section ($M T=1$) the radiative: capture cross section (MT=102), fission cross section (MT=18), and elastic scattering cross section ($M T=2$), the cross sections calculated from these parameters must be added to the appropriate data given in File 3. Any contribution
from File 2 to radiative capture or fission must aiso be included in the File 3 nonelastic cross section ($M T=3$). The contributions from files 2 and 3 must be summed to obtain the correct cross sections for neutron energies within the energy ranges speidfied for the resolved and/or unresolved resonance parameters. For this case, the cross sections given in File 3 may contain, for example, corrections (background cross sections) to take into account multilevel interference effects that were apparent in the experimental data where it was not possible to construct a set of resonance parameters that adequately fitted the measured data. Cross sections in File 3 to be added to file 2 are specified at 0° Kelvin and are intended to be combined with file 2 data calculated at 0° Relvin.

Some materials will not have resonance parameters. However, they will have a scattering length, giver in File 2 , that can be used to caiculate the potential elastic scatterias cross section, which is then used to calculate resonance self-shielding effects in other materials. For these materials the elastic scattering cross section in File 3 must not be added to this potential ;cattering cross section, since the File 3 data for these materials comprise the entire scattering cross section.

Double-valued points (discontinuities in the cross sections) are aijowed anywhere in File 3. They must always be given at the upper and lower energy limits of the resolved and unresolved resonance reqions.

To obtain absolute values for differential (in angle) scattering cross sections, the data in File 4 have to be combined with the cross sections for the corresponding MT number given ir. File 3. The File 4 data (see Section 4) nay be given as either tabulated nomalized probability distributions, p(H,E), or Legendre polynomial fixpansion coefficients, $f_{\ell}(\Sigma)$.

Note that the derived quantiries $\bar{\mu}_{\text {Lab }}, F_{2}$, and γ are entirely from File 4 angular distribution data for elastic scattering. These data are included in File 3 for convenience and must be consistent with File 4 data.

Secondary energy distributions are expressed as normalized probability distributions and are given in File 5. The differential (in secondary energy) cross sections for a reaction of a particular type are obtained by multiplying the normalized probability distribution by the corresponding (same MT number) cross section, $\sigma(E)$, given in File 3. An exception is the data for inelastic scattering to various levels and the continum; only the secondary energy distribution for the continuum is to be found in File 5. The excitation cross sections for discrete levels are given in File 3, and the angular distritutions for these secondary neutrons are given in File 4; therefore, the secondary neutron energies are uniquely defined.

Absolute values for the double differential (in secondary energy and angle) scattering cross sections may be obtained by combining the data in File 6 and the cross sections in File 3.

3.5. General Suggestions for Preparing Data for File 3

The limit on the number of energy points (MP) to be used to represent a particular cross section is 5000. The evaluator should not use more noints than are necessary to represent the cross section accurately. Also, while the format limit of $N R$ is 200, a limit of 20 is suggested for the number of interpolation regions (NR).

Cross section data for nonthres:. י'd reaction types should cover the energy range from $10^{-5} \mathrm{eV}$ to 20 MeV for all materials. For other reactions the cross section data should start at the reaction threshold energy (with a value of 0.0)
and continue up to 20 MeV . For nonthreshold reactions a cross section value must be given at 0.0253 eV .

The reaction Q-value is defined as the kinetic energy (eV) released by a reaction (positive) or required for a reaction (negative). Fol: a reaction having a threshold, the threshold energy $E_{t h}$ is given by

$$
E_{t h}=\left(\frac{A W R-1}{A W R}\right)|Q|
$$

where $A W R$ is the atomic mass ratio given on the HEAD card of each section.
For a material that is a mixture of several isotopes, the g-value is not uniquely defined. The threshold energy generally should pertain to the particular asotope that contributes to the cross section at the lowest energy, but see discussion in Section 3.2.2.2.

The total cross section should, as a minimum, be given at every energy point at which at least one partial cross section is given. This will allow the partial cross sections to be added together and checked against the total cross section for any possible errors. In certain cases more points may be necessary in the total cross section over a given energy range than are required to specify the corresponding partial cross sections. For example, a constant elastic scattering cross section and a $1 / v(n, y)$ cross section could be exactly specified over a given energy range by linear interpciation on a $\log -\log$ scale (INT $=5$), but the sum of the two sross sections would not be exactly linear on a log-log scale.

The inelastic scaitering cross section ($M T=4$) should be given and should be exactly equal to the sum of the cross sections for inelastic scattering to the various discrete levels ($M T=51,52,53, \ldots, 90$) and the continuum ($M T=91$).

The total inelastic scattering cross section and the contributing partial cross sections should be specified on the same energy mesh above the respective thresholds. Linear-linear interpolation (INT=2) or linear-log (INT=3) should be used for these cross sections.

In general, care must be used in specifying cross sections and the interpolation scheme to be used to determine the cross sections between input energy points. For example, if a cross section has a value of zero at the threshold energy and a non-zero value at the next higher energy point, a problem will be created if a log-linear or a log-log interpolation scheme is used.

4. FILE 4. ANGULAR DISTRIBUTIONS OF SECONDARY NEUTRONS

4.1. General Description

File 4 contains representations of angular distributions of secondary neutrons. Normally, these distributions will be given for elastically scattered neutrons and for the neutrons resulting from discrete level excitation due to inelastic scattering. However, angular distributions must also be given for neutrons resulting from (n, n^{\prime} continuum) and ($n, 2 n$) reactions. In these cases the angular distributions will be integrated over all final neutron energies.

Angular distributions for a specific reaction type (MT number) are given for a series of incident neutron energies, in order of increasing energy. The energy range covered should be the same as that for the same reaction type in File 3. Angular distributions for several different reaction types (MT's) may be given in File 4 for each material, in ascending order of MT number.

The angular distributions are expressed as normalized probability distributions, i.e.,

$$
\int_{-1}^{1} p(\mu, E) d \mu=1
$$

where $p(\mu, E) d \mu$ is the rrobability that a neutron of incident energy E will be scattered into the interval $d \mu$ about an angle whose cosine is μ. The units oi $p(\mu, E)$ are (unit cosine) ${ }^{-1}$. Since the angular distribution of scattered neutrons is generally assumed to have azimuthal symmetry, the distribution may be represented as a Legendre polynomial series,

$$
\mathrm{F}(\mu, E)=\frac{2 \pi}{\sigma_{S}(E)} \frac{d \sigma}{d \Omega}(\Omega, E)=\sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} f_{\ell}(E) F_{\ell}(\mu)
$$

whure $\mu=$ cosine of the scattered angle in either the laboratory or the center-of-mass system;

E $\quad=$ energy of the incident neutron in the laboratory system;
$\sigma_{S}(E) \quad=$ the scattering cross section, e.g., elastic scattering at energy
E as given in File 3 for the particular reaction type (MT);
\& \quad order of the Legendre polynomial;
$\frac{d \sigma}{d \Omega}(\Omega, E)=$ differential scattering cross section in units of barns per steradian;
$f_{\ell} \quad=$ the $\ell^{\text {th }}$ Legendre polynomial coefficient and it is understood that $f_{0}=1.0$.

The anqular distributions may be given in one of two representations, and in either the $C M$ or LAB systems. In the first method the distributions are given by tabulating the normalized probability distribution, $p(\mu, E)$, as a function of incident neutron energy. Insing the second method, the Legendre polynomial expansion coefficients, $f_{\ell}(E)$, are tabulated as a function of incident neutron energy.

Absolute diffential cross sections are obtained by combining data from Files 3 and 4. If tabulated distributions are given, the absolute differential cross section (in barns per steradian) is obtained by

$$
\frac{d \sigma}{d \Omega}(\Omega, E)=\frac{\sigma_{s}(E)}{2 \pi} p(\mu, E)
$$

where $\sigma_{S}(E)$ is given in File 3 (for the same $M T$ number) and $p(\mu, E)$ is given in File 4. If the angular distributions are represented as Legendre polynomial coefficients, the absolute differential cross sections are obtained by

$$
\frac{d \sigma}{d \Omega}(\Omega, E)=\frac{\sigma_{5}(E)}{2 \pi} \sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} f_{\ell}(E) P_{\ell}(\mu)
$$

where $\sigma_{S}(E)$ is given in File 3 (for the same MT number) and the coefficients $f_{\hat{l}}(E)$ are given in File 4.

Also, a transformation matrix may be given in File 4 that can be used to transform a set of Legendre expansion coefficients, whic "uve given to describe elastic scattering angular distributions, from one frame of : e to the other. The Legendre expansion coefficients $f_{\lambda}(E)$ in the tw: $\xi_{i} \cdots$ as are related through an energy-independent transformation matrix, $\mathrm{U}_{\ell \mathrm{m}}$, and its inverse, $\mathrm{U}_{\ell \mathrm{m}}^{-1}$:

$$
f_{\ell}^{\mathrm{Iab}}(E)=\sum_{m=0}^{N M} u_{\ell m} f_{m}^{C M}(E)
$$

and

$$
f_{l}^{C M}(E)=\sum_{m=0}^{N M} U_{l m}^{-1} f_{m}^{L a b}(E)
$$

Expressions for the matrix elements of U and U^{-1} may be found in papers by Zweifel and Hurwitz ${ }^{(1)}$ and Amster ${ }^{(2)}$. Transformation matrices for nonelastic reactions are not incident energy independent and are not given in File 4.

The transformation matrices should be square, with the number of rows equal to $N M+1$ where $N M$ is the maximum order of the Legendre polynomial series used to describe any elastic angular distribution in this file. The transformation matrix is given as an array of numbers, V_{K}, where $K=1, \ldots \ldots, N K$, and $N K=(N M+1)^{2}$, and where $K=1+\ell+m(N M+1)$. The values of K indicates how the (ℓ, m) th element of the matrix may be found in array V_{K}. This means that the elements of the matrix $U_{\ell, m}$ or $U_{\ell, m}^{-1}$ are given column-wise in the array V_{K} :

1. P.F. Zweifel and H. Hurwitz; Jr.. J. Appl. Phys. 25, 1241 (1954).
2. H. Amster, J. Appl. Phys. 29, 623 (1958).

4.2. Formats

File 4 is divided into sections, each containing data for a particular reaction type (MT number) and ordered by increasing MT number. Each section always starts with a HEAD record and ends with a SEND record. If the section contains a description of the angular distributions for elastic scattering, the transformation matrix is given first (if oresent) and this is followed by the representation of the angular distributions.

The following quantities are defined.
LTT is a flag to specify the representation used and it may have the following values:
$L T T=1$, the data are given as Legendre expansion coefficients, $f_{\ell}(E)$;
$L T T=2$, the data are given as normalized probability distributions, $p(\mu, E)$.

LCT is a flag to specify the frame of reference used: LCT $=1$, the data are given in the LAB system; $L C T=2$, the data are given in the $C M$ system

LVT is a flag to specify whether a transformation matrix is given for elastic scattering:

```
LVT = 0, a transformation matrix is not given (always use this value
    for all non-elastic scattering reactions);
    LVT = L, a transformacion matrix is given.
```

NE is the number of incident energy points at which angular distribu-
tions are given (NE 500).
NL is the highest order Legendre polynomial that is given at each
energy ($\mathrm{NL} \leq 20$).
NK is the number of elements in the transformation matrix (NK ≤ 441).
$N K=(N M+1)^{2}$.
NM is the maximum order Legendre polynomial that will be required
(NM ≤ 20) to describe the angular distributions of elastic scatter-
ing in either the center-of-mass or the laboratory system. NM should
be an even number.
V_{K} are the matrix elements of the transformation matrices:
$V_{K}=U_{\ell, m}^{-1}$ if LCT $=1$ (data given in LAB system); and
$V_{K}=U_{\ell, m}$ if LCT $=2$ (data given in $C M$ system).
NP is the number of angular points (cosines) used to give the tabulated
probability distributions for each energy (NP ≤ 101).
Other conmonly used variables are given in the Glossary (Appendix A).
The structure of a section depends on the values of LTT (representation
used, $f_{\ell}(E)$ or $p(\mu, E)$), and LVT (transformation matrix given?), but it always
starts with a HEAD record of the form
[ZA, AWR, LVT, LTT, 0, 0]HEAD.

4.2.1. Legendre Polynomial Coefficients and Transformation Matrix Given:

$L T T=1$ and $L V L^{\prime}=1$
When $I T T T=1$ (angular distributions given in terms of Legendre polynomial coefficients) and LVT $=1$, the structure of a section is
[MAT, 4, MT/ZA, AWR, LVT, ITTT, 0,0]HEAD LTT $=1$, LVT $=1$
[MAT, 4, MT/O.O, ANR, 0, LCT, NK, NM/V V_{K}]LIST
[MAT, 4, MT/0.0, 0.0, 0, 0, NR, NE/E $\mathrm{E}_{\text {int }}$]TAB2
$\left[\operatorname{MAT}, 4, M T / T, E_{1}, L T, 0, N L, 0 / E_{\ell}\left(E_{1}\right)\right] L I S T$
$\left[\right.$ MAT, $\left.4, M T / T, E_{2}, L T, 0, N L, O / E_{\ell}\left(E_{2}\right)\right] L I S T$

[MAT, 4, MT/T , $E_{N E}, L T, 0, N L, 0 / f_{\ell}\left(E_{N E}\right) L I S T$
[MAT, 4, 0 $0.0,0.0,0,0,0,0]$ SEND
Note that T and $I T$ refer to temperature (in ${ }^{\circ} K$) and a test for temperature dependence, respectively. These values are normally zero; however, see Appendix F for an explanation of cases in which temperature dependence is specified.

4.2.2. Legendre Polynomial Coefficients Given and the Transformation Matrix

Not Given: $L T T=1$ and $L V T=0$
If $L T T=1$ and $L V T=0$, the structure of a section is the same as above, except that the second record (a LIST record) is replaced by
[0.0, AWR, 0, LCT, 0, 0] CøNT.
This form is always used for angular distributions of nonelastically scattered neutrons when Legendre polynomial expansion coefficients are used.
4.2.3. Tabulater Probability Distributions and Transformation Matrix Given: LTT $=2$ and $L V T=1$

If the angular distributions are given as tabulated probability distributions, $L T T=2$, and a transformation matrix is given for elastic scatiering, the structure of a section is
[MAT, 4, MT/ZA, AWR, LVT, LTT, 0, O]HEAD LVT = 1, LTT = 2
[MAT, 4, MT/O.O, AWR, O, LCT, NK, NM/V ${ }_{K}$]LIST
[MAT, 4, MT/O.0, 0.0, $\left.0,0, N R, N E / E_{\text {int }}\right] T A B 2$
[MAT, 4, MT/T, $\left.E_{1}, L T, 0, N R, N P / \mu_{i n t} / \mathrm{P}\left(\mu, E_{1}\right)\right] T A B 1$
[MAT, 4, MT/T, $\left.E_{2}, L T, 0, N R, N P / \mu_{i n t} / p\left(\mu, E_{2}\right)\right] T A B 1$
\qquad
\qquad
[MAT, 4, MT/T , $\left.E_{N E}, L T, 0, N R, N P / \mu_{i n t} / \mathrm{P}\left(H, E_{N E}\right)\right] T A B 1$
[MAT, 4, 0/0.0, 0.0, 0,0,0,0]SEND

T and LT are normally zero. See Appendix F for details on temperature dependence.

4.2.4. Tabulated Probability Distributions Given and Transformation Matrix

Not Given: LTT $=2$ and LVT $=0$

The structure of a section is the same as above, except that the second record (a LIST record) is replaced by
[0.0, AWR, O, LCT, 0, O]CØNT.

This form is always used for angular distribution of nonelastically scattered neutrons when tabulated angular distributions are given.

Abstract

4.3. Procedures

The angular distributions for elastic scattering should be given as Legendre polynomial coefficients, $f_{\ell}(E)$'s (LTT $=1$), and they should be given in the $C M$ system ($L C T=2$). It is recommended that the angular distributions of neutrons from nonelastic reactions (such as continuum inelastic, fission, etc.) be given as tabulated distributions, $p(\mu, E)^{\prime} s$, and that they be in the Lab system. All angular distribution data should be given at the minimum number of incident energy points that will accurately describe the energy variation of the distributions.

When the angular distributions are represented as Legendre polynomial coefficients, certain procedures should be followed. Enough Legendre coefficients should be used to accurately represent the recommended angular distribution at a particular energy point and ensure that the interpolated distribution is everywhere positive. The number of soefficients (NL) may vary from energy point to energy point; in general, NL will increase with increasing incident energy. A linear-linear interpolation scheme (INT = 2) must be used to obtain coefficients at intermediate energies. This is required to ensure that the interpolated distribution is positive over the cosine interval from -1.0 to +1.0 ; it is also required because some coefficients may be negative. In no case should NL exceed a value of 20 . If more than 20 coefficients appear to be required to obtain a non-negative distribution, a constrained Legendre polynomial fit to the data should be given. NL $=1$ is allowed at low energies to specify an isotropic angular distribution.

When angular distributions are represented as tabulated data, certain procedures should be followed. Sufficient angular points (cosine values) should be given to accurately represent the recommended distribution. The

number of angular points may vary from distribution to distribution. The cosine interval must be from -1.0 to +1.0 . The interpolation scheme for $p(\mu, E)$ vs. μ should be log-linear ($I N T=4$), and that for $p(\mu, E)$ vs. E should be linear-linear $($ INT $=2)$.

Representation of angular distributions of neutrons for the thermal energy range presents a problem. Either free-atom or bound-atam scattering data may be given in File 4 for a material, but not both. For example, freeatom data for carbon appear in MAT $=1274$ and bound-atom data appear in $M A T=1065$.

The formats given above do not allow an energy-dependent transformation matrix to be given, so transformation matrices may not be given for nonelastic scattering reaction types. When a processing code wishes to transfer inelastic level angular distritutions expressed as Legendre polynomial coefficients from the Lab to the $C M$ system, or $C M$ to LAB, a distribution should be generated and transformed point-wise to the desired frame of reference. The pointwise angular distributions can then be converted to Legendre polynomial coefficients in the new frame of reference.

The formats given above do not allow both Legendre polynomial coefficients and tubulated data to represent angular distributions for a given reaction type (MT number). If tabulated data are required to describe highly structured elastic scattering angular distributions at high energies, tabulated data must also be used to describe elastic scattering angular distributions at low energies.

4.4. Procedures for Specific Reactions

4.4.1. Elastic Scattering ($M T=2$)

1. A transformation matrix should be given in File 4 for elastic scattering. If the angular distributions are given for the $C M$ system, the matrix should
be for $C M$ to LAB conversion. The parameter NM should be even, and it must be equal to or greater than $\ell_{\text {max }}$ used in any of the angular distributions (if Legendre coefficients are given). The parameter NK is equal to (NM +1$)^{2}$.
2. Legendre polynomial representations should be used for elastic scattering angular distributions and discrete channel scattering and must be given in the $C M$ system. When this representation is given, the maximum order of the polynomial for each incident energy should be even and $\ell_{\max }$ must be ≤ 20.
3. Care must be exercised in selecting an incident energy mesh for certain light-to-medium mass materials. Here it is important to relate any known structure in the elastic scattering cross section to the energy dependent variations in the angular distributions. These two features of the cross sections cannot be analyzed independent of one another. Remember, processing codes opexate on $M T=2$ data given in Files 3 and 4. (Structure in the total cross section is not considered when generating energy transfer arrays.) It is better to maintain consistency in any structure effects between File 3 and File 4 data than to introduce structure in one file and ignore it in the other.
4. Consistency must be maintained between angular distribution data given for slastic and inelastic scattering. This applies not only to structural effects but also to how the distributions were obtained. Frequently, the evaluated elastic scattering angular distributions are based on experimental results that at times rontain contributions from inelastic scattering to lowlying levels (which in turn may contain direct interaction effects). If inelastic contributions have been subtracted from the experimental angular distributions, this process must be done in a consistent manner. The same contributions must be subtracted from both the integrated elastic scattering and the angular distribution. Be sure that these contributions are included in
the inelastic scattering cross section (both integrated data and angular distributions). This is particularly important when the inelastic contributions are due to direct interaction, since the angular distributions are not isotropic or symmetric about 90° but they are gererally forward peaked.
5. Do not use an excessive number of incident energy points for the angular distributions. The number used should be determined by the amount of variation in the angular distributions.
6. An incident energy point must be given at $10^{-5} \mathrm{eV}$. It is helpful, but not required, to include a point at 0.0253 eV . A point must be given at the highest energy point for which the angular distribution is isotropic. The highest incident energy point must be 20 MeV .
7. A relationship exists between the total cross section and the differential cross section at forward angles (Wick's limit or optical theorem).
$\frac{d \sigma}{d \Omega}(0) \geq \sigma_{w}=\left(3.0560 \times 10^{-\Omega} E_{0}\right) \frac{A W R^{2}}{(1+A W R)^{2}}\left(\sigma_{T}\right)^{2} \frac{\text { barns }}{\text { steradian }}$,
where E_{O} is in $\in V$ and σ_{T} in barns. Care should be taken to observe this inequality, especially at high energies.

4.4.2. Inelastic Scattering Cross Sections

1. Do not give angular distribution data for $M T=4$.
2. Always give angular distribution data for any of the following if they are given in File 3: $M T=51,52,53, \ldots, 91$.
3. Discrete level data should be given in the CM system, if possible. Some reactions, like $M T=91$, must be given in the LAB system.
4. Discrete channel angular distributions (e.g., riv = 2, 51-90. 701 ...) should be given as Legendre coefficients in the CM system. Con-
tinuum angular distributions should be tabular in the LAB system.
5. Isotropic angular distributions should be given (at two energy points) unless the degree of anisotropy exceeds 5\%. If any level excitation cross sections contain significant direct interaction contributions, angular distributions are very important.
6. Use the precautions outlined above when dealing with level excitation cross sections that contain a large amount of structure.
7. Do not overcomplicate the data files. Restrict the number of distributions to the minimum required to accurately represert the data.
8. Angular distributions for exit protons, etc., are given in the $M T=700$ series, and for photons in File 14.

4.4.3. All Other Neutron Producing Reactions

Angular distribution data must be given for all neutron producing reactions. Make sure, giving these data, that they are realistic. Tabulated angular distributions are preferred.

5. FILE 5, ENERGY DISTRIBUTION OF SECONDARY NEUTRONS

5.1. General Description

File 5 contains data for the energy distributions of secondary neutrons, expressed as normalized probability distributions. Each section of the file gives the data for a particular reaction type (MT number). The sections are then ordered by increasing MT number.

Data will be given in File 5 for all reaction types that produce secondary neutrons, unless the secondary neutron energy distributions can be implicitly determined from data given in Files 3 and/or 4 . No data will be given in file 5 for elastic scattering ($M r=2$), since the secondary energy distributions can be obtained from the angular distributions in File 4 . No data will be given for neutrons that result from excitation of discrete inelastic levels when data for these reactions are given in both File 3 and File 4 (MT $=51,52, \ldots, 90$). Data should be given in File 5 for $M T=91$ (ınelastic scattering to a continuum of levels), $M T=18$ (fission), $M T=16(n, 2 n), M T=17(n, 3 n), M T=455$ (delayed neutrons from fission), and certain other nonelastic reactions that produce secondary neutrons.

```
The energy distributions, p(E + E'), are normalized so that
```

$$
\int_{0}^{E^{\prime} \max } p\left(E \rightarrow E^{\prime}\right) d E^{\prime}=I,
$$

where $E^{\prime}{ }_{\text {max }}$ is the maximum possible secondary neutron energy and its value depends on the incoming neutron energy E and the analytic representation of $p(E \rightarrow E ')$. The secondary neutron energy E ' is always expressed in the laboratory system.

The differential cross section is obtained from
$\frac{d \sigma\left(E \rightarrow E^{\prime}\right)}{d E^{\prime}}=m \sigma(E) p\left(E \rightarrow E^{\prime}\right)$,
where $\sigma(E)$ is the cross section as given in File 3 for the same reaction type number ($M T$) and m is the neutron multiplicity for this reaction type (m is implicit; e.g., $m=2$ for $n, 2 n$ reactions).

The energy distributions $p(E \rightarrow E)$ can be broken down into partial energy distributions, $f_{k}(E \rightarrow E ')$, where cach of the partial distributions can be described by different analytic representations;

$$
p\left(E \rightarrow E^{\prime}\right)=\sum_{k=1}^{N K} p_{k}(E) f_{k}\left(E \rightarrow E^{\prime}\right)
$$

and at a particular incident neutron energy E,

$$
\sum_{k=1}^{N K} p_{k}(E)=1
$$

where $P_{k}(E)$ is the fractional probability that the distribution $f_{k}\left(E \rightarrow E^{\prime}\right)$ can be used at E.

The partial energy distributions $f_{k}\left(E \rightarrow E^{\prime}\right)$ are represented by various analytical formulations. Each formulation is called an energy distribution law and has an identification number associated with it (LF number). The allowed energy distribution laws are given below.

Secondary Energy Distribution Laws

$L F=1$, Arbitrary tabulated function:
$f\left(E \rightarrow E^{\prime}\right)=g\left(E \rightarrow E^{\prime}\right)$.
A set of incident energy points is given, E_{i} and $g\left(E_{i} \rightarrow E^{\prime}\right)$ is tabulated as a function of E^{\prime}.
$L F=3$, Excitation of discrete levels:
$f\left(E \rightarrow E^{\prime}\right)=\delta\left[E^{\prime}-\frac{A^{2}+1}{(A+1\rangle^{2}} E+\frac{A}{A+1} \theta\right]$.
$A=A W R$ the ratio of the mass of the target nucleus tc that of the neutron);
$\theta=$ excitation energy of the energy level in the residual rucleus.
$L F=5$, General evaporation spectrum:
$f\left(E \rightarrow E^{\prime}\right)=g\left[E^{\prime} / \theta(E)\right]$.
$\theta(E)$ is tabulated as a function of incident neutron energy, $E ;$
$g(x)$ is tabulated as a function of $x, x=E^{\prime} / \theta(E)$.
$L F=7$, Simple fission spectrum (Maxwellian):
$f\left(E \rightarrow \dot{x}^{\prime}\right)=\frac{\sqrt{E^{\prime}}}{I} e^{-E^{\prime} / \theta(E)}$.

I is the normalization constant,

$$
I=\theta^{3 / 2}\left[\frac{\sqrt{\pi}}{2} \operatorname{erf}(\sqrt{(E-U) / \theta})-\sqrt{(E-u) / \theta} e^{-(E-U) / \theta}\right] ;
$$

θ is tabulated as a function of energy, E;
U is a constant introduced to define the proper upper limit for the final neutron energy that $0 \leq E^{\prime} \leq E-U$.
$L F=9$ Evaporation spectrum:
$f\left(E \rightarrow E^{\prime}\right)=\frac{E^{\prime}}{I} e^{-E^{\prime} / \theta}$.

I is the normalization constant,

$$
I=\theta^{2}\left[1-\epsilon^{-(E-U) / \theta}\left(1+\frac{E-U}{\theta}\right)\right]
$$

θ is tabulated as a function of incident neutron energy, E;
U is a constant introduced to define the proper upper limit for the final neutron energy that $0 \leq E^{\prime} \leq E-U$.
$L F=10$, Watt spectrum:

a and b are constants.
NOTE: Distribution laws are not presented for LF $=2,4,6$, or 8 . These laws are no longer used.

The data are given in each section by specifying the number of partial energy distributions that will be used. The same energy mesh should be used for each one. The partial energy distributions may all use the same energy distribution law (LF number) or they may use different laws.

5.2. Formats

Each section of File 5 contains the data for a particular reaction type (MT number: , starts with a HEAD record, and ends with a SEND record. Each subsection contains the data for one partial energy distribution. The structure of a subsection depends on the value of LF (the energy distribution law).

The following quantities are defined
NK is the number of partial energy distributions. There will be one subsection for each partial distribution.
\underline{U} is a constant that defines the upper energy limit for the secondary neutron so that $0 \leq E^{\prime} \leq E-U$ (given in the Lab system).

Q is a parameter used to describe the secondary energy distribution. The definition of θ depends on the energy distribution law (LF) given; however, the units are always eV.

If $L F=3, \theta$ is the excitation energy, $|Q|$, of a level in the residual nucleus.

If $L F=5,7$, or $9, \theta$ is an effective nuclear temperature.
is a flag that specifies the energy distribution law that is used for a particular subsection (partial energy distribution). (The definitions for LF are given in section 5.1.). is the fractional part of the particular cross section that can be described by the $k^{\text {th }}$ partial energy distribution at the $N^{\text {th }}$ incident energy point.

NOTE: $\quad \sum_{k=1}^{N K} p_{k}\left(E_{N}\right)=1.0$
$f_{k}\left(E \rightarrow E^{\prime}\right)$ is the $k^{\text {th }}$ partial energy distribution. The definition depends on the value of LF.

NR is the number of interpolation ranges.
NP is the number of incident energy points at which $p_{k}(E)$ is given.
a,b are constants used in the watt spectrum. (IF = 10.)
NE is the number of incident energy points at which tabulated dis-
tributions are given. Also the number of points at which $\theta(E)$
is given. (NE < 200.)
NF is the number of secondary energy points in a tabulation. (NF ≤ 1000.)
The structure of a section has the foilowing form:
[MAT, 5, MT/ZA, AWR, 0, 0, NK, O]HEAD
<subsection for $k=1>$
<subsection for $k=2>$
<subsection for $k=$ NK>
[MAT, 5, 0/0.0, 0.0, 0, 0, 0, 0]SEND

The structure of a subsection depends on the value of LF. Subsections should be ordered by increasing values of LF. For cases in which more than one subsection contains data using the same LF, these subsections should be ordered by increasing values of θ. The formats for the various values of $L F$ are given below.

LF $=1$. Arbitrary tabulated function

Note that the incident energy mesh for $p_{k}(E)$ does not have to be the same as the E mesh used to specify the energy distributions. The interpolation scheme used between incident energy points, E, and between secondary energy points, E', should be linear-linear. T and LT refer to possible temperature (physical) dependence.

LF $=3$, Discrete level excitation
[MAT, 5. MT/ T , θ, LT,LF=3, NR, NP/E int $/ \mathrm{D}(E)] T A B 1$
Only one record is given for each subsection.
$\underline{L F}=5$, General evaporation spectrum
[MAT, 5, MT/ U , $\left.0.0,0, L F=5, N R, N P / E_{i n t} / \mathrm{p}(E)\right] T A B 1$
[MAT, 5, MT/0.0, $0.0,0,0, N R, N E / E$ int $^{\prime}$
$\theta\left(E_{1}\right), \quad \theta\left(E_{2}\right)$,

[MAT, 5, MS/0.0, $0.0,0,0, N R, N F / x_{\text {int }} /$
$x_{1}, g\left(x_{1}\right), x_{2}, g\left(x_{2}\right), x_{3}, g\left(x_{3}\right)$
$x=\frac{E^{\prime}}{\theta(E)}$

LF $=7$, Simple fission spectrum (Maxwellian)
[MAT, 5, MT/U $\left.\mathrm{U}, 0.0,0, \mathrm{LF}=7, \mathrm{NR}, \mathrm{NP} / \mathrm{E}_{\text {int }} / \mathrm{P}(\mathrm{E})\right] \mathrm{TABI}$
[MAT, 5, MT/0.0, $0.0,0,0$, NR $\left.N E / E_{\text {int }} / \theta(E)\right]$ TABl
$\underline{L F}=9$, Evaporation spectrum
[MAT, 5, MT/ U , 0.0, $\left.0, L F=9, N R, N P / E_{i n t} / \mathrm{P}(E)\right] T A B 1$
[MAT, 5, MT/O.0, $\left.0.0,0,0, N R, N E / E_{i n t} / \theta(E)\right] T A B 1$
$\underline{L F}=10$, Watt spectrum
[MAT, 5, MT/O.0, $\left.0.0,0, L F=10 \mathrm{NR}, \mathrm{NP} / \mathrm{E}_{\text {int }} / \mathrm{p}(\mathrm{E})\right] \mathrm{TABl}$
[MAT, 5, MT/0.0, $0.0,0,0,2,0 /$

Note that no formats have been described for $L F=2,4,6$, or 8 . These laws are no longer defined.

5.3. Procedures

As many as three different energy meshes may be required to describe the data in a subsection (one partial distribution). These are the incident energy mesh for $p_{k}(E)$, the incident energy mesh at which secondary distributions are given, $f_{k}\left(E \rightarrow E^{\prime}\right)$, and the secondary energy mesh for $f_{k}\left(E^{\prime} \rightarrow E^{\prime}\right)$. It is recommended that a linear-linear or a linear-log interpolation scheme be used for the first two energy meshes, and a linear-linear interpolation for the last energy mesh. Double energy points must be given in the incident energy mesh whenever there is a discontinuity in any of the $p_{k}(E)$'s (this situation occurs fairly frequently). This energy mesh must also include threshold energy values for all reactions being described by the $p_{k}(E)$'s. Zero values for p_{k} must be given for energies below the threshold (if applicaile).

Two nuclear temperatures may be given for the $(n, 2 n)$ reaction. Each temperature, θ. may be given as a function of incident neutron energy. In this case $p_{1}(E)=p_{2}(E)=0.5$. A similar procedure may be followed for the $(n, 3 n)$ and other reactions.

A constant, U, is given for certain distributiol laws (LF $=5,7$, or 9). Constant, U, is provided to define the proper upper limit for the secondary energy distribution so that $0 \leq E^{\prime} \leq E-U$. The value of U depends on how the data are represented for a particular reaction type. Consider U for inelastic scattering:

Case A The total inelastic scattering cross section is described as a continuum. U is the threshold energy for exciting the lowest level in the residual nucleus.

Case B For the energy range considered, the first three levels are described explicitly (either in File 3, $M T=51,52$, and 53, or in File 5,
$L F=3$), and the rest of the inelastic cross section is treater as a continuum, U is the threshold energy (known or estimated) for the fourth level in the residual nucleus.

If the reaction being described is fission, then U should be a large negative value ($\mathrm{U} \sim-20.0 \times 10^{6} \mathrm{eV}$ to $-30 . \times 10^{6} \mathrm{eV}$). In this case neutrons can be born with energies much larger than the incident neutron energy. It is common practice to describe the inelastic cross section as the sum of excitation cross sections (for discrete levels) for neutron energies up to the point where level positions are no longer known. At this energy point, the total inelastic cross section is treated as a continuum. This practice can lead to erroneous secondary energy distributions for incident neutron energies just above the cutoff energy. It is recommended that the level excitation cross sections for the first several levels (e.g., 4 or 5 levels) be estimated for several MeV above the cutoff energy. The continuum portion of the inelastic cross section will be zero at the cutoff energy, and it will not become the total inelastic cross section until several MeV above the cutoff energy.

It is recomended that the cross sections for excitation of discrete inelastic levels be described in File 3 ($M T=51,52, \ldots$, etc.). The angular distributions for the neutrons resulting from these levels should be given in File 4 (same MT numbers). The secondary energy distributions for these neutrons can be obtained analytically from the data in Files 3 and 4. This procedure is the only way in which the energy distributions can be given for these neutrons. For inelastic scatter, the only data required in File 5 are for $M T=91$ (continuum part).

5.4. Additional Procedures

5.4.1. General Comments

1. Do not give File 5 data for the discrete level excitation data given in File 3 as $M T=51,52, \ldots . .90$. If $M T * 91$ is given in File 3, a section for MT $=91$ must be given in File 5. A section must also be given in Fije 5 for all other neutron producing reactions. Energy distributions for exit protons, etc., are given in the $M T=700$ series, and for photons, in File 15.
2. Care must be used in selecting the distribution law number (LF) to be used to represent the data. As a rule, use the simplest law that will accurately represent the data. Use only tabulated distributions ($L \mathcal{F}=1$) when the data cannot be represented by an evaporation spectrum ($1 F=9$) or a Maxwellien (L F $=7$).
3. A section in File 5 must cover the same incident energy range as was used for the same MT number in File 3. The sum of the probabilities for all laws used must be equal to anity for all i:. sident energy points.
4. If the incident neutron energy exceeds several Mev, pre-equilibrium particle emission can be important, as illustrated from high resolution neutron and proton spectra measurements and analysis of pulsed sphere experiments. In these cases either tabulated spectra or "mocked-up" levels can be constructed to supplement or replace simple evaporation spectra.

5.4.2. $\quad \mathrm{LF}=1$ (Tabulated Distributions)

Use only tabulated distributions to represent complicated energy distributions. Use the minimum number of incident energy points and secondary neutron energy points to accurately represent the data. The integral over secondary neutron energies for each incident energy point must be unity to

```
within four significant figures. All interpolation schemes must be with
linear-linear or log-linear (INT = 1, 2, or 3) tc preserve probabilities upon
interpolation. All secondary energy distributions must start and end with
zero values for the distribution function g(E }->\mathrm{ F').
```

5.4.3. $\mathrm{LF}=3$ (Approximate Discrete Level Excitation)

The use of this law is discouraged. The use of the LR flag in File 3 eliminates most of the need to use this law.
5.4.4. $L F=5$ (General Evaporation Spectrum)

This law is recommended for File $5(M T=455)$. Otherwise, $L \mathcal{F}=1,7, o r$ 9 should be used.

5.4.5. LF \quad = 7 (Maxwellian Spectrum)

This is the preferred law to use for the fission spectrum. A linearlinear interpolation scheme is preferred for specifying the nuclear temperature as a function of energy.

5.4.6. $\mathrm{IF}=9$ (Evaporation Spectrum)

An evaporation spectrum is preferred for most reactions. Care must be taken in describing the nuciear temperature near the threshold of a reaction. Nuclear temperatures that are too large can violate conservation of energy.

5.4.7. Selection of the Integration Constant, U

1. When $L \mathcal{F}=5,7$, or 9 is used, an integration constant, U is required. This constant is used in defining the upper energy limit of secondary neutrons;
i.e.. $E_{\text {max }}^{\prime}=E_{n}-U$, where E_{n} is the incident neutron energy. U is a constant for the complete energy range covered by a subsection in File 5 and is given in the LAB system.
2. U is negative for fission reactions. The preferred value is $\mathbf{- 2 0} \mathbf{~ M e V}$.
3. In practice, U can be taken to be the threshold energy for the lowest level (known or estimated) that can be exciced by the particular reaction within the incident energy range covered by the subsection.
4. The following three cases conmonly occur in data files; procedures are given for obtaining U values.

Case A: The complete reaction is treated as a continum.
$U=-Q \frac{1+A W R}{A W R}$.
where Q is the reaction Q-values, $A W R$ is the ratio of the target mass to the neutron mass.

Case B: The reaction is described by excitation of three levels (in File 3 as $M T=51,52,53$) and a continuum part where q_{4}^{\prime} is the known or estimated Q-value for the fourth level.

Case C: The reaction is described by excitation of the first three levels (in File 3 as $M T=51,52,53$) for neutron energies from the level thresholds up to 20 MeV , excitation of the next five levels (in File 3 as $M T=54, \ldots, 58$) from their thresholds up to 8 MeV , and by a continuum part that starts at 5 MeV .

In this case two subsections should be used, one to describe the energy range from 5 to 8 MeV and another to describe the energy region from 8 to 20 MeV . In the first subsection (5-8 MeV),
$U=-Q_{9}^{\prime} \frac{1+\text { AWR }}{A}$.
and the second ($8-20 \mathrm{MeV}$),

$$
u=-Q_{4}^{\prime} \frac{1+A W R}{A}
$$

$$
-5.13=
$$

5.4.8. Multiple Nuclear Temperatures

Certain reactions, such as ($n, 2 n$), may require specification of more than one nuclear temperature. $O(E)$ should be given for each neutron in the exit channels; this is done by using more than one subsection for a reaction. The U value is the same for all subsections. The upper energy limit is determined by the threshold energy and not by level densities in the residual nuclei.

5.4.9. Average Energy for a Distribution

The average energy of a secondary neutron distribution must be 'ess than the available energy for the reaction:

$$
E_{\text {avail }}=E+\frac{1+A W R}{A W R} Q
$$

The mean energy should be calculated from the distribution at each value of E. This mean is analytic in the three cases given below.
LF \bar{E}

$$
\cdots \frac{(A W R)^{2}+1}{(A W R+1)^{2}} E-\frac{A W R}{A W R+1} \theta
$$

$$
7 \quad \frac{3}{2} \theta-\frac{\theta^{5 / 2}}{I}\left(\frac{E-U}{\theta}\right)^{3 / 2} e^{-(E-U) / \theta}
$$

$$
9 \quad 2 \theta-\frac{\theta^{3}}{I}\left(\frac{E-U}{\theta}\right)^{2} e^{-(E-U) / \theta}
$$

$$
I=\int_{0}^{E_{\max }^{\prime}} f\left(E \rightarrow E^{\prime}\right) d E^{\prime}
$$

$=$ the normalizing denominator (see 5.3). Thus $E_{\text {avail }}(E)>$ multiplicity $* \bar{E}$.

6. FILE 6, ENERGY-ANGULAR DISTRIBUTIONS FOR SECONDARY NEUTRONS

6.1. General Description

The use of File 6 is discouraged but the formats and procedures are presented here in case the File should be activated.

This file is provided to represent energy-angular distributions of secondary neutrons. Data are giver here when it is not possible to provide accurate representation by using Files 4 and/or 5. This situation frequently arises when trying to frovide a description of the secondary neutrons resulting from certain neutron reactions with fairly light ruclei.

Each section of the file contains the data for a particular reaction type (MT number) and the sestions are ordered by increasing MT number. If data are given in File 6 for a particular reaction, no data will be given in Files 4 or 5 for the same reaction. The secondary neutron energy-angle distribution are expressed as noxmalized probability distributions, $p(E \rightarrow E \prime, \mu)$.

$$
\int^{E_{\max }^{\prime}} d E^{\prime} \int_{-1}^{1} p\left(E \rightarrow E^{\prime}, \mu\right) d \mu=1
$$

The differential cross section (in barns per steradian per ev) is obtained from

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}} \quad\left(E \rightarrow E^{\prime}, \mu\right)=\frac{\sigma(E)}{2 \pi} \quad m \quad p\left(E \rightarrow E^{\prime}, \mu\right),
$$

where $\sigma(E)$ is the cross section for a particular reaction as given in File 3 and/ar File 2 for the same reaction type and m is the implied neutron multiplicity.

The angular part of the distribution may be specified in one of two ways: (1), secondary energy distributions may be tabulated at a set of secondary angles; (2), the probability distributions may be expressed as a Legendre polynomial expansion.

$$
p\left(E+E^{\prime}, \mu\right)=\sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} p_{\ell}\left(E \rightarrow E^{\prime}\right) p_{\ell}(\mu) .
$$

In this cast, the zeroth coefficient, $p_{0}\left(E \rightarrow E^{\prime}\right)$, is not unity (as in File 4), but for a particular incident neutron energy, E,

$$
\int p_{0}\left(E \rightarrow E^{\prime}\right) d E^{\prime}=1
$$

The incident neutron energies and secondary angles and energies must be given in the laboratory system.

If distributions $p^{\prime}\left(E \rightarrow E^{\prime}, \mu\right)$ are tabulated at a series of angles, a set of secondary angles (cosines of the scattel angles) is selected. This set is the same for all incident energy points and the data are ordered by increasing values of the cosine (-1.0 to +1.0). At each anguiar point, the probability distributions $p\left(E \rightarrow E^{\prime}, \mu\right)$ are given for a set of incident neutron energies; i.e., a subsection of data is given for each angle and the format of a subsection resembles the format of a section in File 5. The secondary energy distribution laws (LF numbers) defined in Section 5.2 are used in this file.

When the distributions are represented by Legendre polynomial expansion coefficients, then a subsection is given for each coefficient, $p_{\ell}\left(E+E^{\prime}\right)$. Its format is similar to that for a section in File 5 (Section 5.2). The first subsection contains data for the zeroth coefficient, $p_{0}\left(E \rightarrow E^{\prime}\right)$. The subsections are then ordered by increasing ℓ-value of the coefficients.

The following quantities are defined.
LCT is a flag indicating which reference frame is used for both secondary angles and energies. LCT $=1:$ The data are given in the LAB system. LCT $=2:$ (CM) Do not use.

LTT is a flag indicating which representation is used.
LTT = 1: The data are given as Legendre expansion coefficients. LTT = 2: The data are given as a tabulation.

NL is the order of the expansion (when Legendre polynomial coefficients are given, LTT = 1).
LA is the value of ℓ (for the $\ell^{\text {th }}$ coefficient).
NA is the number of angles (cosines) at which the secondary distributions are given. (NA \leq 201.)
$\underline{\mu}$ is the cosine of the scattered angle.
NK is the number of partial probability distributions used for this reaction type (used as in File 5, Section 5.2.)

LF is a flag that indicates which secondary energy distribution law is used for a particular partial probability distribution. (See section 5.2).

6.2. Formats

Each section of the file gives the data for a particular reaction type. The structure of a section depends on the value of LTT (representation used). The structure of a section for $L T T=1$ (Legendre polynomial oxpansion) is [MAT, 6, MT/RA , AWR, $0, ~ L T T R, ~ 0, ~ 0]$ HEAD LTT $=1$
[MAT, 6, MT/ O. $0,0.0,0, \mathrm{LCT}, \mathrm{NL}, 0] \mathrm{C} \mathrm{CNT}$
<Subsection for $p_{0}\left(E \rightarrow E^{\prime}\right)>$
<Subsection for $P_{N L}\left(E \rightarrow E^{\prime}\right)>$
[MAT, 6, 0/0.0, 0.0, $0,0,0,0]$ SEND

The structure of a subsection is identical to that of a section for secondary energy distributions in File 5 (Section 5.2) except that the SEND record is deleted (since the section in File 5 is used here as a subsection), and, the HEAD record is changed to read
[MAT, 6, MT/O.0, 0.0, LA, O, INK, O]CØNT
The following is the structure for a typical section, where LTT $=1$ (Legendre expansion coefficients given), NK = I (one partial probability distribution, and $L F=1$ (an arbitrary tabulated distribution).
[MAT, 6, MT/ZA, AWR, O, LTT, 0, 0]HEAD LTT $=1$
[MAT, 6, MT/0.0, 0.0, 0, LCT, NL, 0]CØNT
$[\mathrm{MAT}, 6, \mathrm{MT} / 0.0,0.0, L A, 0, N K, 0] C \varnothing N T \quad L A=0, N K=1$
[MAT, 6, MT/T, $\left.0.0, L T, L F, N R, N P / E_{i n t} / P_{0}(E)\right] T A B 1 \quad L F=1$
[MAT, 6, MT/O.0, 0.0, $\left.0,0, N R, N E / E{ }_{i n t}\right]$ TAB2
[MAT, 6, MT/T, $\left.E_{1}, L T, 0, N R, N F / E^{\prime}{ }_{\text {int }} / p_{0}\left(E_{1} \rightarrow E^{\prime}\right)\right] T A B 1$
[MAT, 6, MT/T, $E_{2}, L T, 0, N R, N F / E_{\text {int }}^{\prime} / p_{0}\left(E_{2} \rightarrow E^{\prime}\right) T A B 1$
[MAT, 6, MT/T, ENE' LT, $\left.0, N R, N F / E_{i n t}^{\prime} / P_{0}\left(E_{N E} \rightarrow E^{\prime}\right)\right] T A B 1$
[MAT, 6, MT/0.0, 0.0, LA, $0, N K, 0] C \emptyset N T \quad L A=1, N K=1$
[MAT, 6, MT/T, 0.0, LT, LF, NR, NP/E int $\left./ \mathrm{P}_{1}(E)\right] T A B 1 \quad L F=1$
[MAT, 6, MT/0.0, 0.0, 0, 0. NR, NE/E int]TAB2
$\left[M A T, 6, M T / T, E_{1}, L T, 0, N R, N F / E_{i n t}^{\prime} / p_{1}\left(E_{1} \rightarrow E^{\prime}\right)\right] T A B 1$
$\left[\mathrm{MAT}, 6, \mathrm{MT} / \mathrm{T}, \mathrm{E}_{\mathrm{NE}}{ }^{\prime} \mathrm{LT}, 0, \mathrm{NR}, \mathrm{NF} / \mathrm{E}_{\text {int }} / \mathrm{P}_{1}\left(\mathrm{E}_{\mathrm{NE}} \rightarrow \mathrm{E}^{\prime}\right)\right] \mathrm{TAB2}$ <Subsection for $p_{2}\left(E \rightarrow E^{\prime}\right)>$
<Subsection for $p_{N L}\left(E \rightarrow E^{\prime}\right)>$
[MAT, 6, 0/0.0, 0.0, 0, 0, 0, 0]SEND

```
    The structure of a section for LTT = 2 (tabulated distributions at a series
of scattering angles) is
    [MAT, Є, MT/ZA, AWR, O, LTT, O, O]HEAD
                                    LTT=2
    [MAT, 6, MT/0.0, 0.0, 0, LCT, NR, NA/ u int]TAB2
    <Subsection for p(E P E', (\mu)
    <Subsection for P(E P E', H
    <Subsection for P(E P E', H
[MAT, 6, MT/ 0.0, 0.0, 0. 0. 0. 0]SEND
```

Again the structure of a subsection is identical to that of a jection for secondary energy distributions in File 5 except that the SEND record is deleted (since the section in File 5 is used here as a subsection), and the HEAD record is changed to read
[MAT, 6, MT/ O.O. H, 0, O, NK, 0]CøNT
The structure of a typical section with LTT $=2$ (tabulated distributions at a series of $\|$'s), $N K=1$ (one partial probability distribution) and $L F=1$ (an arbitrary tabulated distributions) is
[MAT, 6, MT/ZA, AWR, O, LTTT, O, 0]HEAD
[MAT, 6, MT/O.O, 0.0, 0, LCT, NR, NA/i int]TAB2
[MAT, 6, MT/C.O, $\left.H_{1}, 0,0, N K, 0\right] C \not \subset N T \quad$ NK $=1$
[MAT', 6, MT/T, 0.0, LT, LF, NR, NP/E $\left.{ }_{i n t} / P\left(E, \mu_{1}\right)\right] T A B 1 \quad L E=1$
[MAT, 6, MT/O.0, 0.0, 0, O, NR, NE/E int $]^{T A B 2}$

[MAT, 6, MT/T, $\left.E_{2}, L T, 0, N R, N F / E i_{i n t} / P\left\langle E_{2} \rightarrow E^{\prime}, u_{1}\right)\right] T A B 1$
(MAT, 6, MT/T, $E_{N E \prime}$ LT, $0, N R, N F / E_{i n t}^{\prime} / \mathrm{P}\left(E_{N E} \rightarrow E^{\prime}, \mu_{1}\right.$)]TAB1
[MAT, 6, MT/O.O, $\left.\mu_{2}, 0,0, N K, 0\right] C \varnothing N T$
$\mathrm{NK}=1$
[MAT, 6, MT/T, O.O. LT, LF, NR, NP/E int $\left./ \mathrm{P}\left(E, \mu_{2}\right)\right] T A B 1$ $L \mathcal{L F}=1$
[MAT, 6, MT/O.0, 0.0, 0, 0. NR, NE/E int $^{\text {] TAB2 }}$
(MAT, 6, NT/T, $\left.E_{1}, ~ L T, ~ O, N R, N F / E_{i n t} / \mathrm{p}\left(E_{1} \rightarrow E^{\prime}, \mu_{2}\right)\right] T A B 1$
[MAT, 6, MT/T, $\left.E_{N E}{ }^{\prime} L T, 0, N R, N F / E_{i n t}^{\prime} / P\left(E_{N E} \rightarrow E^{\prime}, \mu_{2}\right)\right] T A B 1$ $\left\langle\right.$ Subsection for $\left.p\left(E+E^{\prime}, \mu_{3}\right)\right\rangle$
<Subsection for $p\left(E+E^{\prime}, \mu_{N A}\right)>$
[MAT, 6, MT/O.0, $0.0,0,0,0,0] S E N D$
Again T and LT refer to possible temperature dependence.

6.3. Procedures

All interpolation schemes used in this section should be linear-linear to ensure that the probability distributions will have the proper normalization everywhere. It. is strongly recomended that an arbitrary tabulated distribution lah ($L F=1$) be used for secondary energy distribution for both $L T T=1$ and 2 .

7. FILE 7. THERMAL NEUTRON SCATTERING LAW DATA

7.1. General Description

File 7 contains inelastic neutron scattering (MT =4) data for the thermal neutron energy range for moderating materials ($E<5 \mathrm{eV}$). The data in this file must be combined with that in Files 2 and $4(M T=2)$ to obtain the total scattering cross sections for certain materials.

Inelastic scattering is represented by the thermal neutron scattering law, $S(\alpha, \beta, T)$, and is defined (for a moderating molecule) by

$$
\frac{d^{2} \sigma}{d \Omega d E^{\prime}}\left(E+E^{\prime}, \mu, T\right)=\sum_{n=0}^{N S} \frac{M_{n} \sigma_{b n}}{4 \pi T} \sqrt{\frac{E^{\prime}}{E}} e^{-B / 2} S_{n}(\alpha, B, T)
$$

where there are ($N S+1$) types of atoms in the molecule (i.e., for $\mathrm{H}_{2} \mathrm{O}, \mathrm{NS}=1$) and
M_{n} is the number of atoms of the $n^{\text {th }}$ type in the molecule,
T is the moderator temperature $\left({ }^{\circ} \mathrm{K}\right)$,
E is the incident neutron energy (ev),
E' is the secondary neutron energy (ev).
B is the energy transfer, $B=\left(E^{\prime}-E\right\rangle / k T$,
\underline{a} is the momentum transfer, $\alpha=\left(E^{\prime}+E-2 \mu \sqrt{E E^{\prime}}\right) / A_{0} k T$,
A_{n} is the mass of the $n^{\text {th }}$ type atom, A_{o} is the mass of the principal scattering atom in the molecule,
$\sigma_{b n}$ is the bound atom scattering cross section of the $n^{\text {th }}$ type atom, $\sigma_{b n}=\sigma_{f n}\left(\frac{A_{n}+1}{A_{n}}\right)^{2}$
$\sigma_{f n}$ is the free atom scattering cross section of the $n^{\text {th }}$ type atom,
k is Boltzmann's contant, and
μ is the cosine of the scattering angle (in the lab system).

The data in file 7 for any particular material contain only the scattering law for the principal scatterer, $s_{0}(\alpha, \beta, T)$, i.e.. the $0^{\text {th }}$ atom in the molecule. These data are given as an arbitrary tabulated function. The scattering properties for the other atom types ($n=1,2, \ldots, N S$) are represented by analytic functions. Note that the scattering properties of all atoms in the molecule may be represented by analytic functions. In this case there is no principal scattering atom.

The constants required for she scattering law data and the andytic representations for the nonprincipal scattering atoms are given in an array, $B(N), N=1,2 \ldots, N I$, where $N I=6 *(N S+1)$. six constants are required for each atom type (one BCD card-image record). The first six elements pertain to the principal scattering atom, $n=0$. The elements of the array $B(N)$ are defined as
$B(1)=M_{0} \sigma_{f 0}$, the total free atom cross section for the principal scattering atom. If $\mathrm{B}(1)=0.0$, there is no principal scattering atom and the scattering properties for this material are completly described by analytic functions for each atom type in this material.
$B(2)=E$, the value of $E / k T$ above which the static model of elastic scattering is adequate (total scattering properties may be obtained from MT = 2 as given in Files 2 and 4 of the appropriate materials).
$B(3)=A_{0}$, the ratio of the mass of the atom to that of the neutron that was used to compute $\alpha\left(\alpha=\left(E^{\prime}+E-2 \mu \sqrt{E E^{\prime}}\right) / A_{0} k T\right)$.
$B(4)=E_{\text {max }}$, the upper energy limit for the constant $\sigma_{f 0}$ (upper energy limit in which $S_{0}(\alpha, \beta, T)$ may be used).
$B(5)$, not used.
$B(6)$, not used.

The next six constants specify the analytic functions to be used in describing the scattering properties of the first non-principal scattering atom, ($n=1$): i.e.. for H_{2}, this atom would be oxygen if the principal atom was hydrogen.

$$
\begin{aligned}
B(7)= & a_{1}, \text { a test indicating the type of analytic function used for this } \\
& \text { atom type. } \\
& a_{1}=1.0, \text { use a free gas scattering law. } \\
& a_{1}=2.0, \text { use a diffusive motion scattering law. } \\
B(8)= & M_{1} \subset f 1 \text {, the total free atom cross section for this atom type. } \\
B(9)= & A_{1}, \text { effective mass for this atom type. } \\
B(10)= & 0.0, B(10) \text { is not used. } \\
B(11)= & 0.0, B(11) \text { is not used. } \\
B(12)= & 0.0, B(12) \text { is not used. }
\end{aligned}
$$

The next six constants, $B(13)$ through $B(18)$, are used to describe the second nonprincipal scattering atom ($n=2$), if required. The constants are defined in the same way as for $n=1 ; e . g ., B(13)$ is the same type of constant as $B(7)$.

The scattering law is given by tabulating $S(\alpha, \beta)$ at a specific temperature $\left({ }^{\circ} \mathrm{K}\right)$ or at a series of temperatures. Since scattering law data are generally given at more than one temperature, it is extremely important to understand the data formats for specifying temperature-dependent data (see Appendix F for details). The data are presented at given values of B. The B's are ordered by increasing values. For each value of β, pairs of $S(\alpha, \beta)$ are given. (The data are given in this form only for the first temperature; see Appendix F for the formats for temperature dependent data.) Three interpolation schemes are given tc interpolate between values of β, α, and T.

In certain cases a more accurate temperature interpolation may be oftained by replacing the value of the actual temperature, T, that is used in the definition of a and B with a constant, $T_{o}\left(T_{0}=0.0253 \mathrm{eV}\right.$ or the equivalent depending on the units of Boltzmann's constant). A flag (LAT) is given for each material co indicate which temperature has been used in generating the $S(\alpha, \beta)$ data.

7.2. Formats

There is only one section in rile 7, but the format varies slightly, depending on whether temperature-dependent data are given. The following quantities are defined:

LAT is a flag indicating which temperature has been used to compute a and B.

LAT $=0$, the actual temperature was used. LAT $=1$, the constant $T_{0}=0.0253 \mathrm{eV}$ has been used.

NS is the number of non-principal scattering atom types. For most moderating materials there will be (NS + 1) types of atoms in the molecule (NS ≤ 3).

NI is the total number of items in the $B(N)$ list. NL $=6 *(N S+1)$.
B(N) is the list of constants. Definitions are given above (Section 7.1).
NR is the number of interpolation ranges for a particular parameter, either β or α.

NB is the total number of B values given.
NP is the number of a values given for each value of β for the first temperature described, $N P$ is the number of pairs, α and $S(\alpha, \beta)$, given.
$B_{\text {int }}$ and $\alpha_{\text {int }}$ are the interpolation schemes used (see Appendix E for interpolation formats).

The structure of a section is
[MAT, 7, MT/ZA, AWR, O, LAT, O, O]HEAD
[MAT, 7. MT/O.0, 0.0, 0, 0, NI, NS/B(1), B(2), ...B(NI)!LIST
[MAT, 7, MT/O.0, 0.0, $\left.0,0, N P, N B / B_{i n t}\right]$ TAB2
[MAT, 7, MT/T, $\left.B_{1}, L T T, O, N R, N P / \alpha_{\text {int }} / S\left(\alpha, B_{1}\right)\right]$ TABl
[MAT, 7, MT/T, B_{2} : LT, $\left.0, N R, N P / \alpha_{i n t} / S\left(a, B_{2}\right)\right]$ TARI

[MAT, 7. MT/T, $\left.B_{N B}, L T, 0, N R, N P / \alpha_{i n t} / S\left(\alpha, \beta_{N B}\right)\right] T A B I$
(MAT, 7, $0 / 0.0,0.0,0,0,0,0)$ SEND
T and $L T$ refer to possible temperature dependence. If the scattering law data are completely specified by analytic functions lno principal scattering atom type, as indicated by $B(1)=01$, tabulated values of $S_{0}(\alpha, \beta)$ are omitted and the TABZ and TABl records are not given.

7.3. Procedures

Any material may contãin a File 7 to describe inelastic scattexing cross sections for the thermal neutron energy range. Except for moderating materials, a free gas scattering law is generally adequate.

File 7 is the most important part of the cross seztion data for moderator type materials. Moderator materials should also contain a File 3, and, as a minimum, the radiative capture cross section ($M T=102$) should be given (as well as any other type of absorptive cross sections). If there are elastic scattering (i.e., coherent scattering) contributions to the total scattering cross section, then $M T=2$ must be given in File 3. The data in File 3 shall at least cover the same energy range [constant, $B(4)$] as the scattering law
data, $S_{0}(\alpha, \beta)$. The scattering law data should cover the energy range in which thermal inelastic effects are important. The recommended energy range is $10^{-5} \mathrm{eV}$ to 3.0 eV ; however, it may not be possible to obtain scattering law data for every moderating material for this energy range. The B mesh for Six, β) should be selected in such a manner as to accurately represent the scattering properties of the material with a minimum of B points. The α mesh at which $S(\alpha, \beta)$ is given should be the same for each value of B and for each temperature.

Note that the differential scattering cross section, as given in the equation in Section 7.1, represents the cross section for the complete molecule. The differential scattering cross section for a single atom of any component can be obtained by replacing $N_{n} \alpha_{b n}$ by $\sigma_{b n}$.
11. PHOTON PRODUCTYON

Photon production data are divided into five distinct files.

File
12
13
14
15
16

Description
Multiplicities and transition probability arrays Photon production cross sections

Photon angular distributions
Continucus photon energy spectra
Photon energy-angle distributions

With the exception of File 12, all the files are closely analogous to the corresponding neutron data files with the same number (modulo io). The purpose of file le is to provide additional methods for representing the energy dependence of photon production cross sections. The allowed reaction type (MT) numbers are the same as those assigned for neutron reactions, Fijes 1 through 7. However, they may have somewhat different meanings for photon production that require additional explanation in some cases:
(1) $M T=3$ should be used in Filies 12 through 16 to represent composite cross sections, that is, phozor p:roduction cross sections from more than one reaction type that heve been lumped together.
(2) There is no apparent reason to have redundant or derived data for the photon production files, as is the case for the neutron files, i.e., $M T=3,4$, etc. Therefore, to avoid confusion, the join of all sections of files 12 and 13 should represent the photon prom duction, with each section being disjoint from all others.
(3) Let us consider how one might represent the inelastic r-ray profuction data. The differential cross section for producing a r-ray of energy ${ }_{5}{ }_{\gamma}$ resulting from the excitation of the $m_{0}^{\text {th }}$ ievel of the
residual nucleus and the subsequent transition between two definite leveis $(j \rightarrow i)$, including the effects of cascading from the $m_{0}-j$ levels higher than j, is

$$
\begin{equation*}
\frac{d \sigma}{d E_{\gamma}}\left(E_{\gamma}, E_{, m_{0}}, i, j\right)=\delta\left(E_{\gamma}-\varepsilon_{j}+\varepsilon_{i}\right\rangle A_{j, i} \sigma_{m_{0}}(E) \prod_{\ell=j}^{m_{0}-j} \sum_{m_{l}=j}^{m_{l-l}} \prod_{m_{l-1}, m_{l}}^{T}, \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& \sigma_{m_{0}}(E)=\text { neutron cross sections for exciting the } m_{0}^{\text {th }} \text { level with neu- } \\
& \text { tron energy } E \text {, } \\
& \delta\left(\varepsilon_{\gamma}-\varepsilon_{j}+\varepsilon_{i}\right)=\text { delta function with } \varepsilon_{j}, \varepsilon_{i} \text { being energy levels of the resid- } \\
& \text { ual nucleus, } \\
& T P_{k, \ell}=\text { probability of the residual nucleus having a transition to } \\
& \text { the } \ell^{\text {th }} \text { level given that it was initially in the excited } \\
& \text { state corresponding to the } k^{\text {th }} \text { level, and } \\
& A_{k, \ell}=\text { probability of emission of a } \gamma \text { ray of energy } E_{\gamma}=\varepsilon_{k}-\varepsilon_{\ell} \text { as } \\
& \text { a result of the residual nucleus having a transition from the } \\
& k^{\text {th }} \text { to the } \ell^{\text {th }} \text { level. }
\end{aligned}
$$

We are at once beset by the problem that no clear choice of ENDF representation in terms of section number is possible. The data may naturally be identified with both the $m_{o}^{\text {th }}$ level and the $j^{\text {th }}$ level. To avoid this problem, we can sum Eq. (1) over m_{0} :

$$
\begin{equation*}
\frac{d \sigma_{1}}{d E_{\gamma}}\left(E_{\gamma}, E, i, j\right)=\sum_{m_{0}=j}^{N} \frac{d \sigma}{d E_{\gamma}}\left(E_{\gamma}, E_{,} m_{o}, i, j\right) . \tag{2}
\end{equation*}
$$

where N is the highest level that can be excited by a neutron of incident energy E (i.e.. $\epsilon_{N} \leq \frac{A W R}{A W R+1} E$). This gives a de-excitation cross section that can
single out a definite r-ray transition and has the advantage when experimental data are to be represented. The de-excitation cross section is identified with the $j^{\text {th }}$ level. Alternatively, we can sunn Eq. (1) over i and j :

$$
\begin{equation*}
\frac{d \sigma_{2}}{d E_{\gamma}}\left(E_{\gamma}, E, m_{o}\right)=\sum_{j=1}^{m_{0}} \sum_{i=0}^{j-1} \frac{d \sigma}{d E_{\gamma}}\left(E_{\gamma}, E_{,} m_{o}, i, j\right) \tag{3}
\end{equation*}
$$

This gives an excitation cross section that can single out a definite excited state and has the advantage when calculated data are to be represented. The excitation cross section is iclentified with the $m_{o}^{\text {th }}$ level. If Eq. (2) is summed over i and j, or if Eq. (3) is summed over m_{0}, then

$$
\begin{equation*}
\frac{d \sigma}{d E_{\gamma}}\left(E_{\gamma}, E\right)=\sum_{m_{0}=1}^{N} \frac{d \sigma_{2}}{d E_{\gamma}}\left(E_{\gamma}, E, m_{0}\right) \equiv \sum_{j=1}^{N} \sum_{i=0}^{j-1} \frac{d \sigma_{1}}{d E_{\gamma}}(E, E, i, j) . \tag{4}
\end{equation*}
$$

This gives a cross section for all possible excitations and transitions and thus corresponds to the total inelastic neutron cross section for discrete levels.

It is recomended that $M T=4$ be used for the data represented by Eq. (4), as well as for the continuum. If, however, it is expedient or useful to use $M T=51$ through 91 , then one must use either the de-excitation cross sections of Eq. (2) or the excitation cross sections of Eq. (3), but not both. A restriction is imposed if the transition probability array option is used and if the entire neutron energy range is not covered by the known transition probabilities. Then, for $M T=51$ tinrough 90 in File 12 to be used for the remaining neutron energy range, a representation by excitation multiplicities must be used.

The integrated cross sections of file 13 are obtained by integrating Eqs. (1) through (4) over E_{γ}.
(4) The remarks in Item (3) apply for discrete rays from ($n, p \gamma$), ($n, d \gamma$), ($n, t \gamma$), ($n,{ }^{3} H e \gamma$), and ($n, \alpha \gamma$) reactions, and the use of $M T=103$. 104, 105. 106, and 107 is recommended for these zases.

12. FJ:LE 12: MULIIFLICITIES AND TRANSITION PROBABILITY ARRAYS

File 12 can be used to represent the neutron energy dependence of photon production cross sections by means of either multiplicities or transition probability arrays. Both methods rely upon processing codes thit use neutron cross sections from File 2 and/or File 3 to generate absolute photon production cross sections.

Multiplicities can be used to represent the cross sections of discrete photons and/or the integrated cross sections of continuous photon spectra. The MT numbers in File 12 designate the particular neutron cross sections (File 2 and/or File 3) to which the multiplicities are referred. The use of multiplicites is the recommended method of presenting (n, γ) capture ray cross sections, provided. of course, that the (n, γ) cross section is adequately represented in File 2 and/or File 3.

For well-established level decay schemes, the use of transition probability arrays offers a concise method for presenting ($n, x y$) information. With this method, the actual decay scheme of the residual nucleus for a particular reaction (defined by MT number) is entered in File 12. This information can then be used by a processing code together with discrete level excitation cross sections from File 3 to calculate discrete ray production cross sections. This option caunot be used to represent the integrals of continuous photon spectra.

12.1. File 12 Format

Each section of File 12 gives information for a particular reaction type (MT number), either as multiplicities ($L \varnothing=1$) or as transition probability arrays ($L \varnothing$)). Each section always starts with a HEAD record and ends with a SEND record.
12.1.1. Option $1(L \varnothing=1)$: Multiplicities

The neutron energy dependence of photon production cross sections is represented by tabulating a set of neutron energy and multiplicity pairs $\left[E, Y_{k}(E)\right]$ for each discrete photon and for the photon energy continuum.* The subscript k designates a particular discrete photon or a photon continuum, and the total number of such sets is represented by NK.

The multiplicity or yield $Y_{k}(E)$ is defined by

$$
Y_{k}(E)=\frac{\sigma_{k}^{Y}(E)}{\sigma(E)} \text { (photons), }
$$

where E designates neutron energy and $\sigma(E)$ is the neutron cross section in file 2 and/or File 3 to which the multiplicity is referred (by the MT number). For discrete photons, $\sigma_{k}^{\gamma}(E)$ is the photon production cros; section for the discrete photon designated by k. For photon continua, $\sigma_{k}^{\gamma}(E)$ is the cross section for the photon continuum integrated over photon energy. In the continuum case,

$$
\begin{aligned}
y_{k}(E) & =\frac{\sigma_{k}^{\gamma}(E)}{\sigma(E)}=\frac{\int \frac{d \sigma_{k}^{\gamma}}{d E_{\gamma}}\left(E_{\gamma} \leftarrow E\right) d E_{\gamma}}{\sigma(E)} \\
& \left.=\frac{\int \sigma(E) y_{k}\left(E_{\gamma}+E\right) d E_{\gamma}}{\sigma(E)}=\int_{0}^{E_{\gamma}^{\max }} y_{y_{k}\left(E_{\gamma}\right.}^{\sigma}+E\right) d E_{\gamma},
\end{aligned}
$$

[^8]where E_{γ} designates photon energy (eV) $\frac{d v_{Y}}{d E_{\gamma}}\left(E_{Y}\right.$. E) is the absolute photon energy distribution in barns/ev, and $\gamma_{k}\left(E_{\gamma} * E\right)$ is the relative energy distribution in photons/ev. The quantity $\gamma_{k}\left(E_{\gamma}-E\right)$ can be broken down further as
$$
Y_{k}\left(E_{\gamma}+E\right)=Y_{k}(E) f_{k}\left(E_{\gamma}+E\right)
$$
which zesults in the requirement that
$$
\int_{0}^{E_{\gamma}^{\max }} f_{k}\left(E_{\gamma}-E\right) d E_{\gamma}=1
$$

Any time a continum representation is used for a given MT number in either File 12 or 13 , then the normalized energy distribution $f_{k}\left(E_{\gamma} * E\right)$ must be given in File 15 under the same MT number.

As a check quantity, the total yield

$$
Y(E)=\sum_{k=1}^{N K} y_{k}(E) \quad \text { (photons) }
$$

is also tabulated for each MT numioer if $\mathrm{NK}>1$.
The structure of a section for $L \varnothing=1$ is
[MAT, 12, MT/ZA, AWR; L $\quad \mathrm{A}=1, \mathrm{~b}$; NK, b]HEAD
[MAT, 12, MT/b, b; b, b; NR, NP/E int $/ \mathrm{Y}(E)] T A B I *$
<subsection for $k=1>$
<subsection for $k=2>$

[^9]<subsection for $k=N K$ >
[MAT, 12, $0 / b, b ; b, b ; b, b] S E N D$,
and the structure of each subsection is
[MAT, 12, MT/EG $\left.{ }_{k}, E S_{k} ; L P, L F ; N R, N P / E_{i n t} / Y_{k}(E)\right] T A B I$
where
$\mathrm{ES}_{\mathbf{k}}$ the energy of the level from which the photon originates. If the level is unknown or if a continuous photon spectrum is produced, then $E S_{k} \equiv 0.0$ should be used.
${ }^{E G}{ }_{k}$ the photon energy for $L P=0$ or 1 or Binding Energy for $L P=2$. For a continuous photon energy distribution, $E G_{k} \equiv 0.0$ should be used.

LP indicator of whether or not the particular photon is a primary: $L P=0$, origin of photons is not designated or not known, and the photon energy is $E G_{k}$;
IP $=1$, for nonprimary photons where the photon energy is again simply $E G_{k}$; and $L P=2$, for primary photons where the photon energy $E G_{k}^{\prime}$ is given by $E G_{k}^{:}=E G_{k}+\frac{A W R}{A W R+1} E_{n}$.

LF the photon energy distribution law number, which presently has only two values defined: $\mathrm{LF}=1$, a normalized tabulated function (in File 15), and $=2$, a discrete photon energy.

12.1.2. Option $2(L \varnothing=2)$: Transition Probability Arrays

With this option, the only data required are the level energies, deexcitation transition probabilities, and (where necessary) conditional photon emission probabilities. Given this information, the photon energies and their multiplicities can readily be calculated. Photon production cross sections can
then be computed for any given level from the excitation cross section in file 3. along with the transition probability array. Similarly, multiplicities and photon production cross sections can be constructed for the total cascade, For any given level, the transition and photon emission probability data given in the section are for photons originaring at that level only; any further cascading is determined from the data for the lower levels.

Now define the following variables.
$L G=1$, simple case (all transitions are γ emission).
$=2$, complex case (internal conversion or other competing processes occur).
number of levels below the present one, including the ground state. (The present level is also uniquely defined by the MT number and by its energy level.)
number of transitions for which data are given in a list to follow (i.e., number of nonzero transition probabilities), NT \leq NS.
$E S_{i}$ energy of the i th level, $i=0,1,2 \ldots N S . \quad\left(E S{ }_{0} \equiv 0.0\right.$, the ground state.)
$\mathrm{TP}_{\mathrm{i}} \mathrm{TP} \mathrm{NS}, \mathrm{i}$, the probability of a direct transition from level NS to level $i, i=0,1,2 \ldots(N S-1)$.
$\mathrm{GP}_{\mathrm{i}} \mathrm{GP}_{\mathrm{NS}, \mathrm{i}}$, the probability that, given a transition from level $N S$ to level i, the transition is a photon transition (i.e., the conditio:al probability of photon emission).
$\mathrm{A}_{\mathrm{i}} \quad\left(\mathrm{TP}_{\mathrm{i}}\right) \quad\left(\mathrm{GP}_{\mathrm{i}}\right)$.
Note that each level can be identified by its NS number. Then the energy of a photon from a transition to level i is given by $E E_{\gamma}=E S_{N S}-E S_{i}$, and its maltiplicity is given by $y\left(E_{Y} \leftarrow E\right)=\left(T P_{i}\right)\left(G P_{i}\right)$. It is implicitly assumed that the transition probability array is independent of incident neutron energy.

The structure of a section for $L \varnothing=2$ is
[MAT, 12, MT/ 2A, ANR; Lめ=2, LG; NS, b]HEAD.
[MAT, 12, MT/ES ${ }_{\text {NS' }}$ b; LP, b; (LG+1)*NT, NT/B ${ }_{i}$]LIST,
[MAT, 12 o/ b, b; b, b; b, b]SEND.
If LG $=1$, the array B_{i} consists of NT doublets $\left(E S_{i}, T P_{i}\right) ;$ if $L G=2$, it consists of NT triplets $\left(E S_{i}, T P_{i}, G P_{i}\right)$. Here the subscript i is a running index over the levels below the level for which the transition probability array is being given (i.e.. below level NS). The doublets or trip.lets are given in decreasing magnitude of energy $E S_{i}{ }^{\prime}$

12.2. File 12 Procedures

1. Under Option 1 , the subsections are given in decreasing magnitude of $E G_{k}$.
2. Under Option 1, the convention is that the subsection for the continum photons, if present, is last. In this case, the last value of $E G_{k}{ }^{(E G}{ }_{N K}$) is set equal to 0.0 , and logical consistency with Procedure 1 is maintained.
3. Under Option 1, the values of $E G_{k}$ should be consistent to within four significant figures with the cresponding $E G_{k}$ values for the File 14 photon angular distributions. This allows processing and "physics" checking codes to match photon yields with the corresponding angular distributions.
4. Under Option $1, E S_{k}$ is the energy of the level from which the photon originates. If $E S_{k}$ is unknown or not meaningful (as for the continuous photon spectrum), the value 0.0 should be entered.
5. If capture and fission resonance parameters are given in File 2, photon production for these reactions should be given by using Option 1 of

File 12, instead of using photon production cross sections in File 13. This is due to the voluminous data required to represent the resonance structure in File 13 and the difficulty of calculating multigroup photon production matrices from such data.
6. Under Option 1 , the total yield table. $Y(E)$, should exactly span the same energy range as the combined energy range of all the $y_{k}(E)$. Within that range,

$$
y(E)=\sum_{k=1}^{N K} y_{k}(E)
$$

should hold within four significant figures.
7. The excitation cross sections for all the levels appearing in the transition probability arrays must, of course, be given in File 3.
8. The join of all sections, regardless of the option used, should represent the photon production data, with no redundancy. For example, MT $=4$ cannot include any photons given elsewhere under NT = 51 through 91. Likewise, there can be no redundancy between Files 12 and 13.
9. If only one energy distribution is given under option $1(N K=1)$, the TABI record for the $Y(E)$ table is deleted to avoid repetitive entries.
10. Data should not be given in File 12 for reaction Eypes that do not appear in Files 2 and/or 3.
11. Under Option 2, the level energies, $E S_{i}$, in the transition probability arrays are given in decreasing magnitude.
12. The MT numbers for which transition probability data are given should be for consecutive levels, beginning at the first level, with no embedded lavels omitted.
13. The energies of photons arising from level transitions should be consistent within four significant figures with the corresponding $E G_{k}$ values in File 14. Therefore, care must be taken to speciry level energies to the appropriate number of significant figures.
14. Under Option 2, the sum of the transition probabilities (TP ${ }_{i}$) over i should equal 1.0000 (that is, should be unity to within five significant figures).
15. The limit on the number of energy points in any tabulations of $Y(E)$ or $y_{k}(E)$ is 1000. This is an upper limit that will rarely be approached in practice because yields are normilly smoothly varying functions of incident neutron enargy.
16. The limit on the number of interpolation regions is 10.
17. Tabulations of nonthreshold data should normally cover at least the energy range $10^{-5} \mathrm{eV} \leq \mathrm{E} \leq 2 \times 10^{7} \mathrm{eV}$, where practicai. Threshoid data should be given from threshold energy up to $2 \times 10^{7} \mathrm{ev}$, where practical.
18. Transition Probability Arrays for ($n, n^{\prime} y$) photons. a. The use of transition probability arrays (File $12, L \neq 2$) is a convenient way to represent a portion of the rays produced by de-excitation of discrete levels populated by ($n, n^{\text {' }}$) : nd other reactions.
b. Several conditions must be met before this representat, on can be used. Level excitation cross sections (given in File 3 is MT $=$ 51,...) must be given from threshold energies up to the samimaximum energy (no exceptions). Decay properties of all n levels must be known. The information given in File 12 must be consistent with data given in File 3.
c. Usually, not all the conditions can be met. Part of the problem is the recommendation that level excitation cross sections for the first few levels be given for neutron energies up to 20 MeV . It is seldom that all level data can be given for neutron energies up to 15 MeV .

13. FILE 13: PHOTON PRUDUCTION CROSS SECTIONS

The purpose of File 13 is the same as that of File 12 ; namely, it san be used to represent the neutron and photion energy dependence of photon production cross sections. In File 13, however, absolute cross sections in barns are tabulated, and Lhere is no need to refer to the neutron files.

13.1. File 13 Format

As in File 12, each section in File 13 gives information for a partic. ular reaction type (MT number). Each section always starts with a HEAD record and ends with a SEND record.

The representation of the energy dependence of the cross sections is accomplished by tabulating a set of neutron energy-cross section pairs $\left[E, \sigma_{k}^{\gamma}(E)\right]$ for each discrete photon and for the photon energy continum. The subscript k designates a particular discrete photon or the photion continumm, and the total number of such sets is NK. For discrete photons, $o_{k}^{j}(E)$ is the photon production cross section (b) for the photon designaced by k. For the photon continuum, $\sigma_{k}^{\gamma}(E)$ is the integrated (over photon energy) cross section for the photon continaum* designated by k. In the continuum case,

$$
\sigma_{k}^{\gamma}(E)=\int_{0}^{E_{\gamma}^{\max }} \frac{d \sigma_{k}^{\gamma}}{d E_{\gamma}}\left(E_{\gamma}+E\right) d E_{\gamma} \quad \text { (b) }
$$

where E_{γ} designates photon energy $(e v), a n i \frac{d \sigma_{k}^{\gamma}}{d E_{\gamma}}\left(E_{\gamma}-E\right)$ is the absolute photon energy distribution in b/ev. The energy distribution can be further broien down as

$$
\frac{d \sigma_{k}^{Y}}{d E_{\gamma}}\left(E_{\gamma}-E\right)=\sigma_{k}^{\gamma}(E) f_{k}\left(E_{\gamma}+E\right)
$$

[^10]which obviously requires that
$$
\int_{0}^{E_{Y}^{\max }} f_{k}\left(E_{Y}+E\right) d E_{Y}=1
$$

Any time a continuum representation is used for a given MT number in File 13, the normalized energy distribution, $f_{k}\left(E_{\gamma}+E\right)$, must be given in File 15 under the same MT number.

As a check quantity, the total photon production cross section,

$$
\sigma_{T O T}^{Y}(E)=\sum_{k=1}^{N K} \sigma_{k}^{Y}(E) \quad \text { (barns) }
$$

is also tabulated for each MT number, unless only one subsection is present (i.e., $N K=1$).

The structure of a section in File 13 is
[MAT, 13, MT/ZA, ANR; b, b; NK, b]HEAD
[MAT, 13, MT/b, b; b, b; NR, NP/E int $^{\left./ \sigma_{T O T}^{\gamma}(E)\right] T A B l * ~}$
<subsection for $k=1>$
<subsection for $k=2>$
<subsection for $k=N K$
[MAT, 13, 0/b, b; b, b; b, blSEND
*If the total number of discrete photons and photon continua is one (NK $=1$), this TABl record is omitted.
and the structure of each subsection is

$$
\text { [MAT, 13, MT/EG } \left.{ }_{k}, E S_{k}: L P, L F ; N R, N P / E_{i n t} / \sigma_{k}^{\gamma}(E)\right] T A B I \text {. }
$$

where
ES ${ }_{k}$ the energy of the level from which the photon originates. If the level is unknown or if a continuous photon spectrum is produced. $E S_{k}=0.0$ should be used.
$E G_{k}$ the photon energy for $L P=0$ or 1 or Einding Energy for $L P=2$. For a continuous photon energy distribution, $E G_{k}=0.0$ should be used.

LP Indicator of whether or not the particular photon is a primary: $L P=0$, origin of photons is not designated or not known, and the photon energy is $E G_{k}$;
$L P=1$, for nonprimary photons where the photon energy is again simply EG ${ }_{K}$; and LP $=2$, for primary photons, where the photon energy is given by $E G_{k}+\frac{A W R}{A W R+1} E_{n}$.
LF the photon energy distribution law number, which presently has only two values defined:
$L F=1$, a normalized tabulated function (in File 15), and $L F=2$, a discrete photon energy.

13.2. File 13 Procedures

1. The subsections are given in decreasing magnitude of $E G_{k}$.
2. The convention is that the subsection for the continuum photons, if present, is last. In this case, $E G_{N K} \equiv 0.0$.
3. The values of $E G_{k}$ should be consistent to within four significant figures with the corresponding $E G_{k}$ values in File 14.
4. $E S_{k}$ is the energy of the level from which the photon originates, if known. Otherwise ES ${ }_{\mathbf{k}} \equiv 0.0$.
5. If capture and fission resonance parameters are given in File 2 , the corresponding photon production should be given by using Option 1 of File 12 , instead of using photon production cross sections.
6. The total photon production cross section table, $\sigma_{T O T}^{\gamma}(E)$, should exactly span the same energy range as the combined energy range of all the $\sigma_{k}^{\gamma}(E)$. Within that range,
$\sigma_{T O T}^{\gamma}(E)=\sum_{k=1}^{N K} \sigma_{k}^{\gamma}(E)$ should hold within four significant figures. If only one energy distribution is given, either discrete or continuous (NK $=1$), the TABl record for the $\sigma_{T O T}^{\gamma}(E)$ is deleted.
7. The join of all sections in Files 12 and 13 combined should represent the photon production data with no redundancy. For example, NT $=4$ cannot include any photons given elsewhere under MT = 51 through 91.
8. The limit on the number of energy points in a tabulation for any photon production subsection is 1000. This is an upper limit; in practice, the minimum number of points possible should be used. If there is extensive structure, the use of File 12 should be seriously considered, because yields are normally much smoother functions of incident neutron energy than cross sections.
9. The limit on the number of interpolation regions is 10.
10. Tabulations of nonthreshold data should normally cover at least the energy range $10^{-5} \mathrm{eV} \leq \mathrm{E} \leq 2 \times 10^{7} \mathrm{eV}$, where practical. Threshold dat.a should be given from threshold energy up to $2 \times 10^{7} \mathrm{eV}$, where practical.

13.3. File 13 Preferred Representations

1. The recomended representation for ($n, n^{\prime} \gamma$) reactions is photon production cross sections (File 13) using MT = 4. All discrete and continuum γ rays are given in a series of subsections.
2. Photon production cross sections resemble the frequently measured or reported results.
3. The use of $M T=4$ eiminates confusion about whether the data represent an excitation or de-excitation cross section.
4. If for any reason $M T=51,52 \ldots$ is used, it is understood that these data represent de-excitation and not excitation cross sections (see 3 above). $M T=51,52, \ldots$ in File 3, of course, means excitation cross sections.
5. Combined use of $M T=4$ and $M T=51,52, \ldots$ is not allowed.
6. Above a certain energy point it probably will not be possible to separate the various components of the total γ production cross section. When this happens, it is preferred that the data be given as $M T=3$.
7. All other reactions. Data for other reactions should be given as photon production cross sections (File 13) using the appropriate NT numbers. The same general rules outlined above should be used.

14. FILE 14: FHOTON ANGULAR DISTRIBUTIONS

The purpose of lile 14 is to provide a means for representing the angular distributions of seco sdary photons produced in neutron interactions. Angular distributions should be given for each discrete photon and photon continuum appearing in Files 12 and 13, even if the distributions are isotropic.

The structure of File 14 is, with the exception of isotropic flag (LI), closely analogous to that of File 4. Angular distributions for a specific reaction type (MT number) are given for a series of incident neutron energies in order of increasing neutron energy. The energy range covered should be the same as that for the data given under the corresponding reaction type in File 12 or File 13. The data are given in ascending order of MT number.

The angular distributions are expressed as normalized probability distributions, that is.

$$
\int_{-1}^{1} p_{k}(u, E) d u=1
$$

where $p_{k}(\mu, E)$ is the probability that an incident neutron of energy E will result in a particular discrete photon or photon energy continum (specified by k and MT number) being emitted into unit cosine about an angle whose cosine is μ. Because the photon angular distribution is assumed to have azimuthal symmetry, the distribution may be represented as a Legendre series expansion,

$$
\begin{aligned}
p_{k}(\mu, E) & =\frac{2 \pi}{\sigma_{k}^{\gamma}(\Sigma)} \frac{d \sigma_{k}^{\gamma}}{d \underline{\Omega}}(\underline{\Omega}, E) \\
& =\sum_{\ell=0}^{N L} \frac{2 \ell+i}{2} a_{\ell}^{k}(E) P_{\ell}(\mu)
\end{aligned}
$$

where
$\mu=$ cosine of the reaction angle in the lab system.
$E=$ energy of the incident neutron in the laboratory system, and $\sigma_{k}^{Y}(E)=$ photon production cross section for the discrete photon or photon continuum specified by k, as given in either File 13 or in Files 2, 3, and 12 combined.
$\ell=$ order of the Legendre polynomial.
$\frac{d \sigma_{k}^{Y}}{d \Omega}=$ differential photon production cross section in barns/steradian. $a_{\ell}^{k}(E)=$ the $\ell^{\text {th }}$ Legendre coefficient associated with the discrete photon or photon continuum specified by k. (It is understood that $a_{0}^{k}(E) \equiv 1.0$.)

$$
a_{\ell}^{k}(E)=\int_{-1}^{1} p_{k}(\mu, E) \quad p_{\ell}(\mu) d \mu
$$

Angular distributions may be given in File 14 by tabulating as a function of incident neutron energy either the normalized probability distribution function, $p_{k}(\mu, E)$, or the Legendre polynomial expansion coefficients, $a_{\ell}^{k}(E)$. Provision is made in the format for simple flags to denote isotropic angular distributions, either for a block of individual photons within a reaction type or for all photons within a reaction type taken as a group.

Note that File 14 assumes separability of the photon energy and angular distributions for the continuum spectrum. If this is not the case, File 16 (analogous to File 6) must be used instead of Files 14 and 15. (Since File 14 implicitly specifies an energy-angle distribution for discrete photons, File 16 is required only for the continuum spectrum.

14.1. File 14 Format

As usual, sections are ordered by increasing reaction type (MT) numbers. The following definitions are required.
$L T T=1$, data are given as Legendre coefficients, where $a_{0}^{k}(E) \equiv 1.0$ is understood.
$=2$, data are given as a tabulation.
LI $=0$, distribution is not isotropic for all photons from this reaction type, but may be for some photons.
$=1$. distribution is isotropic for all photons from this reaction type.
NE number of neutron energy points given in a TAB2 record.
NI numiver of isotropic photon angular distributions given in a section (MT number) for which LI $=0$, i.e., a section with at least one anisotropic distribution.
NL_{i} highest value of ℓ required at each neutron energy E_{i}.
a. $\mathrm{LI}=\mathrm{I}:$ Isotropic Distribution

If $L I=1$, then all photons for the reaction type (MT) in question are assumed to be isotropic. This is a flag that the processing code can sense, and thus needless isotropic distribution data are not entered in the file. In this case, the section is composed of a HEAD card and a SEND card, as follows:
[MAT, 14, MT/ZA, ANR; LI=1, b; NK, b]HEAD
[MAT, 14, 0/b, b; b, b; b, b]SEND .
b. $\mathrm{LI}=0$: Anisotropic Distribution

If $L I=O$, there are two possible structures for a section, depending upon the value of LTT, but the section always starts with a HEAD record of the form
[MAT, 14, MT/ZA, AWR; LI=0, LTTT; NK, NI]HEAD.
i. $\operatorname{LTT}=1:$ Legendre Coefficient Representation
[MAT, 14, MT/ZA, AWR; LI=0, LTTY=I; NK, NI]HEAD
<subsection for $k=1>$
<subsection for $k=2>$
<subsection for $k=N K$
[MAT, 14, 0/b, b; b, b; b, b]SEND .
The structure of each record in the first block of NI subsections, which is for the NI isotropic photors, is
[MAT, 14, MT/EG $\left.{ }_{k}, E S_{k} ; b, b ; b, b\right] C \not C N T$ There is just one $C \varnothing N T$ record for each isotropic photon. (The set of $C \varnothing N T$ records is empty if $N I=0.1$ The subsections are ordered in decreasing magnitude of $E G_{k}$ (photon energy), and the continuum, if present and isotropic, appears last, with $E G_{k} \equiv 0.0$.

This block of NI subsections is then followed by a block of NK-NI subsections for the anisotropic photons in decreasing magnitude of $E G_{k}$. The continuum, if present and anisotropic, appears last, with $E G_{k} \equiv 0.0$. The structure for the last NK-NI subsections is
[MAT, 14, MT/EG $\left.{ }_{k}, E S_{k} ; b, b ; N R, N E / E{ }_{\text {int }}\right] T A B 2$
[MAT, 14, MT/ $\left.b, E_{1} ; b, b ; N L_{1}, b / a_{\ell}^{k}\left(E_{1}\right)\right]$ LIST
[MAT, 14, MT/ b, $\left.E_{2} ; b, b ; N L_{2}, b / a_{0}^{k}\left(E_{2}\right)\right] L I S T$
[MAT, 14, MT/ $\left.b, E_{N E} ; b, b ; N L_{N E}, b / a_{\ell}^{k}\left(E_{N E}\right)\right] L I S T$.

Note that lists of the $a_{\ell}^{k}(E)$ start at $\ell=1$ because $a_{0}^{k}(E) \equiv 1.0$ is always understood.

ii. LIT = 2: Tabulated Angular Distributions

The structure of a section for $L I=U$ and $L T T=2$ is
[MAT, 14, MT/ZA, AWR; LI=0, LTT=2; NK, NI]HEAD
«subsection for $k=1>$
<subsection for $k=2>$
<subsection for $k=N K>$
[MAT, 14, 0/b, b; b, b; b, b]SEND. The structure of the first block of NI subsections (where NI may be zero) is the same as for the case of a Legendre representation; i.e.. it consists of one CØNT record for each of the NI isotropic photons in decreasing magnitude of $E G_{k}$. The continuum, if present and isotropic, appears last, with $E G_{k} \equiv 0.0$.

The structure of the first NI subsections is
[MAT, 14, MT/EG $\left.{ }_{k}, E S_{k} ; b, b ; b, b\right] C \varnothing N T$.
This block of NI subsections is then followed by a block of NK-NI subsections for the anisotropic photons, again in decreasing magnitude of $E G_{k}$, with the continum, if presert and anisotropic, appearing last, with $E G_{k} \equiv 0.0$. The structure of the last NK-NI subsections is
[MÄT, 14, MT/EG $\left.{ }_{k}, E S_{k} ; b, b ; N R, N E / E e_{i n t}\right] T A B 2$
$\left[\mathrm{MAT}, 14, \mathrm{MT} / \mathrm{b}, \mathrm{E}_{1} ; \mathrm{b}, \mathrm{b} ; \mathrm{NR}, \mathrm{NP} / \mu_{\text {int }} / \mathrm{P}_{\mathrm{k}}\left(\mu_{\mathrm{L}} \mathrm{E}_{1}\right)\right] \mathrm{TABl}$
[MAT, 14, MT/ b, $\left.E_{2} ; b, b ; N R, N P / \mu_{i n t} \mathcal{E}_{k}\left(\mu, E_{2}\right)\right] T A B 1$
[MAT, 14. $M T /$ b, $\left.E_{N E} ; b, b ; N R, N P / \mu_{i n t} / p_{k}\left(\mu, E_{N E}\right)\right] T A B 1 \quad$.

14.2. File 14 Procedures

1. The subsections are given in decreasing magnitude of $E G_{k}$ within each of the isotropic and anisotropic blocks.
2. The convention is that the subsection for the continuous photon spectrum, if present, appears last in its block. In this case, $E G_{N K} \equiv 0.0$.
3. The values of $E G_{k}$ should be consistent within four significant figures with the corresponding $E G_{k}$ values in File 12 or 13 . File 12, Option 2 (transition probability arrays), the values of $E G_{k}$ are implicitly determined by the level energies.
4. $E S_{k}$ is the energy of the level from which the photon originates, if known. Otherwise, $E S_{k} \equiv 0.0$ (as is always the case for the continuum).
5. Data should not appear in File 14 for photons that do not have production data given in File 12 or 13. Converoely, for every photon appearing in File 22 or 13 an angular distribution must be given in File 14. The neutron energy range for which the angular distributions are given should be the same as that for which the photon production data are given in File 12 or 13.
6. For $L T T=1$ (Legendre coefficients), the value of NL should be the minimum number of coefficients that will reproduce the angular distribution with sufficient accuracy and be positive everywhere. In all cases, NL should be an even number, ≤ 20.
7. The TABl records for the $P_{k}\left(\mu, E_{i}\right)$ with. n a subsection are given in increasing order of neutron energy, E_{i}.
8. The tabulated probability functions, $P_{k}\left(W, E_{i}\right)$, should be normalized within four significant figures (to unity).
9. The interpolation scheme for $p_{k}(U, E)$ with respect to E mist be linearlinear or log-linear iINT $=2$ or 3) to preserve normality of the interpolated distributions. It is recommended that the interpolation in μ be linear-linear $(\operatorname{INT}=2)$.
10. For $L I=1$ (isotropic distribution), the parameter $N K$ is the number of photons ir that section and should be consistent with the NK values in files 12 and 13. This parameter could be determined independently from files 12 and 13, but it is useful in File 14 for the "physics" checking code."
11. The minimum amount of data should be used that will accurately represent the angular distribution as a function of both μ and E.
12. If all photons for a reaction type (MT number) are isotropic, the iI = 1 flag should be used. The use of $L I=O$ and $N I=N K$ is strongly discouraged. Likewise, isotropic distributions should not be entered explicitly as a tabulation or as a Legendre expansion with $a_{\ell}^{k}(E) \equiv 0, \ell \geq 1$.
13. Angular distributions for photons must be given for all discrete and continuum photons. This can be done by specifying the data explicitly (by giving distributions) or implicitly by using a flag meaning that all photons for a varticular reaction (MT number) are isotropic. Isotropic angular dictributions should be specified unless the anisotropy is >204.
[^11]
15. FILE 15: CONTINUOUS PHOTON ENERGY SPECTRA

File 15 provides a means for representing continuous energy distributions of secondary photons, expressed as normalized probability distributions. The energy distribution of each photon continuum occurring in Files 12 and 13 should be specified in File 15 over the same neutron energy ranga used in Files 12 and 13. Each section of File 15 gives the data for a particular reaction type (MT number) and the sections are ordered by increasing MT number. The energy distributions, $f\left(E_{\gamma} \leqslant E\right)$, are in units of eV^{-1} and are normalised so that

$$
\int_{0}^{E_{\gamma}^{\max }} f\left(E_{\gamma}-E_{\gamma} d E_{\gamma}=1\right.
$$

where $E_{Y}^{\text {max }}$ is the maximum possible secondary photon energy and its value depends on the incoming neutron energy as well as the particular nuclei involved.* The energy distributions $f\left(E_{\gamma} \leftarrow E\right)$ can be broken down into the weighted sum of several different normalized distributions in the following manner:

$$
f\left(E_{Y}+E\right)=\sum_{j=1}^{N C} p_{j}(E) q_{j}\left(E_{\gamma}+E\right) \quad(e v)^{-1}
$$

where

$$
\begin{aligned}
N C & \equiv \text { the number of partial distributions used to represent } f\left(E_{Y} \leftarrow E\right), \\
q_{j}\left(E_{Y}<E\right) \equiv & \text { the } j^{\text {th }} \text { normalized partial distribution in the units } e^{-1} \text {, and } \\
p_{j}(E) \equiv & \text { the probability or weight given to the } j^{\text {th }} \text { partial distribution, } \\
& q_{j}\left(E_{\gamma}+E\right) .
\end{aligned}
$$

[^12]The following normalization condition is imposed.

$$
\int_{0}^{E_{\gamma}^{m a x}} q_{j}\left(E_{\gamma}+E\right) d E_{\gamma}=1
$$

Thus,

$$
\sum_{j=1}^{N C} p_{j}(E)=1
$$

The absolute energy distribution cross section, $\sigma^{\gamma}\left(E_{\gamma} \leftarrow E\right)$, can be constructed from the expression

$$
\sigma^{\gamma}\left(E_{\gamma}+E\right)=\sigma^{\gamma}(E) f\left(E_{\gamma}+E\right) \quad(b / e V)
$$

where $\sigma^{\gamma}(E)$ is the integrated cross section for the continumm given either directly in File 13 or through the combination of Files 2, 3, and 12.

The system used to represent continuous photon energy distributions in File 15 is similar to that used in File 5. At present, however, there is only one continuous distribution law activated for File 15, i.e.,

$$
q_{j}\left(E_{\gamma} \leftarrow E\right)=g\left(E_{\gamma} \leftarrow E\right)
$$

where $g\left(E_{\gamma}+E\right)$ represents an arbitrary tabulated function. In the future, new laws (for example, the fission gamma-ray spectrum) may be added.

15.1. File 15 Format

The structure of a section is [MAT, 15, MT/ZA, AWR; b, b; NC, b]HEAD
<subsection for $j=1>$
<subsection for $j=2>$
<subsection for $j=$ NC>
(MAT, 15, 0/b, b; b, b; b, b)SEND.
For $\mathrm{LF}=1$, the structure of a subsection is
[M4T, 15, MT/B, b; b, LF=1; NR, NP/E $\left.E_{i n t} / p_{j}(E)\right] T A B 1$
[MAT, 15, MT/b, b; b, b; NR, NE/E int $^{\text {] TAB2 }}$

[MAT, 15, MT/b, $E_{2} ; b, \quad b ; N R, N P / E_{\gamma}$ int $\left.^{\prime}\left(E_{\gamma}+E_{2}\right)\right]$ TABI
[MAT, 15, MT/B, $E_{N E} ; b, \quad b ; N R, N P / E_{\gamma}$ int $\left.\left.^{\prime} /(E)_{\gamma}+E_{N E}\right)\right]$ TABl -
Only one distribution law is presently available (tajulated secondary photon energy distribution). Therefore, formats for other laws remain to be defined, but their structures will probably closely parallel those in file 5 for $\mathrm{LF}=5,7,9$, and 10. When histogram representations are used (interpolation scheme, $\operatorname{INT}=1), 0.25$ to $0.5-\mathrm{MeV}$ photon energy bands should be used. The incident energy ranges must agree with data given in Files 12 and/or 13. Other procedures are the same as those recommended for File 5 data (tabulated distribution).

15.2. File 15 Procedures

1. Photon energies, $E_{\gamma^{\prime}}$, within a subsection are given in order of increasing magnitude.
2. The TABl records for the $g\left(E_{\gamma} \leftarrow E_{i}\right)$ within a subsection are given in increasing order of neutron energy, E_{i}.
3. The taburated functions, $g\left(E_{Y}+E_{i}\right)$, should be normalized to unity within four significant figures.
4. The interpolation scheme for $p_{j}(E)$ must be either linear-linear or lnglinear (INT $=1,2$, or 3) to preserve probabilities upon interpolation. Likewise, the interpolation scheme for $g\left(E_{Y}+E\right)$ must be linear-linear or log-linear with respect to E.
5. The neutron energy mesh should be a subset of that used for the \mathbf{y}_{NK} (E) tabulation in File 12 or for the $\sigma_{\mathrm{NK}}^{\gamma}(E)$ tabulation in File 13, and the energy ranges must be identical. However, the neutron energy mesh for $p_{j}(E)$ need not be the same as that for $g\left(E_{\gamma}+E\right)$, as long as they span the same range.
6. For an MT number appearing if both File 12 and File 13, a continuous photon energy distribution ($L F=1$) can appear in only one of those files. Otherwise the distribution as given in file 15 could not in general be uniquely associated with a corresponding multiplicity or production cross section.
7. Use the minimum amount of data that will accurately represent the energy distribution as a function of both E_{γ} and E. However, do not use toc course a mesh for E, even if the distributions are slowly varying functions of E, since the interpolated distribution will always have a nonzero component up to the maximum energy at which either of the original distributions has a nonzero component.
8. The limit on the number of neutron energy pnints for either $p_{j}(E)$ or $g\left(E_{\gamma} \leftarrow E\right)$ is 200. The limit on the number of photon energy points for $g\left(E_{\gamma}+E\right)$ is 1000 .

16. FILE 16: PHOTON ENERGY-ANGI,E DISTRIBUTIONS*

If the photon-energy and angular dependences of the cross section for production of the continuous spectrum are not separable, then a file analogous to file 6 is required instead of Files 14 and 15 . The energy-angle distributions for discrete photors are completely determined in File 14 and should never appear in File 16. A knowledge of the formats of Files 14 and 15 is assumed in this discussion.

Consider a nonnormalized energy-angle distribution function $F\left(E_{\gamma} * E_{\|} \mu\right)$, where the angular dependence is normalized so that

$$
\int_{-1}^{1} F\left(E_{\gamma}-E_{, H}\right) d \mu=Y\left(E_{\gamma}+E_{\gamma}\right.
$$

Then the multiplicity (yield) can be separated out, leaving a function, $h\left(E_{\gamma}-E_{,} H\right)$, normalized in both E_{γ} and μ :
$F\left(E_{\gamma} \leftarrow E, H\right)=Y(E) h\left(E_{\gamma} \leftarrow E, H\right) \quad$.
The differential photon production cross section is then obtained from

$$
\frac{\partial^{2} \sigma\left(E_{\gamma}+E_{0} \mu\right)}{\partial E_{\gamma}^{\partial \mu}}=\sigma(E) Y(E) h\left(E_{Y}+E_{i}, \mu\right) \quad \text { (b-photons/ev). }
$$

where $\sigma(E)$ is the cross section for the reaction type being considered, as determined in Files 2 and 3.

As in File 14, the angular part of the distribution may be specified either in tabular form or as Legendre coefficients, $\eta_{l}\left(E_{Y}+E\right)$. The Legendre expansion is

[^13]$$
h\left(E_{\gamma}+E_{,} \mu\right)=\sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} n_{\ell}\left(E_{\gamma}+E\right) P_{\ell}(\mu)
$$

16.1. File 16 Format

Two options are allowed, corresponding to the options in File 14: the angular distribution can be represented by either Legendre coefficients (LTT $=1$) or by tabulated angular distributions (LTT $=2$).
$L T T=1:$ Legendre Coefficient Representation. In this option, the Legendre ccefficients are tabulated as functions of both incident neutron energy and photon energy. The structure of a section for LTT $=1$ is [MAT, 16, MT/ZA, AWR; b, LTTM=1; b, b]HEAD [MAT, 16, MT/ b, b; $b, \quad b ; N L, b 〕 C O N T$
<subsection for $\ell=0>$ <subsection for $\ell=1>$
<subsection for $\ell=$ NL>
[MAT, 16, $0 / b, b ; b, \quad b ; \quad k, b] S E N D$.
The subsections contain the energy distributions, and are identical in structure to a section for a continuous energy distribution (File l5), with the following exceptions:
a. The SEND record is deleted.
b. The HEAD record is changed to read
[MAT, 16, MT/b, b; b, b; NC, b]CøNT.
c. $g\left(E_{\gamma} \leftarrow E\right)$ is replaced by $\eta_{\ell}\left(E_{\gamma} \leftarrow E\right)$.

LTT = 2: Tabulated Angular Distribution. In the option, the subS. こtions consist of tabulations for $h\left(E_{\gamma}+E_{1} \mu_{m}\right), m=1,2 \ldots$ NA. The structure of a section for LTT $=2$ is
[MAT, 16. MT/ZA, AWR; b, LTT=2; b, b]HEAD
[MAT, l6, MT/b, b; b, b; NR, NA/ $\mu_{\text {int }}$]TAB2
<subsection for m = l>
<subsection for $m=2>$
<subsection for $m=N A>$
[MAT, 16, 0/b, b; b, bi b, b]SEND.
As with the Legendre coefficient representation, this section for a tabulation contains subsections, identical in structure to a section for File 15, with the following exceptions:
a. The SEND record is deleted.
b. The HEAD record is changed to read [MAT, 16, MT/b, $\left.\mu_{m} ; b, b ; N C, b\right] C \varnothing N T$
c. $g\left(E_{\gamma} \leftarrow E\right)$ is replaced by $g\left(E_{\gamma} \leftarrow E, \mu_{m}\right)$, where each subsection is for a particular value of $\mu_{m}, m=1,2 \ldots N A$.

16.2. File 16 Procedures

The procedures for this file are the same as those for Files 14 and 15, where applicable.

22. GENERAL COMMENTS ON PHOTON INTERACTION

Photon interaction data are divided into five files, the first four analogous to Files 3 through 6.

File

Description

"Smooth" cross sections
Secondary angular distributions
Secondary energy distributions
Secondary energy-angle distributions Coherent scat.tering form factors and incoherent scattering functions

As with the photon production data files, the photon interaction data formats parallel as closely as possible those for the neutron data files of the same number (modulo 20). This facilitates the use of existing retrieval routines in processing codes for photon interaction data (as in CHECKER). For Compton scattering at higher energies ($\langle 1 \mathrm{MeV}$), the energy and angular distribution files would not normally be used because a simple analytical representation of these aistributions is available. Also, provision is made for the entry of coherent scattering form factors as well as incoherent scattering functions. The secondary energy and angular distribution files can be used for both photon secondaries or particulate secondaries ie.g., photoneutrons).

Procedures are given for Files 23 and 27, but none will be given for Files 24, 25, and 26 until those files are activated. There are, at present, no data in these files.

23. FILE 23: "SMOUTH" PHOTON INTERACTION CROSS SECTIONS

This file is for the integrated photon interaction cross sections, including those usually called microscopic attenuation or energy-deposition coefficients, as well as photonucleat reaction cross sections. The reaction type (MT) numbers for photon interaction are in the 500 and 600 series. Several conmon photon interactions have been assigned MT numbers:

MT
501

Reaction Description
Total

Coherent scattering
Incoherent scattering

Pair production, electro:i field
Pair production, nuclear and electron field (i.e., pair plus triplet production)

Pair production, nuclear field
Photofission (γ, f)
Photoneutron (γ, n)
Total photonuclear

Photoelectric
Photon cross sections, such as the total cross section, coherent elastic scattering cross section, and incoherent (Compton) cross section, are given in File 23, which has essentially the same siructure as File 3. These data are given as a function of energy, E_{γ}, where E_{γ} is the energy of the incident photon (in eV). The data are given as energy-cross-section pairs. An interpolation scheme is given that specifies the energy variation of the cross section for photon energies between a given energy point and the next higher energy point. The photon cross sections are given in one or more energy ranges. Within any one energy range,
the interpolation scheme is unchanged. The interpolation scheme may change from one to another energy range.

Each section in File 23 contains the data for a particular reaction type (MT number). The sections are ordered by increasing MT number.

23.1. File 23 Format

The format is almost identical to that of File 3, as follows.
[MAT, 23, MT/ZA, AWR; b, b; b, b]HEAD
[MAT, 23, MT/b, b; b, b; NR, NP/E γ_{γ} int $\left./ \sigma\left(E_{\gamma}\right)\right] T A B 1$
[MAT, 23, $0 / b, \quad b ; b, b ; b, b]] S E N D$.

23.2. File 23 Procedures

1. Values are usually for elements; hence, except for monoisotopic elements, $\mathrm{ZA}=\mathrm{Z} \times 1000$; also, AWR should be for the naturally occurring element.
2. Photoelectric edges will not be multivalued. The edge will be defined by two energies differing in the fourth or fifth significant figure.
3. The total pair production values are given for reaction type $M T=516$. Reaction type 517 is reserved for the portion of the pair production cross section due to the nuclear field, i.e., excluding triplet production.
4. Interpolation is normally $\log -\log (I N T=5)$.
5. Kerma factor (energy deposition coefficients) libraries will normally
be local because there is no universal definition. The application will determine whether annihilation or other radiation fractions are subtracted.

24. FILE 24: SECONDARY ANGULAR DISTRIBUTIONS

The structure of File 24 is identical to that for File 4 , so the pertinent discussion from Section 4 of this report is reviewed here for convenience. Secondary angular distributions are expressed as probability density functions, $p\left(\mu, E_{\gamma}\right)$. These functions can be represented either as a tabulation or as the Legendre coefficients, $f_{\ell}\left(E_{\gamma}\right)$, in

$$
\begin{aligned}
\frac{d \sigma\left(E_{\gamma}, \mu\right)}{d \mu} & =\sigma\left(E_{\gamma}\right) \sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} f_{\ell,}\left(E_{\gamma}\right) P_{\ell}(\mu), \\
f_{o}\left(E_{\gamma}\right) & \equiv 1.0 .
\end{aligned}
$$

Here, $\mu=\cos \theta$, where θ is the polar angle of scattering in either the center-of-mass or the laboratory system. The secondary may be either a photon (coherently scattered) or a particle (e.g., photoneutrons). When the secondary distribution is for a photon, the laboratory system is always used.

24.1. File 24 Format

The format is identical to that for File 4 and will not be reproduced here (see section 4). However, for the case in which the secondary distribution is for a photon, the LCT flag is not relevant, and the following arbitrary convention is adopted:
a. $\operatorname{LCT}=1$, data are given in the laboratory system.
b. LV'i $=0$, transformation matrix is not given.
25. FILE 25: SECOADARY ENERGY DISTRIBUTIONS

The structure of the analogous File 5 appears to be entirely adequate (see Section 5). Thus, the format will not be reproduced hece, but will be adopted by reference to File 5 .

```
-26.1=
```

26. FILE 26: SECONDARY ENERGY-ANGLE DISTRIBUTIONS

The structure of the analogous File 6 appears to be entirely adequate (see Section 6). Thus, the format will not be reproduced here but adopted by reference to File 6. The inclusion of File 26 (as wel:. as Files 6 and 16) is, at the present stage of development of cross section data, strictly pro forma.

27. FILE 27: ATOMIC FORM FACTORS OR SCATTERING FUNCTIONS

The ENDF system for neutron and photon production data allows two alternatives for storing angular distribution data. One is by probability per unit $\cos \theta$ vs $\cos \theta$, and the other is by Legendre coefficients. Actually, neither of these is a "natural" method for photons. The natural method would be atomic form factors or incoherent scattering functions. These are discussed briefly bcluw.
a. Incoherent Scattering. The cross section for incoherent scattering is giver, by

$$
\frac{d r_{i}}{d \mu}=2 s(q, 2) \quad \frac{d c_{c}}{d \mu}
$$

where $d \sigma_{c} / a \mu$ is the Klein-Nishina cross section, which can be written in closed form. The factor $S(q ; 2)$ is the incoherent scattering function. At high (il MeV) energies, S approaches Z. In the other $\operatorname{limit} S(0, Z)=0$. The quantity q is the momentum of the recoil electron (in inverse angstroms*).

$$
q=\alpha\left[1+\left(\frac{\alpha^{\prime}}{\alpha}\right)^{2}-2 \mu\left(\frac{\alpha^{\prime}}{\alpha}\right)\right]^{1 / 2}
$$

where

$$
\begin{aligned}
\alpha & =E_{\gamma} / m_{0} c^{2} \\
E_{\gamma}^{\prime} & =\text { scattered photon energy, and } \\
\mu & =\cos \theta
\end{aligned}
$$

[^14]The angular distribution can then easily be calculated, given a table of $s(q ; z)$. Because S is a smoothly varying function of q, it can be represented by a reasonably small array of numbers. The quantities $S(q ; Z)$ are tabulated as a function of q in File 27. The user presumably will have subroutines available for calculating q for energies and angles of interest and for calculating kleinNishina cross sections. He will then generate his cross sections for the appropriate cases by calculating q's, looking up the appropriate values of s , and substituting tham in the above formula.
b. Coherent Scattering. The coherent scattering cross section is given by

$$
\frac{d \sigma_{0 h}}{d \mu}=\pi r_{0}^{2} z^{2}\left(1+\mu^{2}\right) F(r ; z)
$$

where
$q=\alpha[2(1-\mu)]^{1 / 2}$, the recoil momentum of the atom (in inverse angstroms, see note on previous page), and
$r_{0}=e^{2} / m_{0} c^{2}$, the classical radius of the electron. The quantity $F(q ; Z)$ is a form factor. This quantity is also easily tabulated. At high ($\mathrm{N}_{\mathrm{I}} \mathrm{MeV}$) energies, F approaches zero. In the other $\operatorname{limit} F(0, Z)=Z$.

An alternative way of presenting the photon scattering data, then, would be to tabulate incoherent scattering functions and forr factors. Users could then provide processing cores to generate the cross sections from this information. The calculation is quite straightf rward and allows the user to generate all his scattering data from a relatively small table of numbers. The incoherent and coherent scattering data should always be presented as scattering
functions and form factors, respectively, whether or not data are included in Files 24, 25, or 26.
27.1. File 27 Fomai

The structure of a section is very similar to that of File 3 (and 23)
and is
[MAT, 27, MT/ZA, AWR; b, b; b, b]HEAD
[MAT, 27, MT/b, $\left.z ; b, b ; N R, N P / q_{i n t} / H(q ; 2)\right] T A B I$
[MAT, 27, $0 / b, b ; b, b\} b, b] S E N D$.
The general symbol $11(q ; Z)$ is used for either $F(q ; Z)$ or $s\{q ; Z)$ for coherent and incoherent scattering, respectively.
27.2. FILE 27 Procedures

1. Values of $F(q ; Z)$ should be entered in each case for the entire energy range for which integrated conerent and incoherent cross sections are gaven in File 23. This is true even though the respective values may be 0.0 or 1.0 over most of the (higher) energy range.
2. The value of z is entered in floating-point format.

APPENDIX A

Gloasary
Section

A	the effective scattering radius.	2
$A_{i}\left(T P_{i}\right)\left(G P_{i}\right)$	the probability of a photon transition.	12
A_{n}	the mass of the $n^{\text {th }}$ type atom. A_{0} is the mass of the principal scattering atom in tise molecule.	7
$A_{k, l}$	probability of emission of a γ ray of energy $E_{\gamma}=\varepsilon_{k}-\varepsilon_{\ell}$ as a result of the residual nucleus having a transition from the $k^{\text {th }}$ to the $e^{\text {th }}$ level.	11
$\mathbf{a}_{\ell}^{\mathbf{k}}(\varepsilon)$	$l^{\text {th }}$ Legerdre coefficient associated with the discrete photon or photon continum specified by k.	14
a, b	constants used in the Watt spectrum.	5
ABN	the abundance (weight fraction) of an isotope in this material.	2
$A C_{1}, A C_{2}, A C_{3}$,	$A C_{4}, B C_{1}, B C_{2}$ the background constants for the Ader-Adler radiative capture cross section.	2
$\mathrm{AF}_{1}, \mathrm{AF}_{2}, \mathrm{AF}_{3}$,	$\mathrm{AF}_{4}, \mathrm{BF}_{1}, \mathrm{BF}_{2}$ the background constants for the Adler-Adler fission cross section.	2
ALAB	Mnemonic of laboratory originating evaluation.	1
A \mathbf{J}	the compound nucleus spin, J (the spin of the resonance) (floating point).	2
A	the spin-dependent effective scattering radius	
	for spin-down, \mathbf{A}_{-}.	2

AMUS	the number of degrees of freedom used in the fission width distribution.	2
AMUG	the number of degrees of freedom used in the radiation width distribution.	2
AMUN	the number of degrees of freedom used in the neutron width distribution.	2
AMUX	the number of degrees of freedom used in the competitive width distribution.	2
$A T_{1}$	$\mathrm{AT}_{4}, \mathrm{ET}_{1}, \mathrm{BT}_{2}$ the background constants for the Adler-Adler total cross section.	2
AP	the spin-dependent effective scattering radius A_{+}(for spin-up).	2
AUTH	author of evaluation.	1
AWR	the ratio of the mass of the atom (or molecule) to that of the neutron.	1
AWRI	the ratio of the mass of the particular isotope to that of the neutron.	2
$\mathrm{B}(\mathrm{N})$	the list of constants.	7
ER	Fraction of the decay which proceeds by the corresponding decay mode.	1
$\triangle E R$	Uncertainty in BR .	1

$B R(N)$	the branching ratio at the Nth energy point giving the fraction of the original nuclide in a specified state that results in a specified product nuclide state for a specified reaction.	1
c_{n}	the coefficirnts of a polynomial. There are NC coefficients given.	1
$C_{n}\left(E_{i}\right)$	the aryay of yield data for the $i^{\text {th }}$ energy point. This array contains NFP sets of three parameters in the order ZAFP, FPS, YLD.	1
$C D_{\mathrm{m}}$	the coefficients for a polynomial.	1
CP_{n}	the coefficients of a polynomial. There are NC coefficients given.	1
D	the mean level spacing for a particular J-state.	2
DC	the decay constant (sec^{-1}) for the decay of a particular state of the product nuclide (ZAP).	1
DDATE	original distribution date of the evaluation.	1
DET_{n}	the Adler-Adler resonance energy for the total cross section. Here and below, the subscript n denotes the $n^{\text {th }}$ level.	2
$D E F_{n}$	the resonance energy for the fission cross section.	2
DEC_{n}	the resonance energy for the radiative capture cross section.	2

$D W I_{n}$	the value of $\Gamma / 2$, (v), used for the total cross section.	2
$\mathrm{DWF}_{\mathrm{n}}$	the value of $\Gamma / 2$, (v), used for the fission cross section.	2
$D W C_{n}$	the value of $\Gamma / 2$, (v), used for the radiative capture cross section.	2
$\frac{d g}{d \Omega}(\Omega, E)$	differential scattering cross section in units of barns per steradian.	4
$\frac{d \sigma_{k}^{Y}}{d \Omega}$	differential photon production cross section in barns per steradian.	14
$\frac{\mathrm{d} \sigma_{\mathrm{COh}}}{\mathrm{~d} \mathrm{\mu}}$	differential photon coherent scattering.	27
E	energy of the incident neutron.	4,7,14
E and ΔE	Energy (eV) or radiation produced ($E_{B^{-}}, E_{B^{+}}, E_{\gamma^{\prime}}$, etc.).	1
E'	the secondary neutron energy (ev).	7
E_{i}	the incident neutron energy of the $i^{\text {th }}$ point (ev).	1
$E_{\text {avail }}$	Available Energy.	5
$E_{\text {int }}$	the interpolation scheme for each energy range. (Appendix E).	3

$E_{t h}$	the threshold energy.	3
$\bar{E}_{x}, \Delta \bar{E}_{x}$	Average decay energy (eV) of radiation of type x and its uncertairty (eV). The B, γ and α energies are given in that order, wich space reserved for zero 6 or γ entries. All non- γ and non- α energies are presently included as B energy. The α energy includes the recoì nucleus energy.	1
EDATE	date of evaluation.	1
$E G_{k}$	the photon energy or Binding Energy.	13
EL	the lower limit for a resonance region energy range.	2
EH	the upper limit for a resonance region energy range.	2
ER	the resonance energy (in the laboratory system).	2
ES ${ }_{\text {i }}$	energy of the $i^{\text {th }}$ level.	12
$E S_{k}$	the energy of the level from which the photon originates.	13
ES (N)	the energy of the Nth incident energy (ev) at which branching ratios are given.	1
ES (N)	the energy of the $N^{\text {th }}$ point used to tabulate energydependent widths.	2
F and ΔF	Normalization factor (absolute intensity./relative intensity).	1

		Section
$F(q ; 2)$	The form factor for coherent photon scattering.	27
$F\left(E_{Y}+E_{, \mu}\right)$	An energy-angle distribution function for photon production (photons/ev).	12-15
$\mathrm{f}_{\mathrm{k}}\left(\mathrm{E} \rightarrow \mathrm{E}^{\prime}\right)$	the $k^{\text {th }}$ partial energy distribution. The definition depends on the value of LF.	5
$\mathrm{f}_{\mathrm{k}}\left(\mathrm{E}_{\gamma} \leftarrow \mathrm{E}\right)$	A nomalized (to unity) photon energy distribution (or probability density) function at incident neutron energy E for the k th subsection within a reaction type (eV^{-1}).	12-15
\mathbf{f}_{ℓ}	$\ell^{\text {th }}$ Legendre polynomial coefficient.	4
FPS	the state designater (floating-point number) for a fission product nuclide.	1
$G R T_{n}$	related to the symmetrical total cross section parameter.	2
$\mathrm{GIT}_{\mathrm{n}}$	related to the asymmetrical total cross section parameter.	2
$\mathrm{GRF}_{\mathrm{n}}$	the symmetrical fission parameter.	2
$\mathrm{GIF}_{\mathrm{n}}$	the asymmetrical fission parameter.	2
$\mathrm{GRC}_{\mathrm{n}}$	the symmetrical capture parameter.	2
GIC_{n}	the asymmetrical. capture parameter.	2
GG	the average radiation width. It is energy dependent if $L R U=2$.	2

GF	the average fission width. This value may be energy dependent.	
GX	the average competitive reaction width.	2
GNO	the average reduced neutron width. It is energy dependent	2
$G P_{j, i} \equiv G P_{i}$	The conditional probability of photon emission in a direct transition from level j to level i, $i<j$.	12
GT	the resonance total width Γ evaluated at the resonance energy ER.	2
GN	the neutron width Γ_{n} evaluated at the resonance energy ER.	2
GG	the radiation width $\Gamma \gamma$ evaluated at the resonance energy ER.	2
GF	the fission width Γ_{f} evaluated at the resonance energy ER.	2
$g\left(E_{\gamma}+E\right)$	A particular class of the functions $q_{j}\left(E_{\gamma}+E\right)$ in File 15; those which are tabulated $\left(\mathrm{ev}^{-1}\right)$.	15
H(q;Z)	A general symbology for a form factor or incoherent scattering function; either $F(q ; Z)$ or $S(q ; Z)$. respectively.	27
$\mathrm{H}(\mathrm{N})$	the array containing the Hollerith information that describes the particular evaluated data set.	1

$h\left(E_{\gamma} \leftarrow E, \mu\right)$	A normalized (to unity) energy-angle distribution function for photon production (ev^{-1}).	10
I and ΔI	Intensity of radiation produced.	1
I	the normalizing denominator (see 5.3).	5
I_{i}	the interpolation scheme (see Appendix E) to be used between the E_{i-1} and E_{i} energy points.	1
$I C C$ and $\triangle I C C$	Internal conversion coefficient.	1
INT	the interpolation scheme to be used for interpolating between the cross-sections obtained from average resonance parameters.	2
INT (m)	the interpolation scheme identification number used in the $\mathrm{m}^{\text {th }}$ range.	0
k	Boltzmann's contant.	7
ℓ	order of the Legendre polynomial.	1
L	the value of the ℓ-state (neutron angular momentum quantum number).	2
IA	the value of ℓ (for the $\ell^{\text {th }}$ coefficient).	6
LAT	a flag indicating which temperature has been used to compute α and β.	7
LCT	a flag indicating which reference frame is used for both secondary angles and energies.	4,6

LDD a flag to indicate whether induced reaction dacay data are given for this material.
LE
LF
LFI
LFP

LE
L. a test to determine whether energy-dependent fission product yields are given.

```
a flag that specifies the energy distribution law that is used for a particular subsection (partial energy distribution).
```

a flag that indicates whether this material is fissionable.

```
a flag that irdicates whether fission product yield data are given for this material.
an indicator that specifies the final excited state of the residual nucleus produced by a particular reaction.
```

a flag indicating whetiner average fission widths are given in the unresolved resonance region for this isotope.

```
The transition probability array flag for distinguishing between doublet and triplet arrays in File 12.
a flag to indicate the kind of Adler-Adler parameters given. The isotropy flag in File 14.
an indicator that specifies the initial state of the target nucleus (for materials that represent nuclides).
LND a test that indicates whether polynomial or tabular representation is used.
        a test that indicates what representation of \(\bar{v}(E)\) has been used.
```

 a test that indicates what representation of }\overline{v}(Ehas been used.
    ```1.2
The option flag to determine whether multiplicities or transition probability arrays are to be given in File 12.
Indicator of whether or not the particular photon is a primary.
a flag to be used in the reactions MT \(=51,52\), 53,...., 90, and 91, to define \(x\) in ( \(n, n^{\prime} x\) ). (See Section 3.24.4.)
a flag indicating which resonance parameter representation has beer used for this energy range. The definition of LRF depends on the value of LRIJ for this energy range.
a flag that indicates that resolved and/or unresolved resonance parameters are given in File 2.1

a flag indicating whether an energy range contains
 data Eor resolyed or ur.iesolved resonance parameters. ..... 2.1
a flag to specify whether temperature-dependent data are given.
\begin{tabular}{|c|c|c|}
\hline & & Section \\
\hline LT & Temperature dependence (see Appendix F). & 0 \\
\hline LTT & a flag to specify whether Legendre or probability representation is used. & 4,6,14 \\
\hline LVT & a flac to specify whether a transformation matrix is given for elastic scattering. & 4 \\
\hline L1 & an integer to be used as a flag or a test. & 1 \\
\hline L2 & an integer to be used as a flag or a test. & 1 \\
\hline \(M_{n}\) & the number of atoms of the \(n^{\text {th }}\) type in the molecule. & 7 \\
\hline MAT & Material number. & 0 \\
\hline MF & File number. & 0 \\
\hline MT & Reaction type number. & 0 \\
\hline MUF & the integer vaiue of the number of degrees of freedom for fission widths. & 2 \\
\hline \(\mathrm{MF}_{n}\) & the MF of the \(n^{\text {th }}\) section. & 1 \\
\hline \(M \mathrm{n}\) & the MT of the \(n^{\text {th }}\) section. & 1 \\
\hline NA & the number of angles (cosines) at which the secondary distributions are given. & 5 \\
\hline NAV & Toral number of decay modes for which average energies are given. & i \\
\hline
\end{tabular}

NB
\(\operatorname{NBT}(n) \quad\) the value of \(N\) separating the \(m{ }^{\text {th }}\) and \((m+1)^{\text {th }}\) interpolation ranges.

NC
the number of partial distributions used to represent \(f\left(E_{\gamma} \leftarrow E\right)\).
a count of the number of terms used in the polynomial
expansion.
the number of \(B C D\) card images in a given section the \(n^{\text {th }}\) section).
the number of terms in the polynomial expansion.
a count of the number of terms used in the polynomial expansion.
total number of decay modes given.
number of neutron energy points given in a TAB2 record.
the number of energy points at which branching ratios are given for a specified initial state.
the number of energy points at which energy-dependent widths are tabulated.
the number of incident energy points at which tabulated distributions are given. Also the number of points at which \(\theta(E)\) is given.

0,14

1

2
\[
0
\]
\begin{tabular}{|c|c|c|}
\hline & & Section \\
\hline NER & the number of energy ranges given for this isotope & 2 \\
\hline NF & the number of secondary energy points in a tabulation. & 5 \\
\hline NFP & the number of fission product nuclide states to be specified at each incident energy point. & 1 \\
\hline NI & the total number of items in the \(B(N)\) list. \(N L=6 *(N S+1)\). & 1 \\
\hline NI & number of isotropic photon angular distributions given in a section (MT number) for which LI \(=0\), i.e., a section with at least one anisotropic distribution. & 14 \\
\hline NIS & the number of isotopes in this material. & 2 \\
\hline NuS & the number of sets of resolved resonance parameters (each having the same \(J\) state) for a specified l-state. & 2 \\
\hline NK & the number of partial energy distributions. There will be one subsection for each partial distribucion. & 5,6 \\
\hline NK & the number of elements in the transformation matrix \(\mathrm{NK}=(\mathrm{NM}+1)^{2}\). & 4 \\
\hline NL & the highest order Legendre polynomial that is given at each energy. & 4,6 \\
\hline NL \({ }_{i}\) & highest value of \(\ell\) required at each neutron energy \(E_{i}\). & 14 \\
\hline
\end{tabular}
the total number of energy points used to tabulate \(v(E)\).
the number of angular points (cosiness) used to give the tabulated probability distributions for each energy.
the number of incident energy points at which \(P_{k}(E)\) is given.
the number of \(\alpha\) values given for each value of \(\beta\) for the first temperature described, NP is the number of pairs, \(\alpha\) and \(s(\alpha, \beta)\), given.

NPR
the number of product nuclides and/or product nuclide states for which data are given for one state of the original nuclide.
\begin{tabular}{|c|c|c|}
\hline NR & the number of different interpolation intervals in a tabulation of \(y(x)\) that are contained in the & \\
\hline & same record. & 0.5 \\
\hline NRS & the number of resolved resonances for a given \(\ell\)-state. & 2.2 \\
\hline NS & \begin{tabular}{l}
the integer number of states of the original \\
nuclide for which reaction product data are given.
\end{tabular} & 1 \\
\hline NS & the number of non-principal scattering atom types. For most moderating materials there will be (NS + 1) types of atoms in the molecule. & 7.2 \\
\hline NS & number of levels below the present one, including the ground state. & 12 \\
\hline NSP & Total number of spectra. & 1 \\
\hline NT & number of transitions for which data are given in a list to follow. & 12 \\
\hline NWD & the count of the number of elements in the Hollerith section. & 1 \\
\hline NX & the count of the number of sets of background constants to be given. & 2 \\
\hline NXC & an integer count of all the sections to be found in the dictionary: & 1 \\
\hline N1 & an integer to be used as a count of items in a list to follow except for MT 451. & 1 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline \[
\mathrm{TP}_{k, \ell}
\] & probability of the resicual nucleus having a transition to the \(\ell^{\text {th }}\) level given that it was initially in the excited state corresponding to the \(k^{\text {th }}\) level. & 11 \\
\hline U & a constant that defines the upper energy limit for the secondary neutron so that \(0 \leq E^{\prime} \leq E-U\) (given in the Lab siystem).
in & 5 \\
\hline \(V_{K}\) & the matrix elements of the transformation matrices. & 4 \\
\hline \(X(n)\) & the \(n^{\text {th }}\) value of \(x\). & 0.1 \\
\hline \(Y(n)\) & the \(n^{\text {th }}\) value of \(y\). & 0.1 \\
\hline YLL & the fractional yield for a particular fission product. & 1 \\
\hline 2A & the designation of the original nuclide \((2 A=\) \((1000.0 * Z)+A)\) & 1 \\
\hline 2A & the ( \(Z, A\) ) designation for a material (see Appendix C) . & 1 \\
\hline 2AI & the \((Z, A)\) designation for an isotope. & 2 \\
\hline 2AFP & the ( \(Z, A\) ) identifier for a particular fission product. \(\quad(\) EAFP \(=(1000.0 * Z)+A)\). & 1 \\
\hline ZAP & the ( \(Z, A\) ) designation of the product nuclide (ZAP \(=\) (1000.0*Z) + A). & 1 \\
\hline ZSYMA & a Hollerith repsesentation of the material z-chemical symbol. & 1 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \(\alpha\) & the momentum transfer, \(\alpha=\left(E^{\prime}+E-2 \mu \sqrt{E E^{\prime}}\right) / R_{0} k T\) & 7 \\
\hline 8 & the energy transfer, \(\beta=(E \cdot-E) / k T\). & 7 \\
\hline \[
B_{\text {int }}
\] & the interpolation schemes used (see Appendix E for interpolation formats). & 7 \\
\hline \(\lambda i\) & the decay constant ( \(\mathrm{sec}^{-1}\) ) for the \(i^{\text {th }}\) precursor. & 1 \\
\hline \[
\delta\left(E_{Y}\right.
\] & delta function with \(\varepsilon_{j}, \varepsilon_{i}\) being energy levels of the residual nucleus. & 11 \\
\hline \(\bar{v}_{d}(E)\) & the total average number of delayed neutron precursors formed per fission event. & 1.4 \\
\hline \(\theta\) & a parameter used to describe the secondary energy distribution. The definiたion of \(\theta\) depends on the energy distribution law (LF). & 5 \\
\hline \(\sigma(E)\) & the cross section (barns) for a particular reaction type at incident energy poirt, \(E\), in (ev). & 3 \\
\hline \(\sigma_{b n}\) & the bound atom scattering cross section of the \(n\)th type atom,
\[
\sigma_{b n}=\sigma_{f n}\left(\frac{A_{n}+1}{A_{n}}\right)^{2}
\] & 1 \\
\hline \(\sigma_{\text {fn }}\) & the free atom scattering cross section of the \(n^{\text {th }}\) type atom. & 7 \\
\hline \(\sigma_{k}^{\gamma}(E)\) & photon production cross section for the discrete photon or photon continuum specified by \(k\). & 14 \\
\hline \[
\sigma_{m_{0}}(E)
\] & neutron cross sections for exciting the \(m_{0}^{\text {th }}\) level with neutron energy \(E\). & 11 \\
\hline
\end{tabular}
\(\sigma_{s}(E)\) the scattering cross section, e.g., elastic scattering at energy \(E\) as given in File 3 forthe particular reaction type (MT).
\(\sigma_{T}\) (background)
\[
\begin{aligned}
& \frac{C}{\sqrt{E}}\left(A T_{1}+A T_{2} / E+A T_{3} / E^{2}+A T_{4} / E^{3}\right. \\
& \\
& \left.+B T_{1} * E+B T_{2}^{* E} E^{2}\right)
\end{aligned}
\]

4

2

\section*{APPENDIX B \\ Definition of Reaction Types}

Reaction types are identified by an integer, MT. The allowed reaction types are listed below. The reaction type number (MT) generally refers to a specific neutron-nucleus interaction mechanism, but occasionally it indicates that a particular type of information is given. The general rules for assignment of MT numbers are
\begin{tabular}{|c|c|}
\hline MT (range) & Description of Class of Reactions \\
\hline 1-100 & Reaction types in which secondary particles of the same type as the incident pari_cles are emitted \\
\hline 101-150 & Reaction types in which no secondary particles of the same type as the incident particles are emitted \\
\hline 151-200 & Resonance region information \\
\hline 201-450 & Quantities derived from the basic data \\
\hline 451-699 & Miscellaneous quantities \\
\hline 700-799 & Excitation cross sections for reactions that emit charged particles \\
\hline 800-999 & (not assigned) \\
\hline
\end{tabular}

The specific MT assignments are given in the table below. For the most part, they are consistent with those used in the UKAEA Nuclear Data File.

\section*{Description}

1

2
3

4
Total cross section (redundant, equal to the sum cf all partial
cross sections)
Elastic scattering cross section
Nonelastic cross section (redundant, equal to the sum of all
partial cross sections except elastic scattering)
Total inelastic cross section (redundant, equal to the sum of
MT \(=51,52,53, \ldots, 90,91\) )
(to be assigned)
( \(n, 2 n\) ) cross section for first excited state (describes first neutron)
( \(n, 2 n\) ) cross section for second excited state (describes first neutron)
( \(n, 2 n\) ) cross section for third excited state (describes first neutron)
( \(n, 2 n\) ) cross section for fourth excited state (describes first neutron)
(to be assigned)
direct ( \(n, 2 n\) ) cross section (total ( \(n, 2 n\) ) cross section is sum of \(M T=6,7, B, 9\) and 16]
( \(n, 3 n\) ) cross section
Total fission cross section (sum of Mr \(=19,20,21,38\) )
( \(\mathrm{n}, \mathrm{f}\) ) cross section (first chance fission)
( \(n, n^{\prime} f\) ) cruss section (second chance fission)
( \(n, 2 n f\) ) cross section (third chance fission)
( \(n, n^{-} \alpha\) ) cross section
( \(n, n^{\prime} 3 \alpha\) ) cross section
( \(n, 2 n \alpha\) ) cross section
( \(n, 3 n \alpha\) ) cross section
( \(\mathrm{n}, 2 \mathrm{r}\).) isomeric state cross section
Absorption cross section (sum of MT \(=18\) and 101) (includes particle reactions)
( \(n, n^{\prime} p\) ) cross section
( \(n, n^{\prime} 2 \alpha\) ) cross section
( \(n, 2 n 2 \alpha\) ) cross section

31 to be used as LR flag only*
    ( \(n, n^{-d}\) ) cross section
    ( \(n, n^{-} t\) ) cross section
    \(\left(n, n^{-3} \mathrm{He}\right)\)
    ( \(n, n^{\prime} d 2 \alpha\) ) cross section
    ( \(\left.n, n^{-}+2 \alpha\right)\) cross section
    ( \(n, 4 n\) ) cross section
    ( \(n, 3 n f\) ) cross section (fourth chance fission)
To be used as LR flag only*
To be used as LR flag only*
41-45 (to be assigned)
46 cross section for describing the second neutron from ( \(n, 2 n\) )
    reaction for first excited state
47 cross section for describing the second neutron from ( \(n, 2 n\) )
        reaction for second excited state
48 cross section for describing the second neutron from ( \(n, 2 n\) )
    reaction for third excited state
*The following MT numbers are used only as LR flags in order to indicate the mode of decay of the residual nucieus:

31 Indicates that \(\gamma\)-emission is the mode of decay of the residual nucleus formed in the primary reaction.

39 Indicates that internal conversion is the mode of decay of the residual nucleus formed in the primary reaction.

40
Indicates that electron-positron pair formation is the mode of decay of the residual nucleus formed in the primary reaction.
(The "prımary" reaction could be, for example, an ( \(n, n^{\circ}\) ), ( \(\left.n, p\right),(n, \alpha),(n, n p)\), etc., reaction.)
\begin{tabular}{|c|c|}
\hline MT & Description \\
\hline 49 & \begin{tabular}{l}
cross section for describing the second neutron from ( \(n, 2 n\) ) reaction for fourth excited state \\
(Note: \(M T=46,47,48\) and 49 should not be included in the sum for the total ( \(n, 2 n\) ) cross section)
\end{tabular} \\
\hline 50 & (to be assigned) \\
\hline 51 & \(\left(n, n^{\prime}\right)\) to the first excited state \\
\hline 52 & \(\left(n, n^{\prime}\right)\) to the second excited state \\
\hline 90 & ( \(n, n\) ') to the 40th excited state \\
\hline 91 & \(\left(n, n^{*}\right)\) to the continuum \\
\hline 92-100 & (to be assigned) \\
\hline 101 & \[
\begin{aligned}
& \text { neutron disappearance (sum of all cross sections in which a } \\
& \text { neutron is not in the exit channel). } \\
& \qquad M T=101 \text { is } \sum_{i=2}^{14}(M T-100+i)
\end{aligned}
\] \\
\hline 102 & ( \(n, y\) ) radiative capture cross section \\
\hline 103 & ( \(\mathrm{n}, \mathrm{p}\) ) cross section \\
\hline 104 & ( \(\mathrm{n}, \mathrm{d}\) ) cross section \\
\hline 105 & \((n, t)\) cross section \\
\hline 106 & ( \(\mathrm{n},{ }^{3} \mathrm{He}\) ) cross section \\
\hline 107 & \((n, \alpha)\) cross section \\
\hline 1.08 & ( \(\mathrm{n}, 2 \alpha\) ) cross section \\
\hline 109 & ( \(\mathrm{n}, 3 \mathrm{a}\) ) cross section \\
\hline 110 & (to be assigned) \\
\hline 111 & (n,2p) cross section \\
\hline 112 & ( \(n, p \alpha\) ) cross section \\
\hline 113 & \((n, t 2 \alpha)\) cross section \\
\hline 114 & \((\mathrm{n}, \mathrm{d} 2 \alpha)\) cross section \\
\hline
\end{tabular}
(to be assigned)
Target destruction \(=\) nonelastic less total ( \(\left.n, n^{\circ} \gamma\right)\)
(to be assigned)
General designation for resonance information
(to be assigned for specific resonance information)
(to be assigned)
\(\bar{\mu}_{\text {Li }}\), the average cosine of the scattering angle (laboratory system)
\(\xi\), the average logarithmic energy decrement for elastic scattering
\(\gamma\), the average of the square of the logarithmic energy decrement for elastic scattering, divided by twice the average logarithmic decrement for elastic scattering
(to be assigned)
Energy release rate parameters, \(\overline{E^{*} \sigma}\), for total and partial cross sections. Subtract 300 from this number to obtain the specific reaction type identification. For example, \(\mathrm{MT}=302=(300+2)\) denotes elastic scattering

Heading or title information (givenonly in File 1
\(\bar{v}\). average total (prompt plus delayed) number of neutrons released per fission event

Radioactive nuclide production
Fission product yield data
Delayed neutrons from fission
Prompt neutrons from fission
Radioactive recay data
(to be assigned)
Total photon interaction cross section
Photon coherent scattering
(to be assigned)
Photon incoherent scattering

( \(n, t_{c}\) ) " " continuum excited state
( \(n, t_{c}{ }^{\prime}\) ) cross section for continuum specifically not included in \(\sigma\) Eotal (redundant, used for describing outgoing triton)
( \(n,{ }^{3} \mathrm{He}\) ) cross section for ground state
( \(n,{ }^{3} \mathrm{He}_{1}\) ) cross section for lst excited state
( \(n,{ }^{3} \mathrm{He}_{\mathrm{c}}\) ) cross section for continuum
( \(n,{ }^{3}\) He ) cross section for continuum specifically not included in
\(\sigma\) total (redundant, used for describing outgoing \({ }^{3} \mathrm{He}\) )
( \(n, \infty_{0}\) ) cross section for ground state
( \(n, \alpha_{1}\) ) cross section for lst excited state
( \(n, a_{c}\) ) cross section for continuum
( \(n, \alpha_{c}\) ') cross section for continuum specifically not included in \(^{c} \sigma_{T}\) (redundant, used to describe outgoing \(\alpha\) )
(to be assigned)

\section*{APPENDIX C \\ 2A Designation of Materials}

A floating point number, \(Z A, i s\) used to identify materials. If \(Z\) is the charge number and \(A\) the mass number, then \(2 A\) is computed from
\[
2 A=\left(1000.0^{\star} Z\right)+A
\]

For example, \(2 A\) for \({ }^{238} \mathrm{U}\) is 92238.0, and ZA for beryllium is 4009.0. For materials other than isotopes, the following rules apply.
(1) If the material is an element that has more than one naturally occurring isotope, then \(A\) is set to 0.0 . For example, \(Z A\) for the element tungsten is 74000.0.
(2) For all other types of material, \(z\) is set to zero, and the appropriate \(Z A\) is given in the following table. For example, \(2 A\) for \(\mathrm{H}_{2} \mathrm{O}\) is given as 100.0. The following classifications apply.

2A (range)
1-99
100-199 Liquid moderators and coolants
200-299
300-399

400-499

Table of Appropriate \(2 A\) Designations

Class of Materials
Hypothetical materials

Solid moderators
Metal alloys, cladding, and structural materials

Lumped fission products

2A
1

2
3-99

Material
```

Pure 1/v absorber. \sigmaabs (2200 m/sec) = 1.0
Pure scatterer. }\mp@subsup{\sigma}{S}{}(E)=1.
(to be assigned)

```

Water, \(\mathrm{H}_{2} \mathrm{O}\)
Heavy water, \(\mathrm{D}_{2} \mathrm{O}\)
Biphenyl, \(\mathrm{C}_{12} \mathrm{H}_{10}\)
Sodium hydroxide, NaOH
Santowax R, \(\mathrm{C}_{18}{ }^{\mathrm{H}} 14\)
Dowtherm A
Benzene
(to be assigned)
Beryllium oxide, BeO
Beryllium carbide, \(\mathrm{Be}_{2} \mathrm{C}\)
Beryllium fluoride, \(\mathrm{BeF}_{2}\)
Zirconium hydride, \(\mathrm{ZrH}_{\mathrm{x}}\)
Polystyrene, (CH) \(n\)
Polyethylene \(\left(\mathrm{CH}_{2}\right)_{n}\)
(to be assigned)
Zircalloy 1
Zircalloy 2
(to be assigned)
304-type stainless steel
(to be assigned)
Uranium dioxide, \(\mathrm{UO}_{2}\)
(to be assigned)
Uranium carbide, UC
(to be assigned)
233
U fission products (rapidly saturating) for thermal reactors
\({ }^{235}\) U "

239 U " \(\qquad\)
*
*
\(\omega\)
\(*\)
\(\boldsymbol{\omega}\)
H

403
404
405
406
407-409
410
411
412
413
414
415
416
417-419
420
421
4.22

423
424
425
426
427-429
430
431
432
433
434
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \({ }^{241}{ }_{\text {Pu }}\) & \multicolumn{2}{|l|}{fission products} & \multicolumn{2}{|l|}{(rapidly saturating} & \multicolumn{3}{|l|}{for thermal reactors} \\
\hline \({ }^{232}\) Th & " & " & " & " & " & " & " \\
\hline 238 U & " & " & " & 1 & " & " & " \\
\hline 240 Pu & " & " & " & " & " & " & " \\
\hline
\end{tabular}
(to be assigned)




(to be assigned)
\({ }^{233} \mathrm{U}\) fission products (nonsaturating) for thermal reactors

(to be assigned)
\({ }^{233} \mathrm{U}\) fission products (rapidly saturating for fast reactors
\({ }^{235}{ }_{U} \quad\) " \(\quad\) "
\({ }^{239}{ }^{\mathrm{Pu}} \mathbf{~ " ~} \quad\) " "
\({ }^{241} 1_{P_{u}}\) " " " "
232 Th " " " "

ZA


\section*{APPENDIX D}

\section*{Resonance Region Formulae*}

\section*{D.1. THE RESOLVED RESONANCE REGION}
D.1.1. Single-Level Breit-Wigner Formula: LRU=1, LRF=1

The formulae appearing in Gregson et a?., (1) which omit the resonanceresonance interference terms, are adopted. These formulae, written in the laboratory system for all \(\ell\)-values and without Dopplex broadening, are (for a particular isotope)
1. Elastic Scattering Cross Section
\[
\sigma_{n, n}(E)=\sum_{\ell=0}^{N L S-1} \sigma_{n, n}^{\ell}(E) .
\]
where
\[
\begin{aligned}
& \sigma_{n, n}^{\ell}(E)=(2 \ell+1) \frac{4 \pi}{k^{2}} \sin ^{2} \phi_{\ell} \\
& +\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{N R_{J}} \frac{\Gamma_{n r}^{2} \cos 2 \phi_{\ell}-2 \Gamma_{n r}\left(\Gamma_{r r}+\Gamma_{f r}\right) \sin ^{2} \phi_{\ell}+2\left(E-E_{r}^{-}\right) \Gamma_{n r} \sin 2 \phi_{\ell}}{\left(E-E_{r}^{\prime}\right)^{2}+1 / 4 \Gamma_{r}^{2}} .
\end{aligned}
\]

\footnotetext{
Weveral processing codes have keen developed to calculate cross sections with use of the formulae given here. These codes are given in Appendix \(I\).
(1) K. Gregson, M.F. James, and D.S. Norton, "NLBW - A Multilevel Breit-Wigner Computer Programe", UKAEA Report AEEW-M-517. March 1965.
}
\[
D-2
\]

\section*{2. Radiative Capture Cross Section}
\(\sigma_{n, \gamma}(E)=\sum_{\ell=0}^{N L S-1} \sigma_{n, \gamma}^{\ell}(E)\),
where
\(\sigma_{n, Y}^{\ell}(E)=\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{N R_{J}} \frac{r_{n r} r_{\gamma r}}{\left(E-E_{r}^{\prime}\right)^{2}+1 / 4 r_{r}^{2}}\).

\section*{3. Fission Cross Section}
\(\sigma_{n, f}(E)=\sum_{l=0}^{N L S-1} \sigma_{n, f}^{\ell}(E)\).
where
\(\sigma_{n, f}^{\ell}(E)=\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=1}^{N R_{J}} \frac{\Gamma_{n r} \Gamma_{f r}}{\left(E-E_{r}\right)^{2}+1 / 4 \Gamma_{r}^{2}}\).
where
\(g_{J}=\frac{2 J+1}{2(2 I+1)} \cdot\)
\(I\) is the spin of the target nucleus and \(J\) is the spin of the compound nucleus for the resonance state.
\[
I=\text { SPI, as given in File } 2 \text { data for each isotope. }
\]

The summation on \(\&\) extends over all \&-states described. There will be NuS terms in the summation.

\section*{NLS is given in File 2 for each isotope.}

The sumation on \(J\) extends over all possible J-states for a particular \(\ell-s t a t e . ~ N R_{J}\) is the number of rasornnces for a given pair of \(\ell\) and \(J\) values.
\[
\mathrm{NRS}=\sum_{J} \mathrm{NR}_{J}
\]

NRS is given in File 2 for each l-value.
\(r_{n r}\left(\left|E_{r}\right|\right)=G N_{r}\) is the neutron width, for the \(r^{\text {th }}\) resonance for a particular value of \(l\), evaluated at the resonance energy \(E_{r}\). For bound levels, the absolute value \(\left|E_{r}\right|\) is used.
\[
\begin{aligned}
& \Gamma_{n r}=\frac{P_{\ell}(E) \Gamma_{n r}\left(\left|E_{r}\right|\right)}{P_{\ell}\left(\left|E_{r}\right|\right)} . \\
& r_{r}=r_{n r}(E)+r_{\gamma r}+r_{f r} \text { is the totai width. }
\end{aligned}
\]

The following quantities are given in File 2 for each resonance:
\[
E_{r}=E R \text {, the resonance energy }
\]
\[
J=A_{N} J, \text { the spin of the resonance state }
\]
\[
\Gamma_{n r}\left(\left|E_{r}\right|\right)=G N \text { the neutron width }
\]
\[
\Gamma_{\gamma r}=G G, \text { the radiation width }
\]
\[
\Gamma_{f r}=G F, \text { the fission width }
\]
\[
D-4
\]
\[
\begin{aligned}
& E_{r}^{\prime}=E_{r}+\frac{s_{\ell}\left(\left|E_{r}\right|\right)-s_{\ell}(E)}{2 \mathrm{P}_{\ell}\left(\left|E_{r}\right|\right)} r_{n r}\left(\left|E_{r}\right|\right) \\
& k=2.196771 \frac{\text { AWRI }}{\text { ANRI }+1.0} \times 10^{-3} \sqrt{E},
\end{aligned}
\]
where \(k\) is the neutron wave number and AWRI is the ratio of the mass of the particular isotope to that of the neutron.

AWRI is given in File 2 data for each isotope.

E is the incident neutron energy (Lateratory system);
\(S_{\ell}\) is the shift factor,
\[
\begin{aligned}
& s_{0}=0 \\
& s_{1}=-\frac{1}{1+\rho^{2}} \\
& s_{2}=-\frac{18+3 \rho^{2}}{9+3 \rho^{2}+\rho^{4}}
\end{aligned}
\]
\(P_{\ell}\) is the penetration factor,
\[
\begin{aligned}
& P_{0}=\rho \\
& P_{1}=\frac{\rho^{3}}{1+\rho^{2}} \\
& P_{2}=-\frac{\rho^{5}}{9+3 \rho^{2}+\rho^{4}}
\end{aligned}
\]
where \(\rho=k a\) and " \(a\) " is the channel radius (in units of \(10^{-12} \mathrm{~cm}\) ) and is defined as
\[
a=\left[1.23(\mathrm{ANRI})^{1 / 3}+0.8\right] \times 10^{-1} ;
\]
\(\phi_{R}\) is the phase shift,
\[
\begin{aligned}
& \phi_{0}=\hat{\rho} \\
& \phi_{1}=\hat{\rho}-\tan ^{-1} \hat{\rho} \\
& \phi_{2}=\hat{\rho}-\tan ^{-1} \frac{3 \hat{\rho}}{3-\hat{\rho}^{2}} .
\end{aligned}
\]
where \(\hat{\rho}=k \hat{a}\) and \(\hat{a}\) is the effective scattering radius,
\[
\hat{a}=A P \text {, as given in File } 2 \text { data. }
\]

\section*{D.1.2. Multilevel Br t-Wigner Formula: \(L R U=1\), \(L R F=2\)}

The equations are exactly the same as above, except that a level-
level interference term is included in the equation for elastic scattering:
\[
\frac{\pi}{k^{2}} \sum_{J} g_{J} \sum_{r=2}^{N R_{J}} \sum_{s=1}^{r-1} \frac{2 \Gamma_{n r} \Gamma_{n s}\left[\left(E-E_{r}^{\prime}\right)\left(E-E_{s}^{\prime}\right)+1 / 4 \Gamma_{r} r_{s}\right]}{\left[\left(E-E_{r}^{\prime}\right)^{2}+1 / 4 \Gamma_{r}^{2}\right]\left[\left(E-E_{s}^{\prime}\right)^{2}+1 / 4 \Gamma_{s}^{2}\right]} .
\]

\section*{D.1.3. Reich-Moore Formulae}

A detailed derivation of these formulae is to be found in Reich and Moure. \({ }^{(2)}\) Neutron cross sections with an exit channel \(c\) are given by*
\[
\begin{equation*}
\sigma_{n c}=\pi \lambda_{n}^{2} \sum_{J} g_{J}\left|\delta_{n c}-u_{n c}^{J}\right|^{2} \tag{1}
\end{equation*}
\]
where \(\lambda_{n}\) is calculated in the center-of-mass system; and

\footnotetext{
*These formalae are to be used for the \(0^{\circ} \mathrm{K}\) case (no Doppler broajening terms given).
(2) C.w. Reich and M.S. Moore, Phys. Rev. 111, 929 (1958).
}
\[
\begin{equation*}
\frac{1}{\lambda_{n}}=k_{n}=2.196771 \frac{A W R I}{A W R I+1.0} \times 10^{-3}, E(e V) \tag{2}
\end{equation*}
\]
where ANRI is the mass of the target nucleus in units of neutron mass. The statistical factor
\[
\begin{equation*}
g_{J}=\frac{(2 J+1)}{2(2 I+1)} \tag{3}
\end{equation*}
\]
where \(J\) is the spin of the compound nucleus resonance and \(I\) is the target nucleus spin.

In terms of the Reich-Moore approximation one mp.y write
\[
\begin{equation*}
U_{n c}^{J}=e^{-i\left(\phi_{n}+\phi_{c}\right)}\left\{2\left((I-K)^{-1}\right]_{n c}-\delta_{n c}\right\} \tag{4}
\end{equation*}
\]
where \((I-K)_{c c^{-}}=\delta_{c c^{-}}-\frac{i}{2} \sum_{\lambda} \frac{\Gamma_{\lambda c^{1 / 2} \Gamma_{\lambda c^{\prime}}^{1 / 2}}^{E_{\lambda}-E-\frac{i}{2} \Gamma_{\lambda \gamma}}}{}\),
where the sumation in Eq. (5) is over the resonance levels \(\lambda_{i} \Sigma_{\lambda}\) is the resonance energy; \(\Gamma_{\lambda \gamma}\), the corresponding radiation widths; and \(\Gamma_{\lambda c}\) and \(\Gamma_{\lambda c}\), are the widths for the \(\lambda\)-th level and channels \(c\) and \(c^{\prime}\), respectively.

If we define
\[
\rho_{n c}=\delta_{n c}-\left[(I-K)^{-1}\right]_{n c}=\delta_{n c}-\frac{m_{n c}}{\Delta}
\]
where \(\Delta=|I-K|\) is the determinant of the matrix \(I-K\) and \(m_{n c}\) is the cofactor of the element \((I-K)\) nc of the matrix \(I-K\), we obtain
\[
\begin{align*}
& \text { D-7 } \\
& \sigma_{n T}=\sum_{J} \sigma_{n T}^{J}=2 \pi \lambda_{n}^{2} \sum_{J} g_{J} \operatorname{Re}\left(1-U_{m n}^{J}\right) \\
& =2 \pi \lambda_{n}^{2} \sum_{J}\left\{g_{J}\left(1-\cos 2 \phi_{n}\right)+2 g_{J} R e\left(e^{-2 i \phi_{n}}{ } \quad{ }_{n n}\right)\right\} .  \tag{6}\\
& \sigma_{r n}=\pi A_{n}^{2} \sum_{J} g_{J}\left|1-U_{n n}^{J}\right|^{2} .  \tag{7}\\
& \sigma_{n A b S}=\sigma_{n T}-\sigma_{n n}=4 I I \lambda_{n}^{2} \sum_{J} g_{J}\left[\operatorname{Re}\left(\rho_{n n}\right)-\left.1 \rho_{n n}\right|^{2}\right] .  \tag{8}\\
& \sigma_{n F i s L}=4 \pi \lambda_{n}^{2} \sum_{J} g_{J}\left(\sum_{c}\left|\rho_{n c}\right|^{2}\right) .  \tag{9}\\
& \sigma_{n \gamma}=\sigma_{n A b s}-\sigma_{n F i s s} . \tag{10}
\end{align*}
\]

For s-wave neutrons \(\phi_{n}=+k_{n}\) a where \(k_{n}\) has been defined by Eq. (2) and "a" is the charnel radius. For \(p\) and d-wave resonances \(\phi_{n}\) is defined in Section D.2.1.

\section*{D.1.4. Adler-Adler Multilevel Resonance Parameters: LRU=1, LRF=2}

The formulae for obtaining cross sections, taken from Adler and Adler \({ }^{(3,4)}\) are given for the total, radiative, capture, and fission cross sections (without Doppler broadening).
(3) F.T. Adler and D.B. Adler, Conf, on Neutron Cross Section mechnology, Vol. II, 873 (1967)
(4) D.B. Adler and F.T. Adlex, ANL-6792, 695 (1963).

\section*{1. Total Cross Section}
\[
\begin{aligned}
& \sigma_{T}(E)=\frac{2 C}{E}(1-\cos \omega) \\
& +\frac{C}{\sqrt{E}} \sum_{R=1}^{N R S} \frac{\nu_{R}^{T}\left[G_{R}^{T} \cos \omega+H_{R}^{T} \sin \omega\right]+\left(\mu_{R}^{T}-E\right)\left[H_{R}^{T} \cos \omega-G_{R}^{T} \sin \omega\right]}{\left(\mu_{R}^{T}-E\right)^{2}+\left(v_{R}^{T}\right)^{2}} \\
& +\frac{C}{\sqrt{E}}\left(A T_{1}+A T_{2} / E+A T_{3} / E^{2}+A T_{4} / E^{3}+B T_{1} * E+B T_{2} * E^{2}\right),
\end{aligned}
\]

\section*{2. Capture Cross Section}
\[
\begin{aligned}
& \sigma_{n, \gamma}(E)= \\
& \frac{C}{\sqrt{E}} \sum_{R=1}^{N R S} \frac{\nu_{R}^{\gamma}\left[G_{R}^{\gamma} \cos \omega+H_{R}^{\gamma} \sin \omega\right]+\left(\mu_{R}^{\gamma}-E\right)\left[H_{R}^{\gamma} \cos \omega-G_{R}^{\gamma} \sin \omega\right]}{\left(\mu_{R}^{\gamma}-E\right)^{2}+\left(\nu_{R}^{\gamma}\right)^{2}} \\
& +\frac{C}{\sqrt{E}}\left(A C_{1}+A C_{2} / E+A C_{3} / E^{2}+A C_{4} / E^{3}+B C_{1} * E+B C_{2} * E^{2}\right) .
\end{aligned}
\]

\section*{3. Fission Cross Section}
\[
\begin{aligned}
& \sigma_{n, f}(E)= \\
& \frac{C}{\sqrt{E}} \sum_{R=1}^{N R S} \frac{\nu_{R}^{f}\left[G_{R}^{f} \cos \omega+H_{R}^{f} \sin \omega\right]+\left(\mu_{R}^{f}-E\right)\left[H_{R}^{f} \cos \omega-G_{R}^{f} \sin \omega\right]}{\left(\mu_{R}^{f}-E\right)^{2}+\left(\nu_{R}^{f}\right)^{2}} \\
& +\frac{C}{\sqrt{E}}\left(A F_{1}+A F_{2} / E+A F_{3} / E^{2}+A F_{4} / E^{3}+B F_{1} * E+B F_{2} * E^{2}\right) .
\end{aligned}
\]

In all three formulae,
\[
\omega=2 k \hat{a}_{1}
\]
where \(k\) is the neutron wave number,
\[
k=2.196771 \frac{A W R I}{\text { AWRI }+1.0} \times 10^{-3} \sqrt{E(e V)}
\]
and
\[
\begin{aligned}
& \hat{a}=A P=\text { effective scatcering radius (in units of } 10^{-12} \mathrm{~cm} \text { ) } \\
& \frac{C}{E}=\pi \lambda^{2}=\frac{\pi}{k^{2}}
\end{aligned}
\]
D.2. THE UNRESOLVED RESONANCE REGION: LRU=2, LRF天1 or 2

Average resonance parameters are provided in File 2 for the unresolved region. Parameters are given for possible \(\ell\) - and J-states (up to d-wave, \(\ell=2\) ) and the following parameters may be energy dependent: \(\overline{\mathrm{D}}_{\ell, J}, \bar{\Gamma}_{n_{\ell, J}}^{0}\) \(\bar{\Gamma}_{\gamma_{\ell, J}}, \bar{\Gamma}_{f_{\ell, J}}\). The parameters are for a single-level Breit-Wigner formula with interference. The widths are distributed according to a chi-squared distribution with a designated number of degrees of freedom. The number of degrees of freedom may be different for neutron and fission widths and for different ( \(\ell, J\) ) states. These formulae do not consider Doppler broadening.

\section*{D.2.1. Resonance Parameters for the Unresolved Region}

A few definitions and formulae useful in the unresolved resonance region are given below.
a. Level Spacing

The experimental value of mean spacing between resonances for a given \(\ell\) state is determined as
\[
D_{\ell, \text { observed }}=\frac{\Delta E_{n}}{\text { No. of resonances of given } \ell},
\]
where \(\Delta E_{n}\) is the neutron energy interval and \(\ell\) is the angular momentum of the incident neutron. In using the above equation it is assumed that corrections have been made for missed levels or that only that part of the energy range in which a plot of the level position vs. level number is linear has been used. For most of the nuclei this quantity is determined by looking at the s-wave resonances.

If we assume that
\[
p_{J, 2} \sim(2 J+1) \text {, }
\]
where \(\rho_{J, l}\) is the density of compound nucieus levels of spin \(J^{\pi}\) and given \(\ell\), then,
\[
\begin{equation*}
\frac{1}{D_{\text {obs }}}=\rho_{\ell, \text { obs }}=\sum_{J} \rho_{J, \ell} . \tag{2}
\end{equation*}
\]

Note: all allowed \(\ell\) values label the same set of resonances.

If in addition \(I\) is the spin of the target nucleus, one can show that
\[
\begin{equation*}
D_{J, \ell}=D_{\ell, O b s} \times 2 \times(2 I \times 1) \times(2 \ell \times 1) \times \omega_{I, \ell} \tag{3}
\end{equation*}
\]
where \(\quad \omega_{I, \ell}=\frac{\ell+1}{2 \ell+1}\) for \(\ell \leq I\)
and \(\quad \omega_{I, \ell}=\frac{I+1}{2 I+I}\) for \(\ell>I\)

In the above we have neglected the exponential factors in the level density formula to get a simple expression. From these expressions we can calculate the level-spacing for the two sets of s-wave resonances and also derive the spacings for the \(p\) and \(d\)-wave neutrons resonances.
b. Neutron Widths and Strength Functions

The definitions and usage of strength functions has been confused in the literature as has been pointed out by Gyulassy and Perkins \({ }^{(5)}\). Thes ambiguities, however, do not effect the results for s-wave neutrons (i \(=0\) ) or reactions on targets of spin zero ( \(T=0\) ).

A microscopic strength function \(S(\ell, J, s)\) can be defined, however, what is referred to in the literature as measurable is \(S(l)\). The assumption is always made that \(S(\ell, J, S)\) is inclependent of \(J\) and \(s\). Two treatments which
(5) M. Gyolassy, S.T. Perkins, Me. Sci. Eng. 53, 482 (1974).
relate \(S_{\ell}\) to \(S_{Q, J}\) are found in the literature and appear to differ in whether an explicit sum over \(s\) is included \({ }^{(5)}\). Except for the cases cited this can yield a factor of two difference.

The strength function is defined here as
\[
S(\ell)=\frac{1}{(2 \ell+1)} \frac{\left\langle g \Gamma_{n}^{\ell}\right\rangle}{D(\ell)}
\]
where che statistical weight factor \(g=\frac{2 J+1}{2(2 I+1)}\) for neutrons.
\[
\left\langle g l_{n}^{R}\right\rangle=\frac{g\left\langle\Gamma_{n}^{l}(J)\right\rangle}{u_{l, J}^{\omega_{I, l}}}=\frac{g\left\langle\Gamma_{n}^{\ell}(J, s)\right\rangle}{\omega_{I, l}}
\]
where \(\quad \omega_{I, \ell}\) is defined above
and \(\quad \mu_{\ell, J}\) is the number of ways to form a given \(J\) state of given \(R\) (i.e. the multiplicity, either 1 or 2 ).

Note that the strength functions for a given l-state but different spin states \(J_{1}, J_{2}\). . . \(J_{S}\) would all be equal. For more detail see ref. 5 .

We define the neutron width \(\Gamma_{n R J}\) for \(l\)-wave neutrons and spin \(J\) - states as
\[
\begin{equation*}
\Gamma_{n \ell J}=\Gamma_{n J}^{\ell} \sqrt{E} \times v_{\ell} \times \mu_{\ell, J} \tag{6}
\end{equation*}
\]
where \(\Gamma_{n J}^{2}\) is the reduced neutron width, \(E\) is the neutron energy in ev, \(V_{2}\) is defined below, and \(u\) is the number of degrees of freedom for the neutron width distribution
\(V_{\ell}(\rho)=\frac{P_{\ell}(\rho)}{\rho}\), where \(\rho=k r\) ( \(k\) is the neutron wave number and \(r\) the nuclear radius).

For \(i=0 \quad V_{0}(0)=1\)
\[
\begin{aligned}
& 8=1 \quad v_{1}(0)=\frac{d^{2}}{1+0^{2}} \\
& 8=2 \quad v_{2}(0)=\frac{0^{4}}{9+3 q^{2}+t^{4}}
\end{aligned}
\]

In ENDF instead of summing over \(S\) a value of \(i_{\ell, J}\) is introduced. If \(s\) has one or iwo values, \(H_{2, J}\) is 1 or 2 respectively. (i.e. some of the spin states could be formed via two possible values of channel spin, \(1+1 / 2\) and 1-1/2, and hence the corresponding neutron width could be thought of as following a Chi-squared distribution of \(:=2\) degrees of freedom.)

\section*{C. Garma Wiaths}

In the limited energy range of a few keV usually covered by the unresolved resonance region, the gamma widths may be assumed to be constant and equal to that obtained from an analysis of the resolved resonances. If, however, the energy range is rather wide, an energy dependence as given by some of the well-known theoretical models \({ }^{(6)}\) has to be built in. Since the observed gamma width is a sum of a large number of primary gama transitions, each assumed to have a chi-squared distribution of \(\mu=1\), it is found to have a \(\mu \geq 20\). In effect this implies that the gamma width is a constant, since a chi-squared distribution with a large number of degrees of freedom approximates a \(\delta\)-function.

\section*{D.2.2. Cross Sections in the Unresolved Region}

\section*{a. Elastic Scattering Cross Section}
\[
\begin{aligned}
& \sigma_{n, n}(E)=\sum_{\ell=0}^{N L S} \sigma_{n, n}^{\ell}(E), \\
& \sigma_{n, n}^{l}(E)=\frac{4 \pi}{k^{2}}(2 \ell+1) \sin ^{2} \phi_{\ell}
\end{aligned}
\]
(6) J.E. Lynn, "The Theory of Neutron Resonance Reactions," Chapter VII, Clarendon Press, Oxford, 1968.
b. Radiative Captive Cross Section
\[
\begin{aligned}
& c_{n, Y}(E)=\sum_{l=0}^{N L S} a_{n, Y}^{\ell}(E), \\
& \sigma_{n, Y}^{\ell \cdot}(E)=\frac{2 \pi^{2}}{k^{2}} \sum_{J}^{N J S_{\ell}} \frac{g_{J}}{\bar{D}_{\ell, J}}\left\langle\frac{n^{1} \gamma_{i}}{\Gamma}\right\rangle_{\ell, J} . \\
& \text { c. Fission Cross Section } \\
& a_{n, f}(E)=\sum_{l=0}^{N L S} a_{n, f}^{\ell}(E) . \\
& o_{n, f}^{\ell}(E)=\frac{2 \pi^{2}}{k^{2}} \sum_{J}^{N J S_{\ell}} \frac{g_{J}}{\bar{D}_{\ell, J}}\left\langle\frac{\Gamma_{n} \Gamma_{f}}{\Gamma}\right\rangle_{\ell, J} .
\end{aligned}
\]

The sumation over \(\ell\), in the above equations, extends up to \(\ell=2\) or to NLS (the number of \(\ell\)-states for which data are given). For each value of \(\ell\), the sumnation over J-states extends to \(\mathrm{NJS}_{\ell}\) (the number of J-states for a particular \(\ell\)-state).

\section*{NLS and NJS are given in File 2.}
\[
\begin{aligned}
& \left\langle\frac{\Gamma_{n} \Gamma_{n}}{\Gamma}\right\rangle_{\ell, J}=\binom{\bar{\Gamma}_{n_{\ell, J}} \bar{\Gamma}_{n_{\ell, J}}}{\bar{\Gamma}_{\ell, J}} R_{n_{\ell, J}} \\
& \left\langle\frac{\Gamma_{n} \Gamma_{\gamma}}{1}\right\rangle_{\ell, J}=\left(\frac{\bar{\Gamma}_{n_{\ell, J}} \bar{\Gamma}_{\gamma_{\ell, J}}}{\bar{\Gamma}_{\ell, J}}\right)^{R_{\gamma_{\ell, J}}}
\end{aligned}
\]
\[
\left\langle\frac{\Gamma_{n} \Gamma_{f}}{\Gamma}\right\rangle_{\ell, J}=\left(\frac{\bar{\Gamma}_{n_{\ell, J}} \bar{\Gamma}_{\varepsilon_{\ell, J}}}{\bar{\Gamma}_{\ell, J}}\right)_{R_{\ell_{\ell, J}}}
\]
where \(R_{Y_{\ell, J}}, R_{f_{\ell, J}}\), and \(R_{n_{\ell, J}}\) are fluctuation integrals for capture, fission, and elastic scattering, respectively. Associated with each integral is the number of degrees of freedom for each of the average widths.

Data given in File 2 .or each (l, J) state
\(H_{n_{l, J}}=A M U N\), the number of degrees of freedom for neutron widths

\(\bar{r}_{\mathbf{x}_{\ell, J}}=G X\), the average competitive reaction width
\(\bar{r}_{n_{\ell, J}}^{0}=G N O\), the average reduced neutron width
\(\bar{r}_{Y_{\ell, J}}=G G\), the average radiation width
\(\vec{\Gamma}_{f_{\ell, J}}=G F\), the average fission width
\(\bar{D}_{\ell, J}=D\), the average level spacing

The average neutron widths are
\[
\bar{\Gamma}_{n_{\ell, J}}=\bar{\Gamma}_{n_{\ell, J}} \sqrt{E} \vee \mu_{n_{\ell, J}}
\]
where the penetrabilities, \(V_{2}\), are
\[
\begin{aligned}
& v_{0}=1 \quad \text { for s-wave neutrons, } \ell=0 \\
& v_{1}=\frac{p^{2}}{1+p^{2}} \quad \text { for p-wave neutrons, } \ell=1 \\
& v_{2}=\frac{\rho^{4}}{9+30^{2}+\rho^{4}} \text { for d-wave neutrons, } \ell=2
\end{aligned}
\]

The statistical weight factor, \(g_{J}\), is
\[
g_{J}=\frac{2 J+1}{2(2 I+1)} .
\]

The average total width, at energy \(E\), is
\[
\bar{r}_{\ell, J}=\bar{F}_{n_{\ell, J}}+\bar{r}_{\gamma_{\ell, J}}+\bar{\Gamma}_{\varepsilon_{\ell, J}}+\bar{\Gamma}_{x_{\ell, J}}
\]
where all widths are evaluated at energy \(E\).
\[
\begin{aligned}
& J=A J \text { as given in File } 2 \\
& I=S P I \text { as given in File } 2 \\
& I=L \text { as given in file } 2
\end{aligned}
\]
\[
\rho=k a_{\rho}
\]
where \(k\) is the neutron wave number,
\[
k=2.196771 \frac{A W R I}{A W R I+1.0} \times 10^{-3} \sqrt{E(\mathrm{eV})}
\]
and
" a " is the channel radius (in units of \(10^{-12} \mathrm{~cm}\) ).
\[
a=1.23(\text { ANRI })^{1 / 3}+0.8 \times 10^{-1}
\]

AWRI is the ratio of the mass of the particular isotope to that of the neutron.

AWRI is given in File 2 .
\(\phi_{l}\) is the phase shift and
\[
\begin{array}{ll}
\phi_{0}=\hat{\rho} & \ell=0 \\
\phi_{1}=\hat{o}-\tan ^{-1} \hat{o} & \ell=1 \\
\phi_{2}=\hat{o}-\tan ^{-1}\left(\frac{3 \hat{p}}{3-\hat{o}^{2}}\right) & \ell=2
\end{array}
\]
where
\[
\hat{o}=k \hat{a}
\]
and \(a\) is the effective scattering radius (in units of \(10^{-12} \mathrm{~cm}\) ). \(\hat{a}=A\) as given in File 2.

\section*{APPENDIX E}

\section*{Interpolation Schemes}

Interpolation schemes are provided to obtain values of a function, \(y\) : \(x\) ), from a tabulated series of \(X(N)\) and \(Y(N)\). The symbolism used to specify in interpolation scheme might be
[MAT, MF', MT/Ci, C2; L1, L2; NR, NP/E int \(\left.^{\prime} / \mathrm{Y}(E)\right]\) RAB1
where \(E_{i n t}\) implies an interpoiation scheme and \(Y(E)\) implies pairs of values for \(E(N)\) and \(Y(N)\). The binary record would actually contain the following numbers:
(MAT, MF, MT, Cl, C2, L1, L2, NR, NP, NBT(1), INT(1), NBT(2), INT(2), NBT(3), INT(3), .... NBT(NR), IN2(NR), E(1), Y(1), E(2), E(3), \(Y(3), \ldots, E(N P), Y(N P)]\)
\(N P\) is the number of pairs, \(E\) and \(Y\), that are given. \(N R\) is the number of interpolation ranges given. NBT (1) is defined to mean that a particular interpolation scheme is to be used between point number one and the point number: given by NBT(1). The interpolation scheme to be used in this range is specified by the value of INT(1). Likewise in the second interpolation region, betweer. the point number qiven by \(N B T(1)\) and that \(!\) (jiven by \(N B T(2)\), the interpolation scheme is given by the value of INT(2). The procedure is followed untiz all interpolated regions have been specified. It should be obvious that the value of NBT(NR) is equal to the number NP. An illustration is shown in Figure E.l. Interpolation schemes for a two-dimensional function \(y\left(E^{\prime}, E\right)\) are similar. The function is represented by a series of tabulated values and interpolasion schemes. In this case two interpolation schemes must be given, one for \(E\) and

\section*{E-2}
and another for \(E^{\prime}\). This is specified by a TAB2 record followed by several TAB: or LIST records. An example might be [MAT, MF, MT/Cl, C2; L1, L2; NR, NE/E int ]TAB2 [MAT, MF, MT/C1, E(1); IL, L2; NR, NF/E! \(\left.{ }_{\text {int }} / \mathrm{g}\left(E^{\prime}, E_{1}\right)\right] T A B 1\)
[MAT, MF, MT/Cl, E(2); L1, L2; NR, NF/E' \(\left.{ }_{\text {int }}^{\prime} / \mathrm{g}\left(E^{\prime}, E_{2}\right)\right]\) TAB1

In this case NR, in the TAB2 record, indicates the number of interpolation ranges for (E). There will be NE TABl records, each will contain a value of \(E\). \(E_{\text {int }}\) is the interpolation scheme used for the \(E\) mesh. NF in each TABl record indicates the number of pairs. \(E^{\prime}\) and \(g\left(E^{\prime}, E\right)\) that will be given in the particular record. E int is the interpolation scheme to be used. The allowed interpolation schemes are given below.

INT
1
2
3
4
5

Description
\(y\) is constant in \(x\) (constant)*
\(y\) is linear in \(x\) (linear-linear)
\(y\) is linear in \(\ln x\) (linear-log)
\(\ln y\) is linear in \(x\) (log-linear)
\(\ln y\) is linear in \(\ln x(\log -\log )\)
*Mote: INT = 1 (constant) implies that the function is constant and equal to the value given at the lower limit of the interval.

\section*{APPENDIX E}

\section*{Temperature Dependence}

Any of the data given in Files \(3,4,5,6\), or 7 may have a temperature dependence (where it is physically realistic). The temperature dependence is specified by repeating the data for each temperature given and indicating how to interfolate the data between temperatures. LT is a flag that indicates whether or not temperature-dependent data are given.

The following quantities are defined.
\(T_{\mathrm{m}}\) is the \(\mathrm{m}^{\mathrm{th}}\) temperature \(\left({ }^{\circ} \mathrm{K}\right)\).
LT is a test for temperature dependence:
\(\mathbf{L T}=0\) means no temperature dependence;
LT > 0 means that the function \(Y(x, T)\) is given at (LT + 1)
temperatures.
\(I_{m}\) is the interpolation scheme used between \(T_{m-1}\) and \(T_{m}\). The values of
I have the same definitions as INT given for other interpolation schemes (see Appendix E).

Since the data will always be given in a LIST or TABl record, consider a TABl record for a function \(y(x)\). In this case the functions must be \(y(x, T)\). Whe function at the first temperature \(y\left(x, T_{1}\right)\) is given in a TABl record. The functions for the remaining temperatures are given in LIST records. The number of LIST records will be LT. An example might be

[MAT, MF, MT/ \(\mathrm{T}_{2}, \mathrm{C} 2 ; \mathrm{I}_{2}, \mathrm{~L} 2 ; \mathbb{N P}_{2}, 0 / \mathrm{Y}_{\mathrm{n}}\left(\mathrm{T}_{2}\right)\) ]LIST
[MAT, MF, MT/ \(\left.T_{3}, C 2 ; I_{3}, L 2 ; N_{3}, 0 / Y_{n}\left(T_{3}\right)\right] L I S T\)
[MAT, MF, MT/ \(\left.T_{L T+1}, C 2 ; I_{L t+1}, L 2, N_{L t+1}, 0 / Y_{n}\left(T_{L T+1}\right)\right] L I S T\)

The LIST records must be given in order of increasing value of the temperature \(T_{m}\). Note that the interpolation scheme \(I_{m}\) is given in the same record position in the LIST record as LT in the TABl record. Also note that in the TABl record (for the first temperature) pairs of values are given, \(X(N)\) and \(Y\left(X, T_{1}\right)\), while in the LIST record only values of \(Y\left(X, T_{2}\right)\) are given. It is implied that \(Y\left(X, T_{2}\right)\) given at the \(N^{\text {th }}\) point is for the same value of \(X(N)\) as is given for \(Y\left(X, T_{1}\right)\). This means that the \(X\) mesh is given only once, for first temperature.

If a cross section exhibits a temperature dependence, it will generally occur only at low neutron energies, and the high energy data will be independent of temperature. Therefore, the LIST records for the second and higher temperatures may contain NP's that are less than the NP given on the TABl record. If the subscript \(n\) denotes the temperature, the following condition is defined:
\[
N P_{1} \geq N P_{2} \geq \ldots \ldots \geq{ }^{N P_{L T+1}}
\]

For example, consider the fission cross section for a particular material where resonance parameters are not given. \(\sigma_{f}(E)\) may be described by 1000 energy points ( \(N P=1000\) ) that cover the energy range from \(10^{-5} \mathrm{eV}\) to \(15.0 \times 10^{6}\) \(e V\) for a temperature of \(293.0^{\circ} \mathrm{K}\). These data would be given in a TABl record. If the fission cross section is given at \(600.0^{\circ} \mathrm{K}\) and tenperature effects are not important for neutron energies above \(1.0 \times 10^{3} \mathrm{eV}\) (described in the TABI record by the first 500 points), then a LIST record is given for \(600^{\circ} \mathrm{K}\) and NP would be equal to 500. It is implied that the first 500 energy points for both sets of data are exactly the same.

If the temperature dependence refers to data already in a LIST record, all records are of the LIST type. The first LIST record contains the data for the first (lowest) temperature.

[MAT, MF, MT/ \(\left.T_{L T+1}, C 2 ; I_{L T+1}, L 2, N_{L T+1}, 0 / B_{n}\left(T_{L T+1}\right)\right] L I S T\)
The same rules apply as for NP, i.e.,
\(\mathrm{NF}_{1} \geq \mathrm{NP}_{2} \geq \cdots \geq \mathrm{NP}_{\mathrm{IT+1}}\).
The above mechanism is used in File 1 to describe the variation of fission product yields with incident neutron energy. In this special case, the neutron energy replaces the temperature in the above illustration, and the interpolation code \(I_{m}\) refers to neutron energy.

\section*{APPENDIX G}

Alternative Structure for ENDF Data Tapes

The standard structure of an ENDF tape was described ir Section 0.4.2 of this report. The standard structure is well suited for BCD (card image) and binary tapes.

An alternative structure of the ENDF data tapes has been developed for use in certain cross section processing codes. This alternate arrangement, illustrated in Figure G.l, is simply an interchange of materials and files. The hierarchy is now MF, MAT, and MT.

Processing programs have been written that will convert an ENDF data tape (either BCD card image or binary) from the standard structure to the alternate structure (see Appendix I).


Figure G.1. Alternate Arrangement of an ENDF Tape

\section*{APPENDIX H}

Data Formats for the ENDF/R Library

The data formats and procedures to be used for the ENDF/A libriry are essentially the same as those used for the ENDF/B. All processing coden, such as CHECMER, RIGEL, and EIDE, will be able to read the data tape, whetrer the tape is an ENDF/A or ENDF/B data type. The only difference between the two tapes is a flag in the HEAD record of the first section, MT \(=451\), in file 1. Also, the first part of the Hollerith information (first two BCD card-image records) will have an artificial structure. The modified structure for an ENDF/A tape is
[MAT, 1, 451/ A, AWR; LRP, LFI; NTY, NXC]HEAD
[MAT, 1, 451/0.0, 0.0. LDD, LFP; NWD, 0/
AID, ALAB, DATEL, AUTH /
REF, DATE2, DATE3, BMIN, EMAX/H (N)]LIST
[MAT, 1, 451/0.0, 0.0; MF \(\left.1_{1}, M T_{1}, N C_{1}, 0\right\rfloor C \varnothing N T\)
\(\qquad\)
\(\qquad\)
\(\qquad\)
[MAT, 1, 451/0.0, 0.0, MF NXC \(^{\prime} \mathrm{MT}_{\text {NXC: }} \mathrm{NC}_{\mathrm{NXC}}, 0\) ]CØNT

[MAT, 1, 0/0.0, 0.0, 0, 0, 0, 0]SEND
where
NTY is flag to indicate the rype of data tape.
If NTY = 0 of blank .- ENDF;'B tape,
\(=1\) - ENDF/A tape,
\(=2-E N D F / A\) tape (translated from UKAEA library).
\(=3\).. ENDF/A tape (translated from KEDAK library).
The first pat of the Hollerith information (first two BCD card-image records)
has the structure:
\begin{tabular}{|c|c|c|c|}
\hline Field & Col. & Naune & Description \\
\hline & & (First Card) & \\
\hline 1 & 2-11 & AID & Material name (left adjusted) \\
\hline 2 & 12-2\% & \(A\) AB & Originating laboratory (left adjusted) \\
\hline 3 & 23-33 & DATE 1 & Date of evaluation (left adjusted) \\
\hline 4 & 34-66 & AUTH & Author of evaluation (left ar.justed) \\
\hline & & (Second Card) & \\
\hline 1 & 2-22 & REF & Reference (left adjusted) \\
\hline 2 & 23-33 & DATE2 & Criginal distribution date (left adjusted) \\
\hline 3 & 34-44 & DATE 3 & Date of last revision (left adjusted) \\
\hline 4 & 45-55 & EMIN* & Lower limit of energy range (format is Ell.4) \\
\hline 5 & 56-56 & Emax* & Upper limit of energy range (format is Ell.4) \\
\hline
\end{tabular}

NWD has the same meaning as an ENDF/B tape, i.e., it is the number of elements in the Hollerith section (for BCD card-image tapes). NWD is the number of card images used to describe the data set of this material. NWD includes he count of the first two BCD card images. An example follows.
*Given only for materials thit contain cross section data for one reaction type.

\begin{tabular}{|c|c|c|c|}
\hline code & Org. & Custodian & Comments \\
\hline ETOX & HEDL & R. Schenter & Prepares neutron cross sections and shielding factor tables for use in the \(10 X\) codre. \\
\hline ETOX & LASL & R. MacFarland & Jame as above. \\
\hline Flange & SRL & D. Finch & Prepares thermal neutron cross sections from ENDF/B data including \(S(\alpha, \beta)\) data in file 7. No Adler-Adler capability. \\
\hline gamleg & LASL & R. Labauve & Prepares photon interaction cross sections for shielding analysis. \\
\hline \[
\begin{aligned}
& \text { GFE4/ } \\
& \text { GAND } 3
\end{aligned}
\] & GA & D. Mathews & Prepares neutror cross sections for use in the (GGC-4, GGC-5 ard MICROX codes. \\
\hline \[
\begin{aligned}
& \text { INTEN/ } \\
& \text { INTER }
\end{aligned}
\] & BNL & NNCSC & Computes a variety of integral quantities from a pointwige ENDF file. \\
\hline LAPHANO & LASL & R. Labauve & Prepares photon productioni cross section for use in shielding analysis. \\
\hline LISTFC & BNL & NNCSC & Generates incerpreted :istings of ENDF files. \\
\hline PUFF & ORNL & C. Weisbin & Processes covariance data for use in sensitivity analysis. \\
\hline RESEND & BNL & NnCSC & Prepares infinitely dilute \(0^{\circ} \mathrm{K}\) pointwise cross sections from File \(2+3\) information. \\
\hline MINX & LASL & R. MacFarland & Prepares neutron cross section and shielding factor tables in the SPHINX code. \\
\hline MINX & ORNL & C. Weisbin & Same as above. \\
\hline NJOY & LASL & R. MacFarland & Extension of MINX \(t\) provide a coupled neutron/garme ray capability far SPHINX. \\
\hline PLOTFB & BNL & NNCSC & Automatic piotting code for ENDF. \\
\hline RIGEL & Binl & NNCSC & ENDF file Editing cale. Creates ENDF binary file formated tapes. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Code & Org. & Custodian & Comments \\
\hline SUPERTOG & ORNL & R. Q. Wright & Prepares neutron cross sections for codes of the GAM/MUFT type. \\
\hline SUPERTON & GE & C. Stewert & Same as above. \\
\hline SAMX & Magi & M. Beers & Prepares cross sections for MonteCarlo codes. \\
\hline SCOPEL & ENL & nncsc & Interactive or instructed plotting code for ENDF. \\
\hline SIGMAI & LLL & D. Cullen & Doppler broadens a linearized, pointwise ENDF file. \\
\hline VIM & ANL & V. Prael & A Monte-Carlo siowing down code to prepare broad group cross sections for use in fast reactor calculations. \\
\hline VIXEN & BNL & NNCSC & Checking code for photon files. \\
\hline
\end{tabular}
\[
J-1
\]

\section*{APPENDIX \(J\) \\ Materizls in the ENDF/B-IV jibrary}

The following is a list of materials that constitute the ENDF/B-IV Library. Those materials found on ENDF Tapes 401-411 are referred to as General Purpose Evaluations, Tape 412 as Dosimetry, and materials found on tapes 414-419 are reforred to as Fission Product Evaluations.

Other materials exist and are available in the ENDF format. For a list of materials in the ENDF/A Library please contact NNCSC. Moderating Materials(i.e.Scattering Law Data) have been carried over from ENDF/B-III for \(\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}\), Beryllium, BeO, Graphite, Polyethylene, Benzene, \(H\) in \(Z r H\), and \(H\) in ZrH.

Additional materials such as a charged particle starter library are also available.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ＊anis． & mil Plat confin， & －acel ball & nercannes & Date & cutaga & TAPE \\
\hline ：－ &  & 416 bisk & 6＊－8374 18098） & －vETS &  & 46＊ \\
\hline ：－． &  & 380 0n＊ & 日月IV，COMN，iJUN，1067） & JUMA 7 & O，n．tconamb，Jn．．K．E．ETEmAM & 412 \\
\hline ：－－－ 3 & 120\％mSN＊．edecav nata & 090 batb & & CCuss & －．Stemant & 401 \\
\hline \(\therefore\)－as 3 & dite miutron caoss secplon oava only & 408 basb & & 1900 & 6．5Ptwame & 418 \\
\hline \(\therefore\)－me & dipu miuthon Eacss sceplom gapa onty & \(4 A_{\text {cast }}\) & & 0ciss &  & 104 \\
\hline ＇\(\cdot 1\). &  & vat basb & & anama & G，W，WALE，0．0000ER，M，young & \(4 \mathrm{B4}\) \\
\hline  & －2\％：＊llefon gaoss secpion deit onsy & 136 6as6 & & movis &  & 412 \\
\hline 3－6．\({ }^{\text {P }}\) & 1pte riciogan，mago．Dita & 090 6456 & & 0cis2 &  & 1 484 \\
\hline －－se－ &  & 291）L6 & & DECP1 &  & 414 \\
\hline 408 & 1373 AEuT，©6am．Paiog．09ta & \(32 \mathrm{AR} \mathrm{6*S6}\) & & Novis & G．M．NALE，M，A，NISLEY，P，G．PDUNE & 484 \\
\hline ＊－8－ 24 & ez\％s＊evinon cmoss secyion dapm omb＊ & 275 basb & & novis &  & 412 \\
\hline －－ 18 － \(1:\) & but meurnor cmoss steplon dapa only & 979 6E－14L & & E\％72 & e．edman & 463 \\
\hline A＝E－ 12 &  & 1976 0mML & & OEC73 & －G．peacy，C．T，Fu & 468 \\
\hline ＇－10 84 &  & 4182 6486 & & JuL 73 &  & ＊iat \\
\hline A－ 0.80 &  & 6184 ball & & 44693 & P，\％ & 48\％ \\
\hline * &  & 4800 OANL & & دU674 & E.Y.FU.O.C.GAREON,F.G.REMEY & 411 \\
\hline  &  & 121 mandeonnt & & 1078 & N Mafk，p，Piptembeimand，Diney & 412 \\
\hline 12－44－83 &  & 38 ¢ mantopant & & 1071 &  & 403 \\
\hline 17－46 &  & saem 6Rrient & & Fciexa & M，onaktom，Pifniext & 409 \\
\hline 17－4．－2t & ofos neurnon enoss sicpion dapa avit & 229 5056 & & ofers & －．t．voung，o．c．raspen．di． & \(1: 2\) \\
\hline ：5－46－29 & ：：03 hic．－sam．magog．DAP4 & 9090 bast & & accis & P，G．Young．D．G．rospen，Jn． & \(4{ }^{4}\) \\
\hline －1－7－5i &  & 20324 cmmb & & Fcsya & GAASOM，DEAEY，DGAME，YOUNG & \(4{ }^{10 \cdot}\) \\
\hline 30－5－32 & －ate MSuphon elioss scepion iapa only & 72 A \({ }^{\text {ch }}\) & & 4u672 & N．O．Ouder & 412 \\
\hline \(2{ }^{2} \mathrm{CL}\) & 2149＋Ly＊．－GAM，PRIgD．DAf4 & 4035 Gca & ¢4－7429 vol－412097） & \({ }^{\text {cegol }}\) & M，3，Abtew，M，x，omane & \(4 \mathrm{~A}{ }^{\text {d }}\) \\
\hline 10－4 & 3190 NLU＊．954．pago．U6：4 & 417264 & Eanpuev vel－Sidear） & 「EG67 & M，M，orakt & \(4{ }^{3}\) \\
\hline 30－ca &  & －888 0int & & A1／671 & と，\％．pu．F．z．0tacy & ce： \\
\hline 3：－sc－a－m &  & 119 Emb & & Jan74 &  & 412 \\
\hline 22－91 &  & 300466 & & n，0nye &  & all \\
\hline 32－91－40 & ¢4E1 MEupmen choss seetion daya ont＊ &  & & n⿴囗十力2 & －macuamo & 412 \\
\hline 22－99－4 & gagz atupatm choss scetion dapa onty & 78 Omb & & 4uc92 & e．matunno & 413 \\
\hline 22－91－41 & Dans mburnow cmans secyion dapa onlr & 715 & & Nuc72 & －magutino & 412 \\
\hline \(3 \mathrm{y-v}\) &  &  &  & SEP9 & ，M，PENNY，b，W，omen & 412 \\
\hline 24－ca &  & －322 0ML & & aphya & A．PRIMCE & 400 \\
\hline 25－xM－ 58 & 1.97 nfur．05Am，pago．0a74 & 4888 & & Fcs74 & ，Tamamalimi & 4＊＊ \\
\hline 2a－mm－ 15 & arey nenfagen cmoss sfeysion dapa only & 18 UML & & Derys 0 &  & 412 \\
\hline \(28-5 \cdot\) & 3102 HEUT．－CAM．PAgo．Q4FA & 0296 6RNL & OnmL－014718070） & N（N74 & gncp，ru，Dennv，atwnev，uniamy & 460 \\
\hline 30－rc－ 50 & －4g7 Heurnow caoss section dapa ont & 12 Mcti & & cucts \({ }^{\text {a }}\) & ．E．tenentem & 423 \\
\hline 2A－rc－ 30 & －ags miutam caoss secpion bapa ombr & －anl & & augiz m & ．O．Duber & 412 \\
\hline
\end{tabular}





\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ramast & mar & 1 Ptbe conteny & －Mces & 40 & nerentwce & 04＇t & AuTmon & P4P5 \\
\hline \(4 \mathrm{p}-\mathrm{ian}\)－\({ }^{\text {or }}\) & 243 & hadioactive decar onpa onty & 44 & ANE & & 「E474 & c，w．aten & 115 \\
\hline 4p－en－ 48 & 284 & Magioactive orcay daia onsw & 23 & HEDL & & aphas & －E，senthten & 4.5 \\
\hline 4p－2n－ 09 & 215 & gadioactive oecay oaya onty & 51 & ANG & & cere & C．w．agien & 485 \\
\hline 4p－2n－180 & 220 & madjoacrive decay daya only & 24 & HLOL & & A0年94 & m，C．Bentntea & 415 \\
\hline 4n－in－2es & 287 & maoioactive decay data only & 23 & HEDL & & Apapa & n．E．senenten & 435 \\
\hline 4A－24－182 & 286 & hagioactive oegay data only & 22 & \(\mathrm{HEO}_{6}\) & & Apars & ，E．E．senenyta & 435 \\
\hline 4R－5A－183 & 229 & madioactive degay data only & 28 & MEDL & & APA74 & A，C．senentin & 413 \\
\hline 4n－2n－284 & 238 & madioactive desiay data onty & 22 & HEDL & & aphy & R，E．senenter & 413 \\
\hline 4A－2n－185 & 231 & madidactive degay dapa onty & 22 & WEO6 & & ARAP4 & －，E．Benthfin & 415 \\
\hline 4 \(n-2 \mathrm{p}-186\) & 232 & madioactive oecay data dmiy & 28 & MEOL & & apmya & a，c．senenica & 43 \\
\hline \(4 \mathrm{~A}-2 \mathrm{R}-187\) & 233 & nadioactive decay oapa only & 22 & HEDL & & aphys & n，E，semente & 4.5 \\
\hline 4R－2R－188 & 234 & Ragioacijue oecay dafa onby & 22 & HEDL & & APAP4 & h．E．BEnENTEM & 425 \\
\hline 4p－zr－189 & 235 & hadioactive decay bapa onby & 22 & HEOL & & ApRT4 & R，E．BCHENPEA & 425 \\
\hline  & 1284 & NLUTMON emoss section data onty & \(2 \mathrm{Le3}\) & BNH & & 0etrs & M，h，beonamd，dn． & 611 \\
\hline －41－nione 93 & 1189 & MSUP．OEAM，PROO．DATA & 2143 & 2Habib & & May74 & A．HOMERTON（L）6），\({ }^{\text {a }}\) ，SMIPH & 412 \\
\hline 41－NE－\({ }^{\text {a }}\) & 236 & meut．agam，pador data & 2143 & ANL， 6 L6 & & marya & n．HOWERTON（L6L），A，sMith & 425 \\
\hline 91－N0－93M & 237 & radidactive decay data daby & 21 & HEO 6 & & apaca & A，E，Sentwren & 425 \\
\hline 42－N8－04 & 280 & neup．adecar oapa & 207 & HEDL & & 0¢T74 &  & 415 \\
\hline 42－NR－MAM & 239 & gadidactive decay oapa only & 24 & HED 6 & & Apays & A，E，Semtwfer， & 415 \\
\hline 42－M1－05 & 208 & neut，adegay oapa & 213 & HEDL，ANE & & Oet94 & F，SENM！YPAOPM，M，E，SCWENTER & 115 \\
\hline  & 241 & Radioactive decay dasa Dnby & 33 & anc & & cesya & C．thacten & 415 \\
\hline 12－NE－\({ }^{16}\) & 202 & madidagtive occay data only & 28 & WCDL & & Amata & n，c．senenten & 415 \\
\hline 43－NT－ 07 & 243 & Radioactive decay dafa only & 46 & ANE & & FEETA & C．W．neten & 415 \\
\hline \(42-\mathrm{NB}=17 \mathrm{~m}\) & 244 & naoroactive decay oata onty & 25 & anc & & Fegya & e．w．neten & 415 \\
\hline －1－NB－98 & 245 & radionetive decay data only & 84 & ANC & & 56894 & C．W．ACICH & 415 \\
\hline 41 NE － 98 m & 746 & gagsoactive decay data only & 54 & ANC & & FEB74 & C．h．ferem & 415 \\
\hline 41－NB－ 0 & 247 & radidactive occay dapa dnly & 86 & ANC & & FEg94 & C．Werncian & 415 \\
\hline 11－N日－ 89 m & 208 & madjoactive decay dapa only & 94 & ANC & & FEET4 & C．w．neien & 4.5 \\
\hline 41－Na－2Pa & c49 & radioactive decay dapa only & 68 & anc & & ［E日74 & C．h．aEten & 425 \\
\hline 4－NA－salk & 290 & madioactive decay data only & 24 & \(\mathrm{HCO}_{6}\) & & APRT4 & R．E．SChenten & 115 \\
\hline A：－NG－101 & 292 & radjoactive decay data dnly & 38 & ANC & & reaya & C．W．REICN & 415 \\
\hline 49－NS－202 & 293 & faotoactive decay oata Only & 23 & \(\mathrm{HED}_{6}\) & & aproa & R，E，SCMENTER & 415 \\
\hline 11－NE－123 & 254 & radioacysve decay dapa only & 22 & HEOL & & APR74 & R，E．SEHENTEA & 413 \\
\hline 43－NB－184 & 235 & aadidattive decay dapa only & 23 & HEDL & & APR94 & n，E，SEHENTEM & 415 \\
\hline \(41-\mathrm{NB}-265\) & 286 & gadioactive decay oafa Only & 25 & HEDL & & appoa & A，E，SGMENTEA & 415 \\
\hline \(42-N B-186\) & 297 & hadioactive occay data only & 22 & HEDL & & \(4 \mathrm{APR74}\) & R．E．gencntin & 419 \\
\hline 41－N8－167 & 238 & madjoactive decay data only & 22 & HEDL & & Apry4 & R，E．SEMENTEA & 415 \\
\hline 41－N8－1．86 & 299 & rabioactive decay japa dinhy & 22 & HEDL & & Apapa & M，E．sehenten & 415 \\
\hline 42＊N\％－269 & 209 & madionctive decay dapa only & 22 & HEOL & & aphya & h，E，Benentea & 413 \\
\hline 41－K8－118 & 201 & radioactive oecay oata only & 22 & HEOL & & 4P974 & M．E．SCHENTER & 415 \\
\hline 41－N8－111 & 242 & radioactive decay oata only & 32 & WEDL & & apRp4 & A，E，SCMENPER & 415 \\
\hline 41 －NE－112 & 203 & magrjactive oecay dapa only & 22 & HEOL & & Aprys & R，E，iementen & 415 \\
\hline 42－M0 & 1297 & NLUT，大SAM，Phoo．Difa & 2383 & 666 & & ApRy4 & R．J．MOHERPOM & 489 \\
\hline 42－MO－ 14 & 244 & neupron emoss section data only & 240 & H20 & & \(0 \mathrm{cry4}\) &  & 415 \\
\hline 42－M6－ 15 & 265 & neutmon cadss segtion dapa only & 917 N & HCOL & & 0cry4 &  & 415 \\
\hline 42－mo－ 96 & 266 & nEutnon chass secfion oapa only & 241 M & MEOL & & 06974 & n，E，genenter，P，scmmipinoth & 415 \\
\hline 42－nc－\({ }^{\text {－}}\) & 207 h & hiuthon cross scation data only & 538 & HEDL & & 0ct94 &  & 415 \\
\hline 42－mo－98 & 200 A & heutron gross Secision dafa Chly & 34\％ 1 & HEDL & & OCT74 &  & 415 \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 35 &  & - acts & - & nereacmes & On't & aupmas & cot \\
\hline aras-124 & ais Rasioaspive decar ospa dib & 38 & meor & & don74 & M, ciementia & 018 \\
\hline 4-43-329 & ald magigacinut driay dapa onty & 22 & ncol & & Apara &  & 019 \\
\hline \(4 \cdots-35 \cdot 236\) & -is magoas*ive oceay outa oncy & 22 & MCOL & & aphra & n, [.tencnica & 419 \\
\hline 47-46-12 & -f3 magionetive accav dapa ongr & 21 & WEOL & & apaya & -, L. SEnENPEA & 48 \\
\hline - 50 -13 &  & 22 & WCOL & & apay4 & -.c.sentnpen & 615 \\
\hline 
\[
4 A=: 2
\] &  & 2469 & 0 NL & & *av9 &  & 412 \\
\hline 4A-:2-134 &  & 380 & NEOL & & octos &  & 0:3 \\
\hline 4A-C2-259 & -gb acgioactive desar dapa only & 22 & ncos & & aph 94 & -.L.sEnEmte & 414 \\
\hline 4R-5E-3: \({ }^{\text {d }}\) & 41: AEbmon eogs sceplom dapk anty & 310 & meOL & & 06994 &  & 4: \\
\hline 4A-E2-82: & 4at mitmon enass secpion dapa amb & 443 & NEOL & & octy &  & 410 \\
\hline 4A-EE-21:4 & 4s9 ametoactive decay daya onby & 20 & MEOL & & aphys & Q.E.scmenten & 415 \\
\hline \(48-52-182\) &  & 238 & HEOL & & octsa &  & 410 \\
\hline \(4 \mathrm{~A}-59-283\) & 1242 nebingn cross secyion daya onby & 2335 & ONL & & marya &  & 419 \\
\hline A \(A\)-50-213 & 422 NLtiagn gagss sespion daya ont* & 2333 & ONL & & mapta &  & 435 \\
\hline AB-CD-1:3m & 482 majgoactive decay dapa only & 24 & HECL & & apmya & n. E. Senenten & 415 \\
\hline 4R-ES-214 & -23 mepron cross section sapa only & 283 & NCOL & & OCT94 & n, e,sementen, & 415 \\
\hline 4A-SD-3:5 & -as madigactive decay daya only & 22 & H506 & & Apinga & M, E, sementen & 415 \\
\hline A \(A\) - \(60-213 \mathrm{~F}\) & ass mevp.ooccar oapa & 143 & WCO6 & & Oct74 &  & 416 \\
\hline 4A-50-824 & ast miveron emoss stepion oapl onty & 215 & WEOL & & OGT94 &  & 415 \\
\hline AA- - - -129 & 41) madigatylve olgay dapa onby & 23 & Heds & & apama & a, c.senenten & 415 \\
\hline \(A B-50-819 m\) & ezt magioacifue occay daya only & 24 & MEOL & & APRTS & m, c.ientnfen & 415 \\
\hline 4A-CO-39 & 420 madioactive decay dapa onty & \(2{ }^{2}\) & nedi & & aplla & m, E, benenten & 415 \\
\hline - 4 - \(58-219\) & 43E madoactive decay dapa driy & 21 & HEDL & & apasa & M, E. senthica & 415 \\
\hline AAMCO-210n & \(43:\) magionctive occay dapa only & 24 & HEOL & & sphl* & m, E. Aencnica & 419 \\
\hline AR-ED-d20 & aj2 asc:oactive occar oapa Only & 24 & HEOL & & Apat4 & M, E, SCMENTE品 & 119 \\
\hline 4 \(A\)-50-222 & 433 aneioactive decay oapa only & 24 & HEOL & & aph74 & - E. SEHENTEA & 419 \\
\hline Afeco-222 & 434 Ragsoactive occay daya ong. & 23 & MECL & & apaya & 日, E.SEMENTE* & 415 \\
\hline 4 4 -50-123 & 435 macioactive decar oapa only & 23 & HED & & aph94 & M, E. Senenfer & 425 \\
\hline 4 8 -ce-124 & 436 magroative decay daya ongy & 22 & HEOL & & Aph9: & \%, S, SCHENTEA & A:3 \\
\hline 4 \(\mathrm{A}-\mathrm{co}-125\) & 43) mabioactive occay dapa only & 23 & MEOL & & APR74 & M.E.SEMENTEA & 413 \\
\hline 4R-c0-226 & -38 magioactive decay dapa only & 22 & HEOL & & aphra & M, c.sementin & 419 \\
\hline 4A- AD -127 & 43g ragioactive degay japa oniw & 23 & HEOL & & aphra & M.E.SEMENTEM & 415 \\
\hline AA-: -1224 & aso racidactive decay dapa only & 22 & HEOL & & apmea & П.E.SCHENTET & 415 \\
\hline 4A-E0-129 & ca: aagsoactive prcar dapa Onl* & 22 & HEOL & & Apm94 \({ }^{\text {a }}\) & B.E.SGMENTEM & 119 \\
\hline 4n-60-2:2 & caz amgioattive occar oapa only & 22 & HEOL & & APn7a & n, e, sementen & 418 \\
\hline 4-C0-132 & 4as amjioacifue octap dapa only & 22 & HEOL & & APR74 & M.E.senentin & 413 \\
\hline AA-60-132 & -at madioacifive ofcay oapa only & 22 & HEDL & & APRY4 & M.E.SCMENYEA & 418 \\
\hline -9-1N-2i3 & -1,S NEUTMON çoss secrion OAPa Ontr & 243 & HEDL & & 0 c 97 &  & 415 \\
\hline 49-1N-183M & dag madidactive decay tapa only & 21 & HED: & & aphia \({ }^{\text {a }}\) & M, E, sementen & 425 \\
\hline -0-in-2:4 & -at macioactive oecay eapa only & 23 & HEDL & & apmean & M, E.senenten & 419 \\
\hline  & -at madioactive ofcay dapa only & 24 M & MEOL & & APM7 \({ }^{\text {a }}\) & M, E. SCMENTEn & 419 \\
\hline 48-8N-825 * & -ate nlupmon cmoss section daya only & 69 9 & gTf & & ApRy2 R & R, SMER & 412 \\
\hline 40-1n-285 & -agb meutmon cmoss seetion oapa onby & 222 & HED \({ }_{6}\) & & Occis & -. 9 EHMIPPadim & 412 \\
\hline 40-1n-295 & 448 nelu..agcay oapa & 483 H & HCOL & & 0cria \(n\) &  & 418 \\
\hline 40-1n-115n & ase madioactive ofear orpa only & 24 N & neol & & aphre \(n\) & m, e, sementen & 415 \\
\hline -9-1N-296 & ally madidactive decay oapa only & 22 M & MED & & aph34 \({ }^{\text {a }}\) & M, C, SENEMPEA & 424 \\
\hline 69-iv-28sh & 492 nactoactive drcay dapa onby & 23 N & WEOL & & aphise n , & R,E. ACMENPC & 413 \\
\hline 40-in-3! 64 & css madioattive oecay oapa oa.t & 23 H & HEOL & & aphes \({ }^{\text {and }}\) & T, E, SEWENPE* & 414 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \％ 8 &  & 703\％ & 58 &  & 02T－NS－46 \\
\hline 15 & melav＇m＇g－coja & 9wp & ＊） &  & 08t－Ms－46 \\
\hline ＊ & motam＇n＇s peasa & 3N\％ & 43 &  & N687－NS－H6 \\
\hline 4t＊ & m9：2x＇m＇g－603s & 9ny & EvF & －1we vivo dvojo jatajvoldev eby & c8t－ns－4s \\
\hline －1\％ &  & 103x & 102 &  & －2t－N8－46 \\
\hline \(98 \%\) & M9tam＇n＇a vinls & 3nv & P &  & W585－M5－45 \\
\hline 55 & nosay＇n＇g \％ens & 103世＇3mv & 768 & TLVE avj30－＊＊TN＊ar & 525－48－36 \\
\hline 58 &  & rosm & 202 &  & －28－NS－46 \\
\hline sto & u3dmjmas＇3＇4＊cusv & 103\％ & 82 &  & WE27－MS－4s \\
\hline 6：0 &  & 905\％ & 082 & Vavo avj30．－Anjn ser & cet－NS－H5 \\
\hline 6ib &  & T．33 & 302 & afro unvo motajss scous holiangn zep & 22t－NE－WE \\
\hline E\％ &  & 103M & 12 & A 9N0 pavo apgio jailjuotovy tev & wter－N5－05 \\
\hline 18\％ & －3smjmas＇3＇y＊duav & T¢ゴ & ct &  & T3t－NS－45 \\
\hline 55 &  & 903m & 56 &  & 36t－ns－45 \\
\hline 57 & manjunes＇3＇v－\％mat & T03N & e & ＊Te vare avjuc 3aiajoidive orp & mett－NS－d5 \\
\hline 5 F &  & 703M & 062 &  & 65t－45－45 \\
\hline －1\％ &  & 903 m & vis &  & －58－45－45 \\
\hline 50 &  & 163 m & 12 &  & mくti－nc－us \\
\hline st\％ &  & 9030 & \(0 \cdot 2\) &  & 475－NS－ds \\
\hline 510 &  & 103＊ & dec &  & －55－NS－45 \\
\hline 6tt & M，\({ }_{\text {M }}\) & 903\％ & －12 &  & 55t－N5－35 \\
\hline \(5: 8\) & n3dn3mPs＇3＇memuer & 7034 & 22 &  & －St－4：－op \\
\hline sis & －3dn3matije viver & \(703 \times\) & 22 &  & 565－4：－0\％ \\
\hline －：\％ &  & 703 m & \(\mathrm{c}^{2}\) &  & 2c8－4：－6\％ \\
\hline 18 &  & 703M & 02 & A 9no vavo dvjzo 3atajerevir 66\％ & 567－N1－0\％ \\
\hline 68\％ &  & Tam & 02 &  & ＊Et－N1－0\％ \\
\hline 6ib &  & 903n & 48 &  & －2trul－ay \\
\hline 88 & －3dN3m2s＇ju－6vov & 909\％ & 18 & ANo vivo avgjo 3atajotievr ecv & －28－nl－ot \\
\hline 83 & ujunjmas＇3＇y P6yev & 903 m & ct & a 9 no vavo avjso 3atajvotove ine & Wく28－4， 60 \\
\hline 6：8 &  & 703\％ & 02 &  & ＜88－N1－04 \\
\hline \(5 \%\) &  & 703m & 18 & ＊Tho vivo avje jaiajvolcia zap & －2t－41－0\％ \\
\hline Sis &  & 9034 & －2 & a \({ }^{\text {ano Pivo apjego jalajpoiove tct }}\) & －62t－vl－ot \\
\hline 58 &  & 1030 & －2 &  & 528－vi－0\％ \\
\hline sis & M3sm3n9s＇3＇0－6vav & 703 m & 62 &  & －25－4i－07 \\
\hline 4is & M3dn3mas＇3＇¢－6\％av & 903 m & －2 & ＊9Ng vivo mivjo jald．jvoicte eno & WE2T－v：－b \\
\hline 65\％ &  & 703＊ & 58 & ATNo vavu avjuo anisjvjiove cer & 688－81－60 \\
\hline －iv & u3sn3mas＇3＇40cmov & 703\％ & 52 & atno ravo avj3o zabijugiorn oep & －22t－vi－et \\
\hline － & －3¢N3mat＇3＇4＊＊＊＊ & 7 n 3 m & ct & avo vavo araje 3abajuolour cop & 22t－4：－6\％ \\
\hline tiv &  & \(903 \times\) & c2 &  &  \\
\hline \(5 \cdot *\) & nusmamas＇3＇m OCmat & 9036 & 22 &  & 128－81－95 \\
\hline 64 & м9ian＇n＇z－6\％3， & jny & 12 &  & Me8t－4t－30 \\
\hline i： & M2t3very－1534 & 2n\％ & He & axo vavo ayj30 jafıjvolove ior & 325－4：－at \\
\hline 6ip & 43dN3mas＇3＇： max & \({ }^{4030}\) & H2 &  & － 6 18－4i－bt \\
\hline i：\％ & －3anjmat＇3＇0．amar & 9 9\％ & Le &  & stt－M：－01 \\
\hline \(5: 8\) &  & 903＊ & 128 & A 940 \％avo avejo jatajvoievy nty & vert－4i－0t \\
\hline －is &  & 2nv & 15 &  & cntt－\i－at \\
\hline 58 & mat3um＇g wirs & 9＊\％ & 0\％ &  & 0：5－4！－0\％ \\
\hline \(4 \%\) &  & 70 Jm & 12 &  & ncti－4：－0t \\
\hline ！tit &  & 7034 & 12 & Ardo varo aps30 3niajveicity obo & －is－hi－A0 \\
\hline iol． &  & ＊V & 1334• & A43．4C9 3＇t，．00 & 4154． \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Panic＊ & Mal Site conecn & necs & aill & acecabmet & OGIC & aupwan & 1008 \\
\hline 2P－5A－1204 & ges hagioactive accav bapa only & \(\because\) & W 506 & & APars & M，C．tenempen & 118 \\
\hline 3p－5v－230 & sot madioactive defar dapa onsy & 26 & nCOb & & APh\％ & M，E，AEnEMTEM & 415 \\
\hline 5p－5n－23i & ses madioactive decay dapa ongy & 23 & HCD6 & & ApRes &  & 614 \\
\hline 3P－5N－132 & Sot madioactive decay dapa onky & 36 & anc & & fells & 6．in．mescm & 036 \\
\hline 5p－54－133 & gat mabloactive decay data onky & 26 & WEPs & & aphra & M．E．8EMENPEn & 41 \\
\hline 9月－54－124 & sta mapionctive otcay data ongy & 31 & Werb & & aphye & W，C，senenten & 196 \\
\hline 9p－5N－235 & 3 s sagigactive decay daya onby & 22 & WEO6 & & aprys & －a，c，semempen & 435 \\
\hline 3n－5n－254 & Sge madsoac：ive drcay dapa onbr & 22 & HEOL & & apersa &  & 415 \\
\hline 31－5a－5i2 & Fit ninfion enoss scerion dapa only & 368 & ncol & & ocrye &  & 416 \\
\hline 32－51－122 & siz madidactive ofeay daya ontr & 23 & HEOb & & apmea & 日．E．tementen & 414 \\
\hline 31－58－1224 & Sg 3 madioagtive decay data only & 20 & HCOL & & aton74 & n，c．senenten & 484 \\
\hline 5：－5t－123 & Ita neuraon codss scepiom iapa only & 298 & WEO6 & & Derya & －，C，Senentch， & 415 \\
\hline 91－51－124 & Sg mbtorocecar gafa & 203 & H［0b & & －cip4 &  & 415 \\
\hline 12－38－224m &  & 81 & WCDL & & aphys & M，E，tenenten & 414 \\
\hline 32－30－224N & 3s）Racsoactive orcay dapa ongy & 13 & nedo & & abara & M．E．gengnpea & 415 \\
\hline 52－5t－125 & sae htopeoteay daya & 513 & WEDL & & cerpa &  & 413 \\
\hline 01－54－124 & 5g Mewtodrear gapa & 248 & \(\mathrm{HED}_{6}\) & & ocry &  & 416 \\
\hline 91－59－126m & Sga magioactive decay dapa ongy & 24 & WEDL & & apara & M，E，mentmpes & 486 \\
\hline 31－50－187 & Sal magitactive oecar dapa only & 71 & anc & & rempe & C．w，可ic． & 436 \\
\hline 91－50－120 & 382 madidactive decar dapl onty & 19 & ane & & rcesa & E．w．nEIEm & 480 \\
\hline 92－58－120m & ans nadioactive decar oapa ongy & 94 & anc & & Preva & C．w．net6m & 413 \\
\hline 51－50－120 & sas motuactivi decat dafa oney & 144 & ANG & & ctisa & c．w．netem & 418 \\
\hline S1－59－194 & sas majioactive eccar oafa ons\％ & \(4{ }^{4}\) & anc & & ccise & C．wineien & 416 \\
\hline 31－53－1304 & 320 kadioactive drcav oafa only & 58 & anc & & ctes & c．w．neten & 410 \\
\hline －9－58－291 & 38）Mac：0aETive DECay Data Onv＊ & 100 & ANC & & CE874 & c．w．aciew & 4： \\
\hline 3：－58－2：32 & Sgl bacioactive decay dapa oni＊ & \(4{ }^{4}\) & ANE & & CE894 & E．\＃．fritw & \(4{ }^{4} 5\) \\
\hline 51－62－132m & 589 madiuactive oecar oafa oniz & 34 & anc & & rema & C．W．aE！Cm & 415 \\
\hline 3：－53－333 & sise macioactive decav data ons． & 12＊ & anc & & reess & c．w．0rien & \(4: 9\) \\
\hline 52－58－134 & S3n sactoactive ofear dapa Dnay & 22 & ANC & & regia & C．W．RE，Cm & 415 \\
\hline 91－58－234m & 332 ragioactive ozcay dapa oricy & 33 & anc & & cersa & C．w．ncicm & \(4: 5\) \\
\hline 59－53－135 & S33 mazigactive oecap jaia onlv & 26 & HEOL & & athy & Q．E．SEMENPEA & 4.4 \\
\hline 31－53－135 & s3e matgcactive decan data onis & 22 & HEOL & & apara & a，e．Scmenten & 115 \\
\hline 59－53－237 & S3b hacioactive decay dapa ont＊ & 22 & \(\mathrm{NCOL}_{6}\) & & aphts & －．E．ScuEmpen & 415 \\
\hline 92－58－134 & 396 macioacifre decay dapa only & 22 & \(\mathrm{HEO}_{6}\) & & apm 74 & －E．Sewchten & 415 \\
\hline 9：－50－130 & S37 macioatilve decav dapa onlv & 22 & HCD & & con74 & R．E．SENENTEA & 419 \\
\hline －7．．．．－2．0． &  & 224 & WEO6 & & 0c974 &  & 419 \\
\hline 5P－4E－123 & 330 Nevp．ogecar oapa & 384 & MED \({ }_{6}\) & & 06r94 & M，E，Sc＊ENPEM，F．SEWMSPTROTM & 415 \\
\hline 32－「E－123 \({ }^{\text {H }}\) & sat masionetive decay data onty & 20 & WECL & & aphye 0 & n，c，scmenten & 42 \\
\hline 37－「E－124 & sas meuthon cmoss scerion gapa onby & \(32 *\) & WEOL & & acroan &  & 415 \\
\hline 5P－TE－125 & saz miutaon cross stcpion onpa onby & 272 & HEEL & & ger9en &  & 415 \\
\hline ¢2－．pe－125M & sas magioactive oecay dapa only & 23 & ane & & FEOTH & c．w．Acien & 429 \\
\hline \(3 p-75-8 y^{5}\) & Sat meupron cmass Sfepgon dapa thit & 344 & \(\mathrm{WEO}_{6}\) & & 0c794 &  & 416 \\
\hline 0 ；－FE－12＇ & sas madioactive decav dapa only & 41 A & anc & & rense & G．w．neicm & 425 \\
\hline s：－「E－127m & saa neup．－decay dara & 178 & HCOL & & 0cras 0 &  & 48 \\
\hline \(5 \rightarrow-\mathrm{P}-280\) & 3a7 MEuphen emose seepiom oafa omb & 236 & WED． & & ncrye &  & 416 \\
\hline  & sat mag：cactive deear dapa only & 16 & NAC & & respe & E，n，actem & 418 \\
\hline 3z－7c－12m4 \({ }^{\text {m }}\) & sat meut．odcear oapa & 102 & ancintet & & ftasa 6 & cw．aciem & 418 \\
\hline \(92-T E-138\) 9 &  & 9 ar （1 & neol & & ocrea &  &  \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1805c & \#* & & 1tbe con & NTEN & & cs & as & arectames & OA't & aummon & Papr \\
\hline 3n- Ha-i3s \(^{\text {a }}\) & *3) & Mivonon cno & osc sce & CFIon & Da*a Ontr & 230 & MED & & 0erys &  & 4: \\
\hline gn-ha-2Ser & A30 & mapigatifue & ve decar & - 0ata & Ontr & 20 & WEO6 & & affrs & Q.E.senempea & \(4{ }^{9}\) \\
\hline 9n-64.13) & \(\cdots 3\) & MCu*hon cao & -08s SEC & c\%10n & gapa Onby & 204 & nEOb & & 0e794 &  & \(4{ }^{4}\) \\
\hline 3A-R4-337m & A-* & macsoactive & ve arcar & Dapa & Onib" & 23 & anc & & -60\% & c.m.nesem & \(48^{\prime}\) \\
\hline 3t-84-138 & 641 & NCu-man cao & oss ste & ceion & DAPA OV6 & 324 & WEOL & & 08974 &  & \(4{ }^{\prime \prime}\) \\
\hline 9n-04-139 & \(\cdots 2\) & madioactire & re otcay & DR9A & ONG* & 12 & anc & & Ju674 & C.w.atsem & 427 \\
\hline Stata-140 & 043 & htup. doegay & - 80\%4 & & & 299 & ANC.MEO & & 2ubla & C.w.nejew & 42) \\
\hline SA-B4-341 & A44 & nationetive & de drcay & DAPA & ONL* & 269 & ANC & & feita & C,maneram & *) \\
\hline 5n-64-202 & \(00^{5}\) & hacioactive & le occar & 0474 & Oals & 97 & ANC & & ceeva & f.w.atica & 03) \\
\hline 9n-54-243 & N4t & madidacijue & fe occay & 0a*a & Ontr & 23 & WED & & apays & -.E. SEnENTEO & 02) \\
\hline 3n-8A-24 & A) & maploacifive & E becav & OATA & Ontr & 23 & WED \({ }_{6}\) & & APM94 & M.E.BEntmpen & *2\% \\
\hline 9n-4A-145 & A 46 & Dapioacily & c ofcav & Dape & ONLV & 23 & WCOL & & A0n\%4 & M, c, sencnfen & 419 \\
\hline 3n-nc-1*4 & AaP & nadidactive & E Decar & Bapa & OHL" & 23 & WEDL & & apara & - c, sementen & \(4: 7\) \\
\hline 3n-Ba-1a & 090 & Radioactive & c ofcay & Daps & ONL" & 23 & WED & & apers & n.c.sementen & 48* \\
\hline \(8 A-A C-2 A B\) & Ast & madioactive & c oecay & 0ata & Oni" & 22 & MEOL & & 4Ph74 & M.c.semente & 487 \\
\hline 9n-8a-240 & 652 & matidactive & decay & Daya & Onib* & 22 & MEO 6 & & aphea & n, c.sentwica & 4:9 \\
\hline SA-AA-25t & n) 1 & madjoactive & c decar & data & Ontr & 22 & WEC6 & & aphla & -c. \%enempa & 4:9 \\
\hline  & 484 & magiocelive & decar & capa & Onlv & 12 & WCab & & apay & M.E.sentwpen & 49 \\
\hline BA-3A-252 & A93 & haploactive & e decar & Dapa & Ont \({ }^{\text {a }}\) & 38 & ME \({ }_{6}\) & & apile & -, C. SEAEMPEA & 489 \\
\hline 910ヶ4-190 & \(n 80\) & *atioactive & crear & Data & ON6Y & 38 & MCDL & & ADM\% &  & *! \\
\hline 99-64-139 & A)' & matmon enos & 053 ster & \(10^{104}\) & 0apa 8ab" & 338 & MCOL & & oerse & F.semmirymgrnon, E, acmentea & 18? \\
\hline 37-6a-14* & *) & mour.edreay & - oapa & & & 304 & ANE, Wild & & Ftosa & C.W.atien & 63) \\
\hline 9P-ba-848 & Ate & madioactive & c decay & Data & Ont" & 78 & anc & & renta & C.w.atiem & 417 \\
\hline 57-6a-842 & N00 & nadioactive & decay & Daya & 5.96" & 283 & ane & & rcapa & 6.u.nciem & 417 \\
\hline -97--.4-143 & Ne1 & majoactive & e occar & Dara & OM6 & 23 & MED & & apaya &  & -7\% \\
\hline 57-6A-244 & 042 & acosoactive & c occar & Oata & Diby & 23 & HED 6 & & apmye & 4.E.SEMEMPEA & *: \({ }^{\text {P }}\) \\
\hline 9)-1a-315 & Hes & nagioactive & E decay & Eapa & \(\mathrm{CR}_{\text {R }}{ }^{\text {r }}\) & 23 & NEOb & & arace &  & *: \\
\hline 37--4.244 & Ne4 & Rajztactive & ¢ Decay & Data & ONL & 23 & \({ }^{-1} \mathrm{CD}_{6}\) & & apara & - E.SEMERTEM & * \({ }^{\prime}\) \\
\hline 97-64-847 & ses & madicactive & E Detay & Dara & ONL \({ }^{\text {c }}\) & 22 & WED \({ }_{6}\) & & Apm94 & -.E.sencticm & *: \\
\hline 3)-64-244 & Nat & nacidactive & c oecay & 0ara & 00.6" & 23 & ME O6 & & apnys & a.c.scmenten & *: \\
\hline 3)-4-144 & \(0 \cdot 7\) & ancioactive & decay & EaPa & ONS* & 22 & \(\cdots \mathrm{COL}\) & & aphra & 日, E.scmente & 417 \\
\hline 97-64-158 & 0 H & madicactive & OCCR & 0apa & Oricy & 22 & \(\mathrm{HEO}_{6}\) & & apmy & M.c.scmevien & 4:7 \\
\hline 97*64-19: & NO & magicacitut & decay & Data & Onc & 22 & W[36 & & Apn74 & n.c.senentea & 8: \\
\hline 9-6a-s¢ & *:* & natsdact:ve & decay & 047a & Cti* & 22 & MEO6 & & antye & M, E.sementen & *: \\
\hline 97-64-193 & A7s & madidactive & De-av & Oapa & OwL & 22 & \(\mathrm{MEO}_{6}\) & & apara & M.E.3EmENPEA & 4.7 \\
\hline 97-4.194 & \(\cdots 72\) & alojdactive & decar & Onya & Onb\% & 22 & MEOL & & apaye & 0, c.sancmpen & 8:7 \\
\hline 99-64-195 & AP3 & ancscactive & decay & dapa & OWL \({ }^{\text {a }}\) & 22 & MED & & APapa & - c.semenvin & \(4{ }^{1}\) \\
\hline - \(\mathrm{F}-\mathrm{cc}-140\) & A94 & vcupagn croms & 308 ste & 1040 & 49 Onl & 278 & NED & & 06974 &  & *" \\
\hline 3R-et-84: & A99 & NEy-.adcar & gats & & & 238 & ANE,WED6 & & -case & c.t.netem & * \({ }^{\text {P }}\) \\
\hline 3A-ct-342 & \({ }^{174}\) & NC6*. *occa* & 0asa & & & 236 & nect & & gepa & P.ssumiponapm, A, c, semente & 4: \\
\hline 3A-CE-343 & A97 & ncu*.-atcar & 0apa & & & 218 & anc, nej b & & د469 C & c.m.aticm & 4 : 7 \\
\hline SP-ct-844 & A>0 & MLUP.-DECAY & gapa & & & 218 & HLCb,ame & & 00*94 1 & r.scmujpraprm, m, C.sewtwen & 437 \\
\hline SR-CE-14S & A90 & Aat:oative & Otcar & 0494 & 046" & 39 & ant & & rent: &  & 43 * \\
\hline 9n-ct-140 & for & madidacirve & DECay & 0494 & OML" & 41 & ANC & & rcase e & c.a.acticm & 4:" \\
\hline St-ct-109 & All \({ }^{\text {a }}\) & nadidaciste & DECs\% & Daya & & 23 & \(\mathrm{mCO}_{6}\) & & abnye 2 & R,t.sentypea & \(4: 9\) \\
\hline 3p-ct-84t & 012 & macteacrive & Jecar & Daya & & 23 & WEC6 & & aphes \({ }^{\text {a }}\) & , c.semfnte & \(4: 8\) \\
\hline Sp-ct-149 & nes \({ }^{\text {a }}\) & macigactive or & occar & oapa & & 23 & MCP6 & & aphes & 2.c.stmenita & 489 \\
\hline ga. Cc-290 & Nos & mactoactive octer & occab & oaya o & Dint \({ }^{\text {a }}\) & 23 & MEOL & & cparen & , c.semenien & 415 \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline －Anic＊ & mal ribe gonter & nces & 0 & matasmer & OAlC & Autman & 100： \\
\hline －3－「6－294 & braj Mitp，oicay bapa & 3067 & \(\mathrm{Ma}_{6}\) & & DEcis &  & 488 \\
\hline －3－5w－234 & ＂＇ratup．doccar gapa & 2140 & \(\mathrm{Nat}_{4}\) & & oceis & M．pakamanmi & 418 \\
\hline －3－fu－293 & 170 meverecteay japa & \(00^{7}\) & \(\mathrm{HCO}_{4} \mathrm{SNH}_{4}\) & & novi4 & n，E，Benenten，A，priner & 480 \\
\hline －s－¢¢－35＊ & De MEv－abcay gapa & 318 & anc，HeOL & & cease & C．mongien & 410 \\
\hline － 3 － \(56-839\) & 78\％Nut．0．dceay 3asa & 240 & WED6 & & 0cris &  & 410 \\
\hline 0.10 Ew－298 & 7at madidacijue dreay daya oncy & 22 & WEDt & & aphia & M．E．SCHENTEM & 410 \\
\hline 6． －\(^{56-139}\) & taz Ragroactive oecay data onsy & 22 & MED & & 4 Ph 94 & R．E．sehenten & 419 \\
\hline \(03054-360\) & ＇os magidacigue orcay dava oniz＊ & 23 & HED6 & & 40n74 & R，C．Bentwicn & 410 \\
\hline －3－Eの－262 & ＂ga magioactive decay data omb＂ & 22 & \(4 \mathrm{FO}_{6}\) & & aphes & n，f．Senenten & 410 \\
\hline  & yes magioacigue orcav iasa onty & 22 & WEDL & & aprea & Q．E．SCHENTEM & 429 \\
\hline 0．F－\｛u－263 & 7et mā̃iv̀artgue occav 0ata only & 22 & WED & & aph74 & R，E．SCHENTEA & 410 \\
\hline ts－ 56.164 & top madoactive deear gata onty & 21 & HED & & aphst & M，E．MemEmPEA & 41\％ \\
\hline 6．\(=\)－\(u\)－ 165 &  & 28 & W［D6 & & aphrs & n．E．tenenten & 410 \\
\hline －3－60－－6． &  & 697 & ANL & A46－7307（man．e8） & Defes & C，m，Denninerom，d．e．gadnlak & 403 \\
\hline 64－60－892 & Pa9 naosoactive oecay oafa onby & 23 & WED & & 4ph74 & M，［．SENENTEA & 419 \\
\hline 44060－133 & 708 nagioactive orcay daya onby & 22 & MEO & & aphye & 日，E．sementen & 410 \\
\hline 14－50－294 & 29：metrmon cross secilom dapa ontr & 343 & MEDL & & 06974 &  & 410 \\
\hline 64－60－235 & 7 7e2 niuphon choss secitoh oapa onb & 374 & MEOL & & 0erse &  & 419 \\
\hline 64－60－156 & 103 nfupmon cmoss seetion dapa onip & 412 & HEO6 & & 0ct94 &  & 410 \\
\hline 00－60－197 & 784 newpron enots secyion oapa oncy & 331 & \(\mathrm{WEOL}_{6}\) & & DCTY4 &  & 410 \\
\hline 04－60－250 & 3es mitwron endes secyion oapa oncy & 361 & Hrob & & 06P94 &  & 410 \\
\hline 64－60－230 & 79\％Maploactive orear data dntr & 22 & MR．OL & & Aphts & A，E，soncwper & \(48 \%\) \\
\hline c－60－60－200 & 702 ntipagn cadsa secilon oapa onty & 24. & WED & & 0659 & A，E，TENENPCH，F，AENH：PPROPH & \(41 \%\) \\
\hline 4－60－161 & 309 Racsoactive orcar dapa oncy & 22 & HED 6 & & Aphys & n，c，AenEmPER & 419 \\
\hline －0－60－202 & 700 nadidactive occar data dnty & 23 & HCDL & & APR74 & n，E．SENENPER & \(4: 3\) \\
\hline 4－65－363 & fos magioactive degay day onty & 22 & HEOL & & Ann7s & の．E．SENENPE： & 420 \\
\hline 40－6t－104 & sal magioactive ofecay data only & 22 & MEDL & & 4Pa74 & M，E．SEMENTER & 417 \\
\hline 64－6c－165 & asz racidactive decay data tily & 22 & MED & & APR9＊ & M，E．senenpen & 419 \\
\hline 65－78－134 & AOS MEUPMON GROSS SEction dapa onby & 415 & HEOL & & OPT\％ &  & 419 \\
\hline 45－10－160 & esa meut．degeay oapa & 174 & HEDL & & OST74 &  & 417 \\
\hline 65－71－162 & ngs radioactive decay data dngy & 22 & WEOL & & apnge & n，E，sementen & 410 \\
\hline 4S－18－162 & beb maotoactive occar dapa onbr & 22 & HEOb & & APR74 & Q，E．SEMENPEA & 610 \\
\hline 95－98－1424 & mat madioactive detar dapa onty & 23 & Micis & & \(4 \mathrm{Am74}\) & M，E．SENENPER & 429 \\
\hline 63－T0－103 & ana raojeactive decay dapa only & 22 & NEO6 & & 4 APA54 & R．E．SENENTEA & 410 \\
\hline 08－90－104 & 080 Radioactive decar data only & 23 & HEDL & & APRT4 & M，E．Sementen & 413 \\
\hline 45－78－165 & see maotoactive decay dapa ont & 23 & HEOL & & 4 4，\({ }^{\text {a }}\) & n．t．senenten & 417 \\
\hline － 6 －0Y－180 & O2，NEUTRON EMOSS SEcpiom dapa only & 342 & HEDL & & 0et7e &  & 410 \\
\hline 6n－DY－162 & SL2 MIUPREN CROSS SEgitom dapa only & 208 & HED6 & & Detre & n，c，senenten，r．semmitraotm & 610 \\
\hline 6B－8Y－102 & A13 neutmon cmoss section dapa only & 234 & HEPL & & Ocr94 & R，E．HEHENTER，P．SCMMITPRDPH & 119 \\
\hline AB－DY－203 & Age meutmon cross section dapa okly & 301 & HEOL & & 0ct74 & M，E，SENENTER，P．SCMMIPTROTM & 410 \\
\hline 66－0Y－364 & 1f3z NEUPRON choss section oapa only & 2281 & ONH & MMiv．COMM，JLHR， 1007 & Jund 9 & 0，m，bEOnaRd．dn．，R．E．stenalt & 462 \\
\hline 06－0\％－164 &  & 1202 & ONW &  & JUMB7 0 &  & 417 \\
\hline 6A－DY－303 & els Ragioactive oceay dapa only & 22 H & HEOL & & apr74 & M，t．senenten & 429 \\
\hline 6A－0¢－103m & Bg7 maosoactive decay dapa only & 24. & MEDL & & APR74 & h，E，senenten & 410 \\
\hline 60－Dr－183N & mat madsoactive degay dapa onby & 33 H & HEDL & & aphrs \({ }^{\text {a }}\) & A，E，REMENPEA & 410 \\
\hline 6B－DY－866 & sio magioactive degay daya dity & 18 H & HEDL & & aphre \({ }^{\text {a }}\) & M，c，schew？\({ }_{\text {ch }}\) & 119 \\
\hline 9－no－163 & Ras W上uphon choss sicilon daya only & \(40{ }^{-1}\) & HEOL & & 06F94 &  & 414 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Panct & Mat Fibe contany & Cs bal & Reftabnct & date & autmon & 408 \\
\hline 17-no-266 & nez magioaetive decar dapa ontr & 31 NED6 & & aptra & M, c.sementen & 410 \\
\hline (1)-w0.246m & m naz madoamelve ofcay dapa ongy & 23 MEDL & & apm94 & A,C.sementc* & \(4{ }^{*}\) \\
\hline BA-[4-166 & Has NCuphon gross secplon oapa onty & 472 NEDL & & Oct94 &  & 4* \\
\hline chath-107 & nas neutron eross section data onty & 375 HEDL & & 0epra & A, c, sencnica, & 429 \\
\hline An-En-167m & a age mactonctive orcay data only & 24 H20 & & APR94 & M.E.tenentem & 429 \\
\hline 71-64-375 & 1AS2 NEUPADN CAOSS SECTION DATA OMLY & \(1{ }^{1} 83\) NH &  & Junc \({ }^{\text {d }}\) & C, h. beomano, dh, ,k, D, btewant & 482 \\
\hline 71-LU-196 & lass neltagn cadss section dapa only & 1180 Nm & -RIV.EOMM. JUNE.1967 & JUN67 & A, h. beonamb, dn., K. A, stecany & \(4{ }^{4}\) \\
\hline 93-74-181 & 1215 NEWT.-EAM. PROO. OATA & 290 p 46 & & JaN72 & MCWEnPON, MERIMS, MACGRECOM & 411 \\
\hline 7n-7n-202 & 1227 NEUTRON EROSS SECPION OAPA Onby & 748 al & Al-AB0-12902 [1971) & APH?1 & d.OPTEA, C. OUNPORA, E. OfPEMPTE & [483 \\
\hline  &  & 3211 Al.6Abb & & JuN\% &  & \(4{ }^{4}\) \\
\hline 74-W-183 & 1329 NLUP.0CAM.PROD. DATA & 3539 Al, Lasb & & Junis & OTTER, OPFEWITPC, ROSE, YOUNG & 41 \\
\hline 74-w-104 & 1130 MEUT.-GAM, PROO. DATA & 3 Ees Alabacb & & dungs &  & \(4{ }_{1}\) \\
\hline 74-mel80 & '131 MEUP, ofam, PROD, OATA & 3873 Al.basb & & JuN73 & OPTEM, OTPEHIPTE, RASE, YOUNO & 418: \\
\hline -75--6E-10-- & IPG3 NEutRon cooss Section oafa onby & 2375 GE(nhito & GEmengs & Jamet & W. B. WENOERSON, J.W.enjek & 43 \\
\hline 75-9E-107 & 2mea neut, ofcar gapa & 1412 GE(nmPO) & G[meas8 & JaNbe & W, D, MENDERSON, J, W, EMIGK & 43 \\
\hline 79-aU-397 & 2203 NEUTRON CROSS StcTion OATA Onb & 1449 NW & & APRT4 &  & 419 \\
\hline 90-Ay-197 & 0203 nevfenon cmoss section data dnby & 238 DNL & & 0ctis & muenapemal CY.aba & 612 \\
\hline AP-PD & 1200 NEUY, GAM, PAMO. OATA & 4R15 OfNL & & JUL91 & , r, Pu,F,O,PEHEY & ces \\
\hline  &  & 2085 00\% & (awapl \({ }^{\text {(2)70) }}\) & Noves &  & 484 \\
\hline Of-Th-232 & gris miutron cmoss segiton dapa ongy & 420 8* \({ }^{\text {H }}\) & & novis & W.HITRGOP, D, nov, ithivolst & 412 \\
\hline -1-pa-2s3 & 1297 AEUT, DLCA, Da¢A & 1818 APL & & Janfe & P.c.vound & 417 \\
\hline 0ア-u-233 & L26E MEUY.*FPYODECAY DATA & 5348 BAP6 & & JuL09 & , M, STEEN & 489 \\
\hline 92-u -234 & 2ams neut.adecay cata & 923 GGA & GA-6235 (3E7,1967) & Jans 7 &  & 474 \\
\hline 9p-u-235 & 0201 NLUPRON CROSS SECTION OATA ONGY & 1275 LASb,A! & & mar94 & W.STEWARP, H.ALPER,R.MUNTER & 412 \\
\hline 98-6-235 &  & 6706 baSL.AI & & mari4 & b, STEWARY, H.ALPER, R, MUNTER & 487 \\
\hline 93-j-236 & 2163 neut, odecay oata & 225 5Ab & & OC'91 & d. MECRDSSON & 464 \\
\hline 92-4-238 & OrE2 NEUPRON CROSS SEction dapa oniy & 760 WARO & & SEP77 & N.E.palk & 412 \\
\hline 9P-u-238 1 & 1262 NEUT. *FPYADECAY*GAN.pRDD. DAPA & 4607 HaRO & & SEP93 & N, C.palk & 407 \\
\hline \[
03-N P-237
\] & opt3 neupron choss Scepion dapa onb & 1:D2 ANC,1,ASb & & Jun73 &  & 412 \\
\hline D日-N-237 1 & 1203 NEUP. *FPY*OCCay oata & 2547 ANC.LA56 & & Jun73 &  & 487 \\
\hline 94-pu-238 & 2 ASO NEUT, DDEEAY OATA & 1010 al &  & Mayb7 & W, ALTEA, C, Dunf ond & 464 \\
\hline 94-Pu-239 - & dera neviron enoss SEction data only & B67 GE-EROM, \({ }^{\text {a }}\) & & man7a & -.hUTEMINS, R, HUNPEA.L.STETAAR & 412 \\
\hline 94-Pu-237. 1 & 1204 NEUT.*FPY-OECAYOGAM.PROD. DAPA & 5335 GE-BRO, 6AS & & mafta & - hutehins, m.humperel, stenart & 487 \\
\hline 24-PU-243 1 & 2865 NEUP.+OECAY*GAM, PROD. DATA & 2298 ANb & & APRT* E & E.PENHINGPON, H, HUMAEL & 467 \\
\hline 04-PU-241 1 & 1260 NEUT.4FPY*DECAY Data & 2648 ANL & & OEC3S H & H, HUMMEL, [. PLNNING PON & 467 \\
\hline 14-PU-242 1 & 1161 NEUP, -DECAY OATA & 999 Aliane & NAA-HH-12872(MaY-67) & Mar67 & M, AbTER, C. Dunfordialimod. -ane & \(44^{4}\) \\
\hline 95-Ah-2as 1 & 1PSG AEUY, *FPY-OECAY DATA & 2086 ANC & PRiv, 60 MH, \{NOV,2880) & NOY60 & J.R.Emifh, A.A.GRIMESEY & 484 \\
\hline 85-An-243 1 & 2P37 MEUP. © PAY-OECAY LATA & 309 ANC & enivicomm, inOv.itcol & movis &  & 484 \\
\hline 9B-CM-204 1 & 2162 HEUP. DEEAY OAPA & 2189 Aliane & NAA - 1 H-12271(MAY-67) & mayc7 & H.ALTER, E, DUNP ORDIA!)NOD. -ANE & 484 \\
\hline
\end{tabular}

\section*{K-1}

\section*{APPENDIX K}

Sample Data Set.

The following is a sample data set in the ENDF format. This sample was taken from an evaluation by Nisley, et.al. and contains neutron cross section data for Helium-4. For other examples of data in the ENDF format see Appendix \(N\).







\section*{APPENDIX L}

\section*{Sample of Interpreted Data Set}

The following is an interpreted listing of the ENDF data set for Helium-4. This listing was obtained using the LISTFC code (See Appendix i). Since this is an example, not all of the angular distributions have been listed.














\section*{APPENDIX M}

\section*{Sample Graphical Display}

The following is a sample graphical display of the cross sections for Helium-4. A number of codes (see Appendix I) prepare graphical display of materials in the ENDF format. The examples shown here are taken from ENDF-200, ENDF CURVES.




\section*{Appendix \(\mathbb{N}\)}

\section*{Examples of Card-Image Formats}

This appendix describes examples of formats containing BCD cardimage records.

The following appendix begins with a review as to how ENDF record types are organized in card-image format. The remaining pages contain the card-image examples and formats.

The top of each page indicates the particular file and data format described. Four pages ( \(A, B, C, D\) ) are used to describe each data type. When the appendix is opened to a particular data type, the left-hand page, A (the last page of the previous foldout sheet), contains a review of the variable names and their definitions. The right-hand page, \(D\) (before unfolding) contains the important formulae associated with the particular data type. When the right-hand page is unfolded, pages \(B\) and \(C\) are exposed. Page \(B\) gives the format. For explanation of the notation describing the ENDF record types refer to either the beginring of this appendix or Section 0.5.3. Page \(C\) gives an example of ENDF card-images described by the formats. Note that in some cases, the example would have contained too many cards to have been displayed on one page; therefore, cards have been omitted.
```

All records on an ENDF binary tape are one of four possible types, denoted by CONT, LIST. TABL, and TAB2. A record always consists of nine numbers followed (depending on the record type) by one or two arrays of numbers. A general description of these nine numbers is given below, but the actual definition of each number will depend on its usage.
MAT is the material number (integer).
MF is the file number (integer).
MT is the reaction type number (integer).
Cl is a constant (floating point).
C2 is a constant (floating point).
Ll is an integer generally used as a test.
L2 is an integer generally used as a test.
N1 is a count of items in a list to follow.
N2 is generally a count of items in a second list to follow.

```

\subsection*{0.5.3. Cal:Amage (BCD) Formats}

An alternative format is used when data are contained on punched cards or BCD card-image tapes. Basically the data are stored in the same order for this format as in the binary tape format. The major difference is the position of the three numbers MAT, MF, and MT. Also a card sequence number has been added to the card-image format. In general, more than one \(B C D\) sard-image record will be required to contain the data in a binary record.

A standard 80-column card is divided into the following ten fields:
\begin{tabular}{|c|c|c|}
\hline Field & Columns & Description \\
\hline 1 & 1-11 & Datum \\
\hline 2 & 12-22 & " \\
\hline 3 & 23-33 & " \\
\hline 4 & 34-44 & " \\
\hline 5 & 45-55 & " \\
\hline 6 & 56-66 & " \\
\hline 7 & 67-70 & mat \\
\hline 8 & 71-72 & MF \\
\hline 9 & 73-75 & MT \\
\hline 10 & 76-80 & Sequence number, starting with 1 for the first card of a material \\
\hline
\end{tabular}

\section*{Examples of Record Format and Notation used in Appendix}

\section*{TABl Records}

The third type of record is the TABl record used for one-dimensional tabulated functions such as \(y(x)\). The data needed to specify a one-dimensional tabulated function are the interpolation tables NBT(N) and INT(N) for each of the NR ranges, and the NP tabulated pairs of \(X(N)\) and \(Y(N)\).

Consider a TABl binary record that was denoted by
[MAT, MF, MT/Ll, C2; L1, L2; NR, NP/x int \(\left.^{\prime} / \mathrm{y}(\mathrm{x})\right]\) TABl This record would be punched on cards in the following way:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & - 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline Cl & C2 & L1 & L2 & NR & NP & MAT & MF & MT \\
\hline (\#アi) & Int (1) & NBT (2) & INT(2) & NBT (3) & INT (3) & MAT & MF & MT \\
\hline NBT (4) & INT (4) & NBT (5) & INT(5) & ------ & ------ & MAT & MF & MT \\
\hline ------- & ------ & ------ & ------ & NBT (NR) & INT (NR) & MAT & MF & MT \\
\hline \(\mathrm{X}(1)\) & Y(1) & X (2) & Y(2) & X (3) & Y(3) & MAT & MF & MT \\
\hline \(\mathrm{X}(4)\) & \(\mathrm{Y}(4)\) & \(\mathrm{x}(5)\) & Y (5) & -------- & ------- & Mat & 17 & MT \\
\hline ------- & & & & \(\mathrm{X}(\mathrm{NP})\) & \(\mathrm{Y}(\mathrm{NP})\) & ILAT & IS & nT \\
\hline
\end{tabular}

\begin{abstract}
The term \(x_{\text {int }}\) means the interpolation table for interpolating between successive values of the variable \(x . y(x)\) means pairs of \(x\) and \(y(x) . x\) is generally used as the incident neutron energy \(E\), and \(Y(x)\) is generally a parameter such as the cross section \(\sigma(E)\).
\end{abstract}

A TAB2 record is the same as the TABl record, except that the list of \(x\) and \(y\) values is anitted.

\begin{abstract}
CFNT Records
The smallest possible record is a control (CøNT) record consisting of the nine numbers given above. For convenience, a CONT record is denoted by [MAT, MF, MT/Cl, C2; L1, L2; N1, N2]CøNT
\end{abstract}

There are five special cases of a CONT record, denoted by HFAD, SEND, FEND, MEND, and TEND. The HEAD record is the first is a section and has the same form as a CøNT record. The numbers Cl and C2 are interpreted as \(\mathbf{2 N}\) and ANR, respoctively, on a HEAD rocord.

The SEND, FEND, MEND, and TEND records use only the first three numbers in the Cons record, and they are used to signal the end of a section, file, material, and tape, respectively:
[MAT, MF, 0/0.0, 0.0; 0, 0; 0, O]SEND
[MAT, \(0,0 / 0.0,0.0 ; 0,0 ; 0,0]\) FEND
[ \(0,0,0 / 0.0,0.0 ; 0,0 ; 0,0]\) MEND
\([-1,0,0 / 0.0,0.0 ; 0,0 ; 0,0]\) TEND

The HEAD record consists of one card punched in Fields 1-9. The SEHS, FEND, MRND, TEND, and TPID records each consist of one card punched in Fields 7-9 only. Note that a completely blank card (MEND record) signals the end of a material.

\section*{LIST Records}

The second type of record is the LIST record, used to list a string of floating point numbers, \(B_{1}, B_{2}, B_{3}\), etc. These numbers are given in an array, \(\mathrm{B}(\mathrm{N})\), and there are NI of them.

The LIST record denoted by
[MAT, MF, MT/ Cl, C2; L1, L2; N1, N2/ \(\mathrm{B}_{\mathrm{n}}\) ]LIST is punched in the following way:

\section*{Field}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline Cl & C2 & L1 & 12 & N2 & N2 & mat & mF & MT \\
\hline B(1) & B(2) & B(3) & B(4) & B(5) & \(B(6)\) & MAT & MF & MT \\
\hline E(7) & B(8) & E(9) & ---- & ---- & ---- & mat & MF & MT \\
\hline ---- & ---- & ---- & ---- & ---- & ----- & Mat & MF & MT \\
\hline
\end{tabular}

TAB1 Records
The third type of record is the TABl record used for one-dimensional tabulated functions such as \(\mathrm{y}(\mathrm{x})\). The data needed to specify a one-dimensional tabulated function are the interpolation tables NBT(N) and INT(N) for each of the NR ranges, and the NP tabulated pairs of \(X(N)\) and \(Y(N)\).

Consider a TABl binary record that was denoted by
[MAT, MF, MT/C1, C2; L1, L2; NR, NP/ \(\mathrm{X}_{\text {int }} / \mathrm{Y}(\mathrm{x})\) ]TAB1
This record would be punched on cards in the following way:

Field
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline cl & C2 & Ll & L2 & NR & \(N \mathrm{P}\) & MAT & MF & MT \\
\hline NBT (1) & INT(1) & NBT (2) & INT (2) & NBT (3) & INT (3) & MAT & MF & MT \\
\hline NBT (4) & INT (4) & NBT (5) & INT (5) & ------ & ------ & MAT & MF & MT \\
\hline -------- & ------ & ------- & ------ & NBT (NR) & INT (NR) & MAT & MF & MT \\
\hline X(1) & Y(1) & \(x(2)\) & Y(2) & \(\mathrm{X}(3)\) & \(y(3)\) & MAT & MF & MT \\
\hline X(4) & \(\mathrm{Y}(4)\) & \(\mathrm{X}(5)\) & \(\mathrm{Y}(5)\) & ------- & -------- & MAT & NF & MT \\
\hline ------ & -- & --- & ------- & \(\mathrm{X}(\mathrm{NP}\) ) & \(\mathrm{Y}(\mathrm{NP})\) & MAT & MF & MT \\
\hline
\end{tabular}

The term \(x_{i n t}\) means the interpolation table for interpolating between successive values of the variable \(x . \quad Y(x)\) means pairs of \(x\) and \(y(x) . x\) is generally used as the incident neutron energy \(E\), and \(y(x)\) is generally a parameter such as the cross section \(\sigma(E)\).

A TAB2 record is the same as the TABl record, except that the list of \(x\) and \(y\) values is omitted.

LRy ts a Plaq that indicales thax resolved and/or uniresolved resonance
parameters are qiven in file 2.
LRP * O. no rescriance parameter data given:
LidP * 1, resolvadi and/or untesolved reconance parameter data gaven in fize 2.

III is a flag ehat andicates whether this material is fissionable:
Lfil \(=0\), this is not a flistunable materialf
LFI \(=1\), this material is fissionable.
NXC 15 in iriteger count of all the sections to be found in the diction-
ary. Each section oi this material is represented by a s-ngle card
2mage that contains MF, Mr. (reaction number), and NC (a count of the nurber of cards
in the section). NxC is the total number of section tor the complets materialy
2.e.. it is equal to the gum of all the sections in the different files.

LDD is is flag to indicste whether induced reaction decay data are givinfor this material:
LDD \(=0\). radioactive decay data not given for this material;
LDD \(=1\), radioactive decay data given.
LIP is a flag that indicates thether fiscion product yield data are qiven
for thas material:
LFP \(=0\), fission groduct yields not qiven;
\(L \mathcal{L P}=1, \mathrm{fission}\) product ytelds are given.
MWD Ls the count of the number of elements in the Hollerith section.
For B(I) caxd image tapis, NWD is the number of card images used to
describe the data set for this material (NWD \(\leq 294\) ). For binary
thyes, Whl is the number of vords containing the Hollerith infor-
nation, and it is understood that 17 words are required for each
card inage (ćs characters) and the formet is (16nd, A2), (awd a 5000.)
H(N) 25 the array containing the Hollerith information that descrites
the particular evaluated data set. for a BCD card-image tapo,
each eletrant of the array is contained on one card image.
(First ECD Card Image Record)
ZSYMA is Hollerith represertation of the naterial z-chemical sumbol A vith
\(z\) right justified in col. 1 to 3
- hyphen in col. 4 chemical symbol left justitied in col. 5 end 6
- hyphe: in col. 7

A right justified in -10 or blank
w, etc. indication of metastable state in col. 11
APAB Mnemonic of oricinating laboratory (s) (left adjusted)
EDATE date of evaluation EVAL - in cols. 23-27, three character nonth in 28-30, followed by two character year 3l-32 (...e. EVAl-DEC74?

B(TH author(s) of evalvation (1eft adjusted) cols. 34-56
(Second BCD-Card Image Record)
Ku. \(\boldsymbol{F}\) reference 2-22
DDATE original distribution date lleft adjusted DIST- followed by monthayear as in EDATE

RDATE date and numer of last revibion Rave- followed by month-year as in edate

The following quantities are dafined.

MEn ie the MF of the \(n^{\text {th }}\) section.

This section always begins with a HEAD record and ends with a SEND record.
Its structure is
[MAT, 1, 451/2A , AWR, LRP, LFI, 0, NXC]HEAD
[MAT, 1, 451/0.0, 0.0, LDD, LFP, NWD, 0/ ZSYMA, ALAB, EDATE, AUTH 〔33
characters), REF (22 characters), DDATE, RDATE, b, b,H(N) )LIST*
[MAT, \(\left.1,451 / 0.0,0.0, \mathrm{MF}_{1}, \quad \mathrm{MT}_{1}, \quad \mathrm{NC}_{1}, 0\right] C \varnothing N T\)
[MAT, 1, 451/0.0, 0.0, MF \(\left.{ }_{2}, \quad \mathrm{MT}_{2}, \quad \mathrm{NC}_{2}, 0\right] \mathrm{CONT}\)

(MAT, 1, 451/0.0, 0.0, \(\left.\mathrm{MF}_{\mathrm{NXC}}{ }^{\mathrm{MT}} \mathrm{NXC}^{\prime} \mathrm{NC}_{\mathrm{NXC}}, 0\right] \mathrm{C} \mathrm{NNT}^{\prime}\)
(MAT, 1, 0/0.0, 0.0, 0 , 0 , 0 , OlSEND
*NOte: ZSYMA to AUMH are part of \(H(N)\)

(MISSINC, LINES)

(MLSSING LINES)
\begin{tabular}{|c|c|c|c|c|}
\hline & REFERENCES & 1261 & 1451 & 228 \\
\hline & & 1261 & 1451 & 229 \\
\hline & GWIN, R, ET.AL. PRIVATE COMMUNICATION (ORNZ, 1973) & 1261 & 1451 & 230 \\
\hline & KAPPELET, F. SYMPOSIUM NEUT. STDS. (ANL) CONF. 701002,272 (1970) & 1261 & 1451 & 231 \\
\hline & SZABO, I., ET.AL., (AS REF.5) CONF-701002, 257 (1970) & 1261 & 1451 & 232 \\
\hline & SZABO,I., ET.AL., KNOXVILLE CONF. VOL. 2573 (1971) & 1261 & 1451 & 233 \\
\hline & KAPPELER, F., 2ND IAEA PANEL STANDARD X-SECTIONS, VIENRA (1972) & 1261 & 1451 & 234 \\
\hline & GAYTHER, D.B., ET.AL., (AS REF.8) (1972) & 1261 & 1451 & 235 \\
\hline & HANSEN, G., ET.AL., PRIVATE CGMUNICATION, L.STEWART (LASL 1970) & 1261 & 1451 & 236 \\
\hline & WHITE, P.H.., J.NUCL. ENERGY 19, 325 (1965) & 1261 & 1451 & 237 \\
\hline & DIVEN, B.C., PHYS.REV.105, 1350 (1957) & 1261 & 1451 & 238 \\
\hline & POENITZ, W., PRIVATE COMMUNLCATION (ANL. 1973) & 1261 & 1451 & 239 \\
\hline
\end{tabular}
(MISSING LINES)
32. R. W. PEELLE, ORNL, LETTER TO CSEWG, 9-24-73.
\begin{tabular}{lll}
1261 & 1451 & 264 \\
1261 & 1451 & 265 \\
1261 & 1451 & 266 \\
1261 & 1451 & 267 \\
1261 & 1451 & 268 \\
1261 & 1451 & 269 \\
1261 & 1451 & 270 \\
1261 & 1451 & 271 \\
1261 & 1451 & 272 \\
1261 & 1451 & 273 \\
1261 & 1451 & 274 \\
1261 & 1451 & 275
\end{tabular}
(MISEING LINES)
\begin{tabular}{rrrrll}
15 & 3 & 136 & 1261 & 1451 & 345 \\
15 & 18 & 54 & 1261 & 1451 & 346 \\
15 & 102 & 58 & 1261 & 1451 & 347
\end{tabular}

INU is a test that indicates what representation of \(\bar{\nu}(E)\) has been used: LNU \(=1\), polynomial representation has been used; LNU \(=2\), tabulated representation.

NC is a count of the number of terms used in the polynomial expansion. ( \(\mathrm{NC} \leq 4\) )
\(C_{n}\) are the coefficients of the polynomial. There are Nc coefficients given.

NR is the number of interpolation ranges used tc tabulate values of \(\bar{v}(E)\). (See Appendix E.)
NP is the total number of energy points used to tabulate \(\bar{v}(E)\).
\(E_{\text {int }}\) is the intexpolation scheme (see Appendix \(E\) for details.)

The structure of this section depends on whether values of \(\bar{v}(E)\) are tabulated as a sunction of incident neutron energy or whether \(\bar{v}\) is represented by a polynomial.

If \(\mathrm{LNU}=1\), the structure of the section is [MAT, 1, 45:\%/ZA, AVR, 0, LNU, 0, 0]HEAD INT = 1
[MAT, \(\left.1,452 / 0.0,0.0,0,0, N C, 0 / C_{I}, C_{2}, \ldots C_{\text {NC }}\right]\) list
[MAT, \(1,0 / 0.0,0.0,0,0,0,0]\) SEND

If LNJ = 2, the structure of the section is
[MAT, 1, 452/ ZA, AWR, 0, LNU, 0, 0\} HEAD LNU \(=2\)
[NAT, 1, 452/0.0, 0.0, 0, \(\left.0, N R, N F / E_{i n t} j^{\prime v}(E)\right] T A B 1\)
MAT, 1, \(0 / 0.0,0.0,0,0,0,0\) JSEND
\begin{tabular}{llllllll}
\(9.22340+42.32029+2\) & 0 & 1 & 0 & 01043 & 1452 & 81 \\
\(0.00000+0\) & \(0.00000+0\) & 0 & 0 & 2 & 01043 & 1452 & 82 \\
\(2.37000+0\) & \(1.25000-7\) & & & 1043 & 1452 & 83 \\
& & & & 10431 & 0 & 84
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(9.22350+\) & \(42.33025+\) & 2 & 0 & 2 & 0 & 01261 & 1452 & 349 \\
\hline 0.00000+ & \(00.00000+\) & 0 & 0 & 0 & 1 & 71261 & 1452 & 350 \\
\hline & 7 & 2 & & & & 1261 & 1452 & 351 \\
\hline 1.00000- & \(52.41880 t\) & 0 ; 20000+ & \(62.57130+\) & \(03.00000+\) & \(62.78010+\) & 01261 & 1452 & 352 \\
\hline 4.00000+ & U 2.944304 & \(07.00000+\) & \(63.42930+\) & 07.850004 & \(63.56890+\) & 01261 & 1452 & \(35]\) \\
\hline \multirow[t]{2}{*}{2,00000+} & 7 5.19620+ & 0 & & & & 1261 & 1452 & 354 \\
\hline & & & & & & 1261 & 10 & 355 \\
\hline
\end{tabular}

The energy dependence of
\(\bar{v}\) may be found by tabulating \(\bar{v}\) as a function of incident neutron energy or by providing the coefficients for a polynomial expansion of \(\bar{v}(E)\),
\[
\bar{v}(E)=\sum_{n=1}^{N C} c_{n} E^{(n-1)}
\]
where \(\bar{v}(E)\) is the average total (prompt plus delayed) number of neutrons per fission produced by neutrons of incident energy \(E(e v), C_{n}\) is the \(n^{\text {th }}\) coefficiert, and NC is the number of terms in the polynomial.

ZA is the designation of the original nuclide \((2 A=(1000.0 \pm 2)+A)\)
NS is the integer number of states of the original nuclide for which reaction product data are given. (NS \(\leq 5\). )*

LIS designates the state of the original nuclide, ZA. (LIS \(=0\) means the ground state, LIS \(=1\) means the first exci乞ed state, etc.)*

LFS designates the state of the product nuclide. (LFS \(=0\) means the ground state, LFS \(=1\) means the first excited state.)

NPR is the number of product nuclides and/or product nuclide states for which data are given for one state of the original nuclide the sum of all product nuclide states formed by neutron interactions).

RTYP is the designation of the reaction type leading to the described product nuclide state and is a floating-point equivalent of MT numbers (see Appendix B).
\(\underline{2} A P\) is the \((2, A)\) designation of the product nuclide \((2 A P=(1000.0 * Z)+A)\).
\(D C\) is the decay constant ( \(\mathrm{sec}^{-1}\) ) for the decay of a particular state of the product nuclide (2AP).

2 is the reaction \(Q\)-value (ev). \(Q=\) (rest mass of initial state - rest mass of final state.)

ES(N) is the energy of the Nth incident energy (eV) at which branching ratios are given.

RR(N) is the branching rario at the Nth energy point giving the fraction of the original nuclide in a specified state that results in a specified product nuclide state for a specified reaction. At any particular energy point the sum of all branching ratios for a specified RTYP must be 1.0 .

NE is the number of energy points at which branching ratios are given for a specified initial state.
```

The structure of a section is
[MAT, 1, 453/ZA, AWR, 0, 0, NS, O)HEAD
< subsection for LIS = 0 (ground state) >
< subsection for LIS = 1 (first excited state) >
---m-----------------------------------
< subsection for LIS = NS - \ >
MMAT, 1, 0/0.0, 0.0; 0, 0; 0, 0 1SEND
There will be NS subsections.

```

The structure of a subsection is [MAT, 1, 453/ZA, AWR; LIS, \(0 ;\) NE, NPR/


[MAT, 1, 453/0.0, Q; LFS, \(0, \mathrm{NE}+3,0 /\) RTYP, ZAP; \(D C, B R(1), B R(2), B R(3) /\)




NPR such LIST records (of the second type).
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 4.223504 \(42.33025+\) & 20 & & 0 & 1 & 01261 & 1433 & 356 \\
\hline \(9.22350+42.33025+\) & 20 & & 0 & 2 & 31261 & 1453 & 357 \\
\hline 1.00000- \(5.2 .00000+\) & 7 & & & & 1261 & 1453 & 358 \\
\hline 0.00000t 0-5.23000+ & 60 & & U & 5 & 01251 & 1453 & 359 \\
\hline \(1.60000+19.22340+\) & \(48.85690-14\) & 1.000004 & \(01.00000+\) & 0 & 1261 & 1453 & 350 \\
\hline \(0.00000+0-1.18500+\) & 70 & & 0 & 5 & 01261 & 1453 & 361 \\
\hline \(1.70000+19.22330+\) & \(41.61540-13\) & \(1.00000+\) & \(01.00000+\) & 0 & 1261 & 1453 & 362 \\
\hline 0.00000t \(0.6 .54510+\) & 6 - 0 & & 0 & 5 & 01261 & 1453 & 36. \\
\hline 1.02060+ \(29.22360+\) & \(49.19250-16\) & 1.4.0000+ & 01.000004 & 0 & 126! & 1453 & 364 \\
\hline & & & & & 1261 & 10 & 365 \\
\hline
\end{tabular}
\[
M T=453
\]

\section*{Radioactive Decay Data}
```

For a specified original nuclide
state (LIS) and reaction type(RTYP)
the branching ratios are
BR(N)=1.0
at each incident energy point: N.

```

NFP is the number of fission product nuclide states to be specified at each incident energy point (this is actually the number of sets of fission product identifiers - fission product yields). (NFP \(\leq 1666\).

ZAFP is the ( \(Z, A\) ) identifier for a particular fission product. (ZAFP = \((1000.0 * Z)+A_{4}\).

FPS is the state designator (floating-point number) for the fission product nuclide (FPS \(=0.0\) means the ground state, \(F P S=1.0\) means the first excited state, etc.).

YLD is the fractional yield for a pariicular fission product.
\(c_{n}\left(E_{i}\right)\) is the array of yield data for the \(i^{\text {th }}\) energy point. This array contains NFP sets of three parameters in the order ZAFP, FPS, YLD.

N1 is equal to 3 *NFP, the number of items in the \(C_{n}\left(E_{1}\right)\) array.
\(E_{i}\) is the incident neuvron enexgy of the \(i^{\text {th }}\) point (ev).
IE is a test to determine whether energy-qependent fission product yields are given:
\(L E=0\) implies no energy-dependence (only one set of fission product yield data given):
\(L E>0\) means that \((L E+1)\) sets of fission product yzela data are given at (IE + 1) incident neutron energies.
\(I_{i}\) is the interpolation scheme (see Appendix E) to be used between the \(E_{i-1}\) and \(E_{i}\) energy points.

The structure for a section is
[MAT, 1, 454/ZA, ANR, LE \(+1,0,0,0] h E A D\)
[MAT, 1, 454/E \(\left.E_{1}, 0.0, ~ L E, ~ D, ~ N 1, ~ N F P / C_{n}\left(E_{1}\right)\right] L I S T\)
[MAT, 1, 454/E \(\left.\mathrm{E}_{2}, 0.0, \mathrm{I}_{2}, \mathrm{D}, \mathrm{N} 1, \mathrm{NFP} / \mathrm{C}_{\mathrm{n}}\left(\mathrm{E}_{2}\right)\right]\) LIST
\(\left[\operatorname{MAT}, 1,454 / \mathrm{E}_{3}, 0.0, \mathrm{I}_{3}, \hat{0}, \mathrm{~N} 1, \mathrm{NFP} / \mathrm{C}_{\mathrm{n}}\left(\mathrm{E}_{3}\right)\right]\) LIST

[MAT, 1, 0/0.0, 0.0, 0, 0, 0, 0]SEND
There are (LE + 1) LIST records.
\begin{tabular}{llllrrr}
\(9.22350+4\) & \(2.33025+2\) & 3 & 0 & 0 & 012611454 & 366
\end{tabular}
\begin{tabular}{llllllll}
\(2.53000-2\) & \(0.00000+9\) & 2 & 0 & 335 & 113012611454 & 36
\end{tabular}

\section*{(MISSING LINES)}
\(6.71690+40.00000+04.26231-116.71700+40.00000+01.04056-1112611454924\) \(6.71700+41.00000+01.03056-116.71710+40 . \because 3000+\) U \(1.59086-1112611454925\) \(6.71720+40.00000+05.79314-126.81610+40.00000+00.00000+012611454926\) \(6.81620+40.00000+00.00000+06.81630+40.00000+00.00060+012611454927\) \(6.81640+40.00700+00.00060+06.81650+40,00000+00.00000+012611454928\) \(6.81669+40.06000+08.93485-146.81670+40.00000+0 \quad 3.95214-1412611454 \quad 929\) \(6.81670+41.600017+0 \quad 3.95214-146.81680+40.00000+0 \quad 2.79151-1312611454 \quad 930\) \(6.81690+40.00000+01.15062-126.81700+40.00000+6 \quad 1.64089-121261 \quad 1454 \quad 931\) \(6.81710+40.00000+03.54192-126.81720+40.00000+0 \quad 3.48189-121261 \quad 1454 \quad 932\)
 \(2.40660+40.00000+0 \quad 3.81062-12 \quad 2.40670+40.00000+0 \quad 7.96129-1312611454 \quad 934\) \(2.40680+40.00000+05.35087-142.40700+40.00000+00.00000+012611454935\) \(2.50660+40.00000+\mathcal{4} 2.27069-102.50670+40.00000+02.82046-1012611454936\) \(2.50680+40.00000+06.13099-112.50690+40.00000+61.00016-11126: 1454937\) \(2.50700+40.00000+0 \quad 1.06017-12 \quad 2.50710+40.00000+0 \quad 8.49137-1412611454938\) \(2.60660+40.00000+06.11099-92.60670+40.00000+01.16019-812611454939\) \(2.60680+40.00000+07.54122-92.60690+40.00000+0 \quad 3.82062-912511454940\) \(2.60731+40.00000+01.29021-92.60710+40.00000+0 \quad 3.38055-1012611454941\)

\section*{(MISSING LINES)}
\(6.71690+40.00000+02.28037-106.717004 \cdot 40.00000+0 \quad 7.83127-11126114541490\) \(6.71700+41.00000+07.87127-116.71710+40.00000+08.38136-11126114541491\) \(6.71720+40.0000 \%+02.38039-116.81610+40.00000+00.00000+0126114541492\) \(6.81620+40.00000+00.00000+06.81630+40.00000+00.00000+0126114541493\) \(6.81640+40.00000+00.00000+06.81650+40.00000+00.00000+0126116541494\) \(6.81650+40.00000+05.62091-146.81670+40.00000+0 \quad 3.41055-13126114541495\) \(6,81670+41.00000+0 \quad 3.42055-136.81480+40.00000+0 \quad 2.71044-12126114541496\) \(6.81690+40.00000+06.32102-126.81700+40.00000+0\) 1.28021-111251 30.4541497 \(6.81710+40.00000+0\) 1.91031-11 6.81720+4 0.00000+0 \(0.4 .45023-11126114541498\) \(1.40000+70.00000+0 \quad 3 \quad 0 \quad 3390 \quad 1130126114541499\) \(2.40660+40.00000+01.59889-102.40670+40.00000+0\) 1.59859-11126114541500 \(2.40680+40.00000+05.88591-132.40700+40.00000+00.00000+01261 \quad 14541501\) \(2.50660+40.00000+04.09715-82.50670+40.00000+01.31908-8126114541502\) \(2.50680+40.00000+01.58890-92.50690+40.00000+0 \quad 1.34906-10126114541503\) \(2.54700+40.00000+0\) 8.36419-12 \(2.50710+40.00000+0\) 3.33768-131261 14541504 \(2.60660+40.00000+\) O I.24913-6 \(2.60670+40.00000+01.19917-6126114541505\) \(2.60680+40.00000+04.43692-72.60690+40.00000+01.19917-7126114541506\) \(2.60700+40.00 u ̛ u ̛+0\) 2..39833- \(82.60710+40.00000+0\) 3.15781-91261 14541507

\section*{(MISSING LINES)}
\(6.71670+40.00000+05.57613-86.71680+40.00000+01.13921-7126114542055\) \(6.71690+40.00000+02.01860 \div 6.71700+4\) U. \(000000+0 \quad 7.76460-8126114.542056\) \(6.71700+41.00200+07.80458-86.71710+40.00000+01.00930-7126114542057\) \(6.71720+40.00000+07.12505-\& 6.81610+40.00000+00.00000+0126114542058\) \(6.81620+40.00000+00.00000+06.81630+40.00000+00.00000+0126114542059\) \(6.81640+40.00000+07.43483-14\) S.81650+4 0.00000+ 0 1.91867-121261 14542060 \(6.81660+40.00000+02.95794-116.81670 \div 40.00000+0\) 1.83872-101261 1.454 2061 \(6.81670+41.00000+01.83872-106.81680+40.00000+02.31839-9126114542062\) \(6.81690+40.00000 \div 01.22915-86.81700+40.00000+02.66815-8126114542063\)

\section*{FILE 1}
\[
M T=454
\]

Fission Product Yield Data

At each incident energy point
\(\sum_{i=1}^{N F P} Y L D_{i}=2.000\)
is a test that indicates which representation is used: LND \(=1\) means that a polynomial expansion is used; LND \(=2\) means that a tabulated representation is used.

NCD is the number of terms in the polynomial expansion. (NCD \(\leq 4\) )
\(C_{m}\) are the coefficients for the polynomial.
NR is the number of interpolation ranges used. ( \(N R \leq 200\) )
NP. is the total number of incident energy points used to represent \(\bar{v}_{d}(E)\) when a tabulation is used. is the interpolation scheme (see Appendix E).
\(\bar{v}_{d}(E)\) is the total average number of delayed neutron precursors formed per fission event.

NNF is the number of precursor families considerec.
入i is the decay constant ( \(\mathrm{sec}^{-1}\) ) for the \(i^{\text {th }}\) precursor.

\title{
The structure of a section when a polynomial representation has been used (LND \(=1\) ) is [MAT, 1, 455/ ZA, AKR, 0, LND, 0, 0]HEAD \\ LND \(=1\) \\ [MAT, \(1,455 / 0.0,0.0,0,0, \quad\) NNF, \(0 / \lambda_{1}, \lambda_{2} \ldots \lambda_{\text {NNF }}\) ]LIST \\ [MAT, \(\left.1,455 / 0.0,0.0,0,0, \quad \mathrm{NCD}, 0 / \mathrm{CD}_{1}, \mathrm{CA}_{2}, \cdots \mathrm{CD}_{\text {NCD }}\right]\) LIST \\ [MAT, 1, 0/0.0, 0.0, 0, 0, 0, 01SEND
}

The structure when values of \(\bar{\nu}_{\mathrm{d}}\) are tabulated (LND \(=2\) ) is [MAT, 1, 455/ 2A, AWR, 0, LND, 0, 0]HEAD

LND \(=2\)
[MAT, \(\left.1,455 / 0.0,0.0,0,0, \quad N N F, 0 / \lambda_{1}, \lambda_{2}, \ldots \lambda_{\text {NNF }}\right]\) LIST
[MAT, \(\left.1,455 / 0.0,0.0,0,0, \quad N R, N P / E_{\text {int }} / \bar{v}_{\mathrm{d}}(E)\right] T \mathrm{TABI}\)
[MAT, \(1,0 / 0.0,0.0,0,0,000\) SEND

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 9.22350 & \(42.33025+\) & 2 & 0 & 2 & 0 & 01261 & 14552066 \\
\hline \(0.00000+\) & \(00.00000+\) & 0 & 0 & 0 & 6 & 01261 & 14552067 \\
\hline 1,27200- & \(23.174 \% 0\) & 21.16000 & 3.11000- & \(11.40000+\) & \(03.87000+\) & 01261 & 14552068 \\
\hline \(0.00000+\) & 0.00000+ & 0 & 0 & 0 & 1 & 71261 & 14552069 \\
\hline & 7 & 2 & & & & 1261 & 14552070 \\
\hline 1.00000- & 51.67000 & \(21.20000+\) & \(61.67000-\) & \(22.00000+\) & 61.67000 & 21261 & 14552071 \\
\hline \(4.00000+\) & 61.67000 & \(27.00000+\) & 69.00000 & \(37.85000+\) & 6 9.00000- & 31261 & 14552072 \\
\hline \(2.00000+\) & 79.00000 & 3 & & & & 1261 & 14552073 \\
\hline & & & & & & 1261 & 102074 \\
\hline
\end{tabular}

The total number of delayed neutron precursors emitted per fission event, at incident energy \(E\), is given in this file and is defined as the sum of the number of precursors emitted for each of the precursor families,
\[
\bar{v}_{d}(E)=\sum_{i=1}^{N N F} \bar{v}_{i}(E)
\]
where \(N N F\) is the number of precursor families. The fraction of the total, \(P_{i}(E)\), emitted for each family is given in File 5 (see section 5) and is defined as
\[
P_{i}(E)=\frac{\bar{v}_{i}(E)}{\bar{v}_{d}(E)}
\]

The structure of a section depends on whether \(\bar{v}_{d}(E)\) is tabulated as a function of incident energy or given as coefficients of a polyomial expansion in energy. If a polynomial is used, \(\bar{v}_{d}(E)\) is defined as
\[
\bar{v}_{d}(E)=\sum_{m=1}^{N C D} C D_{m} E^{(m-1)}
\]
LNP is a test that indicates what representation of \(\bar{V}(E)\) has been used; UNP \(=1\), polynomial representation has been used; \(L N P=2\), tabulated representation.
NCP is a count of the number of terms used in the polynomial expansion. ( \(\mathrm{NCP} \leq 4\) )
\(C P_{n}\) are the coefficients of the polynamial. There are NC coefficients given.
NR is the number of interpolation ranges used to tabulate values of \(\bar{v}_{p}(E)\). (See Appendix E.)
NP is the total number of energy points used to tabulate \(\bar{v}(E)\).
\(E_{\text {int }}\) is the interpolation scheme (see Appendix E.)

\begin{abstract}
The structure of this section depends on whether values of \(\bar{v}(E)\) are tabulated as a function of incident neutron energy or whether \(\bar{v}\) is represented by a polynomial.
\end{abstract}

If \(\underline{L N P}=1\) (polynomial representation used), the structure of the section is
[MAT, 1, 456/2A, AKR, O, LNP, O, O]HEAD LNP \(=1\)
[MAT, 1, 456/0.0, 0.0, 0, 0, NCP, \(0, \mathrm{CP}_{1}, \mathrm{CP}_{2}, \ldots\) CP \(_{\mathrm{NCP}}\) ]LIST
[MAT, \(1,0 / 0.0,0.0,0,0,0,0]\) ERDD

If LNP \(=2\) (tabulated values of \(\bar{v}\) ), the structure of the section is
[MAT, 1, 456/4A, ANR, O, LNP, O, OlHEAD Lav \(=2\)
[mat, 1, 456/0.0, 0.0, 0, 0, NE, NP/E int \(\left./ \bar{v}_{p}(E)\right]\) TAOI
[MAT, 1, 0/0.0, \(0.0,0,0,0,0] S E N D\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(9.22350+\) & \(2.31025+\) & 2 & & 0 & & 2 & & 0 & & 01261 & 1456 & 2075 \\
\hline 0.00000 & 00.000004 & 0 & & 0 & & 0 & & 1 & & 71261 & & 2076 \\
\hline & ; & 2 & & & & & & & & 1261 & & 2077 \\
\hline 1.00000 & \(52.40210 r\) & 0 & 1.200004 & 2 & 2.554604 & 0 & \(3.00000+\) & 6 & 2,763:04 & 01261 & & 2078 \\
\hline 4.000004 & \(62.92760+\) & 0 & 7.030004 & 63 & 3.42030+ & 0 & 7.85000+ & 6 & 3.55990+ & 01251 & 1656 & 2079 \\
\hline 2.00000+ & 3.18720+ & 0 & & & & & & & & 1261 & 1456 & 2080 \\
\hline
\end{tabular}

Number of Prompt Neutrons per Fission, \(\bar{v}_{p},(M T=456)\)
If the material is fissionable ( \(L F I=1\) ), a section specifying the average number of prompt neutrons per fission, \(\bar{\nu}_{p},(M T=456)\) can be given using formats identical to \(M T=452 . \quad \vec{v}_{p}\) is given as a function of incident neutron energy. The energy dependence of \(\bar{\nu}_{p}\) may be given by tabulating \(\bar{\nu}_{p}\) as a function of incident neutron energy or by providing the coefficients for a polynomial expansion of \(\bar{v}_{p}(E)\).
\[
\bar{\nu}_{p}(E)=\sum_{n=1}^{N C P} C P_{n} E^{(n-1)}
\]
where \(\bar{v}_{p}(E)\) is the average number of prompt neutrons per fission produced by neutrons of incident energy \(E(e V), C P_{n}\) is the \(n^{\text {th }}\) coefficient, and NCP is the number of terms in the polynomial.

> The values of \(\bar{b}_{\mathrm{p}}(E)\) given in this section are for the average number of prompt neutrons produced per fission event. Even though another section (MT = \(455)\) that specifies the delayed neutron from fission may be given \(\bar{v}_{d}\), the number of delayed neutrons per fission, and \(\bar{v}_{p}\), the number of prompt neutrons per fission, must be included il. the values of \(\bar{v}(E)\) given in the section (MT \(=452)\) : i.e.. \(\bar{v}(M T=4 j 2)=\bar{v}_{d}(M T=455)+\bar{v}_{p}(M T=456)\).
1. General information about the material
gA \(\quad=\) Designation of the original (radioactive) nuclice ( \(=1000 * 0+A\) )
LIS \(x\) Isomeric state flag for original nuclide (LIS \(=0\), ground
state; LIS \(=1\), first isomeric state; etc.).
\(T_{1 / 2}=\) Half-life of the original nuclide (seconds).
\(\Delta T_{1 / 2}=\) Uncertainty in the half-life (should be considered as one standard deviation).

NAV = Total number of decay modes for which average energies are
given.
\(\bar{E}_{x}, \Delta \bar{E}_{x}=\) Average decay energy (ev) of radiation of type \(x\) and its uncertainty (eV) for decay heat applications. The B,Y and a energies are given in that order, with space reserved for zero \(B\) or \(\gamma\) entries. All non-y and non-a energies are presently included as \(\beta\) energy. The \(\alpha\) energy includes the recoil nucleus energy.
II. Decay mode information for each mode of decay:

NDK \(=\) total number of decey modes given.
RTYP \(=\) Indicates the mode of decay.

RFS = Isomeric state flag for daughter nuclide. (Fixed point number.)
Q \(\quad\) Total decay energy (ev) available in the corresponding decay process.
\(\Delta Q \quad=\) Uncertainty in \(Q\) value (ev).
BR \(\quad=\) Fraction of the decay which proceeds by the corresponding decay mode. fe.g., if only \(\beta^{-}\)occurs and no isomeric states in the daughter nucleus are excited, then \(B R=1.0\) for \(B^{-}\)decay.)
\(\triangle \mathrm{BR}\) \(=\) Uncertainty in BR (should be given as one standard deviation)
III. Resulting radiation spectra

STYF \(=\) Decay type (Use mode of decay variable list).
NSP \(\quad=\) Total number of spectra. (NSP may be zero.)
\(\underline{E}\) and \(\Delta E=\) Energy ( eV ) or radiation produced \(\left(E_{\beta^{-}}, E_{\beta^{+}}, E_{\gamma}\right.\), etc.).
I and \(\Delta I=\) Intensity of radiation produced (relative units) *
ICC and = Internal conversion coefficient.
\(\triangle I C C\)
\(F\) and \(\Delta F=\) Nomalization factor (absolute intensity/relative intensity).
NE \(\quad=\) Total number of tabrilated energies.

\section*{Formats}

The structure of this section always starts with a \(H \in A D\) record and ends with a SEND record. The section is divided into subsentions as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline [MAT, 1/457/ & 2A & AWE & LIS & \(b\) & \(b\) & NSP & ] & HEAD \\
\hline [MAT, 1/457/ & \[
\mathrm{T}_{1,2}
\] & \[
\Delta T_{1 / 2}
\] & b & b & 2*NAV & NAV & & \\
\hline & \(\bar{E}_{\beta}\) & \[
\Delta \bar{E}_{B}
\] & \[
\bar{E}_{\gamma}
\] & \(\Delta \bar{E}^{\prime}\) & \[
\bar{E}_{\alpha}
\] & \(\Delta \bar{E}_{\alpha}\) & J & LIST \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{[MAT, 1, 457/} & STYP & b & b & b & \multicolumn{2}{|l|}{\(6 *(N E+1)\) NE/} & \multicolumn{2}{|l|}{Repeat NSP times} \\
\hline & F & \(\Delta F\) & b & \(b\) & b & b & & t if \\
\hline & E & \(\Delta \mathrm{E}\) & I & \(\Delta I\) & ICC & \(\triangle \mathrm{ICC}\) & ] & LIST \\
\hline [MAT, 1, O/ & b & b & b & b & \(b\) & b & 1 & SEND \\
\hline
\end{tabular}


\section*{Decay modes defined}
\begin{tabular}{|c|c|c|}
\hline Variable & Mode of decay & \\
\hline 0.0 & \(\gamma\) & Gamma decay (not used for mode of decay) \\
\hline 1.0 & \(B^{-}\) & Beta decay \\
\hline 2.0 & \(\beta^{+}\) & Positron and/or electron capture decay \\
\hline 3.0 & IT & Isomeric transition (in general, pre.. \\
\hline & & sent only when the state being considered is an isomeric statel \\
\hline 4.0 & \(\pm\) & Alpha decay \\
\hline 5.0 & \(\beta^{-}, n\) & Neutron emission (generally given for \\
\hline & & delayed neutrons) \\
\hline 6.0 & \(s F\) & Spontaneous fission \\
\hline
\end{tabular}

File 2 Resonance Parameter Data

Several quantities used in File 2 have definitions that are the same for all resonance parametex representations:

NIS is the number of isotopes in this material (NIS < 10).
ZAI is the ( \(2, A\) ) designation for an isotope.
ABN is the abundance (weight fraction) of an isotope is this material.
LFW is a flag indicating whether average fission wiaths are given in the
unresolved resonance region for this isotope:
LFW \(=0\), average fission widths are not given;
LF'W \(=1\), average fission wiâths are given.
NER is the number of energy ranges given for this isotope (NER \(\leq 2\) ).
EL is the lower limit for an energy range.*
EH is the upper limit for an energy range.*
LRU is a flag indicating whether this energy range contains data for resolved or unresolved resonance parameters:

LRU \(=0\), means only effective scattering radius is given (LNF \(=0\), NLS \(=0\), LFW \(=0\) required)

LRU \(=1\), means resolved resonance parameters are given;
\(L R U=2\), means unresolved resonance parameters are given.

LRF is a flag indicating which representation has been used for this energy
range. The definition of LRF depends on the value of LRU for this
energy range:
If \(I R U=1\) (resolved parameters), then
LRF \(=1\), single-level \(B-W\) parameters
LRF \(=2\), multilevel B-W parameters
LRF \(=3\), Reich-Moorc parameters
LRF \(=4\), Adler-Adler parameters

If LRU \(=2\) (unresoived parameters), then \(L R F=1\), only average fission widths are energy dependent; \(L R F=2\), average level spacing, competitive reaction widths, reduced neutron widths, radiation widths, and fission widths are energy dependent.
```

The general structure of a section is as follows:
[MAT, 2, 151/ 2A, AWR, 0, 0, NIS, 0]HEAD
[MAT, 2, 151/ ZAI, ABN, O. LFW, NER, O]CDNT (isotope)
[MAT, 2, 151/ EL, EH, LRU, LRF, 0, 0]CøNT (range)
<Subsection for the first energy range for the first isotope (depends
On LRU and LRF)>
[MAT, 2, 151/ EL, EH, LRU, LRF, 0, 0]CGNT (range)
<Subsection for the second energy range for the first isotope
depends on LRU and L.RF)>
[MAT, 2, 151/ EL, EH, LRU, LRF, O, 01CøNT (range)
<Subsection for the last energy range for the last isotope for this
 material>
MART, 2, 0/0.0, 0.0, 0, 0, 0. 0] SEND

```
The data are given for all ranges for a given isotope, and then for all isotopes.
The data for each range start with a CøNT (range) record; those for each isotope,
with a C \(\varnothing \mathrm{NT}\) (isotope) record.

\title{
File 2 Resonance Parameter Data \\ (General Structure)
}
\(9.22350442 .330 \% 5+2\)
\(9.22350+41.00350+0\) \(1.00000+08.20000+1\)
\(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\)
1
1

0126121512144 0126121513145 0126121512146
(SUBSECTION OF RESOLVED RESONANCE PARAMETERS)

\title{
File 2 Resonance Parameter Data
} (General Structure)

\section*{FILE 2}

\section*{Resonance Parameter Data}

\section*{General Structure}
\(\sum_{i=1}^{\text {NIS }} \mathrm{ABN}_{i}=1.000\)

SPI is the nuclear spin of the targat nucleus. I (positive number).
Ap is the spin-degendent effective scatrering radius \(\lambda_{\text {. (for }}\) (fpin-up) in units of \(10^{-12} \mathrm{~cm}\). Ap is also given for the case of spin independence. AP is defined in the relation \({ }_{\text {pot }}=4:(A P)^{2}\).
sM is the spin-dependent effective scattering radius. A_ for spind(wn). (sy \(=0.0\) for spin independence is presently requited).

NLS is the muber of \(i\) states in this energy region. \(A\) sat of parameters is given for each i-state (neutron angular momentum quantum number). (NZS \(\leq 3.1\)

The structure of filo 2 for the special case, in which just the effective scattering radius is specified, is given below (no resolved or unresolved parainter:s are given for this material):


\section*{File 2 Resonance Parameter Data (Special Case, LRP \(=0\) )}

N-10
C
\begin{tabular}{lllllll}
\(2.00400+j 3.00150+0\) & 0 & 0 & 1 & 012702151 & 83 \\
\(2.00400+31.00000+6\) & 0 & 0 & 1 & 012702151 & 84 \\
\(1.00000-51.00000+5\) & 0 & 0 & 0 & 012702151 & 85 \\
\(0.00000+0\) & \(2.45790-1\) & 0 & 0 & 0 & 012702151 & 86
\end{tabular}

\section*{FILE 2}

\section*{Resonance Paramerer Data}

> Special Case
> \(\mathrm{LRP}=0(\) In File \(1, \mathrm{MI}=45 \mathrm{~J})\)

Only data given is the effective scattering radius. The s-wave potential scattering cross section is
\[
\sigma_{p}=\frac{4 \pi}{k^{2}} \quad \sin c^{2}
\]
where
\[
k=2.196771 \frac{A W R I}{A W R I+1.0} \times 10^{-3} \because \mathrm{E}
\]

E in electron volts.
and
\[
\because=k \div A P
\]

The following quantities are defined for use when LRF \(=1\) and 2 (see Appendix \(D\) for formulae): Resolved Rasonance Parametezs if LRF \(=1\) (SLBW) and LRF \(=2\) (MLBW)


File 2 Resolved Resonance Parameter Data (Single or Multilevel Breit-Wigner)
```

 The structure of a subsection containing data for (LRU = 1 and LRE - 1)
 Or (LRU = 1 and LRN'=2) is
[MAT, 2, 151/ SPT, NP, 0, \, N:S, 0]CONT
[MAT, 2, 151/ NWRI, NM, L, 0, 60/JFS, NRS/
ER , MJ , GT, GN
ER
ER NRS' AJ NRS' GT NES, GN NRS' GGNRS, GE NRS 'ILIST
The LIST record is repeated untiL eav N%S t-staft has been specified (in
order of increasing value of l). The values of ER for each i-state shald be
ordered by increasing neutron energy.

```


FILE 2.
Resonance Parameter Data

LRU \(=1\), resolved parameters
\(L R F=1\) or 2 , single or multilevel Breit-Wigner parameters
\[
\begin{aligned}
& \mathrm{g}_{\mathrm{i}}=\frac{2 * \mathrm{AJ}_{i}+1.0}{2(2 * \mathrm{SPI}+1.0)} \\
& \mathrm{Gr}_{i}=\mathrm{GN}_{\mathbf{i}}+\mathrm{GG}_{\mathbf{i}}+\mathrm{GF}_{\mathbf{i}}
\end{aligned}
\]

File 2 Resolved Resonance Parameter Data

\section*{Resolved Resonance Parameters}

\section*{If LRF \(=3\) (Reich-Moore multilevel parameters)}

SPI is the spin of the target nucleus \(I\).
\(A P=A_{+}\)is the spin-up effective scattering radius in units of \(10^{-12} \mathrm{~cm}\).
\(A M=A\) _ is the spin-down effective scattering radius in units of \(10^{-12} \mathrm{~cm}\).
\(A M=0.0\) for spin independence. ( \(\quad(M=0.0\) required.)
NLS is the number of \(\ell\)-states considered. A set of resolved resonance parameters is given for each \(\ell\)-state. (NLS \(\leq 3\). )
\(\underline{L}\) is the value of the \(\ell\)-state (neutron angilar momenturn quantum number).
AWRI is the ratio of the mass of a particular isotope to that of a neutron.
NRS is the number of resolved resonances for a given \(\ell\)-state. (NRS \(\leq 500\).)
ER is the resonance energy (in the laboratory system).
AJ is the compound nucleus spin, \(J\) (the spin of the resonance).
GN is the neutron width \(\Gamma_{n}\) evaluated at the resonance energy.
GG is the radiation width \(\Gamma \gamma\) evaluated at the resonance energy.
GFA is the first partial fission width for Reich-Moore parameters.
GFB is the second partial fission width for Reich-Moore parameters. GFA and GFB are signed quantities, their signs being determined by the relative phases of the width amplitudes in the two fission channels.

\section*{File 2 Resolved Resonance Parameter Data (Reich-Moore Parameters)}
```

The structure of a subsection when $L R U=1$ (resolved parameters) and LRF $=3$ (Reich-Moore multilevel parameters) is

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline [MAT, 2, & 151/SPI, & AP, & 0, & 0. & NLS, & \(0] C 0 n T\) \\
\hline \multirow[t]{4}{*}{[MAT, 2,} & 151/AWRI, & AM, & L, & 0 , & 6*NRS, & NRS/ \\
\hline & \(E R_{1}{ }^{\prime}\) & \(\mathrm{AJ}_{1}{ }^{\prime}\) & \(\mathrm{GN}_{1}\), & \(\mathrm{GG}_{1}\), & \(\mathrm{GFA}_{1}{ }^{\prime}\) & \(\mathrm{GFB}_{1}\), \\
\hline & \(E R_{2}\), & \(\mathrm{AJ}_{2}{ }^{\prime}\) & \(\mathrm{GN}_{2}{ }^{\prime}\) & \(\mathrm{GG}_{2}\), & \(\mathrm{GFA}_{2}\) 。 & \(\mathrm{GFB}_{2}\), \\
\hline & ER \({ }_{\text {NRS }}\) ' & \(\mathrm{AJ}_{\text {NRS }}\) & \[
\mathrm{GN}_{\mathrm{NRS}}
\] & \[
\mathrm{GG}_{\mathrm{NRS}}
\] & GFA \({ }_{\text {NRS }}{ }^{\text {a }}\) & \[
\mathrm{GFB}_{\mathrm{NRS}}
\] \\
\hline
\end{tabular}

The LIST record is repeated until each of the NLS l-states has been specified in order of increasing value of \(\ell\). The values of \(E R\) for each \(\ell\)-state are ordered by increasing value of \(E R\)


\section*{FILE 2}

Resonance Parameter Data

LRU \(=1\), resolved parameters
\(L R F=3\), Reich-Moore multilevel parameters
\[
\begin{array}{r}
g_{i}=\frac{2 * A J}{2(2 * S P I+1.0} \\
\Gamma_{i}=G N_{i}+G G_{i}+\left|G F A_{i}\right|+\left|G F B_{i}\right|
\end{array}
\]

\section*{Aenolved Beconance Parmartern}

\section*{If LRF . A indiar-ndior multileval parmenterg)}

LI is 0 ilag to maicate the kind of paraneters given:
if :t : 1, total uldent only-
- 2, eingion wadthe onir-
- 1, total and fintion uidehs.
- 4. radistave capture uadchs only. Reserved for use in ENDF/A oniy.
- 5. tutal ard capture uidth
-6. fiabion and sapture uidtha*
- 7, total, fission, and capture uidths.

NX is the count of tine numer of sete of manground constance to be isiven.
There are ain constanta per set. Eech aet refera to a partacular cross section type.

If \(N X=2\), beckground constanty are givan for the total and capture
crose sections.
- 3, background constanta are given for the total, capture, and
fibsion cross eactiona.
A 1 the floutina-point value of \(J\) (the spin of the resonance).
\(\underline{L}\) Is the value of the t-atate Inoutron angular momentum quantim
numer).
Nis is the count of the numer of t-atater sor which parameters will
be quven (mas \(\leq 1\) ).
Mis if the number of eets of resolved resonance paramiters feach having the same \(S\) statel for a specified t-atate.

NLJ 15 the count of the number of levels for which parameters inill be given leach level having a apecified Miland L).
SPI is the spin of the target nucleus.
Mang is the ratio of the mass of a particular isotope to that of the neutron.

AP is the span-dependent offective scattering radius. A. ffor spinupl in unste of \(10^{-12} \mathrm{~cm}\). Ap is theo given for the casce of apin independence.
 doms). \(A M=0.0\) for \(\operatorname{spin}\) independence.
\(\mathrm{AF}_{\mathrm{i}}, \mathrm{AF}_{2}, \mathrm{NF}_{3}, \mathrm{AF}, \mathrm{BF}_{\mathbf{1}}, \mathrm{BF}_{2}\) are the background constante for the fission cross section.
\(A C_{1}, A C_{2}, A C_{3}, A C_{4}, B C_{1}, B C_{2}\) are the background constants for the radiative capture cross section.
DET in the resonance energy for the total cross section. Here and
below, the subscript \(n\) denotes the \(n^{\text {th }}\) level.
DEF \(n\) is the resonance energy for the fission crosin section.
DEC 1 is the resonance eneryy for the radiative capture cross section.
Durf is the value of riz , (u), used for the cotal cross section.
DWF is the value of \(\mathrm{P} / 2\). (v), uscd for the fission inoss section.
Ducn is the value of \((1 / 2\). (u), used for the radiative capture cross yection.

GRT \(n\) is related to the ymetrical tutal crosp pection parameter.
GIT n is lelated to the asymetrical total cross section parameter.
GRF is the symetrical fissian parameter.
\(\mathrm{GIF}_{\mathrm{n}}\) Is the asymetrical fission parametar.
GRC \(C_{n}\) is the aymetrical capture paraneter.
Gicn is the asymetrical capture parameter.

The structure of a subsection containing data for (LRU = 1 and LRF m AdierAder multilevel parameters) depends on the value of \(N X\) (the number of gets of background constants). For the most general case (NX = 3) the structure is


The last LIST record is repeated for each J-state tehere will be mus such gist records). A new CaNt (i) record will be given which will be followed by NJS LIST records. Note that if \(N X=2\) then the quantities \(A F_{1}, \cdots-\infty, B_{2}\) will not be given in the first LIST record. Also, if LI \(\boldsymbol{F} 7\) then certain of the paraneters for each level may be set tet zero, i.e.. the fields for paxameters not given (depending on LI) will be set to zero.


The backgrourad correction for the total cross section is calculated by using the \(s i x\) constants in the following manner: \({ }^{T} T\) (background) \(=\frac{C}{\sqrt{E}}\left(A T_{1}+A T_{2} / E+A T_{3} / E^{2}+A T_{4} / E^{3}\right.\)
\[
\left.+\mathrm{BT}_{1} \mathrm{E}+\mathrm{BT}_{2} \mathrm{E}^{2}\right)
\]

Where \(c=\pi \hbar^{2}=\pi / k^{2}\) and \(k=2.19677 \times 10^{-3}\left(\frac{\lambda W R I}{\lambda W R I+1.0}\right) \sqrt{E(e V)}\). The background terms for the fission and radiative capture cross sections are calculated in a similar mannex.

Since the format has no provision for giving the Adler-Adler parameters for the scattering cross-section, this is obtained by subtracting the sum of capture and fission cross sections from the total cross section.

File 2 Unresolved Resonance Paramoter Data
(Parameters are Energy Independent) (Fission Widths not given)
The following quantities are defined for use in specifying unresolved resonance parameters ( \(\underline{L R L=2 \text { 2): }}\)

SPI is the nuclear spin 1 of the target nucleus.
A is the effective scattering radius in units of \(10^{-12} \mathrm{~cm}\).
NE is the number of energy points at which energy-dependent widths are
tabulated. (NE \(\leq 250\). )
NLS is the number of 1 -states given (NLS \(\leq 3\). )
ES(N) is the energy of the \(N^{\text {th }}\) point uned to tabulate energy-dependent widths.
\(\underline{L}\) is the value of a (neutron angulax momentum quantum number).
ANRI is the ratio of the mass of the particular isotope to that of the neutron.
is the number of \(J\)-states for a particular \(k-3 t a t e\). (NJS \(\leq 6\).
is the floating-point value of the \(J\)-state.
is the mean level spacing for a particular J-state.
(This value is energy dependent if LFR = 2.)
is the number of degrees of freedom used in the competitive width distribution. (If an actual value is not known or is extremely large, set amux \(=0.0 .1\) is the number of degrees of freedom used in the neutron width distribustion. (AMUN \(\leq 2.0\).
is the number of degrees of freedom used in the radiation width distribution. (if this value is not known or is extremely large, het AMUG \(=0.0 .1\)

AMUF

GG is the average radiation width. It is energy depuncent if LRU \(=2\).
GF is the avetage fission width. This value may be energy dependent.
GX is the average competitive reaction width.
is the number of degrees of freedom used in the fission width dis-
tribution. (amur \(\leq 4.0\).)
is the integer value of the number of degrees of freedom for fis-
sion widths. (MIF \(\leq 4\).
is the intexpolation scheme to be used for interpolating betwean
the cross-sections obtained from average resonance parameters
(normally, INT = 1.)
is the average reduced neutron width. It is energy dependent if LRU \(=2\).

File 2 Unresolved Resonance Parameter Data
(Parameters are Energy independent) (Fission Widths not given)

If LFW \(=0\) (fission widths not giver.).
LRU \(=2\) (unresolved parameters).
Lip = 1 (all parameters are energy-independent),
the structure of a subsection is
\begin{tabular}{|c|c|c|c|c|c|}
\hline [MAT, 2, 151/SPI, & A, & 0 , & 0, & NLS, & Ofchart \\
\hline [MAT, 2, 151/ANRI, & 0.0, & L, & 0 , & 60\%3S, & nJs/ \\
\hline \(D_{1}\). & \(\mathrm{NJ}_{1}{ }^{\text {, }}\) & AMUN \(_{1}\). & \(\mathrm{GNO}_{1}\). & \(\mathrm{GG}_{1}\). & 0.0 \\
\hline \(\mathrm{D}_{2}\) 。 & \(\mathrm{NJ}_{2}{ }^{\prime}\) & \(\mathrm{MON}_{2}\). & \(\mathrm{CNO}_{2}\), & \(\mathrm{GG}_{2}\), & 0.0 \\
\hline
\end{tabular}

File 2 Unresolved Resonance Paraneter Data
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 2.00000 & 1 1.00000+ & 4 & 2 & & 1 & & 0 & & 01283 & 2151 & 299 \\
\hline 1. 30000.3 & D 9.60000 & 1 & 0 & & 0 & & 2 & & 01283 & 2151 & 300 \\
\hline 1.95 .2744 & : \(0.06000+\) & 0 & 0 & & 0 & & 12 & & 21283 & 2151 & 301 \\
\hline 4.1520004 & \(11.00000+\) & C \(1.000000+\) & 0 & 9.07200 & 3 & 1.25000 & 1 & 0,000004 & 01283 & 2151 & 302 \\
\hline \(\therefore .590004\) & 12.000004 & 0 i.00000+ & 0 & 3.43900 & 3 & 1.25000- & 1 & 0.00000+ & 01283 & 2151 & 303 \\
\hline 1.952744 & 20.000004 & 0 & 1 & & 0 & & 24 & & 41283 & 2151 & 304 \\
\hline 1,296004 & \(? 0.000004\) & \(01.00000+\) & 0 & 5.18400- & 3 & 1.25000 & , & 0,00000+ & 01283 & 2151 & 305 \\
\hline 4. 32000t & 1.000004 & \(02.00400+\) & 0 & 1.72800 & 3 & 1.25000 & 1 & 0.000004 & 01283 & 2151 & 306 \\
\hline 2. 590000 & 12.000004 & \(02.00000+\) & 0 & 1.03600 & 3 & 1.25000- & 1 & \(0.000 \%\) & 01283 & 2151 & 307 \\
\hline 1.85006 & 1 3.000004 & 0 1.00000+ & 0 & 7.40000 & 4 & 1.25000 & 1 & 0.000004 & 01283 & 2151 & 308 \\
\hline
\end{tabular}

File 2 Unresolved Resonance Parameter Data

File 2 Unresolved Resonance Parameter Data

The following quantities are defined for use in specifying unresolved resunance parancters (LRU \(=2)\) :

SPI is the nuclear spin I of the target nucleus.
A is the effective scattering radius in units of \(10^{-12} \mathrm{~cm}\).
f1E Is the number of energy points at which erengy-ciependent widths are
tabulated. (NE \(\leq 250\).
NLS is the number of i -states given (NL's \(\leq 3\). )
ES(N) is the energy of the \(N^{t h}\) point used to tabulate energy-dependent widths.

2 is the ratio of the mass of the partisular isotope to that of the neutron.
is the number of \(J-i t a t e s\) for a particular i-state. (mis 6.6.\()\)
is the floating-point. value of the J-state.
is the mean level spacing for a particular J-state.
(This value is energy dependent if LFR \(=2\). )
is the number of degrees of frecdom used in the competitive width distribution, ilf an actual value is not known or is extremely large, set \(\begin{aligned} & \text { aNUX }=0.0 .) ~\end{aligned}\)
is he number of degrees of freedom used in the neutror width distribution. (ANUN \(\leq 2.0\).
is the number of degrees of freedom used in the radiation width distribution. (If thi. value is not known or is extrermiy large, set AHUG \(=0.0 .1\) is the number of degrees of freedom used in the fissior width distribution. \{AMUF \(\leq 4.0\). is the integer value of the number of äegrees of freedon tor fission widchs. (MUF 2 4.) is the interpolation scheme to be used for interpolating detween the cruss-sections obtained from average resonance paranciters (normally, INT \(=1\). ) is the average reduced neutron width. It is energy dependent if LRU - 2 .
is the average radiation width. It is energy dependent if LRU \(=2\). is the average fission width. This value may be energy dependent. is the average competitive reaction width.

File 2 Unresolved Resonance Parameter Data (Fission Widths are given) (Only Fission Widths are Energy Dependent)
```

If LFW=1 (fission widths given),
LRU = 2 (unresclved parameters),
LRF =1 (only fission widths are energy-dependent; the zest are
energy-independent).

```
the structure of a subsection is
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline [MAT, 2, & 151/SPI, & A, & 0 , & 0. & NE, & NLS/ \\
\hline & \(E S_{1}\), & \(\mathrm{ES}_{2}{ }^{\prime}\) & \(\mathrm{ES}_{3}{ }^{\prime}\) & -• & -' & -' \\
\hline & - & -' & - & - & \(E S_{\text {NE }}\) & JLIST \\
\hline (mat, 2, & 151/AWRI, & 0.0, & L, & 0 , & NJS, & OJConst ( 1 ) \\
\hline [Mät, 2, & 151/0.0. & 0.0, & L, & MuF, & NE+6, & 0/ \\
\hline & D, & \({ }^{\text {AJ, }}\) & AMUN, & GNO, & GG, & 0.0, \\
\hline & \(\mathrm{GF}_{1}{ }^{\prime}\) & \(\mathrm{GF}_{2}{ }^{\prime}\) & \(\mathrm{GF}_{3}{ }^{\text {, }}\) & - & - & -' \\
\hline & -' & \(\cdots\) & -' & \(\mathrm{GF}_{\mathrm{NE}}\) & & JLIST \\
\hline
\end{tabular}

In the above section, interpolation is assumed to be log-log.

\title{
File 2 Unresolved Resonance Parameter Data \\ (Fission Widths are given) \\ (Only Fission Widths are cnergy Dependent)
}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 0,00000+ & \(09.22500-\) & & 0 & & G & & 2 & & 21162 & 215: & 261 \\
\hline \(5.00000+\) & \(21.00000+\) & 4 & & & & & & & 1162 & 2151 & 262 \\
\hline \(2.42133+\) & 20.000004 & 0 & 0 & & 0 & & I & & 01162 & 2151 & 265 \\
\hline \(0.00000 \rightarrow\) & \(00.00000+\) & 0 & 0 & & 3 & & 8 & & 01162 & 2151 & 264 \\
\hline :.82000+ & \(15.00000=\) & \(11.00000+\) & 0 & 3.70700- & 3 & 3.90000- & 2 & \(0.00000+\) & 01162 & 2151 & 265 \\
\hline 1.30300- & 31.62700 & 2 & & & & & & & 1162 & 2151 & 266 \\
\hline \(2.42133+\) & \(20.00000+\) & 0 & 1 & & 0 & & 2 & & 01162 & 2151 & 267 \\
\hline \(0.00000+\) & \(00.00000+\) & 0 & 1 & & 3 & & 8 & & 01162 & 2151 & 268 \\
\hline 1. \(12000+\) & 15.00000 & \(11.00000+\) & 0 & 1.54300- & 3 & 3.90000 & 2 & \(0.00000+\) & 01162 & 2151 & 269 \\
\hline 1.30300- & 31.62700 & 2 & & & & & & & 1162 & 2151 & 270 \\
\hline \(0.00000+\) & \(00.00000+\) & 0 & 1 & & 3 & & 8 & & 01162 & 2151 & 271 \\
\hline \(9.10000+\) & \(01.50000+\) & \(01.00000+\) & 0 & \(9.35000-\) & 4 & 3.90000- & 2 & \(0.00000+\) & 01162 & 2151 & 272 \\
\hline 6.51500- & \(48.13500-\) & 3 & & & & & & & 1162 & 2151 & 273 \\
\hline
\end{tabular}

File 2 Unresolved Resurance Parameter Data

The following quantities are defined for use in speifying unresolved resonance parameters (LRU : 2):

SPI is the nuclear spin \(I\) of the target nucleus.
A is the effective scattering radius in urits oi: \(10^{-12} \mathrm{~cm}\).
NE is the number of energy points at which energy-dependent widths are tabulated. \(\quad\) (WE \(<350\). )

NLS is the number of e-states given (NLS \(\leq 3\). )
ES(N) is the energy of the \(N^{\text {th }}\) point used to tabulate energy-dependent widths
L. is the value of \(i\) (neutron angular momentum quantum number).

ANRI is the ratio of the mass of the particular isotope to that of the neutron.

NJS is the number of \(J-s t a t e s\) for a particular i-state. (NJS \(\leq 6\). )
AJ is the floating-point value of he J-state.
D is the mean level spacing for a particular J-state.
(This value is energy dependent if LFR = 2.)
AMUX is the number of degrees of freadon used in the competitive width distribution. (If an actual value is not known or is extremely large, set \(\mathrm{AmUX}^{2}=0.0 .1\)

AMUN is the number of degreas of freedon used in the neutron width distribution. (AMUN \(\leq 2.0\).

AMUG
is the number of degrees of freedom used in the radiation width distribution. (1f this value is not known or is extremely large, set amug \(=0.0 .1\)

AMUF is the number of degrees of freedon used in the fission width distribution. (NMUF \(\leq 4.0\). )

MIF is the integer value of the number of degrees of freedom for \(\mathrm{fis-}\) sion widehs. (MUE \(\leq 4\).

INT is the interpolation scheme tc be used for interpolating between the cross-sections obtained Irom average resonance parameters (normally, INT = 1.) is the average reduced neutron width. It is energy dependent if LRA \(=2\).
GG is the average radiation width. It is energy dependent if Lpil \(=2\).

GF is the average fission width. This value may be energy dependent.
GX is the average competitive reaction uldch.

If LFW \(=0\) or 2 (dices not depend on LFW).
LRU = 2 (unresolved parameters).
LRF = 2 (all energy-dependent parameters).
The structure of a subsection is:

\[
E_{N E^{\prime}} \quad D_{N E \prime} \quad G X_{N E}, \quad G N O_{N E^{\prime}} \quad G G_{N E}, \quad G F_{N E} J L I S T
\]

The LIST record is repeated intil all the NJS J-states have been specified for a given l-state. A new CøNT (\&) record is then given, and all data for each J-state for that \(\ell\)-state are given. The structure is repeated until all \(\ell\) states have been specified.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 3,50000+ & 9. 96630 & 1 & 0 & 0 & 2 & & 01251 & 1 & 2280 \\
\hline \(2.33025+\) & \(20.00000+\) & 0 & 0 & 0 & 2 & & 01261 & 2151 & 2.281 \\
\hline \(3.00000+\) & \(00.00000+\) & 0 & 2 & 0 & 726 & & 1201261 & 2151 & 2282 \\
\hline \(0.00000+\) & \(00.00000+\) & \(00.00000 \rightarrow\) & \(03.00000+\) & 0 & 0,00000+ 0 & \(2.00000+\) & + 01261 & 2151 & 2283 \\
\hline \(8.20000+\) & \(11.00000+\) & \(00.00000+\) & 09.32780 & 5 & 3.50000-2 & 3.23080- & -11261 & 2151 & 2284 \\
\hline 8.650004 & \(11.00000+\) & \(00.00000+\) & 08.44860 & 5 & 3.50000-2 & \(3.40560-\) & - 11261 & 2151 & 2285 \\
\hline \(9.10000+\) & \(11.00600+\) & \(00.00000+\) & \(08.59390-\) & 5 & 3,50000-2 & 2.53940 & - 11261 & 2151 & 2286 \\
\hline \(9.55000+\) & 1 1,00000+ & \(00.00000+\) & 08.73180 & 5 & 3.50000-2 & 2.05980- & - 11261 & 2151 & 2287 \\
\hline \(1.00000+\) & \(21.00000+\) & \(00.00000+\) & \(09.94340-\) & 5 & 3.50000-2 & 8.46200 & - 21261 & 2151 & 2288 \\
\hline \(1.10000+\) & \(21.00003+\) & 00.000004 & 08.66200 & 5 & 3.50000-2 & 1.32250- & 11261 & 2151 & 2289 \\
\hline
\end{tabular}
(MISSING UNRESOLVED RESONANGE PARAMETERS)
\(2.42000+41.00000+00.00000+09.41230-53.50000-213.13230-1126121512400\) \(2.44000+41.00000+00.00000+09.97630-53.50000-25.69080-11261215 i 2401\) \(2.46000+41.00000+00.00000+07.95710-53.50000-25.86170-1126121512402\) \(2.50000+41.00000+00.00000+08.55930-5\) 3.50000-2 \(2.71280-1126121512403\) \(4.00000+0 \begin{array}{llllllllll}2.00000+0 & 2 & 0 & 726 & 1201261 & 2151 & 2404\end{array}\) \(0.00000+00.00000+00.00000+01.00000+00.00000+01.00000+0126121512405\) \(8.20000+11.00000+00.00000+09.32780-53.50900-21.61550-1126121512406\)
 \(9.10000+11.00000+00.00000+01.05120-43.50000-29.05980-2126121512408\) \(9.55000+11.00000+00.00000+01.06810-43.50000-27.07030-2126121512409\) \(1.00000+21.00000+00.00000+09.97820-5 \quad 3.50000-28.46440-2126121512410\)
(MISSING UNRESOLVED RESONANCE PARAMETERS)
\(2.34000+41.00000+00.00000+08.62980-5 \quad 3.50000-21.49700-1126121512521\) \(2.42000+41.00000+00.00000+09.46010-53.50000-21.54750-1126121512522\) \(2.44000+41.00000+00.00000+01.00270-43.50000-22.81160-1126121512.523\) \(2.46000+41.00000+00.00000+0 \quad 7.99750-5\) 3.50000-2 \(2.89600-1126121512524\) \(2.50000+41,00000+00.00000+08.55930-5 \quad 3.50000-22.35080-1126121512525\) \(\begin{array}{rlllrrr}2.33025+2 & 0.00000+0 & 1 & 0 & 4 & 0126121512526\end{array}\) \(2.00000+00.00000+2 \quad 2 \quad 0 \quad 125 \quad 120126121512527\) \(0.00000+00.00000+00.00000+01.00000+00.00000+02.00000+012612151252 \mathrm{O}\) \(8,20000+11.16000+00.00000+02.32000-43.50000-2\) 3.32000-11261 2151 2529 \(8.65000+11.16000+00.00000+n 2.32000-43.50000-2\) 3.32000-11261 21512530 \(9.10000+11.16000+00.00000+0 \quad 2.32000-43.50000-2\) 3.32000-1126121512531
(MISSING UNRESOLVED RESONANCE PARAMETERS)
?.46000 \(41.16000+00.00000+02.32000-43.50000-2\) 3.32000-11261 21512647 2. \(50000+41.16000+00.00000+0 \quad 2.32000-43.50000-23.32000-1126121512648\) \(j, 00000+00.00000+0 \quad 1200126121512649\) \(0.00000+000.00000+00.00000+02.00000+00.00000+01.00000+0126121512650\) \(8.20000+11.00000+00.00000+02,00000-43.50000-21.27000-1126121512651\) \(8.65000+11.00000+00.00000+02.00000-4\) 3.50000-21.27000-11261 21512652
(MISSING UNRESOLVED RESONANCE PARAMETERS)
\(2.46000+41.00000+00.00000+02.00000-4\) 3.50000-2 1.27000-11261 21512769 \(2.50000+41.00000+00.00000+02.00000-4\) 3.50000-2 \(1.27000-11261 \quad 21512770\)
 \(0.00000+00.00000+00.00000+02.00000+00.00000+02.00000+0126121512772\) \(8.20000+11.00000+00.00000+02.00000-4\) 3.50000-2 2.86000-1126121512773 \(8.65000+11.00000+00.00000+02.00000-4\) 3.50000-2 2.86000-1126121512774
(MISSING UNRESOLVED RESONANCE PARAMETERS)
\(2.46000+41.00000+00.00000+02.00000-43.50000-22.86000-1126121512891\) \(2.50000+41.00000+00.00000+02.00000-4\) 3.50000-2 \(2.86000-1126121512892\) \(5.00000+0.0 .00000+0 \quad 2 \quad 2 \quad 0 \quad 120126121512893\) \(0.00000+00.00000+00.00000+01.00000+00.00000+01.00000+0126121512894\) \(8.20000+1\) i.12000+0 0.00000 \(+02.24000-4\) 3.50000-21.43000-11261 21512895
(MISSING UNRESOLVED RESONANCE PARAMETERS)
\(2.32000+41.12000+00.00000+0 \quad 2.24000-43.50000-21.43000-1126121513009\) \(2.34000+\dot{4} 1.12000+00.00000+02.24000-43.50000-21.43000-1126121513010\) \(2.42000+41.12000+00.00000+02.24000-43.50000-21.43000-1126121513011\) \(2.44000+41.12000+00.00000+0 \quad 2.24000-43.50000-21.43000-1126121513012\) \(2.46000+41.12000+00.00000+02.24000-43.50000-21.43000-1126121513013\) \(\therefore .50000+41.12000+03.00000+02.24000-4\) 3.50000-2 1.43000-11261 21513014

For file 3 the following quantities are defined:

LIS is an indicator that specifies the initial state of the target nucleus (for naterials that represent nuclides).

LIS \(=0\), the initial state is the ground state.
\(=1\), the initial state is the first excited state (generally the first metastable state).
\(=2\), the initial state is the second excited state.
IFS is an indicator that specifies the final excited state of the residual nucleus produced by a particular reaction.
\(L F S=0\), the final state is the ground state.
\(=1\), the final state is she first excited state.
\(=2\), the final state is the excited state.
\(=98\), an unspecified range of final states.
\(=99\), all final states.
Q is the reaction \(Q\)-value (ev).
S is the temperature ( \({ }^{\circ} \mathrm{K}\) ). NOTE:- If the LR flag is used, \(S\) becomes Q for the reaction corresponding to LR.
LT is a flag to specify whether temperature-dependent data are given. \(S\) and LT are normally zero. Details on temperature-dependent data are given in Appendix \(F\).

LR is a flag to be used in the reactions \(M T=51,52,53, \ldots, 90\), and 91, to define \(x\) in \(\left(n, n^{\prime} x\right)\). (See section 3.24.4.)

NR is the number of energy ranges that have been given. A different interpolation scheme may be given for each range. (NR \(\leq 200\), but normally \(\leq 20\) ).

NP is the total number of energy points used to specify the data. (NP \(\leq 5000\) ).
\(E_{\text {int }}\) is the interpolation scheme for each energy range. (For details, see Section 0.4.3.).
\(\sigma(E)\) is the cross section (barns) for a particular reaction type at incident energy point, \(E\), in (ev). Data are given in energy-cross section pairs.

\section*{The structure of a section is}
[MAT, 3, MT/ZA , AWR, LIS, LFS, 0 , OlHEAD
[MAT, 3, MT/S , \(\left.Q, L T, L R, N R, N P / E_{i n t} / \sigma(E)\right] T A B I\)
[MAT, 3, 0 \(10.0,0.0,0,0,0,0]\) SEND
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 9.22350t 4 & 2. 33025* & & 0 & 0 & 99 & 0 & ) & 01261 & 3 & & 3017 \\
\hline \(0.00000+0\) & \(0.100000+\) & 0 & 0 & 0 & 0 & 3 & 31 & 11541261 & 3 & & 3018 \\
\hline 139 & & 5 & 822 & & 2 & 1154 & & 31261 & 3 & 1 & 3019 \\
\hline 1.00000-5 & 1.67479+ & 4 & 2,12500-5 & S 2.52034+ & 4 & \(4.09380-5\) & \(1.81562+\) & 2+ 41261 & 3 & 1 & 3020 \\
\hline 1.04690-5 & 1.38382+ & 4 & 1,70000-4 & 1.16168+ & 4 & 1.50000-4 & \(9.48589+\) & \(\rightarrow 31261\) & 3 & 1 & 3021 \\
\hline 1.93750-4 & 8.34719+ & 3 & 2.70310-4 & \(7.06804+\) & & 3.85160-4 & 5.922594 & + 31261 & 3 & 1 & 3022 \\
\hline 5,00000-4 & 5.19931+ & 3 & 6.25000-4 & \(4.65149+\) & + 3 & 8.12500-4 & 4.080964 & 6+31261 & 3 & 1 & 3023 \\
\hline 1.09000-3 & 3.67965* & 3 & \(1.25000-3\) & 3.28818+ & + 3 & \(1.43750-3\) & 3.064594 & +31261 & 3 & 1 & 3024 \\
\hline 1.71880-3 & \(2.80078+\) & 3 & 2.000000 & \(2.59508+\) & & 2.25000-3 & 2.445734 & + 31261 & 3 & 1 & 3025 \\
\hline \(2.62500-3\) & \(2.26326+\) & 3 & 3.00000 l & \(2.11631+\) & 3 & 3.00000-3 & \(2.11631+\) & + 31261 & 3 & 1 & 3026 \\
\hline 3.50000-3 & 1.95857+ & 3 & 4.00000 m & 1.83154+ & J & 4.50000 & 1.72640 t & + 31261 & 3 & ! & 3027 \\
\hline 5,00000-3 & 1.63751+ & 3 & 5.50000-3 & 1.55928+ & 3 & \(6.00000-3\) & 1.491154 & + 31261 & 3 & 1 & 3025 \\
\hline 6,60000-3 & \(1.49115+\) & 3 & 7.06000-3 & \(1.33775+\) & & \(8.00000-3\) & \(1.28659+\) & +3i261 & 3 & 1 & 30.24 \\
\hline \(9.00000-3\) & 1.21126+ & & 9.00000-3 & 1.21126+ & 3 & 1.00000-2 & \(1.14766+\) & + 31261 & 3 & 1 & \% 30 \\
\hline
\end{tabular}
(MISSING LINES) (THERMAL REGION)
\(9.29920-17.93507+19.44920-18.07723+19.49920-18.14982+11261\) i 13096 \(9.58670-18.27784+19.65230-18.37463+19.70150-18.44769+11261313097\) \(9.77540-18.55817+19.84920-18.68940+19.88690-18.76208+11211313098\) \(9.94340-18.90252+31,00000+09.04507+11.00000+09.63800+01.613113099\) \(1.03600+09.41382+01.05500+09.29550+01.07300+08.52700+0.2613113100\) \(1.09100+07.19610+01.18200+0-1.91285+11.20000+0-2.30500+11261313101\) \(1.21800+0-2.44459+11.23600+0-2.44662+11.32700+0-1.49745+112613\) ? 3102 \(1.36400+0-1,28195+11.45500+0-8.88020+01.54500+0-6.70980+012613113103\) \(1.63600+0-5.25670+01.72700+0-4.15820+01.81800+0-3.42100+01261 \quad 3113104\) \(1.90900+0-2.66550+02.00000+0-2.56000+02.18200+0-1.91580+012613113105\) \(2.36400+0-1.15200+02.45500+0-1.47840+02.54500+0.2 .15980+01.261313106\)
(MISSING LINE.i) (BACKCROUND IN RESONANCE RECION)
\(7.39910+1-8.04900-17.44260+1-4.66500-17.45710+13.48350+01261313225\) \(7.47890+11.60120+17.48250+11.58696+17.48620+11.33061+11261313266\) \(7.48980+18.24280+07.49340+16.406!0+07.49710+14.57330+01261313267\) \(7.50430+12.06360+07.50790+11.07880+07.51880+1-1.24330+01261313268\) \(7.34420+1-3.07539+07.55870+1-3.26694+07.58050+1-2.07292+01261313269\) \(7.60230+1-9.47000-17.61680+1-9.55400-17.67480+1-1.62510+01261313270\) \(7.69660+1-8.99400-17.71110+:-9.04900-17.75620+1-1.10810+012613113271\) \(7.76190+1-1.06090+07.83000+1-1.21000+07.83630+14.62480+012613113272\) \(7.85440+15.93180+07.87260+14.83890+07.89073+14.24000+012613113273\) \(7.90880+12.90940+07.92700+11.31000+07.94510 .1-1.12553+01261 \quad 3113274\) \(7.98140+1-1.11300+07.99950+11.18030+0\) e. \(0.0681+11.11200+0126131313275\) \(8.02490+1-1.52470+08.04670+1-1.43340+08.07570+11.78020+01261313276\) \(8.08660+11.86650+08.09750+11.24290+08.10840+13.96500-112613113277\) \(8.13380+1-1.68580+08.15190+1-1.65140+08.16280+1-1.49200+01261313278\) \(8.18100+15.80600-18.20000+11.04000+08.20000+10.00000+01261 \quad 3 \quad 1 \quad 3279\) \(1.00000+30.00000+01,30000+40.00000+01.30550+40.00000+01261 \quad 3 \quad 1 \quad 3280\) \(1.30553+43.24728-71.32000+41.56990-41.37000+46.99340-41261 \quad 3 \quad 13281\) \(1.42000+41.23970-31.45000+41.56450-31.47000+41.78100-31261 \quad 313282\) \(1.48000+41.88930-31.50000+42.10580-31.52000+42.32240-3126131: 3283\) \(1.55000+42.64720-31.58000+42.97200-31.61000+43.29680-31261 \quad 3113284\) \(1.63000+43.51330-31.72000+44.48780-31.76000+44.92080-31261313285\) (NISSING LINES)
\(6.60000+57.56674+06.70000+57.53305+06.80000+57.50044+01261313356\) \(7.00900+57.43829+07.20000+57.38002+07.30000+57.35225+01261311335\) \(7.10000+57.32534+07.50000+57.29927+07.60000+5 \quad 3.27399+01261311358\) \(7.70000+57.24947+07.75000+57.23748+07.80000+57.22568+01261313359\) \(3.00000+57.18012+0^{-8} 8.20000+57.13704+58.40000+57.09617+012613113360\) \(8.50000+5\) 7.07647+0 \(0.60400+57.05726+08.80000+57.02033+01261 \quad 3 \quad 1 \quad 3361\) \(9.00000+56.98542+09.20000+56.95259+09.40000+56.92188+01261313362\) \(9.50000+56.90733+09.60000+56.89334+09.70000+56.87990 .01261313363\) \(1.0000+56.86703+01.00000+66.84300+01.05000+66.79737+01261311336\)
(MISSING LINES)
\(1.00000+75.81839+0 \quad 1.05000+75.77124+01.10000+75.74233+012613113397\)
 1.21988 + \(75.74215+01.25000+75.75138+01.30000+75.77634+01261 \quad 3113399\) \(1.35000+75.80645+01.40000+75.84000+01.45600+75.88900+0126131313400\) \(1.50000+75.93400+01.55000+75.96800+01.60000+75.99800+01261 \quad 3 \quad 1 \quad 3401\) \(1.65000+76,02200+01.70000+75.04700+01.75000+76.06700+012613113402\) \(1.80000+76.08700+01.85000+76.10500+0\) i. 000000+ \(76.12200+012613113403\) \(1.95000+76.13600+02.00000+76.14953+0\)
\begin{tabular}{llll}
1261 & 3 & 1 & 3404 \\
1261 & 3 & 0 & 3405
\end{tabular}

For a reaction having a threshold, the threshold energy \(E_{t h}\) is given by
\[
E_{t h}=\left(\frac{A W R+1}{A W R}\right)|Q|,
\]
where AWR is the atomic mass ratio given on the HEAD tard of each section.
For a material that is a mixture of several isotopes, the Q-value is not uniquely defined. The threshold energy generally should pertain to the particular isotope that contributes to the cross section at the lowest energy, but see discussion in Section 3.2.2.2.

The following quantities are defined.
LTT is a flag to specify the reprerantation used and it may have the
following values:
LTT \(=1\). the data are given as Legendre expansion coefficients,
\(f_{i}(E)\) :
\(L T T=2\), the data are given as normalized probability distriturions, p( \(\mathrm{L}, \mathrm{E})\).

LCT is in flag to specify the frame of reference used:
LC: \({ }^{\prime}=1\), the diata are given in the LAB system;
LCT \(=2\), the data are given in the \(C M\) system.
LVT is a flag to specify whether a transformation matidx is given for
elastic scattering:
\(L V T=0\), a transformation matrix is not given (always use this value
for all non-elastic scattering reactions):

LVT \(=1\). a transformation matrix is given.
NE is the number of incident energy points at which anguiar disteibucions are given (NE \(\leq 500\) ).

NL is the highest order Legendre polynomial that is given at each energy (NL

NK is the number of elements in the transformation matrix iNK \(\leq 441\) ).
\(N K=(N H+i)^{2}\).
NM is the maximum order Legendre polync.inal that will be reguired
(NM \(\leq 20\) ) to describe the angular distributions of elastic scatter-
ing in either the center-of-mass or the laborator; system. NM should
be an even number.
\(V_{K}\) are the matrix elements of the transformation matrices:
\(V_{K}=U_{l, m}^{-1} 1 \bar{f} i C T=1\) (data given il: LMB system): and
\(V_{K}=U_{R, m}\) if LCT \(=2\) (data given in CM system).

File 4 Angular Distributions of Secondary Neutrons
(Legendre Ccefficients and Transformation)

\section*{Formats}

File 4 is divided into sections, each containing data tos it entrirular reaction type (MT number) and srderes by increasing \(H T\) rumber. Each section always searts with a HEAD record and ends with a SEND record. If the section contains a dessription of the angular distributions for elastic scattering, the transformation umatrix is given first (if present) and this is followed by the representation of the angalar distributions.

\section*{Legendre Folynomial Coefficients and Transformation Matrix Given:}

\section*{\(L T T=1\) and \(L V T=1\)}

When \(L T T=1\) (angular distributions given in tems of Legendre polynomial coefficients) and LVT \(=1\), the structure of a section is
[MAT, 4, MT/ZA, AWR, LVT, LTT, 0,0]HEAD \(\quad\) LTT \(=1\), LVT \(=1\)
[MAT, 4, MT/O.O. AWR, O, LCT, NK, NM/V \({ }_{K}\) ]LIST
[MAT, 4, MT/0.0, 0.0, 0, 0, NR, NE/E \(\left.{ }_{\text {int }}\right]\) TAB2
[MAT, 4, MT/T , \(\left.E_{1}, L T, 0, N L, 0 / f_{\ell}\left(E_{1}\right)\right] L I S T\)
[MAT, 4, MT/T , E \(\left.2, L T, 0, N L, 0 / E_{\ell}\left(E_{2}\right)\right] L I S T\)

(MAT, 4, MT/T , E \(N{ }_{N E}, \pm T, 0, N L, O / f_{\ell}\left(E_{N E}\right) L I E T\)
[MAT, 4, \(0,0.0,0.0,0,0,0,0]\) SEND

Note that \(T\) and \(L T\) refer to temperature \(\left(i n{ }^{\circ} K\right.\) ) and a test for temperature dependence, respectively. These values are normally zero: however, see Appendix \(F\) for an explanation of cases in which temperature dependence is specified.

\section*{Anfular Distributions of Secondary Neutrons} (Legendre Coefficients and Transformation)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 9.223364 & 33025t & 2 & , & 1 & & 0 & 01261 & 4 & 2 & 5440 \\
\hline O. DGF100 \({ }^{\text {a }}\) & \(02.330 .5+\) & 2 & 0 & 2 & 36 & 1 & 181261 & 4 & 2 & 5441 \\
\hline 1.640004 & a 2,86cs2- & 31.67711 m & 6-9,43608- & 11 & 0,00000 & 00.000004 & 01261 & 4 & 2 & 3442 \\
\hline 0.0001004 & 0 U. に200 & \(00.00000+\) & \(0.0 .00000+\) & 0 & 0.00000+ & 00.000004 & 01261 & 4 & 2 & 5443 \\
\hline 0.00000* & 0 0,00000+ & 0 0,00000+ & 0 0.00000+ & 0 & 0.00000* & \(00.00000+\) & 01261 & 4 & 2 & 5444 \\
\hline \(0.00000+\) & 0 0.00000+ & 1 9.99989- & \(15.16963-\) & 3 & 1.25972- & 51.47746 & 81261 & 4 & 2 & 5443 \\
\hline 0.00000 t & \(00.00000+\) & 0 0.00000+ & \(00.00000+\) & 0 & 0.000004 & \(00.00000+\) & 01261 & 4 & 2 & 3446 \\
\hline \(0.00000{ }^{+}\) & \(00.00000+\) & \(00.00000+\) & 0 0.00000+ & 0 & \(0.00000+\) & \(00.00000+\) & 01261 & 4 & 2 & S44\% \\
\hline 0.000004 & \(00.010000+\) & 00.000004 & 0-2.86088- & 3 & 9.99971- & 17.35655 & 31261 & 4 & 2 & 5448 \\
\hline 2.62632- & > 3.43588 & 8-1.63336- & \(81.46884-10\) & & \(0.00000+\) & 00.200004 & 01261 & 4 & 2 & 5449 \\
\hline 0.000004 & \(00.00000+\) & 00.00000 & 4 - \(5.00000+\) & 0 & \(0.00000+\) & 0 0.00000+ & 01261 & 4 & 2 & \$450 \\
\hline 0.000004 & \(00.00100+\) & 0 0.00000+ & 0 0,00000+ & 0 & 1.10494- & 5-5.14951 & 31261 & 4 & 2 & 545! \\
\hline 9.99943- & \(19.53614-\) & 3 4.45541- & 51.28537 & & 5.71550 & 8-2.66553- & 101261 & 4 & 2 & 5452 \\
\hline \(0.00000+\) & 00.000004 & \(00.00000+\) & \(00.00000+\) & 0 & \(0.00000+\) & \(00.00000+\) & 01261 & 4 & 2 & 5453 \\
\hline
\end{tabular}
(MISSINC I.INES)
1.79937-18-1.25728-15 4.20810-13-1.03262-10 2.0401', - 8-3.14407-612614 25484 J.57139-4-2.67670-2 9.99161-1 3.10625-2 4.81446-4 4.93607-612614 25485 \(2.51865=8-1.46454-90.00000+00.00000+00.00000+00.00000+01261425486\) \(0.00000+00.00000+63.70754-18-2.39212-156.89312-13-1.54348-101.61425483\) 2.79849-8-3.97363-64.16968-4-2.89131-29.99032-1 3.32076-212614 25488 \(5.50593-46.04967-6-2.18919-80.00000+00.00000+00.00000+01261425489\) \(0.02000+00.00000+00.00000+0-1.29728-206.85286-18-4.21907-151261425490\) \(1.08489 \ldots-2.23626-103.74868-8-4.93644-64.81391-4-3.10584-212614225491\)
 \(0.00000+00.000 .0+00.00000+00.00000+00.00000+0-2.4027 b-201261425493\) 1.18255-17-7.05278-15 1.65099-12-3.15518-i0 4.97034-9-6.0̄4237-612614 25494 5, 50408-4-3. 12028-2 0.087i i- i 3.74955-2 7.02335-4 0.00000+012G14 25495 \(0.0 \mathrm{v} 100+00.00000+00.00000+00.00000+00.00000+00.00000+012614225496\) 0.00900+ 0-4.14653-20 1.94174-17-1.113112-14 2.44124-12-4.35107-101261 4 2 5497 6.34525-8-7.30127-6 6.24016-4-3.53465-2 9.98590-1 3.96384-21261 4 2 5494 \(0.00000+00.00000+00.00000+00.00000+00.00000+00.00000+01261\) 4 25499 \(0.00004+00.00000+00.00000+0-6.80077-20 \quad 3.06691-17-1.75392-141261422500\) 3.52090-12-5.88180-10 B.05727-8-8.72297-6 7.02215-4-3.74894-21261 425501
\(9.98425-1 \quad 0 \quad 1261425502\)

(MISSINC LINES)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline U.00000+ & \(01.40000+\) & 7 & 0 & 0 & 18 & & 01361 & 4 & 2 & 5561 \\
\hline B.84700- & 17.80005 & \(15.69300-\) & 16.11300 & 1 & 5.42400-1 & \(4.78600-\) & 11261 & 4 & 2 & 5562 \\
\hline \(4.19500-\) & \(13.63500-\) & 13.08400 & 12.53700 & 1 & 1.97500-1 & 1.42100- & 11261 & 4 & 2 & 5563 \\
\hline 9.40000- & \(25.65000-\) & 22.97400 & 2 1.25200- & 2 & 3.31000-3 & 2.70000 & 41261 & 4 & 2 & 5564 \\
\hline \(0.00000+\) & \(01.7000{ }^{(4}\) & 7 & 0 & 0 & 20 & & 01261 & 4 & 2 & 5565 \\
\hline \(9.07600-\) & \(18.16900-\) & 17.29500 & 16.56300 & 1 & 5.87000-1 & \(5.23900-\) & 11261 & < & 2 & 5566 \\
\hline \(4.65400-\) & 14.10200 & \(13.59100-\) & 13.14000 & 1 & \(2.63600-\) & \(2.07600-\) & 11261 & 4 & 2 & 5567 \\
\hline \(1.54400-\) & 1 1.04100- & \(16.27200-\) & 23.35100 & 2 & 1.48700-2 & 6.24000- & 31261 & 4 & 2 & 5568 \\
\hline 1.87000- & \(36.10000-\) & 4 & & & & & 1261 & 4 & 1 & 5569 \\
\hline \(0.00000+\) & \(02.00000+\) & 7 & 0 & 0 & 20 & & 01261 & 4 & 2 & 5579 \\
\hline 9.45000 & 1 e.75000- & 17.96800 & \(17.18400-\) & 1 & 6.41100-1 & \(5.71300-\) & 11261 & 4 & 2 & 5571 \\
\hline \(5.07600-\) & 14.51000 & \(13.97500-\) & \(13.46700=\) & 1 & 2.95800- & 2.44200- & 11261 & 4 & 2 & 5572 \\
\hline ¢. 90900- & \(11.38200-\) & 19.26600 & 25.78700 & 2 & 3.30500-2 & 1.63200- & 21261 & 4 & 2 & 5573 \\
\hline 7.27000- & 32.54000 & 3 & & & & & 1261 & 4 & 2 & 5574 \\
\hline & & & & & & & 1261 & 4 & 0 & 5575 \\
\hline
\end{tabular}

File 4 Angular Distributions of Secondary Neutrons

If the angular distributions are represented as Legendre polynomial coefficients, the absolute differential cross sections are obtained by
\[
\begin{array}{r}
\frac{d \sigma}{d \Omega}(\Omega, E)=\frac{\sigma_{s}(E)}{2 \pi} \sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} f_{\ell}(E) P_{\ell}(\mu), \\
p(\mu, E)=\frac{2 \pi}{\sigma_{s}(E)} \frac{d \sigma}{d \Omega}(\Omega, E)=\sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} f_{\ell}(E) P_{\ell}(\mu),
\end{array}
\]
\[
\text { where } \mu=\text { cosine of the scattered angle in either the laboratory or the }
\] center-cf-mass system;

E = energy of the incident neutron in the laboratory system; \(\sigma_{s}(E)=\) the scattering cross section, e.g., elastic scattering at energy E as given in File 3 for the particular reaction type (MT);
\(\ell \quad=\) order of the Legendre polynomial;
\(\frac{d g}{d \rho}(\Omega, E)=\) differential scattering cross section in units of barns per steradian;
\(f_{\ell} \quad=\) the \(\ell^{\text {th }}\) Legendre polynomial coefficient and it is understood that \(\mathrm{f}_{\mathrm{o}}=1.0\).

The Legendre expansion coefficients \(f_{\ell}(E)\) in the two systems are related through an energy-independent transformation matrix, \(U_{\ell m}\), and its inverse, \(U_{\ell m}^{-1}\) :
\[
f_{l}^{L a b}(E)=\sum_{m=0}^{N M} U_{l m} f_{m}^{c M}(E)
\]
and
\[
f_{i}^{C M}(E)=\sum_{m=0}^{N M} U_{\ell m}^{-1} f_{m}^{L a b}(E)
\]

\section*{File 4 Angular Distributions of Secondary Neutrons (Only Legendre Coefficients oiven)}

The following quantities are defined.
LTT is a flag to specify the representation used and it may have the following values: \(\operatorname{LTT}=1\), the data are given as Legendre expansion coefficients, \(f_{\ell}(E) ;\)

LTT \(=2\), the data are given as normalized probability distributions, \(p(u, E)\).

LCT is a flag to specify the frame of reference 'rsed:
LCT \(=1\), the data are given in the LAB system;
\(L C T=2\), the data are given in the \(C M\) system.
LVT is a rlag to specify whether a transformation matrix is given for elastic scattering:

LVT \(=0\), a transformation matrix is not given (always use this value for all non-elastic scattering reactions): \(\mathrm{LVT}=1\), a transformation matrix is given.

NE is the number of incident anergy points at which angular distributions are given (NE \(\leq 500\) ).

NL is the highest order Legendre polynomial that is given at each energy (NL \(\leq 20\) ).

M is the maximum order Legendre polynomial that will be required (NM \(\leq 20\) ) to aescribe the angular distributions of elastic scattering in either the center-of-mass or the laboratory system. NM should be an even number.

Other commonly used variables are given in the Glossary (Appendix A).

File \(4 \quad\) Angular Distributions of Secondary Neutrons
(Only Legendre Coefficients given)
```

Not Given: LTT =1 and LVT =0.

```

File 4 is divided into sections, each containing data fur a parifcular reaction type (MT number) and ordered by increasing MT number. Each section always starts with a HEAD record and ends with a SEND record. If the section contains a description of the angular distributions for elastic scattering, th transformation matrix is given first (if present) and this is followed by the representation of the angular distributions.
[MAT, 4, MT/ZA, AWR, LVT, LTT, 0.0]HEAD
[MAT, 4, MT/O.O, AWR, 0, LCT, 0, 0] CgNT.
[MAT, 4, MT/0.0, 0.0, 0, 0. NR, NE/E \({ }_{\text {int }}\) ]TAB2
[MAT, 4, MT/R , E 1 , LT, \(\left.0, N L, 0 / f_{2}\left\{E_{1}\right\}\right] L I S T\)
(MAT, 4, MT/T , \(\left.E_{2}, L T, 0, N L, O / E_{R}\left(E_{2}\right)\right] L I S T\)


[MAT, 4, MT/TT, E \(E_{N E}, L T, 0, N L, 0 / E_{\ell}\left(E_{N E}\right) L I S T\)
[MAT, 4, 0 \(10.0,0.0,0,0,0,0 〕 S E N D\)
Note that \(T\) and LT refer to temperature (in \({ }^{(K)}\) ) and a test for temperature de-
pendence, respectively. These values are normally zero; however, see Appendix \(F\) for an explanation of cases in which temperature dependence is specified.
\begin{tabular}{|c|c|c|c|c|}
\hline 6.012004 & 3 1.18969* & 1 & 0 & 1 \\
\hline \(0.08000+\) & \(01.18970+\) & 1 & 0 & 2 \\
\hline 0.00000 & 00.00000 & 0 & 0 & \(a\) \\
\hline & 73 & 2 & & \\
\hline 0.000004 & 0 is.80000 & 6 & 0 & 0 \\
\hline 0.00000 & 0 & & & \\
\hline 0.00000 & \(05.25000+\) & 6 & 0 & 0 \\
\hline 1.50000- & 22.00000 & J & & \\
\hline \(0.000030+\) & 0 5, 370004 & 6 & 0 & 0 \\
\hline 3.35000- & 21.20000 & 2 & & \\
\hline 0.00000+ & 0 5.470004 & 6 & \(\sigma\) & 0 \\
\hline 8.25000 & \(24.10000-\) & 2 & & \\
\hline 0.00000 & 0 इ.59000* & 6 & 0 & 0 \\
\hline 1.41000 & 12.284000 & 3 & & \\
\hline 0.00000* & \(05.67000+\) & 6 & 0 & 0 \\
\hline 1.50000 & 17.68000 & 3 & & \\
\hline 0.00000 & 0 5.73000 & 6 & 2 & 0 \\
\hline 1.4.1000- & 1-2.00000- & 3 & & \\
\hline \(0.00000+\) & 0 3.83000t & 6 & 0 & 0 \\
\hline 1.09240 & 1 & & & \\
\hline 0,00000 & \(05.90000+\) & 6 & 0 & 0 \\
\hline 8.70000- & 21.00000 & 2 & & \\
\hline \(0.00000+\) & \(06.04000{ }^{\text {a }}\) & 6 & 0 & 0 \\
\hline 7.60000- & 25.266000 & & & \\
\hline \(0.00000+\) & 06.100004 & 6 & 0 & 0 \\
\hline 8.80000 & 27.43000 & 2 & & \\
\hline \(0.00000+\) & \(06.22000+\) & 6 & 0 & 0 \\
\hline 1.48000- & 11.15670 & 1-5.50000- & 3 & \\
\hline \(0.00000+\) & \(06.24000+\) & d & 0 & 0 \\
\hline 1.44000. & 11.18000 & 1-8.00000 & 3 & \\
\hline 0.00000 & \(06.26000+\) & 6 & & 0 \\
\hline 6.08000 & 21.12000 & 1-1.55600- & 2 & \\
\hline \(0.00000+\) & 06.290004 & 6 & 0 & 0 \\
\hline 6.40000- & 27.67500 & 2-2.68900 & 2 & \\
\hline 0.00000 & \(06.33000+\) & & 0 & 0 \\
\hline -5.10000- & \(22.97500-\) & 2-4.20000 & 2-1.00000- & 3 \\
\hline \(0.00000+\) & \(06.34000+\) & ¢ & 0 & \(c\) \\
\hline -5.40000- & \(21.80000-\) & 2-4.30000 & 2-1.33000- & 3 \\
\hline 0.000005 & \(06.37000+\) & 6 & 0 & 0 \\
\hline 3. 30000 . & 21.70000 & 2-4.20000 & 2-3.63000- & 3 \\
\hline \(0.00000+\) & \(06.18000+\) & 6 & 0 & \\
\hline -2,60000- & 21.80000 & 2-3.10000- & 2-5.26000- & 3 \\
\hline
\end{tabular}
(hissinc limes;
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(0.00000+\) & \(08.48000+\) & & 0 & & 0 & \\
\hline 9.08200- & 21.56000 & 1-1.40200- & 2 & 2.71000 & 3 & 2,61800- \\
\hline 0.000004 & \(08.55000+\) & 6 & 0 & & 0 & \\
\hline 1.049900 & 11.70000 & 14.82000 & 3 & 1.21900 & 2 & 2.46100 \\
\hline 0.000004 & \(08.4 .7500+\) & 6 & 0 & & 0 & \\
\hline 1.03550 & 11.85120 & 13.40000 & 2 & 2.91200- & 2 & 2.18100 \\
\hline \(0.00000+\) & \(08.72810+\) & 6 & 0 & & 0 & \\
\hline 1.03360 & 11.82410 & 12.97400 & 2 & 2.83900 & 2 & 2.06100- \\
\hline \(0.00000+\) & 0 B.800004 & 6 & 0 & & 0 & \\
\hline 5.49300 & 21.78750 & : 2.39700 & 2 & \(2.31300-\) & 2 & 1.900010 \\
\hline 0.000004 & \(08.85000 t\) & 6 & 0 & & 0 & \\
\hline 2.12600 - & \(21.76200-\) & 11.99600 & 2 & \(1.94700=\) & 2 & \\
\hline \(0.00000+\) & 09.046604 & 6 & 0 & & 0 & \\
\hline -1.11160 & 11.66180 & 14.19000 & 3 & 5.09000 & 3 & \\
\hline \(0.00000+\) & 09.092104 & 6 & 0 & & 0 & \\
\hline -9.23300- & 21.63860 & 15.40000 & 4 & 3.99000 & 3 & \\
\hline 0.000054 & 09.271504 & 6 & ) & & 0 & \\
\hline - 1.75900 & 21.54710 & 13.81000 & 1 & 8.36000- & 3 & \\
\hline 0.000004 & \(09.91120+\) & 6 & 0 & & 0 & \\
\hline 2.48540 & 11.54310 & 11.56500 & 2 & \(2.39300-\) & 2 & \\
\hline 0.000004 & 09.99460+ & 6 & 0 & & 0 & \\
\hline 2.35330 & 1 1.34550 & 11.69700 & 2 & 2.59700 & 2 & \\
\hline \(0.00000+\) & 71.094904 & 7 & 0 & & 0 & \\
\hline 9.18700 & 22.02380 & 13.43400 & 2 & 2.70900 & 2 & \\
\hline 0.000004 & \(01.50000+\) & 7 & 0 & & 0 & \\
\hline 1.64180- & 12.08310 & 12.01900 & 2 & 2,50000 & 4 & \\
\hline 0.000004 & 02.000004 & 7 & 0 & & 0 & \\
\hline 1.64180- & 12.08310 & 12.01900 & 2 & 2.50000- & 4 & \\
\hline
\end{tabular}

01274 \& 511399
12744511400
012744511401
12744511402
C. 12744511403

1274 \& 51 1404
012744511405
12744511406
01274 \& 511407
12744511408
012744511409
1274 \& 511410
012744511411
12744 51 1412
\(012744_{1} 51 \quad 1413\)
01274 \& 511415
1274 - 511616
\(\begin{array}{lll}01274 & 51 & 1415 \\ 01274 & 4 & 51 \\ 51 & 1417\end{array}\)
\(\begin{array}{ll}1274 & 4 \\ 51 & 1618 \\ 0\end{array}\)
01274 \& 511419
1274 4 511420
01274 4 S1 1421
12744 S1 1422
01274 \& 511423
12744511424
\(\begin{array}{rl}1274 & 4 \\ 01274 & 1425 \\ 1274 & 51 \\ 12724\end{array}\)
\(\begin{array}{cccc}1274 & \& & 51 & 142 E \\ 1274 & 4 & 0 & 1427\end{array}\)

\section*{File 4 Angular Distributions of Secondary Neutrons (Only Legendre Coefficients given)}

If the angular distributions are represented as Legendre polynomial coefficients, the absolute differential cross sections are obtained by
\[
\begin{gathered}
\frac{d \sigma}{d \Omega}(\Omega, E)=\frac{\sigma_{S}(E)}{2 \pi} \sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} f_{\ell}(E) P_{\ell}(\mu), \\
p(\mu, E)=\frac{2 \pi}{\sigma_{S}(E)} \frac{d \sigma}{d \Omega}(\Omega, E)=\sum_{\ell=0}^{N L} \frac{2 \ell+1}{2} f_{\ell}(E) P_{\ell}(\mu),
\end{gathered}
\]
```

where $\mu=$ cosine of the scattered angle in either the laboratory or the
center-of-mass system;
E: $\quad=$ energy of the incident neutron in the laboratory system;
$\sigma_{s}(E)=$ the scatterinq cross seciion, e.g., elastic scattering at energy
E as given in File 3 for the particular reaction type (MT);
$\ell \quad=$ order of the Legendre polynomial:
$\frac{d \sigma}{d \Omega}(\Omega, E)=$ differential scattering cross section in units of barns per
steradian:
$f_{\ell} \quad=$ the $\ell^{\text {th }}$ Legendre polynomial coefficient and it is understood that
$f_{0}=1.0$.

```

The following quantities are defined.
LTT is: a flag to specify the representation used and it may have the following values:
\(L T T=1\), the data are given as Legendre expansion coefficitnts, \(f_{\ell}(E)\);
LTT \(=2\), the data are given as nomalized probability distributions, \(p(\mu, E)\).

LCT is a flag to specify the frame of reference used: \(L C T=1\), the data are giver in the LAB system; \(L C T=2\), the data are given in the \(C M\) system.

LVT is a flag to specify whether a transformation matrix is given for elastic scattering:
LVT \(=0\), a transformation matrix is not given (always use this value
for all non-elastic scattering reactions);
LVT \(=1\), a transformation matrix is given.
\(\underline{N E}\) is the number of incident energ/ points at' which angular distributions are given ( \(\mathrm{NE} \leq 500\) ).

NK is the number of elements in the transformation matrix ( \(N K \leq 441\) ). \(N K=(N M+1)^{2}\).
\(\mathrm{V}_{\mathrm{K}}\) are the matrix elements of the transformation matrices:
\(\mathrm{V}_{\mathrm{K}}=\mathrm{U}_{\ell, \mathrm{m}}^{-1}\) if LCT \(=1\) (data given in LAB system); and \(\mathrm{V}_{\mathrm{K}}=\mathrm{U}_{\ell, \mathrm{m}}\) if LCT \(=2\) (data given in \(C M\) system).

NP is the number of angular points (cosines) used to give the tabulated probability distributions for each energy ( \(N\) 上 \(\leq 101\) ).

Other commonly used variables are given in the Glossary (Appendix A).

If the angular distributions are given as tabulated probability distributions, LTT \(=2\), and a transformation matrix is given for elastic scattering, the structure of a section is
[MAT, 4, MT/ZA, ANR, LVT, LTT, 0, O]HEAD LVT \(=1\), LTT \(=2\)
[MAT, 4, MT/O.O, ANR, O, LCT, NK, NM/V \(V_{K}\) ]LISTS
[MAT, 4, MT/0.0, 0.0, 0, 0, NR, NE/E \({ }_{\text {int }}\) ]TAEL
\{MAT, 4, MT/T, \(\mathrm{E}_{1}, \mathrm{LT}, \mathrm{O}, \mathrm{NR}, \mathrm{NP} / \mu_{\text {int }} / \mathrm{p}\left(\mu, \mathrm{E}_{1}\right)\) ]TABl
\(\left[\mathrm{MAT}, 4, \mathrm{MT} / \mathrm{T}, \mathrm{E}_{2}, \mathrm{LT}, \mathrm{O}, \mathrm{NR}, \mathrm{NP} / \mathrm{H}_{\text {int }} / \mathrm{p}\left(\mathrm{H}, \mathrm{E}_{2}\right)\right] \mathrm{TABI}\)

[MAT, 4, MT/T, \(E_{\text {NE }}\) LT, \(\left.0, N R, N P / \mu_{\text {int }} / P\left(\mu, E_{N E}\right)\right] T A B 1\)
[MAT, 4, \(0 / 0.0,0.0,0,0,0,0] S E N D\)
T and LT are nomally zero. See Apnendix \(F\) for details on temperature dependence.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 4,20000+ & \(9.51160+\) & & 12 & 2 & 0 & 01287 & 2 & 377 \\
\hline 0,00000+ & \(09.51160+\) & 1 & 0 & 36 & 361 & 181287 & 2 & 7 \\
\hline 1.00000+ & 0 7.00899- & 2.21000 & 5-1.38 & \(00.00000+\) & \(00.00000+\) & 01287 & 2 & 9 \\
\hline \(0.00000+\) & \(0.00003+\) & \(00.00000+\) & \(00.00000+\) & \(0.00000+\) & \(0000000+\) & 01287 & 2 & 380 \\
\hline 0,00000+ & \(00.00000+\) & \(0.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & 01287 & 2 & 381 \\
\hline \(0.00000+\) & \(00.00000+\) & \(09.99934-\) & \(11.26158-\) & 7.57680- & 2.20939- & 21287 & 2 & 382 \\
\hline -1.25663- & 8-1.30840-1 & \(100.00000+\) & \(00.00000+\) & 0.00000+ & \(00.00000+\) & 01287 & 2 & 383 \\
\hline \(0.00000+\) & 00.009004 & \(00.00000+\) & '0.00000+ & 0.00000+ & \(00.00000+\) & 01287 & 2 & 384 \\
\hline \(0.0000+\) & \(00.00000+\) & \(00.00000 \cdot\) & (-7.00832 & 9.99826- & 1.80216 & 21287 & & 385 \\
\hline 1.57852- & \(48.04087-\) & 7-2.70852- & 8 2.26087-10 & \(00.30000+\) & \(00.00000+\) & 01287 & 2 & 386 \\
\hline \(0.00000+\) & 00.00000 & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & 01287 & 2 & 387 \\
\hline 0,00000+ & \(00.00000+\) & 1] 0.00000+ & C \(0.00000+\) & \(06.63131-\) & 5-1.26140 & 21287 & 2 & 388 \\
\hline \(9.99661-\) & \(2.33593-\) & \(22.67867-\) & \(41.89548-\) & 6-6.55483- & 1.27816- & 91287 & 2 & 389 \\
\hline -6.44832- & \(100.00000+\) & \(00.00000+\) & \(00.00000+\) & \(0.00000+\) & 0.00000+ & 01287 & 2 & 390 \\
\hline \(0.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & 0.6.6ミ981- & 71287 & 2 & 391 \\
\hline 1.51563- & 4-1.80180- & 29.99440 & \(12.86651-\) & 2 4.05615 & 3.63806- & 61287 & & 392 \\
\hline
\end{tabular}
(MISSING LINES)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(0.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & 06.22845-1 & 19-1.34061-1 & 161287 & & 2 & 430 \\
\hline 3.42066-1 & 14-3.81600-1 & 12 3.56704-1 & 10-2.78194- & 8. 1.77040 & 6-8.87132- & 51287 & 4 & 2 & 431 \\
\hline 3.29671 - & 3-8.10889- & \(29.92491-\) & 19.15725 & 2 4.20749- & \(30.00000+\) & + 01287 & 4 & 2 & 432 \\
\hline G.00000+ & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.30000+\) & \(00.00000+\) & 01267 & 4 & 2 & 433 \\
\hline 1.16935-1 & 18-3.67476-16 & 16 5.90580-1 & 14-5.07180-1 & 12 5.27386-1 & 10-3.83587- & 81283 & 4 & 2 & 434 \\
\hline \(2.28274-\) & 6-1.07175- & 4 3.73662- & 3-8.62904- & 29.91555 & 19.67680 & 21287 & 4 & 2 & 435 \\
\hline \(0.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & [1287 & 4 & 2 & 436 \\
\hline \(0.00000+\) & 0-1.05340-2 & 20 2.77279-1 & 18-7.61059-1 & \(169.80913-1\) & 14-9.36964 &  & 4 & 2 & 437 \\
\hline 7.60542-1 & 10-5.18463- & 82.89816 & 6-1.28018- & \(44.20371-\) & 3-9.14838- & 21287 & 4 & 2 & 438 \\
\hline 9.90565- & & & & & & TR & & & \% \\
\hline \(0.00000+\) & \(00.00000+\) & 0 & 0 & 0 & 1 & い: & & & \(\cdots\) \\
\hline & 13 & 2 & & & & Ik & & & \(\cdots\). \\
\hline \(0.00000+\) & 0 1.00000- & & 0 & 0 & 1 & 21267 & & 2 & 44. \\
\hline & & 2 & & & & 1287 & & 2 & 443 \\
\hline -1.00000+ & 0 5.00000- & \(11.00000+\) & ( 5.00000- & 1 & & 1287 & & 2 & 444 \\
\hline \(0.00000+\) & 0 5,00000+ & 4 & 0 & 0 & 1 & 21287 & 4 & 2 & 445 \\
\hline & 2 & 2 & & & & 1287 & 4 & 2 & 446 \\
\hline -1.00000+ & 0 5,00000- & \(11.00000+\) & 0 3.00000- & 1 & & 1287 & 4 & 2 & 447 \\
\hline \(0.00000+\) & \(06.00000+\) & 4 & 0 & 0 & 1 & 21287 & 4 & 2 & 448 \\
\hline & 2 & 2 & & & & 1287 & & 2 & 449 \\
\hline -1.00000+ & 04.37000 & \(11.00000+\) & \(05.63000-\) & 1 & & 1287 & 4 & 2 & 450 \\
\hline \(0.00000+\) & \(01.50000+\) & 5 & 0 & 0 & 1 & 41287 & 4 & 2 & 451 \\
\hline & 4 & 2 & & & & 1287 & 4 & 2 & 452 \\
\hline -1.00000+ & 04.71950 & 1-6.00000- & 14.26960 & \(10.00000+\) & 04.58950 & 11287 & 4 & 2 & 453 \\
\hline \(1.00000+\) & 06.49940 & 1 & & & & 1287 & 4 & 2 & 454 \\
\hline 0,00000+ & \(02.50000+\) & 5 & 0 & 0 & 1 & 61287 & 4 & 2 & 455 \\
\hline & 6 & 2 & & & & 1287 & 4 & 2 & 456 \\
\hline -1.00000+ & 03.77080 & 1-8.00000- & 13.64070 & 1-6.00000- & 13.77080 & 11287 & 4 & 2 & 457 \\
\hline 2.00000- & 4.22080- & 4.00000 & 5.52110 & \(1.00000+\) & 7.80160- & & & & \\
\hline
\end{tabular}
(MISSING Lines)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(0.00000+{ }_{51}^{0}\) & \(2.00000+\) & 7 & 0 & 0 & 1 S & 5112874
12874 & \(\frac{2}{2}\) & 532
533 \\
\hline \(-1.00000+0\) & \(5.64300-\) & 3-9.90000- & 11.93490. & 2-9.80000- & 12.71650 & 212874 & 2 & 534 \\
\hline -9.70000-1 & 3.07910- & 2-9.60000- & 13.15580 & 2-9.40000- & 12.83630 & 21287 & 2 & 535 \\
\hline -9.00000- & 1.83600 & 2-8.80000- & 11.54340 & 2-8.60000- & 11.44040 & 21287 & 2 & 536 \\
\hline -8.30000- & 1.56140- & 2-7.30000- & 12.48910 & 2-6.60000- & \(12.66540-\) & 21287 & 2 & 537 \\
\hline -r.10000- & 2.40970- & 2-3.50000- & 12.55460 & 2-2.90000- & \(13.10100=\) & - 21287 & 2 & 538 \\
\hline -2.40000- & 3.92456- & 2-1.20000- & 6.43630- & 2-5.00000- & 2 7.10590- & 21287 & 2 & 539 \\
\hline \(1.00000-2\) & 6.67570- & \(21.30000-\) & 4.22040- & 21.80000 & 13.82660 & 21287 & 2 & 540 \\
\hline 2.20000- & 4.3147) & 22.60000 & 5.65590- & \(24.00000-\) & 11.40650 & 11387 & 2 & 541 \\
\hline 4.60000 & \(1.57040-\) & 1 5.20000- & 1.39620- & \(16.20000-\) & 16.16880 & 21287 & & 542 \\
\hline 6.50000 & 4.30480- & 26.80000 & 3.24810- & 27.10000 & \(12.97430-\) & 21287 & 2 & 543 \\
\hline 7.70000 & 3.44760- & \(27.90000-\) & 3.91220 & 28.00000 & 14.46310 & 21287 & 2 & 544 \\
\hline 8.10000- & \(5.45780-\) & \(28.20000-\) & 7.17470 & \(28.30000-\) & 11.00090 & 11287 & 2 & 545 \\
\hline \(8.40000-\) & \(1.45030-\) & 18.50000 & 12.13900 & \(18.60000-\) & 13.16370 & 11287 & 2 & 546 \\
\hline 8.70000 & 4.65100- & 18.80000 & 16.76400 & 18.90000 & 19.71100 & 11287 & & 547 \\
\hline \(9.00000-\) & \(1.37550+\) & 09.10000 & \(1.92270+\) & © 9.20000 & \(12.65370+\) & 01287 & 2 & 548 \\
\hline 9.30000 & \(3.61960+\) & \(09.40000-\) & \(4.88240+\) & 09.50000- & \(16.51960+\) & 01287 & & 549 \\
\hline 9.70000 & \(1.13090+\) & 9.90000- & 1.89960+ & -. \(00000+\) & \(2.43600+\) & 11287 & 2 & 550 \\
\hline & & & & & & 128 & 0 & 551 \\
\hline
\end{tabular}

File 4 Argular Distributions of Secondary Neutrons (Tabulated Distribution and Transformation)

The angular distributions are expressed as normalized probability distributions, i.e..
\[
\int_{-1}^{1} p(\mu, E) d \mu=1
\]
where \(\mathrm{F}(\mu, E) \mathrm{d} \mu\) is the probability that a neutron of incident energy E will be scattered into the interval \(d \mu\) about an angle whose cosine is \(\mu\).

Absolute diffential cross sections are obtained by combining data from Files 3 and 4. If tabulated distributions are given, the absolute differential cross section (in barns per steradian) is obtained by
\[
\frac{\mathrm{d} \sigma}{\mathrm{~d} \Omega}(\Omega, E)=\frac{\pi_{s}(E)}{2 \pi} \mathrm{p}(\mu, E)
\]
where \(\sigma_{S}(E)\) is given in File 3 (for the same MT number) and \(p(\mu, E)\) is given in File 4.
\[
f_{\ell}^{\text {Lab }}(E)=\sum_{m=0}^{N M} U_{\ell m} f_{m}^{\sim!} \cdot
\]
and
\[
f_{\ell}^{C M}(E)=\sum_{m=0}^{N M} U_{\ell m}^{-1} f_{m}^{L a b}(E)
\]

File 4 Angular Distributions of Secondary Neutrons

The following quantities are defined.
LTI is a flag to specify the representation used and it may have the
following values:
\(L T T=1\), the data are given ass Legendre expansion \(=0 e f f i c i e n t s\),
\(f_{\ell}(E)\) :
LIT \(=2\), the data are given as normalized probability distributions, \(p(\mu, E)\).

LCT is a flag to specify the frame of reference used:
LCT \(=1\), the data are given in the LAB system:
LCT \(=2\), the data are given in the \(C M\) system.
LVT is a flag to specify whether a transformation matrix is given for elastic scattering:

LVT \(=0\), a transformation matrix is not given (always use this vaiue for all non-elastic scattering reactions);
\(L V T=1\), a transformation matrix is given.
NE is the number of incident energy points at which angular aistributions are given (NE \(\leq 500\) ).

NP is the number of angular points (cosines) used to give the tabulated probability distributions for each energy (NP \(\leq 101\).

Othex commonly uised variables are given in the Glossary (Appendix A).

File 4 Angular Distributions of Secondary Neutrons
(Only Tabulated Distributians given)

Whulated Probability Distributions Given and Transformation Matrix
Not Given: \(\quad L T T=2\) and \(L V T=0\)

If the angular distributions are given as sabulated probability distributions, \(L T T=2\), the structure of a section is
(MAT, 4, MT/ZA, AWR, LVT, LTT, 0, 0) head
[MAT, 4, MT/0.0, AWR, ก. LC'Г, 0, O]CØNT.
[MAT, 4, MT/0.0, 0.0, 0, 0, NR, NE/E int \(^{\text {]TAS2 }}\)
[MAT, 4, MT/T, \(\left.E_{1}, L T, 0, N R, N P / L_{i n t} / p\left(1, E_{1}\right)\right] T A B I\)
(MAT, 4, MT/T: \(E_{2}, L T, 0, N R, N P / \mu_{i n t} / P\left(u, E_{2}\right) 1 T A B 1\)

\(\left[M A T, 4, M T / T, E_{N E}, L T, 0, N R, N P / H_{i n t} / p\left(H, E_{N E}\right)\right] T A B 1\)
(MAT, \(4,0 / 0.0,0.0,0,0,0,0\) SEND
T.and LT are normally zero. See Appendix for details on temperature dependence.


The angular distributions are expressed as nomalized probability distributions, 1.e.,
\[
\int_{-1}^{1} p(\mu, E) d \mu=1
\]
where \(p(H, E) d \mu\) is the probability that a neutron of incident energy \(E\) will be scatcered into the interval du about an angle whose cosine is \(\mu\).

Absulvte diffential cross sections axe obtained by combining data from Files 3 and 4. If tabulated distributions are given, the absolute differential cross section (in barns per stexadian) is obtained by
\[
\frac{d \sigma}{d \lambda}(\Omega, E)=\frac{\sigma_{s}(E)}{2 \pi} p(\mu, E)
\]
where \(\sigma_{s}(E)\) is given in File 3 (for the same \(M P\) number) and \(p(\mu, E)\) is given in File 4.

The following quantities are defined
NK is the number of partial energy distributions. There will be one subsection for each partial distribution.
\(\underline{U}\) is a constant that defines the upper energy limit for the secondary neutron so that \(0: E^{\prime} \leq E-U\) (given in the Lab system).
(1) is a payameter used to describe the secondary energy distribution. The definition of \(\theta\) depends on the energy distribution law (LF) Given; however, the units are always \(e V\).

If \(L F=3,3\) is the excitation energy, \(|\Omega|\), of a level in the residual nucieus.


LF is a flag that specifies the anergy distribution law that is used for a particular subsection (parifial energy distribution).
(The deiinieions for LF are given in Section 5.1.).
\(\underline{P_{k}\left(E_{N}\right)}\)
is the fractionai part of the particular cross section that can be described by the \(k^{\text {th }}\) partial energy distribution at the \(N^{\text {th }}\) incident energy point.

NOTE: \(\quad \sum_{k=1}^{N K} p_{k}\left(E_{N}\right)=1.0\)
\(\bar{F}_{k}\left(E \rightarrow E^{\prime}\right)\) is the \(k^{\text {th }}\) partial energy distributior. The definition depends on the value of LE.

NR is the number cf interpolation ranges.
NP is che numer of incidont energy points at which \(p_{k}(E)\) is given.
a,b are constants used in the watt spectrium. ( \(L\) ( \(=10\).)
NE is the number of incident energy points at which tabulated distributions are given. Al:s the number of points at which \(\theta(E)\) is giver. (NE \(\mathbf{N}\) 200.)

NF is the number of secondary energy points in a tabulation. (NE \(\leq 1000\). )
```

The structure of a section has the following form:
[MAT, 5, MT/mA, AWR, O, O. NK, O\HEAD
<subsection for k = 1>
<subsection for k = 2>

<subsection for k = NK>
[MAT, 5, 0/0.0, 0.0, 0, 0, 0,)!SEND

```

The structure of a subsection depends on the value of LF. subsecti=ns should be ordered by increasing values of LF. for cases in which more than one subsection contains data using the same \(L F\), these subsections should be ordered by increasing values of \(\theta\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 4.8000044 & \(1.11460+\) & 2 & 0 & 0 & & 2 & & 01281 & & 162425 \\
\hline 7. \(50000+6\) & \(0.00000+\) & 0 & 0 & 9 & & 1 & & 41281 & \$ & 162627 \\
\hline 4 & & 2 & & & & & & i28. & 51 & 162428 \\
\hline 7.50000+ 6 & \(0.00000+\) & \(07.50000+\) & 65.00000 & 1 & 2.000004 & & 15.00000- & 11281 & 5 & 162429 \\
\hline 2.0000047 & 0.007004 & a & & & & & & 1281 & 5 & 162630 \\
\hline \(0.00000+0\) & 0.200104 & D & 0 & 0 & & & & 31281 & 5 & 162431 \\
\hline 3 & & 5 & & & & & & 1282 & 5 & 162432 \\
\hline 7,50000* 6 & 6.8496604 & \(51.50000+\) & \(79.75750+\) & 5 & 2,00000+ & 7 & 9.757504 & 51281 & 5 & 162433 \\
\hline \(0.00000+0\) & 0.000004 & 0 & 0 & 1 & & 1 & & 41281 & 51 & 162434 \\
\hline 4 & & 2 & & & & & & 1281 & 5 & 162435 \\
\hline 7. \(50000+6\) & C.000004 & \(07.50000+\) & 63.00000 & 1 & 2.000004 & 7 & 5.00000 & 11281 & 5 & 162436 \\
\hline 2.003005 & 5, c0000. & 0 & & & & & & 1281 & 51 & 162437 \\
\hline \(0,00000+0\) & 0.000004 & 0 & 0 & 0 & & 1 & & 21281 & 3 & 162638 \\
\hline 2 & & 2 & & & & & & 1281 & 5 & 162439 \\
\hline 0.000000 & 7,50000+ & 6 & 0 & 0 & & 1 & & 171281 & 5 & 162440 \\
\hline 17 & & 2 & & & & & & 1281 & 51 & 162441 \\
\hline . \(000000-5\) & 1,000003-16 & 61.000004 & 43.35170 & & 2,000004 & & 4.14340 m & 61281 & 5 & 162442 \\
\hline \(4.09000+4\) & 4.72320- & 66.000004 & 44.18310 & & 8.00000t & & 4.69920 & +1281 & 51 & 162443 \\
\hline 1.000000+S & \(4.31890-\) & 61.200004 & \% 3.97090- & 6 & . 4.400004 & & 3.59830 & 61281 & 51 & 162444 \\
\hline \(1.600000+5\) & 1.22120- & \(61.80100+\) & 5*2.BS190- & & 2.007000 & & 7 49810- & 61281 & 51 & 162445 \\
\hline \(2.50000+5\) & 1.70680 & \(63.30000+\) & 51.06400 & 6 & \(3.90000+\) & 5 & 5,65100 & 7:281 & 5 1 & 162446 \\
\hline \(4.00000+5\) & 1.149300 & \(74.40000+\) & \(51.00000-2\) & 16 & & & & 1281 & 51 & 102447 \\
\hline D. \(16000+0\) & こ. \({ }^{\text {MadOO+ }}\) & 1 & 0 & 0 & & & & 171e*i & 51 & 16 2458 \\
\hline 17 & & 2 & & & & & & 1281 & 51 & 162449 \\
\hline 1.0200n-5 & 1.00000-16 & 61.900004 & \(43.35370-\) & & \(2.00000+\) & & 4.14340 & 61281 & 51 & 162450 \\
\hline \(4.00000+4\) & 4.72520 & \(66.00000+\) & 44.78310 & & \(8.00070{ }^{+}\) & & 4.609?0- & 61281 & 51 & 162451 \\
\hline 1.0000045 & 4. 31890 & \(61.20000+\) & \(53.970 ヶ 40\) & & i. 600000 & & 3.59830- & 6:281 & 31 & 162452 \\
\hline \(1.60000+5\) & 3.2?120 & 6 i. \(80000+\) & 52.85100 m & & \(2.000060+\) & & \(2.49810-\) & 61781 & 51 & 162453 \\
\hline \(2.30000+5\) & 1.70680-6 & 6 J.000104 & \(51.0 \$ 400\) & 6 & 3.50030+ & & 5.651000 & 71281 & 5 & 162454 \\
\hline \(4.00000+5\) & \(1.89300-\) & \(74.40000+\) & 5 1.00000-2 & & & & & 1281 & 51 & 162455 \\
\hline & & & & & & & & 1281 & 5 & 0 2456 \\
\hline 4.8000004 4 & \(1.11460+2\) & 2 & 0 & 0 & & I & & 01281 & 59 & 912457 \\
\hline 1.50030+6 & \(0.00000+1\) & 0 & 0 & 9 & & ! & & 41281 & 59 & 912458 \\
\hline 4 & & 2 & & & & & & 1281 & 59 & 912459 \\
\hline \(1.50000+6\) & \(0.20400+0\) & 01.50000 & 61.000004 & 02 & \(2.00000+\) & 7 & \(1.00000+\) & 01281 & & 9: 2460 \\
\hline 2.000200+ 7 & \(0.00000+0\) & 0 & & & & & & 1281 & & 912461 \\
\hline \(0.00000+0\) & \(0.00000+0\) & 0 & 0 & 0 & & 1 & & 3128! & 59 & 912462 \\
\hline 3 & & 5 & & & & & & 1282 & & 912463 \\
\hline 1. \(50000 \div 6\) & 3.0856045 & \(51.50400+\) & 79.757504 & 52 & 2.000004 & 7 & 9.757504 & 51281 & 5 \% & F1 2464 \\
\hline & & & & & & & & 1281 & 5 & 02465 \\
\hline & & & & & & & & 1281 & 0 & 02466 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { The energy distributions, } p\left(E \cdot E^{\prime}\right) \text {, are normalized so that } \\
& \int_{0}^{E^{\prime}} \max
\end{aligned}
\]
where \(E_{\text {" }}^{\text {nax }}\) is the maximum possible secondary neutron energy and its valut depends on the incoming neutron energy \(E\) and the analytic representation of \(P(E \rightarrow E\) ). The secondary neueron energy \(E\) ' is always expressed in the laboratory system. The differential cross section is obtained from
\[
\frac{d \sigma\left(E \rightarrow E^{\prime}\right)}{d E^{\prime}}=m \sigma(E) p\left(E \rightarrow E^{\prime}\right),
\]
where \(G(E)\) is the cross section as given in file 3 for the same reaction type number (MT) and \(m\) is the reutzon multiplicity for this reaction type (m is implicit, e.g., m \(=2\) for \(n, 2 n\) reactions).

The energy distributions \(p\left(E \rightarrow E^{\prime}\right)\) can be broken com into partial energy distributions, \(E_{k}\left(E \rightarrow E^{\prime}\right)\), where each of the partial distributions can be described by different analytic representations;
\[
p\left(E \rightarrow E^{\prime}\right)=\sum_{k=1}^{N K} p_{k}(E) f_{k}\left(E+E^{\prime}\right)
\]
and at a particular incident neutzon energy E,
\[
\sum_{k=1}^{N K} p_{k}(E)=1
\]
where \(p_{k}(E)\) is the fractional probability that the distribution \(f_{k}(E \rightarrow E\) ) can be used at E .

The partial energy distributions \(f_{k}(E+E ')\) are represented by various analytical formulations. Each formulation is called an energy distribution law and has an identification number associated with it (LF numer).

File 5 Energy Distributions of Secondary Neutrons

The following quantities are defined
NK is the number of partial energy distributions. There will be one subsection for each partial distribution.
\(\underline{U}\) is a constant that defines the upper energy limit for the secondary neutron so that \(0 \leq E^{\prime} \leq E-U\) (given in the Lab system).
@ 15 a parameter used to describe the secondary energy distribution. The definition of \(\theta\) depends on the energy distribution law (LF) given; however, the units are alwavs eV.

If L.F \(=3\), \(\theta\) is the excitation energy, \(|\Omega|\), of a level in the residual nucleus.

If \(L F=5,7\), or 9,0 is an effective nuclear temperature.

LF is a flag that specifies the energy distribution law that is used for a particular subsection (jartial energy distribution). (The definitions for LF are given in Section 5.1.j.
\(p_{k}\left(E_{N}\right) \quad 15\) the fractional part of the particular cross section that can be uescribed by the \(k^{\text {th }}\) partial energy distribution at the \(N^{\text {th }}\) incident energy point.
\(\operatorname{NOTE}: \quad \sum_{k=i}^{\mathrm{NK}} p_{k}\left(E_{N}\right)=1.0\)


\section*{File 5 Energy Distributions of Secondary Neutrons (Tabulated Distributions)}

LF \(=1\), Arbitrary tabulated function


Note that the incident energy mesh for \(p_{k}(E)\) does not have to be the same as the \(E\) mesh used to specify the energy distributions. The interpolation scheme used between incident energy points. E, and between secondary energy points, E', should be linear-linear. T and Lir refer to possible temperature \{physical) dependence.


File 5 Energy Distributions of Secondary Neutrons (Tabulated Distributions)
\(\mathrm{LF}=1\), Arbitrary tabulated function:
\(f\left(E \rightarrow E^{\prime}\right)=g\left(E \rightarrow E^{\prime}\right)\).
A set of incident energy points is given, \(E_{i}\) and \(g\left(E_{i} \rightarrow E^{\prime}\right)\) is tabulated as a function of \(E\) '.

File 5 Energy Distributions of Secondary Neutrons

The following quantities are defined
NK is the number of partial energy distributions. There will be one subsection for each partial distribution.

U is a constant that defines the upper energy limit for the secondary reutron so that \(0 \leq E^{\prime} \leq E-U\) (given in the Lab system).

Ө is a parameter used to describe the secondary energy distribution. The definition of \(\theta\) depends on the energy distribution law (LF) given; however, the units are always ev.

If \(L F=3, \theta\) is the excitation energy, \(|Q|\), of a level in the residual nucleus. If \(\mathrm{LF}=5,7\), or \(9, \theta\) is an effective nuclear temperature. is a flag that specifies the energy distribution law that is used for a particular subsection (partial energy distribution). (The definitions for LF are given in Section 5.1.).
\(p_{k}\left(E_{N}\right)\) is the fractional part of the particular cross section that can be lescribed by the \(k^{\text {th }}\) partial energy distribution at the \(\mathrm{s}^{\text {th }}\) incident energy point.

NUTE: \(\quad \sum_{k=1}^{N K} P_{k}\left(E_{N}\right)=1.0\)
\(\underline{f}_{k}\left(E \rightarrow E^{\prime}\right)\) is the \(k^{\text {th }}\) partial energy distribution. Ine deinition depends on the value of LF .

NR is the number of interpoiation ranges.
NP \(\quad\) is the number of incident energy points at which \(p_{k}(E)\) is given.
\(\underline{a, b}\) are constants used in the Watt spectrum. ( \(L \mathcal{b}=10\). )
NE is the number of incident energy points at which tabulated distributions are given. Also the number of points at which \(\theta(E)\)
is given. ( \(\mathrm{NE} \leq 200\).)
\(\mathrm{NF} \quad\) is the number of secondary energy peints in a tabulation. (NF \(\leq 1000\).) \\ \title{
\section*{File 5 Energy Distributions of Secondary Neutrons \\ \title{
\section*{File 5 Energy Distributions of Secondary Neutrons \\ \\ \\ (Discrete Level \& General Evaporation)}
} \\ \\ \\ (Discrete Level \& General Evaporation)}
}

\section*{\(\underline{I F}=3\), Discrete level excitation}
```

[MAT, S, MT/T , 0 , LT,LF=3, NR, NP/E Ent /P(E)]TABl
Only one record is given for each subsection.

```

\section*{\(L F=5\), General evaporation spectrum}
```

[MAT, 5, MT/ U , 0.0,0, LF:=5,NR, NP/E int'P(E)]TABl
[MAT, 5, MT/0.0 , 0.0,0, 0 , NR, NE/E int'
0(E (), 渓),
------------------------------, }0(\mp@subsup{E}{NE}{N})] TABl,
[MAT, 5, MT/0.0, 0.0,0, 0,NR, NF/x int/
\mp@subsup{x}{1}{},g(\mp@subsup{x}{1}{}),\mp@subsup{x}{2}{},g(\mp@subsup{x}{2}{}),\mp@subsup{x}{3}{},g(\mp@subsup{x}{3}{})
x=\frac{E'}{0(E)}

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline P.4 & & *,24.4 +ns & & 7 & & 3 & 1 & & 29 & 233 & 5 & 4 & 1294 \\
\hline & 29 & 2 & & & & & & & & 233 & 5 & 4 & 22 \% \\
\hline 1.:4*) & - 36 & 1, : & 2. 295 & - \({ }^{8}\) A & 1.e & 2.19 & -26 & *.p9542 & & 233 & 5 & 1 & 1246 \\
\hline A.12 & -3A & 1.075 & 0.14 & - 23 & 1.93636 & 2.15 & -28 & 8.897e7 & & 233 & 3 & 4 & 1297 \\
\hline E.15 & \(+26\) & \(\cdots, 9+185\) & \(0.2 k\) & - 88 & Q, 82503 & e. 22 & - 86 & E,7514\% & & 233 & 3 & 4 & 3298 \\
\hline 6. 24 & -28 & \(\cdots 7 \overline{0} 50\) & 0.28 & +86 & 0.65714 & 0.20 & -36 & 0,685 22 & & 233 & 3 & 4 & 1299 \\
\hline 4.3. & - 26 & 3.50752 & 0.35 & - \(\mathrm{ESO}_{6}\) & 2.4731 & 0.42 & +18 & D.4BP & & 233 & 5 & 4 & 1590 \\
\hline 0.45 & -26 & -.33790 & 0.50 & - \({ }^{\circ} \mathrm{s}\) & 0.28836 & R. 59 & +80 & 0,24478 & & 233 & 5 & 4 & I 5 ¢1 \\
\hline H,6: & +26 & - 23738 & -. 65 & - 06 & 0.35115 & E,70 & - \({ }^{-1}\) & 3.14648 & & 233 & 5 & 4 & 1582 \\
\hline 2,75 & - 3 e & \(\therefore\) - \(22+39\) & 8.89 & - 26 & P. 18676 & 0,85 & -16 & 0.29189 & & 233 & 5 & 4 & \(\underline{153}\) \\
\hline - 3. & - 26 & 1,27792 & 0.95 & - 88 & 8, 26454 & 1.80 & -26 & 0.03432 & & 233 & 5 & 4 &  \\
\hline 3.*' & - 88 & \(\underset{\sim}{3}\) & 1\%.5 & -66 & P. \({ }^{4}\) & & & & & 233 & 5 & - & : 318 \\
\hline
\end{tabular}
\begin{tabular}{rccccrrrrr}
\(-2.00000+7\) & \(0.00000+0\) & 0 & 5 & 1 & 21260 & 5 & 18 & 4896 \\
2 & 2 & & & & 1260 & 5 & 18 & 489.7 \\
\(0.00000+\) & 0 & \(8.97660-1\) & \(2.00000+78.97660-1\) & 1260 & 5 & 18 & 4859
\end{tabular}
\(L F=3\), Excitation of discrete levels:
\(\mathcal{E}\left(E \rightarrow E^{\prime}\right)=\delta\left[E^{\prime}-\frac{A^{2}+1}{(A+1)^{2}} E+\frac{A}{A+1} \theta\right]\).
\(A=A W R\) (the ratio of the mass of the target nucleus to that of the neutron) ;
\(\theta=\) excitation energy of the energy level in the residual nucleus.
\(I F=5\), General evaporation spectrum:
\(f\left(E \rightarrow E^{\prime}\right)=g\left[E^{\prime} / \theta(E)\right]\).
\(\theta\) (E) is tabulated as a function of incident neutron energy, \(E\);
\(g(x)\) is tabulated as a function of \(x, x=E^{\prime} / \theta(E)\).

File 5 Energy Distributions of Secondary Neutrons

The following quantities are defined
NK is the number of partial energy distributions. There will be une subsection for each partial distribution.
\(\underline{\mathbf{u}} \quad\) is a constant that defines the upper energy limit for the secondary noutron so that \(0 \leq E^{\prime} \leq E-U\) (given in the Lab system).

If LF \(=3\), \(\theta\) is the excitation energy, \(|Q|\), of a level in the residual nucleus.

If \(2 F=5,7\) or 9,9 is an effective auclear temperature.
LF is a flay that specifies the energy distribution law that is used fcr a particular subsection (partial energy distribution). (The definitions for LF are given in Section 5.1.).
\(F_{k}\left(E_{N}\right) \quad\) is the fractional part of the particular cross section that can be described by the \(k^{\text {th }}\) partial energy distribution at the \(N^{\text {th }}\) incident energy point.

SOTE : \(\quad \sum_{k=1}^{N K} p_{k}\left(E_{N}\right)=1.0\)
\(f_{k}\left(E \rightarrow E^{\prime}\right)\) is the \(k^{\text {th }}\) partial energy distribution. The definition depends on the value of LF.

NR is the number of interpolation ranges.
\(N P\) is the number of incident energy points at which \(p_{k}(E)\) is given.
a,b are constants used in che Natt spectrum. (LF = 10.)
NE is the number of inc dent energy points at which tabulated dis-
tributions are give 2 . Also the number of points at which \(\theta(E)\)
is given. ( \(\mathrm{NE} \leq 200\). )
NF is the number of secondary energy points in a tabulation. (NF \(\leq 1000\). )
The structure of a section has the following form:

\section*{\(\mathrm{LF}=7\). Simple fission spectrum (Maxwellian)}
```

[MAT, 5, MT/ U , 0.0, O, LF=7,NR,NP/E int/P(E)]TABL
[MAT, 5, MT/0.0, 0.0,0, 0 ,NR,NE/E int / (E)]TABl

```
\(\mathrm{IF}=9\), Evaporation spectrum
[MAT, 5, MT/ U , \(\left.0.0,0, L \underset{F}{ }=9, N R, N P / E_{\text {int }} / P(E)\right] T A B 1\)
[MAT, 5, MT/0.0, \(0.0,0,0, \mathrm{NR}, \mathrm{NE} / \mathrm{E}_{\text {int }} / \theta(\mathrm{E})\) ] TRABI

\section*{\(\underline{L F}=10\), Watt spectrun}
[MAT, \(\left.5, \mathrm{MT} / 0.0,0.0,0, L F=10 \mathrm{NR}, \mathrm{NP} / \mathrm{E}_{\text {int }} / \mathrm{P}(\mathrm{E})\right]\) TABl
[MAT, 5, MT/0.0, \(0.0,0,0,2,0 /\)
a , b , ------------------lIIST
Note that no formats have been described for \(L \mathcal{F}=2,4,6\), or 8 . These laws are no longer defined.

File 5 Energy Distributions of Secondary Neutrons
\(\left.\begin{array}{rrrrr}-1.00000+14 & 0.00000+ & 0 & 0 & 7 \\ 2 & 2 & 2 & & \\ 0.00000+ & 0 & 2.60000- & 3 & 2.00000+ \\ 0.00000+ & 0 & 0.00000+ & 0 & 0\end{array}\right)\)
\begin{tabular}{|c|c|c|c|}
\hline -2.00000+ & \(70.00000+\) & 0 & 0 \\
\hline & 2 & 2 & \\
\hline 0.000004 & 09.97400 & \(22.00000+\) & 79.97400 \\
\hline 0.000604 & 00.0000 j & 0 & 0 \\
\hline & 2 & 2 & \\
\hline 0.0000 ut & \(01.52 .00+\) & \(62.00000+\) & 71.52600 \\
\hline
\end{tabular}
\begin{tabular}{rrrrr}
1 & 21260 & 5 & 18 & 4890 \\
& 1200 & 5 & 18 & 4891 \\
& 1260 & 5 & 18 & 4892 \\
1 & 21260 & 5 & 18 & 4893 \\
& 1260 & 5 & 18 & 4894 \\
& 1260 & 5 & 18 & 4895
\end{tabular}

\(L F=7\), Simple fission spectrum (Maxwellian):
\(f\left(E+E^{\prime}\right)=\frac{\sqrt{E^{\prime}}}{I} e^{-E^{\prime} / \theta(E)}\).
\(\overline{1}\) is the normalization constant,
\[
I=g^{3 / 2}\left[\frac{\sqrt{\pi}}{2} \operatorname{erF}(\sqrt{(E-U) \cdot \theta})-\sqrt{(E-U) / \theta} \epsilon^{-(E-U) / \theta}\right]:
\]
\(\theta\) is tabulatel as a finction of energy, \(E ;\)
U is a constant introduced to define the proper upper limit for
the final neutron energy that \(0 \leq E^{\prime} \leq E-U\).
\(\mathrm{L}_{\mathrm{F}}=9, \quad\) Evapor \(=\) tion spectrum:
\(f\left(E \rightarrow E^{\prime}\right)=\frac{E^{\prime}}{I} e^{-E^{\prime} / \theta}\).

I is the normalization constant,
\[
I=\theta^{2}\left[1-e^{-(E-U) / \theta}\left(1+\frac{E-U}{\theta}\right)\right] ;
\]
\(\theta\) is talulated as a function of incident neutron energy, \(E_{\text {; }}\)
\(U\) is a constant introduced to define the proper upper limit for the final neutron energy that \(0 \leq E^{\prime} \leq E-U\).
\(L F=10\), Watt spectrum:
\(f\left(E \rightarrow E^{\prime}\right)=\sqrt{4 / \pi a^{3} b} e^{-a b / 4} e^{-E^{\prime} / a} \sinh \left(\sqrt{b E^{\prime}}\right)\).
a and b are constants.
NOTE: Distribution laws are not presented for LF \(=2,4,6\), or 8. These laws are no longer used.

There is only one section in File 7 , but the format varies slightly, depending on whether temperature-dependent data are given. the following quantities are derined:

LAT is a flag indicating which temperature has been used to compute a and \(B\).

LAT \(=0\), the inctual temperature was. used.
LAT \(=1\), the constant \(T_{2}=0.0253 \mathrm{eV}\) has been used.
NS is the number of non-principal sattering atom types. For most moderating materials there will be (NS + l) types of atoms in the molecule ( \(\mathrm{NS} \leq 3\) ).

NI is the total number of items in the \(B(N)\) list. \(N L=6 *(N S+1)\).
\(\mathrm{B}(\mathrm{N})\) is the list of constants. Definitions are qiven above (Sectior 7.l).
NR is the number of interpolation ranges Eor a particular parameter, either \(B\) or \(\alpha\).

NB is the total number of \(B\) values given.
NP is the number of \(\alpha\) values given for each value of \(B\) for the first temperature described, NP is the number of pairs, \(\alpha\) and \(s(\alpha, \beta)\), given.
\(\beta_{\text {int }}\) and \(\alpha_{\text {int }}\) are the interpolation schemes used (see Appendix E for interpolation formats).
```

The structure of a section is
[MAT, 7, MT/ZA, ANR, O, LAT, O, O]HEAD
[MAT, 7, MT/O.0, 0.0, 0, O, NI, NS/B(1), B(2), ...B(NI)]LIST
[MAT, 7, MT/0.0, 0.0,0,0,NR, NB/B int]TAB2

```

```

[MAT, 7, MT/T, B2, LT, O,NR,NP/ Nint/S (\alpha, B2)]TAB1
-------------- .--

```
[MAT, 7, MT/T, \(\left.\beta_{N B}, L T, 0, N R, N P / \alpha_{i n t} / \sim\left(\alpha, \beta_{N B}\right)\right] T A B 1\)
[MAT, 7, 0/0.0, 0.0, 0, 0, 0, 0]SEND
\(T\) and \(L T\) refer to possible temperature dependence. If the scattering law data are completely specified by analytic functions [no principal scattering atom type, as indicated by \(B(1)=0]\), tabulated values of \(S_{0}(\alpha, \beta)\) are omitted and the TAB2 and TAB1 records are not given.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(8.01600+\) & \(31.58580+\) & I & 0 & 0 & 0 & 01276 & 7 & & 4761 \\
\hline \(0.90000+\) & 00.000004 & 0 & 0 & 0 & 12 & 11276 & 7 & & 4762 \\
\hline 0.000004 & \(00.00000+\) & \(00.00000+\) & \(00.00000+\) & 00.00000 t & \(00.00000+\) & 01276 & : & & 4763 \\
\hline 1,00000+ 0 & \(03.74810+\) & \(01.58580+\) & \(10.00000+\) & \(0 \mathrm{C} 00000+\). & \(00.00000+\) & -1276 & 7 & 4 & 4764 \\
\hline & & & & & & 1.376 & 7 & & 4765 \\
\hline & & & & & & 1276 & 0 & & 4766 \\
\hline
\end{tabular}

Inelastic scattering is represented by the thermal, neutron scattering law, \(S(\alpha, \beta, T)\), and is defined for a moderating molecuie) by
\[
\frac{a^{2} \sigma}{d \Omega d E^{\prime}}\left(E \rightarrow E^{\prime}, \mu, T\right)=\sum_{n=0}^{N S} \frac{M_{n} \sigma_{b n}}{4 \pi T} \sqrt{\frac{E^{\prime}}{E}} e^{-B / 2} S_{n}(\alpha, \beta, T)
\]
\[
\text { where there are (NS }+1 \text { ) types of atoms in the moleruie (i.e., for } \mathrm{H}_{2} \mathrm{O} \text {, NS }=1 \text { ) }
\]
\(M_{n}\) is tre number of atoms of the \(n^{\text {th }}\) type in the molecule,
T is the moderator temperatire ( \({ }^{\circ} \mathrm{K}\) ),
\(E\) is the incident neutron energy ( EV ),
\(E^{\prime}\) is the secondary neutron energy ( \(e^{-}\)),
\(\underline{\beta}\) is the energy transfer, \(B=\left(E^{\prime}-E\right) / k T\),
\(\underline{\alpha}\) is the momentum transfer, \(\alpha=\left(E^{\prime}+E-2 \mu \sqrt{E E}\right) / A_{o} \mathrm{kq}^{\prime}\),
\(A_{n}\) is the mass of the \(n^{\text {th }}\) rype atom, \(A_{o}\) is the mass of the principal scattering atom in the molecule,
\(\sigma_{b n}\) is the bound atom scattering cross section of the \(n^{\text {th }}\) type atom, \(\sigma_{b n}=\sigma_{f n}\left(\frac{A_{n}+1}{A_{n}}\right)^{2}\)
\(\sigma_{f n}\) is the free atom scattering cross secticn of the \(n{ }^{\text {th }}\) type atom,
k is Boltermann's contant, and
\(\mu\) is the cosine of the scattering angle (in the lab system).
\({ }^{E S}{ }_{k}\) the energy of the level from which the photon originates. If the level is unknown or if a continuous photon spectrum is produced, Lhen ES \({ }_{k} \equiv 0.0\) should be used.

EG. the photon energy for \(L P=0\) or 1 or Binding Energy for \(L P=2\). For a continuous photon energy distribution, \(E G_{k} \equiv 0.0\) should be used.

IP indicator of whether or not the particular photon is a primary: \(L \mathbb{L}=0\), origin of photons is not designated or not known, and the photon energy is \(E G_{k}\);

LP \(=1\), for nomprimary photons whey tie photon energy is again simply \(\mathrm{EG}_{\mathrm{k}}\); and
\(L \mathbb{L F}=2\), fur primary photons where the photon energy \(E G{ }_{k}^{\prime}\) is given by \(E G_{k}^{\prime}=E G_{k}+\frac{A W R}{A W R+1} E_{n}\).
\(\underline{L F}\) the photon energy distribution law number, which presently has only two va?ues defined: \(\mathrm{LF}=1\), a normalized tabulated function (in File lS), and
\(=2\), a discrete photon energy.
```

The structure of a section for L\varnothing}=1\mathrm{ is
[MAT, 12, MT/ZA, AWR; LDD=1, b; NK, b]HEAD
[MAT, 12,MT/b, b; b, b;NR,NP/E int/Y;E)]TAB1*
<subsection for k = 1>
<subsection for k = 2>

```
<subsection for \(k=N K>\)
[MAT, 12, 0/b b; b, b; b, b]SEND ,
and the structure of each subsection is \(\left[M A T, 12, M T / E G_{k}, E S_{k} ; L P, L F ; N R, N P / E_{i n t} / Y_{k}(E)\right] T A B 1\),
*If the total number of discrete photons and photun continua is one (NK \(=1\) ), this TABl record is omitted.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(9.22350+\) & \(42.33025+\) & 21 & 1 & 0 & 30 & 0 & & 0126112 & & 6169 \\
\hline \(0.00000^{\text {- }}\) & \(00.00000+\) & 00 & 0 & 0 & & 1 & & 29126112 & & 6170 \\
\hline & 9 & 2 & & & & & & 120112 & 4 & 6171 \\
\hline 1.30550t & \(40.00000+\) & \(01.10560+4\) & \(41.00000+\) & 0 & \(4.00000+\) & & \(1.00000+\) & 0126112 & 4 & 6172 \\
\hline \(5.22180+\) & \(41.00000+\) & \(08.23440+4\) & \(41.19: 10+\) & 0 & \(1.03433+\) & & \(1.28190+\) & 0126112 & 4 & 6173 \\
\hline \(1.50530+\) & \(51.42470+\) & \(01.71718+5\) & \(51.43780+\) & 0 & 1.97827+ & & 1.46:350+ & -0126112 & 4 & 6174 \\
\hline \(2.259+5+\) & \(51.49120+\) & \(02.96239+5\) & \(51.57010+\) & 0 & 3.34400+ & & 1,64930+ & - 9126112 & & 6175 \\
\hline 3.68541+ & \(51.73810+\) & \(03.95655+5\) & \(51.79790+\) & 0 & \(4.15739+\) & & \(1.79140+\) & -0126112 & 4 & 6176 \\
\hline 4.28793+ & \(51.87680+\) & \(04.75991+5\) & \(51.87530+\) & 0 & \(5.00000+\) & & 1.95490+ & +0126112 & & 6177 \\
\hline 5.35239+ & \(51.93480+\) & \(06.00000+5\) & \(52.13210+\) & 0 & 6.54738+ & 5 & \(2.23330+\) & +0126112 & & 6178 \\
\hline \(7.00000+\) & \(52.23460+\) & \(07.74239+5\) & \(52.24360+\) & 0 & \(8.00000+\) & & \(2.25100+\) & +0126112 & & 6179 \\
\hline \(9.00000+\) & \(52.16840+\) & \(01.00000+6\) & \(62.14020+\) & 0 & 2. 0 ¢9000+ & & 2.12850 - & - 0126112 & & \(\therefore 180\) \\
\hline 1.09000 H & 6 6.00000+ & \(02,00000+\) & \(70.00000+\) & 0 & & & & 126112 & & 6181 \\
\hline \(7.71000+\) & \(57.71000+\) & 5 & 0 & 2 & & & & 7126112 & & 6182 \\
\hline & 7 & 2 & & & & & & 126112 & & ¢183 \\
\hline 7.74238: & \(50.00000+\) & \(08.00000+5\) & \(51.00000-\) & 2 & \(9.00000+\) & & 7.11000 & - 2126112 & & 6184 \\
\hline 1.00000+ & E 1.19000- & \(11.09000+6\) & 61.23300 & 1 & \(1.0900{ }^{\text {+ }}\) & 6 & \(0.00000+\) & + 0126112 & & 6185 \\
\hline 2.00000+ & \(70.90000+\) & 1 & & & & & & 126112 & & 6186 \\
\hline 7.58000+ & 5 \(7.71000+\) & 5 & 0 & 2 & & , & & 7126112 & & 6187 \\
\hline & 7 & 2 & & & & & & 126112 & & 6188 \\
\hline 7.74.238+ & \(50.00000+\) & \(08.00000+\) & 53.000 .50 & 3 & 9.000 Cu & & 2.31000 & -2126112 & & 6189 \\
\hline 1.00000+ & \(63.82000-\) & \(21.09000+6\) & 6 3.97000- & 2 & \(1.09000+\) & & \(0.00000+\) & + 0126112 & & 6190 \\
\hline \(2.03000+\) & \(70.00000+\) & 0 & & & & & & 126112 & & 6191 \\
\hline
\end{tabular}
(MISSING LINES)
25
12611246378
\(8.23440+40.00000+01.03433+57.81000-21.50630+51.70900-1126112 \quad 4 \quad 5379\) \(1.71718+51.92700-11.97827+52.13200-12.25945+52.32500-1126112 \quad 46380\) \(2.96239+52.19300-13.34400+52.16000-13.68541+52.08200-1126112 \quad 46381\) \(\begin{array}{llllllllllllll}3.95655+ & 2.04700-1 & 4.15739+ & 5 & 1.94400-1 & 4.28793+ & 5 & 1.87400-1126112 & 4 & 6382 \\ 4.75991+5 & 1.73200-1 & 5.00000+5 & 1.68700-1 & 5.35239+ & 5 & 1.60600-1126.12 & 4 & 6393\end{array}\) \(\begin{array}{lllllllll}4.7599+ \\ 6.00000+ & 5 & 1.70400-1 & 6.54738+5 & 1.80100-1 & 7.00000+5 & 1.72100-1126112 & 46384\end{array}\) \(\begin{array}{llllllllll}6.00000+ & 1.70400-1 & 6.34738+ & 5 & 1.80100-1 & 7.0000++ & 5 & 1.72100-1126112 & 4 & 6384 \\ 7.74238+5 & 1.74100-1 & 8.00000+5 & 1.66700-1 & 1.00000+ & 5 & 1.41200-1126112 & 4 & 6385\end{array}\) \(\begin{array}{llllllllllll}7.74238+ & 5 & 1.74100-1 & 8.00000+ & 5 & 1.66700-1 & 9.00000+ & 5 & 1.41200-1126112 & 4 & 6385 \\ 1.00000+ & 6 & 1.19800-1 & 1.09000+6 & 1.34900-1 & 1.09000+6 & 0.00000+0126112 & 4 & 6386\end{array}\) \(\begin{array}{llllllll}2.00000+7 & 0.00000+0 & 0 & 126112 & 4 & 6387\end{array}\)
\begin{tabular}{rrrrrrr}
\(5.20000+4\) & \(5.20000+4\) \\
26 & 2 & 0 & 2 & 26126112 & 4 & 6388 \\
5 & & 126112 & 4 & 6.389
\end{tabular}
\begin{tabular}{llllllllllll}
\(5.22180+4\) & \(0.00000+0\) & \(8.23440+\) & 4 & \(5.22600-1\) & \(1.03433+\) & 5 & \(5.53300-1126112\) & 4 & 6390 \\
\(1.50630+5\) & \(5.66800-1\) & \(1.71718+\) & 5 & \(5.64900-1\) & \(1.97827+\) & 5 & \(5.57800-1126112\) & 4 & 6391
\end{tabular}
\(2.25945+55.39400-12.96239+55.59900-1.3 .34400+55.35100112611246392\)
. \(68854+55.3940006392\)
\(\begin{array}{llllllllll}1.78541+5 & 5.30900-1 & 3.95655+5 & 5.26900-14.15739+5 & 5.14400-1126112 & 4 & 6393 \\ 4.28793+5 & 5.18500-1 & 4.75991+5 & 4.93800-1 & 5.00000+5 & 5.06100-1126112 & 46394\end{array}\)
\(\begin{array}{lllllllllll}4.28793+5 & 5.18500-1 & 4.75991+5 & 4.93800-1 & 1.00000+5 & 5.06100-1126112 & 46394 \\ 5.35239+5 & 4.98600-1 & 6.00000+5 & 4.99200-1 & 6.54738+5 & 4.92100-1126112 & 4 & 6395\end{array}\)
\(\begin{array}{lllllllllllll}5.35239+ & 5 & 4.98600-1 & 6.00000+5 & 4.99200-1 & 6.54738+ & 5 & 4.92100-1126112 & 4 & 6395 \\ 7.00000+ & 5 & 4.47800-1 & 7.74238+5 & 4.09200- & 1 & 8.00000+ & 5 & 3.98600-1126112 & 4 & 6396\end{array}\)
\(\begin{array}{llllllllllll}7.00000+ & 5.47800-1 & 7.74238+ & 5 & 4.09200-1 & 8.00000+ & 5 & 3.98600-1126112 & 4 & 6396 \\ 9.00000+ & 5 & 3.53500-1 & 1.00900+6 & 3.12800- & 1 & 1.09000+6 & 3.29500-1126112 & 4 & 6397\end{array}\)
\(1.09000+60.00000+02.00000+70.00000+0 \times 1.09000+63.29500-1126112-12611246398\)
\begin{tabular}{llllll}
\(3.90000+4\) & \(5.20000+4\) & 0 & 2.0000 & 25126112 & 46399
\end{tabular}

\(1.50630+52.17200-11.71718+51.97600-11.97827+51.94000-117611246402\)
\(.30630+52.13200-11.71718+5 \quad 1.97600-11.97827+51.94000-112611246402\)
\(2.25945+51.86000-12.96239+51.94400-113.34400+51.83600-112611246403\)
\(\begin{array}{lllllllllllllll}3.68541+ & 5 & 1.98400-1 & 3.95655+ & 5 & 1.75600- & 1 & 4.15739+ & 5 & 1.75100-1126112 & 4 & 6404 \\ 4.28793+5 & 1.77800-1 & 4.75991+ & 5 & 1.69100-1 & 5.00000+ & 5 & 1.84800-1126112 & 4 & 6405\end{array}\)
\(\begin{array}{llllllllllll}4.28793+ & 5 & 1.77800-1 & 4.75991+ & 5 & 1.69100-1 & 5.00000+ & 5 & 1.84800-1126112 & 4 & 6405 \\ 5.35239+5 & 1.69600-1 & 6.00000+5 & 1.82100-1 & 6.54738+5 & 1.69800-1126112 & 46406\end{array}\)
\(7.00000+51.55500-17.74238+51.43500-18.00000+51.365\). 1.11261124640407
\(9.00000+51.23700-11.00000+61.08000-11,09000+61.134 \%\) н 112611246408
\(\begin{array}{rrrrrr}1.09000+60.00000+02.00000+70.00000+0 & 126112 & 46409 \\ 1.30000+4 & 1.30000+4\end{array}\)
\begin{tabular}{rrrrrr}
29 & 2 & 0 & 2 & 29126112 \\
\hline
\end{tabular}
\(1.30550+40.00000+01.30560+41.00000+04.00000+41.00000+0126112\)
\(5.22180+41.00000+08.23440+44.77800-11.03433+54.44600-1126112 \quad 46413\)
\(1.50630+54.67000-11.71718+54.57900-11.97827+54.63300-1126112 \quad 46414\)
\(\begin{array}{llllllllllll}1.50630+ & 5 & 4.67000-1 & 1.71718+5 & 4.57900-1 & 1.97827+5 & 4.63300-1126112 & 4 & 6414 \\ 2.25945+5 & 4.66600-1 & 2.96239+5 & 4.16700-1 & 3.34400+ & 5 & 4.34900-1126112 & 4 & 6415\end{array}\)
\(3.68541+54.37300-13.95655+54.08000-14.15719+53.99900-1126112 \quad 46416\)
\(4.28793+54.09000-14.75991+53.99100 \cdots 15.00000+53.89600-11261 \% 46417\)
\(5.35239+53.93700-16.00000+54.04400-16.54738+53.98000-112112 \quad 46418\)
\(7.00000+54.13600-17.74238+54.30600-i 8.00000+54.36700-112611246419\)
\(9.00000+54.20000-11.00000+63.83400-11.09000+64.10600-1126113 \quad 46420\)
\(1.09000+60.00000+02.00000+70.00000+0 \quad 126112 \quad 46421\)
\begin{tabular}{ll}
126112 & 46421 \\
126112 & 0 \\
\hline 622
\end{tabular}
\[
\begin{aligned}
& \text { The multiplicity or yield } y_{k}(E) \text { is defined by } \\
& y_{k}(E)=\frac{\sigma_{k}^{Y}(E)}{\sigma(E)} \text { (photons) }
\end{aligned}
\]
where \(E\) designates neutron energy and \(\sigma(E)\) is the neutron cross section in file 2 and/or File 3 to which the multiplicity is referred (by the MT number).
\[
Y_{k}\left(E_{Y} \leftarrow E\right)=y_{k}(E) f_{k}\left(E_{Y}+E\right)
\]
which results in the requirement that
\[
\int_{0}^{E_{\gamma}^{\max }} f_{k}\left(E_{\gamma}-E\right) d E_{\gamma}=1
\]

As a check quantity, the toial yield
\[
Y(E)=\sum_{k=1}^{N K} y_{k}(E) \quad \text { (photons) }
\]
```

Li= l, simple case (all transitions are }\gamma\mathrm{ emission).
=2, complex case (internal conversion or other competing processes
occur).
NS number of levels below the present one, including the ground state.
('She present level is also uniquely defined by the MT number and by
its energy level.)
NT number of transitions for which data are given in a list to follow
(i.e., number of nonzero transition probabilities), NT \leqNS.
ES i energy of the ith level, i = 0,1,2···NS. (ES O = 0.0, the ground
state.)
TP i TP NS,i, the probability of a direct transition from level NS to
level i, i = 0,1,2···.. (NS-1).
GP i}\mp@subsup{|}{NS,i}{\primeG
to level i, the transition is a photon transition ii.e., the condi-
tional probability of photon emission).
A (in (TP i) (GP i).

```

Note that each level can be identified by its NS number. Then the energy of a photon :com a transition to level \(i\) is given by \(E_{\gamma}=E S_{N S}-E S_{i}\), and its multiplicity is given by \(y\left(E_{Y}+E\right)=\left(T P_{i}\right)\left(G P_{i}\right)\). It is implicitly assumed that the transition probability array is independent of incident neutron energy.
 If \(L G=1\), the array \(B_{i}\) consists of NT doublets \(\left(E S_{i}, T P_{i}\right)\); if \(L G=2\), it consists of NT triplets \(\left(E S_{i}, T P_{i}, G P_{i}\right)\). Here the subscript \(i\) is a running index over the levels below the level for which the transition probability array is being given (i.e., below level NS). The doublets or triplets are giban in decreasing magnitude of energy ES \({ }_{i}\).

The differential cross section for producing a \(\gamma\)-ray
of energy \(E_{Y}\) resulting from the excitation of the \(m_{o}^{\text {th }}\) level of the
residual nucleus and the subsequent transition between two definite
levels ( \(j\) - \(i\) ), including the ercects of cascading from ine \(m_{o}-j\)
levels higher than \(j\), is levels higher than \(j\), is
\[
\begin{equation*}
\frac{d \sigma}{d E_{\gamma}}\left(E_{\gamma}, E, m_{o}, i, j\right)=\delta\left(E_{Y}-\varepsilon_{j}+\varepsilon_{i}\right) A A_{j, i} \sigma_{m_{o}}(E) \prod_{\ell=j}^{m_{0}-j} \sum_{m_{l}=j}^{m_{\ell-j}} T P_{m_{i, l}, m_{l}}^{-1} \tag{1}
\end{equation*}
\]
where
\[
\begin{aligned}
\sigma_{m_{0}}(E)= & \text { neutron cross sections for exciting the } m_{0} \text { th level with neu- } \\
& \text { tron energy } E, \\
\delta\left(E_{\gamma}-\varepsilon_{j}+\varepsilon_{i}\right)= & \text { dslta function with } \varepsilon_{j}, \varepsilon_{i} \text { being energy levels of the resid- } \\
& \text { ual nucleus, } \\
T_{k, \ell}= & \text { probability of the residual nucleus having a transition to } \\
& \text { the } \ell^{\text {th }} \text { level given that it was initially in the excited } \\
& \text { tate corresponding to the } k^{\text {th }} \text { level, and } \\
A_{k, \ell}= & \text { probability of emission of a } \gamma \text { ray of energy } E_{\gamma}=\varepsilon_{k}-\varepsilon_{\ell} \text { as } \\
& \text { a result of the residual nucleus having a transition from the } \\
& k^{\text {th }} \text { to the } \ell^{\text {th }} \text { level. }
\end{aligned}
\]
\({ }^{T} \mathrm{~S}_{\mathrm{k}}\) the energy of the level from which the photon originates. If the level is u:known or if a sontinuous khoton spectrum is produced. \(E S_{k}=0.0\) should be used.
\(\underline{E G}\) the photon energy for \(L P=0\) or 1 or Binding Energy for \(L P=2\). For a continuous photon energy distribution, \(E G_{k}=0.0\) should be Lused.

IP Indicator of whether or not the particular photon is a primary:
\(L P=0\), origin of photons is not designatef or not known, and the photon energy is \(E G_{k}\);
LP \(=1\), fct nonprimary photons where the photon energy is again simply \(E G_{k}\) : and
LP \(=2\), for primary photons, where the photon energy is given by \(E G_{k}+\frac{A W R}{A W R+1} E_{:=}\).
LF the photon energy distribution law number, wisich presently has only two values defined:
\(L F=1\), a normalized tabulated function (in File 15), and
\(L F=2\), a discrete photon energy.
```

The structure of a section in File 13 is
[MAT, 13, MT/ZA, AWR; b, b; NK, b]HEAD
[MAT, 13, MT/ b, b; b, b; NR, NP/E int /\sigma TOT(E)]TABl*
<subsection for k=1>
<subsection for k= 2>
and the s"ructu-% of each subsection is
[MAT, 13, MT/ES k, ES k; LP, LF; NR, NP/E int /\sigma % (E)]TABl,

```
    <subsection for \(k=N K>\)
[MT, 13, 0/b, b; b, b; b, b] SEND
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(9.22350+4\) & \(2.33025+\) & 2 & 0 & & 0 & & 1 & & 0126113 & & 6436 \\
\hline 0.000CO+ 0 & \(0.00000+\) & 0 & 0 & & 1 & & 1 & & 12126113 & 3 & 64.37 \\
\hline 12 & & 2 & & & & & & & 126113 & 3 & 6438 \\
\hline 1.00000-5 & \(0.00000+\) & 01.000100 & 1 & 0.00000+ & 0 & \(1.09000+\) & 6 & \(3.00000^{4}\) & 0126113 & 3 & 6439 \\
\hline \(1.09000+6\) & 1. 38200+ & \(12.10050+\) & 6 & \(1.48200+\) & 1 & \(1.00000+\) & & 1.402004 & 1126113 & 3 & 6440 \\
\hline \(4.00600+6\) & \(1.47700{ }^{+}\) & 15.000 Jot & 6 & \(1.70000+\) & 1 & 6.00000+ & 6 & \(1.80000+\) & 1126113 & 3 & 6441 \\
\hline 7.5000¢ 6 & \(2.16300+\) & \(11.48000+\) & 7 & \(2.50200+\) & 1 & \(2.00000+\) & 7 & \(2.82100+\) & 1126113 & 3 & 6442 \\
\hline & & & & & & & & & 126113 & 0 & 6443 \\
\hline
\end{tabular}
\[
\frac{d \sigma_{k}^{\gamma}}{d E_{\gamma}}\left(E_{\gamma} \leftarrow E\right)=\sigma_{k}^{Y}(E) f_{k}\left(E_{\gamma} \leftarrow E\right)
\]
which obviously requires that
\[
\int_{0}^{E_{\gamma}^{\max }} f_{k}\left(E_{\gamma}+E\right) d E_{\gamma}=1
\]

Any time a continuum ref_esentation is used for a given MT number in File 13, the normalizec energy distribution, \(\mathrm{F}_{\mathrm{k}}\left(\mathrm{E}_{\gamma} \leftarrow E\right)\), must be given in File 15 under tile same MT number.

As a check quantity, the total photon production cross section,
\[
\sigma_{T O T}^{\gamma}(E)=\sum_{k=1}^{N K} \sigma_{k}^{\gamma}(E) \quad \text { (barns) }
\]
is also tabulated for each MT number, unless only one subsection is present (i.c., NK \(=1\) ).

For \(L I=1\) (isctropic distribution), the parameter NK is the number
of photons in that section and should be consistent with the NK values in Files
12 and 13.

\section*{LI = 1: Isotropic Distribution}

If \(\mathrm{LI}=1\), then all photons for the reaction type (MT) in question are assumed to be isotropic. This is a flag that the processing code can sense, and thus needless isotropic distribution data are not entered in the file. In this case, the section is composed of a HEAD card and a SEND card, as follows:
[MAT, 14, MT/ZA, AWR; LI=l, b; NK, b]HEAD
[MAT, 14, o/ h, b; b, b; b, b]SEND
\(9.22350+42.33025+2 \quad 1 \quad 0 \quad 30 \quad 0126114 \begin{array}{llllll}4 & 6447\end{array}\)
12611406448

\title{
File 14 Photon Angular Distributions
}
```

LI=1 (Isotopic Distributions)
P
a

```

L'rT \(=1\), data are given as Legendre coefficients, where \(a_{0}^{k}(E)=1.0\) is understood.
\(=2\), data are given as a tabulation.
\(L I=0\), distribution is not isotropic for all photons from this reaction type, but may be for some photons.
\(=1\), distribution is isotropic for all photons from this reaction type.
NE number of neutron energy points given in a TAB2 record.
NI number of isotropic photon angular distributions given in a section (MT number) for which LI \(=0\). i.e., a section with at least one anisotropic distribution.
\(\mathrm{NL}_{\mathrm{i}}\) highest value of i required at each neutron energy \(\mathrm{E}_{\mathrm{i}}\).
```

LTT = 1: Legendra Coefficient Representation
[MAT, 14, MT/2A, AWR; LI=0, LTT=1; NK, NI]HEAD
*subsection for k = l>
<subsection for k = 2>

```

The structure of each record in the first block of NI subsections, which is fo: the NI isotropic photons, is
[MAT, 14, MT/EG \(\left.{ }_{k}, E S_{k} ; b, b ; b, b\right] C D N T\). There is just one CONT record for each isotropic phot:n. (The set of CDNT records is empty if \(N I=0.1\) The subsections are ordered in decreasing magnitude of \(E G_{k}\) (photon energy), and the continuum, if present and isotropic, appears last, with \(E G_{k} \equiv 0.0\).

This block of NI subsections is then followed by a block of NK-NI subsections for the anisotropic photons in decreasing magnitude of \(E G_{k}\). The continum, if present and anisotropic, appears last, with \(E G_{k} \equiv 0.0\). The structure for the last NK-NI subsections is
[HAT, 14. MT/EG, \(\left.E S_{k} ; b: b ; H R, N E / E_{\text {int }}\right]\) TAR2
[MAT, 14, MT/ b. \(E_{1} ; b, b ; N L_{1}, b / a_{L}^{k}\left(E_{1}\right)\) 〕LIST
(MAT, 14, MT/ \(\left.b, E_{2} ; b, b ; L_{2}, b / a_{2}^{k}\left(E_{2}\right)\right)\) LIST
[MAT, 14, MT/ b, \(\left.E_{N E}: b, b ; N L E_{N E}, b / a_{R}^{k}\left(E_{N E}\right)\right] L I S T\).

Note that lists of the \(a_{\ell}^{k}(E)\) stari ot \(R=1\) because \(a_{o}^{k}(E) \equiv 1.0\) is always understood.

\section*{<subsection for \(k=N X\)}
[MAT, 14, \(\quad / b, b ; b, b ; b, b] S E N D\).

\section*{\(\mathrm{N}-31\)}

File 14 Photon Anqula: Distributions
(Legendre Coefficient lepresentation)

No example in ENDF-IV
(Legendre Coefficient Representation)

The angular distributions are expressed as normaiized prob-1 ity distributions, that is,
\[
\int_{-1}^{1} p_{k}(\mu, E) d \mu=1
\]
where \(p_{k}(2, E)\) is the probability that an incident neutron of energy \(E\) will result in a particular discrete photon or photon energy continum (specified by \(k\) and MT number) being emitted into unit cosine about an angle whose cosine is \(\mu\). Because the photon angular distribution is assumed to have azimuthal symmetry, the distribution may be represented as a Legendre series expansion,
\[
\begin{aligned}
P_{k}(\mu, E) & =\frac{2 \pi}{\sigma_{k}^{\gamma}(E)} \frac{d \sigma_{k}^{Y}}{d \underline{\Omega}}(\underline{\Omega}, E) \\
& =\sum_{R=0}^{N L} \frac{2 \ell+1}{2} \exists_{\ell}^{k}(E) P_{\ell}(\mu),
\end{aligned}
\]

\section*{where}
\(\mu=\) cosine of the reaction angle in the lab system.
\(E=\) energy of the incident neutron in the laboratory system, and \(\sigma_{k}^{\gamma}(E)=\) photon production cross section for the discrete photon or photon continuum specified by \(k\), as given in either File 13 or in Files 2, 3, and 12 combined.
\(\hat{x}=\) order of the Legendre polynomial.
\[
\begin{aligned}
\frac{d \sigma_{k}^{Y}}{d \underline{\Omega}}= & \text { differential photon production cross section in barns/steracian. } \\
a_{\hat{i}}^{k}(E)= & \text { the } \ell^{\text {ch }} \text { Legendre coefficient assocj.ated with the discrete photon or } \\
& \text { photon continum specified by } k . \quad \text { (It is understood that } i_{0}^{k}(E) \equiv 1.0 .
\end{aligned}
\]
\[
a_{\ell}^{k}(E)=\int_{-1}^{2} p_{k}(\mu, E) p_{g}(\mu) d \mu
\]
\(L T T=1\), data ero qiven as Leqendre coefficients, where \(a_{a}^{k}(E)=1.0\) is understood.
\(=2\). data are give: as a tabulation.
\(\mathrm{LI}=0\), distribution is not isotropic for all photons from this reaction type, but may be for some photons.
\(=1\), distribution is isotropic for all photons from this reaction trpe.
NE number of neutron energy points given in a TAB2 record.
NI number of isocropic photon angular distributions given in a section (MT number) for which LI \(=0\), i.e., a section with at least one anisotropic distribution.

NL highost value of \(i\) required at eacin neutron energy \(E_{i}\).

LTT =2: Tabulated Angular Distribitions
The structure of a section for \(L I=0\) and \(L T T=2\) is
[MAT, 14. MT/ZA, AWR; LI=0, LTTL=2; NK, NI]HEAD
<subsection for \(\mathrm{k}=1>\)
<subsection for \(k=2>\)

The structure of the first block of NI subsections (where NI may be zero) is the same \(a\) for the case of a Legendre representation; i.e., it consists of one CØNT record for each of the NI isctropic photons in decreasing magnitude of \(E G_{k}\). The continum, if mresent and isotropic, appears last, with \(E G_{k} \equiv 0.0\).

The s...cture of the first NI subsections is
[MAT, 14, गJ/EG \(\left.{ }_{k}, E S_{k} ; b, b ; b ; b\right] C \varnothing N T\).
This block of NI subsections is then followed bi a blok of MKN subsections for the anisotrcpic photens, again in decreasing magnitude of \(E G_{k}\), with the continuum, if present and anisotropic, appearing last, with \(E G_{k} \equiv 0.0\). The structure of the last NK-NI subsections is
[MAT, 1a, MT/EG \({ }_{k}, E S_{k} ; b, b ; N R, N E / E{ }_{i n t}\) ]TAB2
[MAT, 24, MT/ \(\left.b, E_{1} ; b, b ; N R, N P / \mu_{i n t} / \mathrm{P}_{\mathrm{k}}\left(\mu, \mathrm{E}_{1}\right)\right]\) TABL
[MAT, 14, MT/ b, \(\left.E_{2} ; b, b ; N R, N P / \mu_{i n t} / p_{k}\left(\mu_{r} E_{2}\right)\right] T A B 1\)
[MAT, 14, MT/ b, \(E_{N E}\); b, b; NR, NP/ \(\left.\mu_{i n t} / p_{k}\left(u, E_{N E}\right)\right]\) TABI -
<subsection for \(k=N K>\)
[MAT, 14, 0/ b. b; b, b; b, b]SEND .
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline 1. \(10000+4\) & 3.51480+ & 1 & 0 & & 2 & 3 & & 0:14914 & 57 & 4406 \\
\hline \(4.05800+6\) & \(4.05800+\) & 6 & 0 & & 0 & 1 & & 8114914 & 57 & 4407 \\
\hline 8 & & 2 & & & & & & 114914 & 57 & 4408 \\
\hline \(0.00000+0\) & \(4.17500+\) & 6 & 0 & & 0 & 1 & & 21114514 & 57 & 4409 \\
\hline 21 & & 2 & & & & & & 114914 & 57 & 4410 \\
\hline \(\cdots 1.00000+0\) & 5.21140 & 1-9.00000- & 1 & 5.14290 - & 1-8.00000 & & 5.09050 & 1114914 & 57 & 4411 \\
\hline -1.00000-1 & 5.04860- & 1-6.00600 & 1 & 5.01040 & 1-5.00000- & & 4.97660 & 1114914 & 57 & 4412 \\
\hline -2,00000- & 4.94830- & 1-3.00000- & 1 & 4.92380 & 1-2.00000- & & 4.90420- & 1114914 & 57 & 4413 \\
\hline -1.00000-1 & 4.89930- & \(10.00000+\) & 0 & \(4.89980-\) & \(11.00000-\) & & \(4.89930-\) & 1114914 & 57 & 4.414 \\
\hline 2.00000- & 4.90420 & 13.000 CO & 1 & \(4.92390-\) & \(14.00000-\) & & \(4.94830-\) & 1114914 & 57 & 4415 \\
\hline \(5.00000-\) & 4.97660- & 16.00000 & 1 & 5.01040- & \(17.00000-\) & 1 & \(5.04860-\) & 1114914 & 57 & 4416 \\
\hline 8,00002- & 5.09050- & 19.00000 & 1 & 5.14290- & \(11.00000+\) & 0 & 5.21140- & 1114914 & 57 & 4417 \\
\hline \(0,00000+0\) & \(4.50000+\) & 6 & 0 & & 0 & 1 & & 21114914 & 57 & 4418 \\
\hline 21 & & 2 & & & & & & 114914 & 57 & 4419 \\
\hline -1,00000+0 & 5.23510- & 1-9.00000- & 1 & \(5.16930-\) & .-8.00000- & & 5.10650- & 1114914 & 57 & 4420 \\
\hline -7.00000- & 5.05170- & 1-6.00000- & I & 5.00760- & 1-5.00000- & 1 & \(4.57130-\) & 1114914 & 57 & 4421 \\
\hline -4.00000- & 4.93730- & 1-3.00000- & 1 & 4.91320 & 1-2.00000- & & \(4.89330-\) & 1114914 & 57 & 4422 \\
\hline -1.00000- & 4.88680 - & \(10.00000+\) & 0 & 4.88630- & 11.00000 & 1 & \(4.88880-\) & 1114914 & 57 & 4423 \\
\hline 2.00000 & 4.89330- & 13.00000 & 1 & 4.91320 m & 14.00000 & 1 & \(4.93730-\) & 1114914 & & 4424 \\
\hline 5.00000 & 4.97130- & 16.00000 & 1 & 5.00760- & 17.00000 & & \(5.05170-\) & 111\%54 & 57 & 4425 \\
\hline 5.00000-1 & \(5.10650-\) & 19.00000 & 1 & 5.16930 & \(11.00000+\) & 0 & 5.2350 & 1114914 & 57 & 4426 \\
\hline
\end{tabular}
(MISSING LINES)
\begin{tabular}{|c|c|c|c|c|}
\hline \(0.00000+07.00000+6\) & 0 & 0 & 1 & 21114914574463 \\
\hline 2 & & & & 114914574464 \\
\hline
\end{tabular}
\(-1.00000+0 \quad 5.27090-1-9,00030-15.12910-1-8,20000-15.11990-1114914574465\)
 \(-4.00000-14.93010-1-3.00000-14.90090-1-2.0000-14.88140-1114914574467\) \(-1.00000-14.87170-10.00000+0\) 4.86600-1 1.00000-1 \(14.37170-1114914574468\)
 \(5.00000-14.96910-16.90000-15.00800-1\) 7.00000-15.06160-1114914574470 \(\begin{array}{llllllllllll}8.00000-1 & 5.11990-1 & 0.00000-1 & 5.18810-1 & 1.00000+ & 0 & 5.27090-1114914 & 57 & 4471 \\ 0.00000-1 & 2.00000+7 & 0 & 1 & 1 & 2114914 & 57 & 4472\end{array}\)

\begin{tabular}{rrrrrrr}
\(2.83800+6\) & \(6.05800+6\) & 0 & 0 & 1 & 8114914574475 \\
8 & 2 & & & 114914574476 \\
\(0.00000+0\) & \(4.17500+6\) & 0 & 0 & 1 & 2114914574477 \\
21 & & & & 114914574478
\end{tabular}

7.000GO+ 0 4.15090-1-9.00000-1 4.82780-1-9.90000-14.88.500-1114914 574479 \(-7.00000-14.93670-1-6.00000-14.98800-1-5.00000-15.03420-1114914574.80\) -4.00000-1 \(5.06540-1-3.00000-15.09090-1-2.00000-15.11150-1114914574481\) \(-1.00000-15.12170-10.00000+0 \quad 5.12690-11.00000-15.12170-1114914574482\) \(2.00000-15.11150-113.00000-15.09090-14.00000-15.06540-1114914574483\) \(5.00000-15.03420-16.00009-14.98800-17.00000-14.93670-1114914574484\)
8.00000-14.88500-19.00000-14.82780-11.npman \(144.75090-1114914574485\)

\section*{(MISSING LLNES)}

(MISCING LINES)


File 14 Photon Angular Distributions
\[
\int_{-1}^{1} p_{k}(\mu, E) d \mu=1
\]
where \(p_{k}(\mu, E)\) is the probability that an incident neutron of energy \(E\) will result in a particular discrete photon or photon energy continuum (spec:ified by \(k\) and MT number) being emitted into unit cosine about an angle whose cosine is \(\mu\). Because the photon angular distribution is assumed to have azimuthal symmetry, the distribution may be represented as
\[
p_{k}(\mu, E)=\frac{2 \pi}{\sigma_{k}^{\gamma}(E)} \frac{d \sigma_{k}^{\gamma}}{d \underline{\Omega}}(\underline{\Omega}, E)
\]

\section*{where}
\(\mu=\) cosine of the reaction angle in the lab system.
\(E=\) energy of the incident neutron in the laboratory system, and
\(\mathrm{o}_{\mathrm{k}}^{\gamma}(E)=\) photon production cross section for the discrete photon ar photon continuum specified dy \(k\), as given in either File \(\mathbf{i} 3\) or in Files 2,3 , and 12 combined.

*Note that the subscript \(k\) used in Cescribing Files 12 and 13 has been dropped from \(f\left(E_{\gamma}+E_{i}\right)\). This is done because only one energy continumin is allowed for each MT number, and the subscript \(k\) has no meaning in File 15. It is, in fact, the NK th subsection in File 12 or 13 that contains the production data for the continuum.

The structure of a section is
[MAT, 15. MT/ZA, AWR; b, b; NC, b]HミAD
<subsection for \(j=1>\) <subsection for \(j=2\) >

For \(L F=1\), the structure of a subsection is

[MAT, 15, MT/b, \(E_{N E} ; b, \quad b ; N R, N P / E_{Y}\) int \(\left.^{/ g}\left(E_{Y}+E_{N E}\right)\right] T A B l\).
<subsection for \(j=\) NC>
[MAT, iS, \(D / b, \quad b ; b, b ; b, b] S E N D\).
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(9.22350+\) & \(42.33025+\) & 2 & 0 & & 0 & & 1 & & 0126115102 & 6646 \\
\hline \(0.00000+\) & \(00.00000+\) & 0 & 0 & & 1 & & 1 & & 2126115102 & 6647 \\
\hline & 2 & 2 & & & & & & & 126115102 & 6448 \\
\hline 1.00000- & \(51.00000+\) & \(02.00000+\) & & \(1.00000+\) & 0 & & & & 126115102 & 6649 \\
\hline \(0.00000+\) & \(00.00000+\) & 0 & 0 & & 0 & & 1 & & 4126115102 & 650 \\
\hline & 4 & 2 & & & & & & & 126115102 & 6651 \\
\hline v.00000+ & 01.00000 & 5 & 0 & & 0 & & 1 & & 31126'15102 & 6652 \\
\hline & 31 & 2 & & & & & & & 126115102 & 6653 \\
\hline \(0.00000+\) & 01.96000 & \(71.00040+\) & 5 & 5.491000 & & \(2.00000+\) & & 5.1000 r & 7126115102 & 6654 \\
\hline \(3.00000+\) & 53.43000 & 74.00 (00r)+ & & 2.71000 & & 5.06000) & & 2.29000 & 7125115: U2 & 6655 \\
\hline \(6.00000+\) & \(52.09000-\) & \(77.00000+\) & 5 & \(2.13000-\) & 7 & \(8.00000+\) & & \(2.31000-\) & 7126115102 & 6656 \\
\hline \(9.00000+\) & 52.70000 & 7 1.00000+ & 6 & 3.45000 & 7 & \(1.250000+\) & & \(4.25000-\) & 7126115102 & 6657 \\
\hline 1.50000+ & \(63.74000-\) & \(71.75000+\) & 6 & 3.10030 & 7 & \(2.00030+\) & & \(2.54000-\) & 7126115102 & 6658 \\
\hline \(2.25000+\) & 62.34000 & \(72.50000+\) & 6 & 1.55000 & 7 & \(2.75000+\) & & 1.54000- & 7126115102 & 6659 \\
\hline \(3.00000+\) & 61.25000 & \(73.25000+\) & & \(9.155000-\) & & \(3.50000+\) & & \(7.96000-\) & 8126115102 & 6660 \\
\hline 1. \(75000+\) & 66.69000 & 8 4.00000+ & 6 & 4.88000 & 8 & \(4.25000+\) & & 4.46000- & 2126115102 & 6661 \\
\hline 4.50000+ & 63.0800 H & \(84.75000+\) & & 2.44000- & 8 & \(5.00000+\) & & \(2.12000-\) & 8126115102 & 6662 \\
\hline \(5.50000+\) & 63.73000 & \(86.00000+\) & 6 & 1.17000- & 8 & \(6.50000+\) & 6 & 1.10000- & 9126115102 & 6663 \\
\hline \(7.00000+\) & \(60.00000+\) & 0 & & & & & & & \(12611510 \%\) & 6664 \\
\hline \(0.00000+\) & 0 1. \(30000+\) & 4 & 3 & & 0 & & 1 & & \(3112611510^{\circ}\) & 3665 \\
\hline & 31 & 2 & & & & & & & 126115102 & 6666 \\
\hline \(0.00000+\) & \(01.06000-\) & \(71.00000+\) & & 5.49000- & & \(2.10000 \%\) & & 5.10000- & 7126115102 & 6667 \\
\hline \(3.00000+\) & 5.3 .43000 & \(74.00060+\) & 5 & 2.71000 & 7 & \(5.00000+\) & & \(2.29000-\) & 7126115102 & 6668 \\
\hline \(6.00000+\) & 52.09000 & \(77.00000+\) & 5 & \(2.13000-\) & 7 & 8,00000+ & & 2.31000 & 7126115102 & 6669 \\
\hline 9.00000 e & 52.70000 & \(71.00000+\) & 6 & 3.45000- & 7 & \(1.25000+\) & & 4.25000- & 7125115102 & 6610 \\
\hline 1.5000ut & 33.74000 & \(71.75000+\) & 6 & 3.10000- & 7 & \(2.00500+\) & 6 & 2.54000- & 7126.15102 & 6671 \\
\hline 2.25000+ & 62.34000 & \(72.50000+\) & 6 & 1.95000- & 7 & 2,75000+ & & 1.54000- & 7126115102 & 6672 \\
\hline \(3.00000+\) & 61.25000 & 7 3.25000+ & t & \(9.45000-\) & B & 3.50000+ & & 7.96000- & 8126115102 & 6673 \\
\hline \(3.75000+\) & 66.69000 & \(84.00000+\) & 6 & \(4.82000-\) & & 4,25000+ & & -,46000- & 81261:5102 & 6674 \\
\hline 4.50000+ & 63.08000 & \(84.75000+\) & ' 2 & 2.44000- & 8 & 5,00000+ & & 2.12000- & 8126115102 & 6675 \\
\hline S.50000+ & F \(3.93000-\) & \(86.00000+\) & 5 & 1.17000- & 8 & \(6.50000+\) & 6 & 1.10000- & 9126115102 & 6676 \\
\hline 7.00000+ & \(60.00000+\) & 0 & & & & & & & 126115102 & 6677 \\
\hline \(0.00000+\) & 01.090004 & 6 & 0 & & 0 & & 1 & & 32126115102 & 6678 \\
\hline & 32 & 2 & & & & & & & 126115102 & 6679 \\
\hline \(0.00000+\) & 09.44000 & \(81.00000+\) & 5 & 4.88000- & & 2.000004 & 5 & 4.53000- & 7126115102 & 6680 \\
\hline \(3.00000+\) & 53.05000 & \(74.00000+\) & 5 & 2,41000 & 7 & \(5.00000+\) & 5 & \(2.04000-\) & 7126115102 & 6681 \\
\hline \(6.00000+\) & \(51.86000-\) & \(77.00000+\) & 5 & 1.90000- & 7 & \(8.00000+\) & 5 & \(2.06000-\) & 7126115102 & 6682 \\
\hline \(5.00000+\) & 52.40000 & \(71.00000+\) & 6 & 3.07000- & 7 & \(1.25000+\) & 6 & 3.70000- & 7126115102 & 6683 \\
\hline \(1.50000+\) & \(63.31000-\) & \(71.75000+\) & 5 & 2.62000- & & \(2.00000+\) & 6 & \(\underline{2.23000-~}\) & 7126115102 & 6684 \\
\hline \(2.25000+\) & \(62.08000-\) & 7 \(2.50000+\) & 15 & 1.90000- & & \(2.75000+\) & 6 & 1.66000- & 7126115102 & 6685 \\
\hline \(3.00000+\) & 61.44600 & \(73.25000+\) & 6 & 1.22000- & & \(3.50000+\) & 6 & 1.02000- & -7126115102 & 6686 \\
\hline \(3.75000+\) & 68.92000 & \(84.00000+\) & 6 & 7.37000- & & \(4.25000 \div\) & & 6.62000- & -8126115102 & 6687 \\
\hline \(4.50000+\) & 6 5.40000- & \(84.75000+\) & 6 & \(4.71000-\) & & 5.00000+ & 6 & 4.20000 & - 8126115102 & 6688 \\
\hline \(5.50000+\) & 67.27000 & \(86.00000+\) & - 6 & \(2.23000-\) & & \(6.50000+\) & 6 & 1.35000- & - 9126115102 & 6689 \\
\hline \(7.00000+\) & 64.50000 & \(97.50000+\) & - 6 & \(0.00000+\) & 0 & & & & 126115102 & 6690 \\
\hline \(0.00000+\) & \(02.00000+\) & 7 & 0 & & 0 & & 1 & & 32126115102 & 6691 \\
\hline & 32 & 2 & & & & & & & 126115102 & 6692 \\
\hline \(0.00000+\) & - 9.44000- & \(81.00000+\) & 5 & 4.88000 & & \(2.00000+\) & & \(4.53000-\) & 7126115102 & 6693 \\
\hline \(3.00000+\) & \(53.05000-\) & \(74.00000+\) & - 5 & 2.41000 & & \(5.00000+\) & 5 & 2.04000 & - 7126115102 & 6694 \\
\hline \(6.00000+\) & 51.86000 & \(77.00000+\) & 5 & 1.90000- & & \(8.00000+\) & 5 & \(2.06000-\) & - 7126115102 & 6695 \\
\hline \(9.00000+\) & \(52.40000-\) & \(71.00000+\) & + 6 & 3.07000- & & \(1.25000+\) & 6 & 3.76000- & - 7126115102 & 6696 \\
\hline 1.50000+ & \(63.31000-\) & \(71.75000+\) & + 6 & 2.62000 & & \(2.00000+\) & & \(2.23000-\) & - 7126115102 & 6697 \\
\hline \(2.25000+\) & 62.08000 & \(72.50000+\) & 6 & 1.90000- & & \(2.75000+\) & & 1.66000- & 7126115102 & 6698 \\
\hline \(3.00000+\) & \(61.44000-\) & \(73.25000+\) & + 6 & 1.22000- & & \(3.50000+\) & & 1.02000- & -7126115102 & 6699 \\
\hline \(3.75000+\) & \(68.92000-\) & \(84.00000+\) & \(+6\) & 7.37000- & & \(4.25000+\) & 6 & 6.62000- & -8126115102 & 6700 \\
\hline \(4.50000+\) & + 6.40000 & \(84.75000+\) & \(+6\) & 4.71000 & & 5.00000+ & & 4.20000 & -8126115102 & 675. \\
\hline 5.50000+ & 6 7.27000- & \(86.00000+\) & \(+6\) & 2.23000- & - 8 & \(6.50000+\) & 6 & 1.35000- & - 8126115102 & 6702 \\
\hline \(7.00000+\) & + 6 4.50000- & - 7.50000+ & \(+6\) & \(0.00000+\) & \(+0\) & & & & 126115102 & 6703 \\
\hline & & & & & & & & & 1261150 & 6704 \\
\hline
\end{tabular}
\[
f\left(E_{Y}-E\right)=\sum_{j=1}^{N C} p_{j}(E) q_{j}\left(E_{Y}-E\right) \quad(E V)^{-1}
\]
where
\[
\begin{aligned}
& \int_{0}^{E_{Y}^{\max }} f\left(E_{Y}-E\right) d E_{Y}=1
\end{aligned}
\]

Thus,
\[
\sum_{j=1}^{N C} P_{j}(E)=1
\]

\section*{APPENDIX}

Format Differences Between Successive Versions of ENDF/E

\section*{Versions I and II}

The following is a summary of the format differences between version I and Version II ENDF/B data tapes. ENDF/B Version I was released in July 1968, and Version II was released in August 1970.

\section*{File 1 Changes}
1. An index has been added to \(M T=451\). Each record in this index contains a file number (MF), reaction type number ( MT ), and the number of \(B C D\) card images required to specify the data for each section to be given for the material. The number of entries in the index is given by \(N X C\), which is the last binary record (sixth field for \(\operatorname{BCD}\) card-image format) of the HEAD record. Each index ettry is given in a CØNT record. These records immediately follow the Hollerith information.
2. The format for specifying induced reaction branching ( \(M T=453\) ) has been extensively nodified.
3. The format for specifying fission froduct yield data ( \(M T=454\) ) has been modified to allow the specification of yield data for metastable states.
4. A new section has been defined to contain data for delayed neutrons from
fission ( \(M T=455\) ). See Section 5.1 of this report for details.

File 2 Changes
1. LRF, the test indicating the type of resolved resonance formula used, has been expanded to include
```

ZRF = l, single-level Breit-Wigner parameters are given;
= 2, multilevel Breit-Wigner parameters are given;
= 3, R-Matrix (Reich-Moare) multilevel parameters are given
(added);
= 4, Adler-Adler multilevol resonance parameters are given
(added).

```
2. All materials will contain a File 2. For those materials for which resolved and/or unresolved are not given, file 2 will contain the effective scattering radius, AP. See Section 2.1 for details.
3. The IIS test has been removed. This means that the elastic scattering cross section always must be calculated, using the resolved or unresolved resonance parameters.
4. Tre constant \(C\) (used in calculating the penetration factor) has been replaced by a quantity AMRI. AWRI is defined as the ratio of the mass of a particular isotope to that of a neutron.
5. A new option for specifying unresolved resonance parameters has been added.

It is indicated by the cest LRF \(=2\). This means that all average resonance parameter:; lievel spacing, the width of an unspecified competitive reaction, and the reduced neutron, radiation, and fission widths) may be given as a function cf incident neutron energy. Energy-dependent parameters may be given for each \& - J state. See Section 7.3 for details.

\section*{File 3 Changes}
1. The reaction Q-value has been defined as the kinetic energy (in eV) released by a reaction (positive \(\Omega\)-values) or required for a reaction (negative \(Q\)-values). The threshold energy (negative \(\Omega\) only) is given by
\[
E_{t h}=\frac{A W R+1.0}{A W R}|Q|
\]
where \(A W R\) is the atomic weight ratio given on the HEAD record.
2. The maximum number of allowed energy points per section has been increased from 2000 to 5000.
3. An initial-state indicator has been added to the HEAD record. This will allow the inclusion of cross section data for metastable states and thus more than one section may be given for the same reaction type (MI number).

\section*{File 4 (No Changes)}

File 5 Changes
1. The definition of \(L F=3\) (discrete energy loss law) was changed to read
\[
f\left(E \rightarrow E^{\prime}\right)=\delta\left[E^{\prime}-\frac{A^{2} \times 1}{(A \times 1)^{2}} E^{+} \frac{A}{A+1}\right] \theta
\]
where \(A=A W R\) and \(\theta\) is the level excitation energy (positive value).
2. T and LT have been removed from the TABl records that contain \(p(E)\) for cases in which \(L \mathcal{F}=5,7\), or 9 . A value, \(U\), replaces \(T\). \(U\) was introduced to define the proper upper limit for the seconaary neutron energy distributions so that
\[
0 \leq E^{\prime} \leq E-U,
\]
where \(E^{\prime}, E\), ar.a \(U\) are given in the laboratory system. Further, the normalization constants for \(L F=7\) and \(L F=9\) have been redefined to account for the use of \(U\). 3. \(L F=2,4,6\), and 8 have been deleted.

All Files.
2. Certain reaction type (MT) numbers have been changed (see Appendix B for definitions):

\section*{Old MT Number}

5

6

7
8

9
10
11
12
13
14
15
27
29
51
52
53
-
-

20
109 (Not assigned)
455 (Not assigned)
700-799 (Not assigned)

New MT Number
51 52 53 54 55 56

\section*{57}

\section*{58}

59
60
91
No longer used
No longer used
61
62
63
-
-
-

90
\(109(n, 3 a)\) cross section
455 Delayed neutrons from fission
700-799 Assigned (see Appendix B)
2. The format for specifying temperature-dependent data has been modified so that the data for the second (and hiciner) temperatures may be given at a lesser number of points than was given for the first temperature. See Appendix for details.

Versions II and IV
The following is a summary of the format differences between Versions II and IV ENDF/B data tapes. ENDF/B Version IV was released about February 1975. General
1. The energy range for all general-purpose materials is \(10^{-5} \mathrm{aV}\) to 20 MeV.

\section*{File 1}
1. The formats for speciگying radioactive decay were changed. Section MT \(=453\) was changed to include only production of radioactive nuclides, and Section MT \(=457\) was addea to include radioactive decay data.
2. Provision was made for supplying data for the number of prompt neutrons per fission ( \(\bar{v} p\) ) in added Section \(M T=456\).

\section*{Eile 3}
1. The energy mesh for the tot:al cross section must include the energy meshes for partial cross sections.
2. Time sequential ( \(n, 2 n\) ) reactions are described by using Sections \(\mathrm{MT}=6-9\) and \(\mathrm{NT}=46-49\).
3. An LR flag was added to designate \(x\) in the \((n, n ' x)\) reactions when \(x\) is not a photon. In this case, the temperature field \(S\) (formerly \(T\) ) is used to designate the \(\mathbb{Q}\) value or energy difference of the combined reactions.
4. Sections \(\mathrm{MT}=718,738,758,778,798\), and \(\mathrm{MT}=719,739,759,779\), 799 are redefined to describe continuum levels for ( \(n, x^{\prime}\) ) reactions. \(M T=718\) describes the ( \(\mathrm{n}, \mathrm{P}_{\mathrm{c}}^{\prime}\) ) continum cross sections as part of the \((n, p)\) cross section and shouid be included in the total cross section. MP \(=719\) is used to describe a continuum cross section for exit protons whose crors section is already represented in the total cooss section by other reaction types.

\section*{APPENDTX P}

Summary of Important ENDF Pules

\section*{General}
1. Cross sections for all significant reactions should be included.
2. The data in ENDF are specified over the entire energy range \(10^{-5}\) ev to 20 MeV. It should be posisible to determine values between tabulated points with use of the interpolation schemes provided.
3. All cross sections art in barns: all energies in eV, all temperatures; in de' ces Kelvin, and all times in seconds.
4. Summary documentation and unusu-. features of the evaluation should appear in the File 1 comments.
5. Threshold erergies and \(q \times y a l u e s\) must be rennsistent. for all data presented in different files for a particular reaction.

\section*{File 2 - Resonance Farameters}
1. úly one energy region containing resolved renonance parameters cas: be used, if needed.
2. The cross section from resonance parameters is calculated only within the energy range EL to EH , althougin somes of this resonance parameters may lie outside the range.
3. Every ENDF Material has a File ? even if no resonance parameters are given in order to specify the effective scettering radius.
4. In the unresolved resonance region interpolation should be Aone in cross section space and not in unresolved resonance parameter space. Any INr is allowed.
5. The Breit-Wigner single-level or muitilevel formalisms should be used in the resclved resonance region unless experimental data prove that use of the other allowed formalisms is significantly better.

\section*{File 3 - Tabulated Cross Sections}
1. All File 3 data are given in the laboratory system.
2. The total cross section \(M T=1\) is the sum of all partial cross sections and :as an energy mesh that includes all energy meshes for partial cross sections.
(Exceptions: \(M T=26,46-49,719,739,759,779\), and 799 are not included in the \(M T=1\).
3. The following relationships among MT numbers are expected to be satisfied if data are presented:
```

1=2+3
3(or 1 - 2) = 4 (or 51+···. .91) + (6+...9+16) + 17 + 18
(or 19+...21+38) + (22+...25) + (28+...37)
+(102+...114)
4 = sum (5l+...91)
18= sum (19+...21) + 38
101 = sum (102+...114)
103= sum (700+...718)
l04 = sum (720+...738)
105=sum (740+···..758)
106 = sum (760+...778)
107=sum (780+== 798)

```
4. Threshold reactions begin at zero cross sections at the threshold energy. Files 2 and 3
1. If there are resonance parameters in file 2, there are contributions to the total ( \(M T=1\) ) and scattering ( \(M T=2\) ) cross sections and to the fission ( \(M T=18\) ) and capture \((M T=102)\) cross sections if fission and capture widths are also given. These must be added to the File 3 Sections \(M T=1,2,18\), and 102 over the resonance region in order to obtain summation values for these cross sections.
2. The cross sections in File 3 for \(M T=1,2,18\), and 102 in the resonance region are used to modify the cross section calculated from the resonance formalisms, if necessary. The File 3 "background" may be positive or negative or even zero if no modifications are required. The summation cross Section File \(2+\) File 3) should be everywhere positive.
3. Double-value points (discontinuities) are allowed anywhere but are required at sesonance region boundaries. A typical situation for \(M T=1,2\), 18, and 102 in File 3 is a tabulated cross section from \(10^{-5}\) to 1 eV , tabulated "background" to the cross sections calculated in the resolved resonance region between ELI and EHl, tabulated "background" to the cross sections calculated in the unresolved region between EL2 \(=\mathrm{EH} 1\) and EH 2 , and tabulated cross sections from EH2 to 20 MeV . Double-value points occur at ELI, EL2, and EH2.
4. The tabulated "background" Lised in File 3 to modify the cross sections calculated from File 2 should not be highly structured or represent a large frastion of the cross sections calculated from File ?. It is assumed that the "barkground" cross section is assumed to be at \(\dot{u}^{\circ}\) Kelvin. (The "background" cross section is usually obtained from room temperature comparisions, but this should be unimportant if the "background" cross section is either small or slowly varying).
5. The generalized procedure for Doppler-broadening cross sections from Files \(2+3\) is to generate \(\mathfrak{\text { pointwise cross section from the resolved resonance }}\) region on an appropriate energy mesh at \(0^{\circ} \mathrm{K}\) and add it to File 3. This sumation cross section can be kernel-broadened to a higher temperature.

File 4 - Neutron Angular Distributions
1. Only relative angular distributions, nırmalized to an integrated probability of unity, are given in File 4. 'ine differential scattering cross
section in barns per steradian is determined by multiplying File 4 values by the File \(2+\) File 3 summation scattering cross section \(\sigma_{s}\) divided by \(2 \pi\).
2. Discrete channel angular distributions (e.g., MT \(=2,51-90,701 .\). ) should be given as Legendre coefficients in the center-of-mass system, with a maximum of 20 higher order terms, the last being even, in the expansion. If the angular distribution is highly structured and cannot be represented by a Legendre expansion, a tiabular angular distribution in the \(C M\) system must be given.
3. When the elastic scattering is represented by Legendre coefficients, an energy-independent transformation matrix must be given to perform a \(C M\) to laboratory conversion.
4. Angular distributions for continuum and other reactions must be given as tabulated distributions in the Lab system.
5. The angular distribution, whether specified as a Legendre expansion or a tabulated distribution, must he everywhere positive.
6. Angular distribution data should be given at the minimum number of incident energy points that will accurately describe the energy variation of the distributions.

\section*{File 5 - Secondary Energy Distribution}
1. Only relative energy spectra, normalized to an integrated probability of unity, are given in File 5. AIl spectra must be zero at the end points. The differential cross section in barns per eV is obtained by multiplying the File 5 values by the File \(2+\) File 3 cross section times its multiplizity [ 2 for the \((n, 2 n)\) reaction].
2. While distribution laws \(1,3,5,7,9\), and 10 are allowed, distribution l.aws 3 and 5 are discouraged but can be used if others do not apply.
\[
\mathrm{P}-5
\]
3. The sum of ali probabilities for all laws used for a particular reaction must be unity at each incident energy.
4. The constant \(U\) must be specified, where applicable, to limit the energy range of emitted spectra to physical limits.

File 6
1. File 6 formats and procedures have been specified, but this File is not currently used in ENDF.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{File} & \multicolumn{4}{|c|}{APPENDIX} \\
\hline & \multicolumn{4}{|l|}{Maximum Dimensions of Important ENDF Parameters} \\
\hline & Section & Variable & Max & Definition \\
\hline \multirow[t]{5}{*}{1} & 451 & NCD & 294 & Card images containing Hollerith \\
\hline & & & & information \\
\hline & 452 & NC & 4 & Polynomial terms in expansion of \(\bar{u}\) \\
\hline & 455 & NCD & 4 & Polynomial terms in expansion of \(\bar{v}_{d}\) \\
\hline & 456 & NCP & 4 & Polynomial terms in expansion of \(\bar{v}_{p}\) \\
\hline \multirow[t]{7}{*}{2} & 151 & NER & 2 & Energy ranges \\
\hline & " & NIS & 10 & Isotopes \\
\hline & " & NRS & 500 & Resonances per Q-state \\
\hline & " & NLS & 3 & Q-states \\
\hline & " & NE & 250 & Energy mesh in unresolved region \\
\hline & " & AMUN & 2 & Degrees of freedom for neutron widths \\
\hline & " & AMUF & 4 & Degrees of Ereedom for fission widths \\
\hline \multirow[t]{2}{*}{3} & All & NR & 100 & Interpolation ranges (< 20 usual) \\
\hline & " & NP & 5000 & Mesh size \\
\hline \multirow[t]{4}{*}{4} & 2 & NL & 21 & Side dimension of transformation matrix \\
\hline & All & NM & 20 & Higher order Legendre temms \\
\hline & " & NE & 500 & Incident energles \\
\hline & " & NP & 101 & Angulai mesh size \\
\hline \multirow[t]{2}{*}{5} & A. 11 & NE & 200 & Incident energy mesh \\
\hline & " & NF & 1000 & Final energy mesh \\
\hline 7 & 4 & NS & 3 & Nonprincipal scattering atoms \\
\hline
\end{tabular}

\section*{APPENDIX \(R\)}

\section*{Trial Format for Non-Neutron Data}

\section*{Purpose}

It is desirable to expand the ENDF/B formats to include reactions relating to neutron physics and other applications such as fusion and space shielding studies. The major types needed are charged-particle-induced reactions arising in neutron source reactions, other inverse neutron reactions, and reactions arising from intense charged-particle fluxes produced by reactor, outer space, and commn. accelerator sources. It is also necessary to specify which secondary particle \(1 s\) designated in angular and energy distributions.

The solution proposed allows these data to be included with the following advantages:
1. No changes are required in existing neutron-induced data formats.
2. The same MAT number is used for both neutron and non-neutron-induced data. This is desirable, since ENDF/B should contain only one MAT per target material.
3. Where appropriate, the same MT numbers are used for both neutron and non-neutron data.
4. No changes are required in codes processing the neutron data files. If the non-neutron data files are merged with the neutron files, oniy minimal changes are required in some of these peripheral sodes.

\section*{Proposed solution}

Files 62-67 and \(72-76\) would be used in analogy with Files 2-7 and 12-16 (add 60 to the present MF numbers). Formats for data uncertainties will be contained in Files 82-87 and 92-96, in analogy with Files 32-27 and 42-46.
1. MT numbers plus new ones as required would designate the exit. channel(s). The excettions would be \(M T=1,2,3\), and 4 where the ex:t channel would be taken to be the same as the entrarce channel. *
2. Field 6 of the HEAD record is blank for all Files according to ENDF 102, Volumes 1 and II. This fiela will specify the 2 A as \((1.000 \cdot \mathrm{Z}+\mathrm{A}\) of the incident particle (IZA) as a fixed point number. An IzA of 0 will designate a neutron-induced reaction. Other IZA's are
\begin{tabular}{ll} 
Incident Particle & IZA \\
g B- & 1111 (ciefined) \\
B+ & -1000 \\
p & 1000 \\
d & 1001 \\
\(t^{3}\) & 1002 \\
\({ }_{\text {He }}\) & 1003 \\
alpha & 2003 \\
\(12_{C}\) & 2004 \\
\(15_{0}\) & 6012 \\
\(32_{s}\) & 8016
\end{tabular}

IZA's for molecules and strange particles can be invented as needed.

\footnotetext{
* MT \(=4\) would continue to equal the sum of \(\mathrm{MT}=51,52 \ldots, 91\). New MT's B00819 would be defined to describe \(\left(x, n_{0}\right),\left(n, n_{1}\right) \ldots\left(x, n_{1},\left(x, n_{c}\right)\right.\), where \(: x\) represents the incident particle. \(M T=15^{\circ}\) would be used to define Ehe total ( \(x, n\) ) cross section. Thus, for proton-induced reactions field 6 of the HEAD record would contain 1001 and ( \(p, p^{\prime}\) ) te al would be described by \(N T=4\); ( \(p, p^{\prime}\) ) to discrete states and the continum by \(M T=51-91 ;(p, n)\) total by MT -15 ; and ( \(p, n^{\prime}\) ) to discrete states and the continuum by MT \(=800-819\) cannot be usel for neutron-induced reactions.
}

\section*{R-3}
3. An MT number is repeated for as many sections as there are incident particies for which data are specified. The convention is foilowed that MT numbers are arranged in order or ascending IZA. ENDF/B tapes that do not contain merged neutron and non-neutron files can be supplied.
4. According to ENDF 102, field 5 of the HEAD record is blank for all files except. Files5, for which field 4 is blank. It is proposed that this field contain JZA, the \(\left(1000^{\circ} Z+n\right)\) of the particle designated in the angular or energy distribution following the same code as described above.
5. The structure of File 1 would be changed to include IZP. and JZA in the dictionary. The CDNT record for a non-neutron data section would contain JZA and IZA as floating-point numbers in the first and second fields, respectively, to maintain the ordra in which they appear on the HEAD card of each section.
6. The structure of file 62 could be constructed in analogy with neutroninduced widths, with the incident particle designated as in item 4 and resonance energies, widths, and other data definea by new formats and procedures to be specified at a later time.
7. Eloton-induced nuclear reactions are to be handled in the same way as other non-neutron-induced reactions. The word atomic should be added to the definitions for MT \(=501,502\), and 504 and \(M F-23-26 . M_{2}=518,532\) and 533 should be cancelled.

Examples
The structure of file 1 of a MÃ sontaining File 3 sections for ( \(n, n p\) ), \((n, y)\), and File \(63(p, y)\) data and a File 4 section for \((n, n)\) outgoing portion angular distribution data only is
［GA，AWR，LRP，LEI，C，NXC］HEAD
（0．0．0．0，LDD，LFP，NWD，O／H（N））LIST
\(\{M A T, 1,451,0.0,0,0,1,451, N C 1,0\} C \not \subset N T\)
\([\mathrm{MAL}, 1,451,0.0,0.0,3,28, \mathrm{NC} 2,0] \mathrm{C}\) ． CNT
（MAT，1，451，0．0．0．0．3，102，NC3，0）C2NT
［MAT，1，451，0．0，1001，0，63，102．WC4，0］CのNT
\([\mathrm{MAT}, 1,451,10010,0,4,28, \mathrm{NC} 5,01\) CONT
〔MAT ；1， \(0,0,0, \bar{U} .0,0,0,0,0 〕\) SEND
The structure of File 63 containing \((F, \gamma)\) चata is
［MAT，63，MT－102，GA，AHR，LIS，0，IRA－100］HEAD
\(\left[\mathrm{MAT}, 63, \mathrm{MS}-102 / T, \mathrm{~T}, \mathrm{LT}, \mathrm{N}, \mathrm{NR}, \mathrm{NP} / \mathrm{E}_{\text {int }} / \sigma(\mathrm{E})\right] \mathrm{TABI}\)
［MAT，FS，0／0．0，0．0，0，0，0，0］SENDThe stmucture of file 4 containing（n，np）and File sA contaiaing（p，pa）
angilar distribution for the emerging proton is
\(\lceil M A T, 4, M T=28, / Z A, A W T, E V T, L T T, J Z A=1001,0] H E A D\)
－•••
．．．．．
．．．．．
［MAT ，4，0／0．0，0，0，0，0］SEND
\([M A T, 64, M T-1 i 2 / Z A, A W R, L V T, L T T, J Z A=1001, I Z A=1001] \mathrm{HEAD}\)
．．．．．．．．．
．．．．
［MAT ，64，0／0．0．0．0，0，0，0，0］SEND

The differential elastic distributions would be rationed to Rutherford scattering. Angular distributions for inelastic scattering and reaction data integrate to unity.

The structure of file 5 containing both ( \(n, n p\) ) and file 65 containing energy distribution data for the emerging proton is
[MA T, \(\left.5, M T=28,{ }^{\prime 2} A, A W R, O, J Z A=1001, N K, 0\right]\) HEAD
\(\qquad\)
.....
....
[MAT,5,0/0.0,0.0,0,0,0,0] SEND
[MA T, \(65, M T=112 / 2 A, A W R, 0, J Z A=1001, N K, I E A=1001\) ] HEAD
-•••
.....
.....
[MAT, 65,0/0.0,G.0,0,0,0,0] SFND
The structure of File 6 would follow the rules for file 4.

\section*{L1mitations}

Simple additional tests would be required for DICTION and RIGEL and dictionary expansions made to the display codes. RIGEL can be modified by the NACSC to output only neutron data files or only neutrin and gamanafiles, etc. There would be no limitation on the user's receiving an ENDF tape containing oniy neutron-induced reaction and gama-gamma interaction data. This will probably be the normal distribution recommended by CSENC. However, for those users requiring them, other types of data may be included in the ENDF system with a minimum of modification to formats and processing codes.```


[^0]:    *This report supersedes the descriptions of the ENDF/B library given in BNL 8381 and in BNL 50066 (ENDF J.0.).

[^1]:    (1) C. I. Dunford et al., "SCORE II, An Interactive Neutron Evaluation System," USAEC Report AI-AEC-12757 (ENDF-126), March 1, 1969.
    (2) R. R. Kinsey, C. Rindfleish, D. Garber, "TIGER," The Interactive Graphics Evaiuation Routine, NNCSC, 1973.

[^2]:    *Altnough NS is limited to 5 , the specific state number can be larger thar 5 as long as the total number of states represented is no larger than 5 .

[^3]:    *The section Mr $=453$ is renamed Induced Reaction Branching Ratios.

[^4]:    *These energies are the limits to be used in calculating cross sections from the parameters. Resolved resonance levels e.g., bound levels will of necessity be outside the limits.

[^5]:    *Reserved for use in ENDF/A only.

[^6]:    *T. Greebler and B. Hutchins. Physics of Fast and Intermediate Reactors. III, 121 (1962) International Atomic Energy Agency, Vienna, 1962.

[^7]:    *This format is not restricted to ${ }^{9} \mathrm{Be}$.

[^8]:    *There should be no more than one energy continuum for each MT number used. If the decomposition of a continum into several parts is desired, this can be accomplished in File 15.

[^9]:    *If the total number of discrete photons and photon continua is one (NK $=1$ ), this TABl record is omitted.

[^10]:    *There should be no more than one energy continuum for each MT number used. If the decomposition of a continuum into several parts is lesired, this can be accompiished in File 15.

[^11]:    *Donald J. Dudziak and Iohn F. Fomero, "VIXEN, A Physical Consistency Checking Code for Photon Prgiuction Data in Revised ENDF Format," a Los Alanos Scientific Laboratory code LA-47i9 (ENDF-155).

[^12]:    *Note that tine subscript $k$ used in describing Files 12 and 13 has been dropped from $f\left(E_{\gamma} \leftarrow E\right)$. This is done because only one energy continum is allowed for each MT number, and the subscript $k$ has no mearing in File l5. It is, in fact, the NKth subsection in File 12 or 13 that contains the production data for the continuum.

[^13]:    "The use of File 16 is discouraged but the formats and procedures are presented here in case the file should be activated.

[^14]:    *In ENDF, $q$ is given in inverse angstroms as customarily reported in the literature. The above equations show $q$ in "natural" moc units. Inverse angstroms, $\sin (\theta / 2) / \lambda$, can be converted to $m_{0} C$ units by the factor $2 \times 12398.1 / 511006$. $=0.0048524$.

